Empirical likelihood for high frequency data

Camponovo, Lorenzo; Matsushita, Yukitoshi; and Otsu, TaisukeORCID logo (2019) Empirical likelihood for high frequency data Journal of Business and Economic Statistics. ISSN 0735-0015
Copy

This paper introduces empirical likelihood methods for interval estimation and hypothesis testing on volatility measures in some high frequency data environments. We propose a modified empirical likelihood statistic that is asymptotically pivotal under infill asymptotics, where the number of high frequency observations in a fixed time interval increases to infinity. The proposed statistic is extended to be robust to the presence of jumps and microstructure noise. We also provide an empirical likelihood-based test to detect the presence of jumps. Furthermore, we study higher-order properties of a general family of nonparametric likelihood statistics and show that a particular statistic admits a Bartlett correction: a higher-order refinement to achieve better coverage or size properties. Simulation and a real data example illustrate the usefulness of our approach.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads