Rescaling algorithms for linear conic feasibility

Dadush, D., Végh, L. A.ORCID logo & Zambelli, G. (2020). Rescaling algorithms for linear conic feasibility. Mathematics of Operations Research, 45(2), 732 - 754. https://doi.org/10.1287/moor.2019.1011
Copy

We propose simple polynomial-time algorithms for two linear conic feasibility problems. For a matrix A ∈ R m× n, the kernel problem requires a positive vector in the kernel of A, and the image problem requires a positive vector in the image of A T. Both algorithms iterate between simple first-order steps and rescaling steps. These rescalings improve natural geometric potentials. If Goffin's condition measure ρ A is negative, then the kernel problem is feasible, and the worst-case complexity of the kernel algorithm is O((m 3n + mn 2)log|ρ A| −1); if ρ A > 0, then the image problem is feasible, and the image algorithm runs in time O(m 2n 2 log ρ A −1). We also extend the image algorithm to the oracle setting. We address the degenerate case ρA = 0 by extending our algorithms to find maximum support nonnegative vectors in the kernel of A and in the image of A T. In this case, the running time bounds are expressed in the bit-size model of computation: for an input matrix A with integer entries and total encoding length L, the maximum support kernel algorithm runs in time O((m 3n + mn 2)L), whereas the maximum support image algorithm runs in time O(m 2n 2L). The standard linear programming feasibility problem can be easily reduced to either maximum support problems, yielding polynomial-time algorithms for linear programming.

picture_as_pdf

subject
Accepted Version

Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export