Rédei, Miklós

Number of items: 60.
Centre for Philosophy of Natural and Social Sciences (CPNSS)
  • Gyenis, Z., Rédei, Miklós (2015). Why Bertrand's Paradox is not paradoxical but is felt so. In Maki, U., Ruphy, S., Schurz, G. & Votsis, I. (Eds.), Recent Developments in the Philosophy of Science: EPSA13 Helsinki (pp. 265-276). Springer Berlin / Heidelberg.
  • Rédei, Miklós (2014). Assessing the status of the common cause principle. In Galavotti, M. C., Dieks, D., Gonzalez, W. J., Hartmann, S., Uebel, T. & Weber, M. (Eds.), New Directions in the Philosophy of Science (pp. 433-442). Springer International (Firm). https://doi.org/10.1007/978-3-319-04382-1_29
  • LSE
  • Frigg, Roman, Alexander, J. Mc Kenzie, Hudetz, Laurenz, Rédei, Miklós, Ross, Lewis, Worrall, John (2025). Introduction. In Synthese Library (pp. 1-6). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-031-88213-5_1 picture_as_pdf
  • Hofer-Szabo, Gabor, Rédei, Miklós (2004). Reichenbachian common cause systems. International Journal of Theoretical Physics, 43(7/8), 1819-1826. https://doi.org/10.1023/B:IJTP.0000048822.29070.0c
  • Gyenis, Balázs, Rédei, Miklós (2004). When can statistical theories be causally closed? Foundations of Physics, 34(9), 1285-1303. https://doi.org/10.1023/B:FOOP.0000044094.09861.12
  • Hofer-Szabo, Gabor, Rédei, Miklós, Szabo, László E. (2002). Common-causes are not common common-causes. Philosophy of Science, 69(4), 623-636. https://doi.org/10.1086/344625
  • Rédei, Miklós, Summers, Stephen J. (2002). Local primitive causality and the common cause principle in quantum field theory. Foundations of Physics, 32(3), 335-355. https://doi.org/10.1023/A:1014869211488
  • Rédei, Miklós (2001). Facets of quantum logic. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 32(1), 101-111. https://doi.org/10.1016/S1355-2198(00)00013-7
  • Hofer-Szabo, Gabor, Rédei, Miklós, Szabo, Laszlo (2000). Common cause completability of classical and quantum probability spaces. International Journal of Theoretical Physics, 39(3), 913-919. https://doi.org/10.1023/A:1003643300514
  • Philosophy, Logic and Scientific Method
  • Frigg, Roman, Alexander, J. Mc Kenzie, Hudetz, Laurenz, Rédei, Miklós, Ross, Lewis, Worrall, John (2025). Introduction. In Synthese Library (pp. 1-6). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-031-88213-5_1 picture_as_pdf
  • Alexander, J. Mckenzie, Hudetz, Laurenz, Rédei, Miklós, Ross, Lewis, Worrall, John (2025). Proofs and research programmes: Lakatos at 100. Springer. picture_as_pdf
  • Rédei, Miklós, Gömöri, Márton (2024). Entropic taming of the Look Elsewhere Effect. Synthese, 203(1). https://doi.org/10.1007/s11229-023-04434-6 picture_as_pdf
  • Rédei, Miklós (2024). George Polya’s reaction to Imre Lakatos’ ’Proofs and Refutations’. In Daniel, G., Mate, S. & Tuboly, A. (Eds.), Lakatos in Hungary. A narrated source book . Springer. [In Press] picture_as_pdf
  • Rédei, Miklós, Gyenis, Zalán (2021). The maxim of probabilism, with special regard to Reichenbach. Synthese, 199(3-4), 8857 - 8874. https://doi.org/10.1007/s11229-021-03185-6 picture_as_pdf
  • Miklós, Rédei, Gyenis, Zalán (2021). Having a look at the Bayes Blind Spot. Synthese, https://doi.org/10.1007/s11229-019-02311-9 picture_as_pdf
  • Miklós, Rédei (2020). On the tension between physics and mathematics. Journal for General Philosophy of Science, 51(3), 411 - 425. https://doi.org/10.1007/s10838-019-09496-0 picture_as_pdf
  • Brown, William, Gyenis, Zalán, Rédei, Miklós (2018). The modal logic of Bayesian belief revision. Journal of Philosophical Logic, https://doi.org/10.1007/s10992-018-9495-9 picture_as_pdf
  • Gyenis, Zalán, Rédei, Miklós (2017). General properties of Bayesian learning as statistical inference determined by conditional expectations. Review of Symbolic Logic, 10(4), 719-755. https://doi.org/10.1017/S1755020316000502
  • Gyenis, Zalán, Rédei, Miklós (2017). Categorial subsystem independence as morphism co-possibility. Communications in Mathematical Physics, https://doi.org/10.1007/s00220-017-2940-8
  • Gyenis, Zalán, Rédei, Miklós (2017). Common cause completability of non-classical probability spaces. Belgrade Philosophical Annual,
  • Rédei, Miklós, Gyenis, Zalán (2016). Measure theoretic analysis of consistency of the Principal Principle. Philosophy of Science, 83(5), 972-987. https://doi.org/10.1086/687879
  • Gyenis, Zalán, Hofer-Szabo, Gabor, Rédei, Miklós (2016). Conditioning using conditional expectations:the Borel-Kolmogorov Paradox. Synthese, 194(7), 2595-2630. https://doi.org/10.1007/s11229-016-1070-8
  • Kitajima, Yuichiro, Rédei, Miklós (2015). Characterizing common cause closedness of quantum probability theories. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52(B), 234-241. https://doi.org/10.1016/j.shpsb.2015.08.003
  • Gyenis, Zalán, Rédei, Miklós (2015). Defusing Bertrand's paradox. British Journal for the Philosophy of Science, 66(2), 349 - 373. https://doi.org/10.1093/bjps/axt036
  • Rédei, Miklós (2014). A categorial approach to relativistic locality. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 48(S1), 137-146. https://doi.org/10.1016/j.shpsb.2014.08.014
  • Gyenis, Zalán, Rédei, Miklós (2014). Atomicity and causal completeness. Erkenntnis, 79(3), 437-451. https://doi.org/10.1007/s10670-013-9456-1
  • Rédei, Miklós (2014). Hilbert's 6th problem and axiomatic quantum field theory. Perspectives on Science, 22(1), 80-97. https://doi.org/10.1162/POSC_a_00119
  • Redei, Miklós, Hofer-Szabo, Gabor, Szabo, Laszlo (2013). The principle of the common cause. Cambridge University Press.
  • Rédei, Miklós, San Pedro, Iñaki (2012). Distinguishing causality principles. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43(2), 84-89. https://doi.org/10.1016/j.shpsb.2012.02.002
  • Rédei, Miklós, Werndl, Charlotte (2012). On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution. Archive for History of Exact Sciences, 66(1), 71-93. https://doi.org/10.1007/s00407-011-0089-y
  • Rédei, Miklós (2012). Some historical and philosophical aspects of quantum probability theory and its interpretation. In Probabilities, Laws, and Structures (pp. 497-506). Springer Netherlands. https://doi.org/10.1007/978-94-007-3030-4_36
  • Gyenis, Zalán, Rédei, Miklós (2011). Characterizing common cause closed probability spaces. Philosophy of Science, 78(3), 393-409. https://doi.org/10.1086/660302
  • Rédei, Miklós (2011). Einstein meets von Neumann: locality and operational independence in algebraic quantum field theory. In Halvorson, H. (Ed.), Deep Beauty: Understanding the Quantum World Through Mathematical Innovation (pp. 343-364). Cambridge University Press.
  • Rédei, Miklós, Gyenis, Balazs (2011). Causal completeness of probability theories-results and open problems. In McKay Illari, P., Russo, F. & Williamson, J. (Eds.), Causaulity in the Sciences . Oxford University Press.
  • Rédei, Miklós, Stadler, Friedrich (2011). Austria-Hungary in philosophy and science: a search for the evidence. In Máté, A., Rédei, M. & Stadler, F. (Eds.), Der Wiener Kreis in Ungarn: the Vienna Circle in Hungary (pp. 9-24). Springer Berlin / Heidelberg.
  • Gyenis, Balazs, Rédei, Miklós (2011). Causal completeness in general probability theories. In Suárez, M. (Ed.), Probabilities, Causes and Propensities in Physics . Springer Berlin / Heidelberg. https://doi.org/10.1007/978-1-4020-9904-5_7
  • Máté, András, Rédei, Miklós, Stadler, Friedrich (Eds.) (2011). Der Wiener Kreis in Ungarn: the Vienna circle in Hungary. Springer Berlin / Heidelberg.
  • Rédei, Miklós (2010). Einstein's dissatisfaction with nonrelativistic quantum mechanics and relativistic quantum field theory. Philosophy of Science, 77(5), 1042-1057. https://doi.org/10.1086/656819
  • Rédei, Miklós, Valente, Giovanni (2010). How local are local operations in local quantum field theory? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(4), 346-353. https://doi.org/10.1016/j.shpsb.2010.09.001
  • Rédei, Miklós (2010). Operational independence and operational separability in algebraic quantum mechanics. Foundations of Physics, 40(9-10), 1439-1449. https://doi.org/10.1007/s10701-010-9447-x
  • Suárez, Mauricio, Dorato, Mauro, Rédei, Miklós (Eds.) (2010). EPSA epistemology and methodology of science. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-90-481-3263-8
  • Suárez, Mauricio, Dorato, Mauro, Rédei, Miklós (Eds.) (2010). EPSA philosophical issues in the sciences. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-90-481-3252-2
  • Lászlo, E. Szabó, Gyenis, Balázs, Gyenis, Zalán, Rédei, Miklós, Szabó, Gábor (2010). Korrelációk kauzális magyarázata. Magyar Filozófiai Szemle, 2010(3).
  • Rédei, Miklós, Summers, Stephen J. (2010). When are quantum systems operationally independent? International Journal of Theoretical Physics, 49(12), 3250-3261. https://doi.org/10.1007/s10773-009-0010-5
  • Rédei, Miklós (2009). The Birkhoff-von Neumann concept of quantum logic. In Engesser, K., Gabbay, D. M. & Lehmann, D. (Eds.), Handbook of Quantum Logic and Quantum Structures: Quantum Logic (pp. 1-22). Elsevier (Firm). https://doi.org/10.1016/B978-0-444-52869-8.50004-9
  • Rédei, Miklós, Summers, Stephen Jeffrey (2007). Quantum probability theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(2), 390-417. https://doi.org/10.1016/j.shpsb.2006.05.006
  • Rédei, Miklós (2007). The birth of quantum logic. History and Philosophy of Logic, 28(2), 107-122. https://doi.org/10.1080/01445340601113955
  • Dall Chiara, Maria Luisa, Giuntini, Roberto, Rédei, Miklós (2007). The history of quantum logic. In Gabbay, D. M. & Woods, J. (Eds.), Handbook of the History of Logic: the Many Valued and Nonmotonic Turn in Logic (pp. 205-283). Elsevier (Firm). https://doi.org/10.1016/S1874-5857(07)80007-0
  • Rédei, Miklós (2006). John von Neumann on quantum correlations. In Demopoulos, W. & Pitowsky, I. (Eds.), Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub (pp. 241-252). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-4876-9_11
  • Hofer-Szabo, Gabor, Rédei, Miklós (2006). Reichenbachian common cause systems of arbitrary finite size exist. Foundations of Physics, 36(5), 745-756. https://doi.org/10.1007/s10701-005-9040-x
  • Rédei, Miklós, Stöltzner, Michael (2006). Soft axiomatization: John von Neumann on method and von Neumann's method in the physical sciences. In Carson, E. & Huber, R. (Eds.), Intuition and the Axiomatic Method (pp. 235-249). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-4040-7_11
  • Rédei, Miklós (2005). John von Neumann on mathematical and axiomatic physics. In Boniolo, G., Budinich, P. & Trobok, M. (Eds.), The Role of Mathematics in Physical Sciences: Interdisciplinary and Philosophical Aspects (pp. 43-54). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-3107-6_4
  • Rédei, Miklós (Ed.) (2005). John von Neumann: selected letters. American Mathematical Society.
  • Rédei, Miklós, Summers, Stephen J. (2005). Remarks on causality in relativistic quantum field theory. International Journal of Theoretical Physics, 44(7), 1029-1039. https://doi.org/10.1007/s10773-005-7079-2
  • Rédei, Miklós (2004). Operator algebras and quantum logic. In Weingartner, P. (Ed.), Alternative Logics: Do Sciences Need Them? (pp. 349-360). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-3-662-05679-0_23
  • Rédei, Miklós (2004). Thinking about thought experiments in physics: comment on "experiments and thought experiments in natural science". In Galavotti, M. C. (Ed.), Observation and Experiment in the Natural and Social Sciences (pp. 237-241). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48123-5_16
  • Rédei, Miklós (2002). Two comments on the vacuum in algebraic quantum field theory. In Kuhlmann, M., Lyre, H. & Wayne, A. (Eds.), Ontologial Aspects of Quantum Field Theory . World Scientific (Firm).
  • Rédei, Miklós (2002). Mathematical physics and philosophy of physics (with special consideration of J. von Neumann's work). In Heidelberger, M. & Stadler, F. (Eds.), History of Philosophy of Science: New Trends and Perspectives (pp. 239-243). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-1785-4_18
  • Rédei, Miklós (2002). Reichenbach’s common cause principle and quantum correlations. In Placek, T. & Butterfield, J. (Eds.), Non-Locality and Modality: Proceedings of the Nato Advanced Research Workshop on Modality, Probability, and Bell's Theorems, Cra (pp. 259-270). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-010-0385-8_17
  • Rédei, Miklós, Stöltzner, Michael (Eds.) (2001). John von Neumann and the foundations of quantum physics. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-2012-0
  • Rédei, Miklós (2001). Von Neumann's concept of quantum logic and quantum probability. In Rédei, M. & Stöltzner, M. (Eds.), John Von Neumann and the Foundations of Quantum Physics (pp. 153-172). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-2012-0_10