Cycle-complete ramsey numbers

Keevash, Peter; Long, Eoin; and Skokan, JozefORCID logo (2021) Cycle-complete ramsey numbers International Mathematics Research Notices, 2021 (1). 275 – 300. ISSN 1073-7928
Copy

The Ramsey number r(Cℓ, Kn) is the smallest natural number N such that every red/blue edge-colouring of a clique of order N contains a red cycle of length ℓ or a blue clique of order n. In 1978, Erdos, Faudree, Rousseau and Schelp conjectured that r(Cℓ, Kn) = (ℓ − 1)(n − 1) + 1 for ℓ ≥ n ≥ 3 provided (ℓ, n) 6= (3, 3). We prove that, for some absolute constant C ≥ 1, we have r(Cℓ, Kn) = (ℓ − 1)(n − 1) + 1 provided ℓ ≥ C logloglognn. Up to the value of C this is tight since we also show that, for any ε > 0 and n > n0(ε), we have r(Cℓ, Kn) ≫ (ℓ − 1)(n − 1) + 1 for all 3 ≤ ℓ ≤ (1 − ε)logloglognn. This proves the conjecture of Erdos, Faudree, Rousseau and Schelp for large ℓ, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erdos, Faudree, Rousseau and Schelp.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads