Personalizing second-line Type 2 diabetes treatment selection:combining network meta-analysis, individualized risk, and patient preferences for unified decision support

Choi, Sung Eun; Berkowitz, Seth A.; Yudkin, John S.; Naci, HuseyinORCID logo; and Basu, Sanjay (2019) Personalizing second-line Type 2 diabetes treatment selection:combining network meta-analysis, individualized risk, and patient preferences for unified decision support Medical Decision Making, 39 (3). pp. 239-252. ISSN 0272-989X
Copy

Background. Personalizing medical treatment often requires practitioners to compare multiple treatment options, assess a patient’s unique risk and benefit from each option, and elicit a patient’s preferences around treatment. We integrated these 3 considerations into a decision-modeling framework for the selection of second-line glycemic therapy for type 2 diabetes. Methods. Based on multicriteria decision analysis, we developed a unified treatment decision support tool accounting for 3 factors: patient preferences, disease outcomes, and medication efficacy and safety profiles. By standardizing and multiplying these 3 factors, we calculated the ranking score for each medication. This approach was applied to determining second-line glycemic therapy by integrating 1) treatment efficacy and side-effect data from a network meta-analysis of 301 randomized trials (N = 219,277), 2) validated risk equations for type 2 diabetes complications, and 3) patient preferences around treatment (e.g., to avoid daily glucose testing). Data from participants with type 2 diabetes in the U.S. National Health and Nutrition Examination Survey (NHANES 2003–2014, N = 1107) were used to explore variations in treatment recommendations and associated quality-adjusted life-years given different patient features. Results. Patients at the highest microvascular disease risk had glucagon-like peptide 1 agonists or basal insulin recommended as top choices, whereas those wanting to avoid an injected medication or daily glucose testing had sodium-glucose linked transporter 2 or dipeptidyl peptidase 4 inhibitors commonly recommended, and those with major cost concerns had sulfonylureas commonly recommended. By converting from the most common sulfonylurea treatment to the model-recommended treatment, NHANES participants were expected to save an average of 0.036 quality-adjusted life-years per person (about a half month) from 10 years of treatment. Conclusions. Models can help integrate meta-analytic treatment effect estimates with individualized risk calculations and preferences, to aid personalized treatment selection.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads