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Abstract
As child mortality rates overall are decreasing, non-communicable conditions, such as genetic disorders, constitute an increasing
proportion of child mortality, morbidity and disability. To date, policy and public health programmes have focused on common
genetic disorders. Rare single gene disorders are an important source of morbidity and premature mortality for affected families.
When considered collectively, they account for an important public health burden, which is frequently under-recognised. To
document the collective frequency and health burden of rare single gene disorders, it is necessary to aggregate them into large
manageable groupings and take account of their family implications, effective interventions and service needs. Here, we present
an approach to estimate the burden of these conditions up to 5 years of age in settings without empirical data. This approaches
uses population-level demographic data, combinedwith assumptions based on empirical data from settings with data available, to
provide population-level estimates which programmes and policy-makers when planning services can use.

Keywords Rare genetic disorders . Birth prevalence .Mortality . Disability

Introduction

Overall child mortality rates have shown large decreases over
the past decades, in particular from reductions in deaths from
infections, diarrhoea and vaccine-preventable diseases.
Consequently, child mortality levels are now very low in
many settings and policy attention is shifting to focus on

non-communicable conditions, which now make up a larger
relative proportion of all under-five deaths (Liu et al. 2016). In
addition, in the Sustainable Development Goal era, strategies
are increasingly seeking to move beyond survival to consider
morbidity and disability outcomes, as highlighted in the
Global Strategy for Women’s, Children’s and Adolescent’s
Health (2016–2030) themes—Survive, Thrive, Transform
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(Every Woman Every Child 2017). In settings with very low
levels of communicable disease mortality, genetically deter-
mined disorders make up an important proportion of both
stillbirths and child mortality, and ongoing disability.
Genetically determined disorders can be divided into two
broad groups: ‘single gene disorders’ caused by gene variants
with strong effect and ‘genetic risk factors’—gene variants
with weaker effect causing disease only when combined with
other genetic and/or environmental factors.

Single gene disorders arise in the first place from gene
mutation. Since this can occur in any gene, single gene
disorders can affect any aspect of structure or function
and they are extraordinarily diverse (McKusick-Nathans
Institute of Genetic Medicine 2017). Despite their clinical
diversity, single gene disorders have a common biological
basis, all have the potential to be passed on to offspring and
all require the same basic genetic and management ser-
vices. These include accurate diagnosis, risk assessment
and information for the affected individual and their fam-
ily, and access to options for managing risk and services
for affected children.

The Modell Global Database of Congenital Disorders
MGDb uses a set of defined methods to relate demographic
data to the known birth prevalence of selected groups of con-
genital disorders, in order to generate estimates relevant to
public health, policy-making and clinical practice (Modell et
al. 2017). For the purpose of MGDb, single gene disorders are
divided into two groups: firstly, ‘rare single gene disorders’,
where the birth prevalence can be predicted from the balance
between the rate at which disease gene variants arise by new
mutation, and the rate at which they are lost because affected
individuals die or fail to reproduce (Haldane 1949; Harris
1970; Cavalli-Sforza and Bodmer 2013); secondly, ‘common
single gene disorders’when the frequency in the population is
increased as the causative gene variant confers a selective
advantage in the local environment (e.g. the sickle cell gene
providing protection against malaria) and country-specific in-
formation is necessary to define their birth prevalence. In ad-
dition, selected ‘genetic risk factors’ that can have an impact
on early life mortality and morbidity are included in MGDb
(Bhutani et al. 2013; Smits-Wintjens et al. 2008).

This paper is the sixth in this special issue on methods for
estimating the global burden of congenital disorders. Here, we
describe the methods used in the MGDb to estimate the col-
lective baseline birth prevalence of rare single gene disorders,
and the effect of available interventions on affected birth prev-
alence and outcomes. Methods to estimate ‘genetic risk fac-
tors’ or ‘common single gene disorders’ are not discussed in
this paper. Further details of genetic risk factors included in
MGDb (rhesus negativity, G6PD deficiency and alpha plus
thalassaemia) and common single gene disorders (e.g.
haemoglobin disorders, cystic fibrosis, oculo-cutaneous albi-
nism) can be accessed online (Modell et al. 2017).

Methods

The inheritance of rare single gene disorders generally follows
Mendelian inheritance patterns. They include autosomal dom-
inant conditions, autosomal recessive and X-linked disorders.
In MGDb since the overall aim is to support policy-making in
maternal and child health, only early-onset rare single gene
disorders are considered. For the purposes of MGDb, these
disorders are grouped as ‘early-onset dominant disorders’, ‘re-
cessive disorders’, ‘X-linked disorders’ and ‘genetic type un-
known’ (Table 1). Later-onset single gene disorders such as
family cancer syndromes, adult polycystic disease of the kid-
ney or familial hypercholesterolaemia are not included.

As with other conditions modelled in MGDb, the first step
is to estimate the baseline birth prevalence of single gene
disorders, in the absence of any interventions (Fig. 1).
Baseline or potential birth prevalence includes stillbirths and
livebirths, but excludes miscarriages. MGDb follows the
European Congenital Anomalies Registry (EUROCAT) con-
vention and uses ‘fetal death’ (death in utero after 20 weeks’
gestation) as a proxy for stillbirth and all losses before
20 weeks’ gestation are viewed as miscarriages (European
Surveillance of Congenital Anomalies (EUROCAT)). In
keeping with ICD-10, regardless of gestation, all births with
any signs of life following separation from the mother are
counted as livebirths (World Health Organization 2010).

The global prevalence of rare single gene disorders is esti-
mated in MGDb using data on the birth prevalence of these
disorders from populations with available data and applying
these estimates to populations currently lacking such data,
with adjustments where necessary.

Step 1—Estimation of baseline birth prevalence

Since birth prevalence of rare single gene disorders with no
selective advantage reflects a balance between new mutation
and loss due to natural selection, we considered factors that
could affect this balance. These include the effect of advanced
paternal age on mutation rate and of parental consanguinity on
affected birth prevalence and thus on selection pressure.

We estimated baseline birth prevalence separately for non-
consanguinity- and consanguinity-associated disorders. The
overall baseline birth prevalence of rare single gene disorders
is estimated as the baseline prevalence of non-consanguinity-
associated disorders plus the baseline prevalence of
consanguinity-associated disorders.

1a—Estimation of non-consanguinity-related baseline rare
single gene disorders prevalence

Observational data of birth prevalence of early-onset single
gene disorders and adjustments for fetal deaths Population-
based congenital abnormality registers form an important data
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source for the birth prevalence of many congenital disorders
(Moorthie et al. 2017). However, as only a minority of single
gene disorders are clinically recognisable at birth, and diagno-
sis in the remainder usually requires specialist diagnostic fa-
cilities, only those conditions that cause physical abnormali-
ties are captured in these registers. The published literature
was therefore reviewed for alternative prevalence data
sources. Three ‘classical’ population-based studies and one
review of the collective prevalence of single gene disorders
were identified (Ash et al. 1977; Baird et al. 1988; Stevenson
1959; Trimble and Doughty 1974) (see Online resource p2).
These studies were set in Northern European or North
American populations and reported broadly similar results.
They all date prior to 1990, as recent research has tended to
focus on basic science only. In the absence of more recent data
on birth prevalence, MGDb uses the rates of Baird et al.
(1988), based on the British Colombia Health Registry, to
represent global baseline birth prevalence of early-onset single
gene disorders as these provide the most recent and complete
data. However, they apply only for live births and do not
include fetal deaths. As no readily accessible data on fetal
death associated with early-onset autosomal dominant and
X-linked disorders could be found, the livebirth rates reported
by Baird et al. are assumed to be equal to the total births
affected and no further adjustment is undertaken. A similar
approach is taken for the ‘genetic type unknown’ category.
However, reliable data exists on prevalence of stillbirths relat-
ed to consanguinity-associated recessive disorders (Bittles and

Black 2010b; Bundey and Alam 1993). These data were used
to adjust the rates reported by Baird et al. (Baird et al. 1988).
The same stillbirth rate is assumed for non-consanguinity-
associated recessive disorders (Table 2).

Investigation of effects of paternal age on gene mutation rate
Mutations arise because of uncorrected errors in DNA rep-
lication during cell division. In females, relatively few cell
divisions occur in the formation of mature oocytes, but as
adult males generate sperm life-long, spermatogonial stem
cells may have undergone more than 1000 divisions by
60 years of age. An association between paternal age and
prevalence of new mutations is therefore to be expected
and has long been recognised (Ramasamy et al. 2015;
Tuente 1972), although it has proved hard to quantify.
This is because new mutations occur on one chromosome
only—i.e. they are heterozygous; therefore, only early-
onset severe dominant disorders will show a clinical effect
in terms of fetal death, early death or disability in the first
generation. The birth prevalence of X-linked and recessive
disorders reflects the average mutation rate over previous
generations. This would only be affected by medium- to
long-term changes in parental age distribution.

Previous studies have demonstrated an exponential effect
of paternal age on mutation rate, with a more than four-fold
increase at paternal age 45–49 years when compared to a
baseline of 30–34 years (Modell and Kuliev 1990) (see
Online resource p3). There are large inter-country variations

Table 1 Overview of rare single
gene disorders include in Modell
Global Database

Inheritance Terminology of groupings of disorders used in MGDb

Autosomal
dominant

Early-onset dominant disorders manifest at or soon after birth, are often due to new
mutation, and usually lead to early death or seriously impaired reproductive fitness.
Most occur without a family history, and are likely to be eliminated by natural selection
in the first generation in the absence of diagnosis and care. Examples include
osteogenesis imperfecta, achondroplasia and Apert’s syndrome.

Autosomal
Recessive

Recessive disorders occur in one in four of the offspring of couples who both carry a
potentially lethal variant of the same gene. Most people are asymptomatic carriers of at
least one potentially lethal gene variant, but as most gene variants are individually rare in
the general population, the chance of an at-risk union is low. Therefore, most recessive
disorders are uncommon, and most affected infants are born to parents without an
antecedent family history. Examples include cystic fibrosis and glycogen storage
disorders.

Parental consanguinity increases the chances that a couple will both carry the same
recessive gene variant and hence is associated with an increased birth prevalence of
recessive single gene disorders. In MGDb the term ‘consanguinity-associated disorders’
is used to refer to this increment, and they are grouped separately because their birth
prevalence depends on the population prevalence of parental consanguinity (Bittles and
Black 2010b; Sheridan et al. 2013).

X-linked X-linked disorders are typically transmitted by unaffected female carriers and expressed in
50% of their male offspring. Female carriers may be affected to varying degrees; female
homozygotes are rare. They tend to present during childhood and there is often a family
history. Examples include haemophilia, Duchenne muscular dystrophy and X-linked
mental retardation.

Genetic type
unknown

Genetic type unknown disorders for which the type of inheritance (e.g. dominant,
X-linked, recessive) is not known.
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in paternal age (United Nations 2015), and hence, substantial
differences would be expected in mutation rates, and the base-
line prevalence of single gene disorders. Trends in paternal
age distribution for countries with available data have shown
a reduction in paternal age from the earliest records in 1940 to
the mid-1970s, associatedwith increased availability of family
planning services and the reduction in overall family size in
these countries (United Nations 2015). However, since that
time, average paternal age has increased and estimated muta-
tion rates based on paternal age distributions have rebounded

to similar levels estimated in the1940s and 1950s. This sug-
gests the overall long-term effects of the observed oscillations
are quite small. No adjustment for the effects of parental age
was therefore included (see Online resource p4 for details).

Summary The reported rates from Western Canada were used
to estimate the baseline birth prevalence of rare single gene
disorders for all countries with an adjustment to include fetal
deaths associated with recessive disorders (Baird et al. 1988)
(Table 2).

Table 2 Model parameters for the estimation of baseline prevalence included in Modell Global Database

Autosomal Dominant X-linked disorders Non-consanguinity-related
autosomal recessive

Consanguinity-related Genetic type unknown

Per 1000 total births Per 1000 total births Per 1000 total births Per 1000 total births Per 1000 total births

1.4 0.053 1.84a 6.5 × F × 100 1.16

For consanguinity-related and recessive disorders (Bittles and Black 2010b; Bundey and Alam 1993); for all other disorders (Baird et al. 1988)
a Equals 1.66 affected livebirths per 1000 births reported plus 10% stillbirths

PND  prenatal diagnosis
TOP  termination of pregnancy

a All Under-5 deaths are adjusted for estimated ‘background mortality’ from other causes (Moorthie S et al. 2017)

b Currently no cure is available for any rare single gene disorder, therefore all survivors live with some degree 
   of disability

c Not discussed in this paper. See (Modell B et al. 2017) for details

Fig. 1 Overview of estimation of
rare single gene disorders in
MGDb
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1b—Estimation of consanguinity-related rare single gene
disorders

In human genetics, the definition of a consanguineous union is
one in which the partners are related as second cousins or
closer. That is, they have one or more common ancestors
within the preceding three generations. Consanguineous part-
nership increases the chance that a couple will both carry the
same recessive disease variant and be at risk for having affect-
ed children; the effect is particularly marked for rare disorders.
Therefore, where consanguineous marriage is common,
there is an increased birth prevalence of a wide spectrum
of rare recessive conditions (Corry 2014). The genetic im-
plications for offspring are expressed as a coefficient of
consanguinity (F), which describes the proportion of the
children’s gene pairs that are identical because they are
inherited from a common ancestor. Table 3 shows the
commonest types of parental consanguinity and associated
coefficients of consanguinity.

Global data on consanguinity levels Estimated values of the
mean coefficient of consanguinity (F) are available for 288
countries and vary from 0.0001 in many developed countries
to 0.0332 in Pakistan (Bittles and Black 2015). InMGDb, these
estimated values are used to calculate the total percentage of all
parent couples who are consanguineous, assuming that around
two thirds of all consanguineous parents are first cousins and
one-third are more distant relatives (see Online resource p5). To
enable comparisons between populations, MGDb uses a coef-
ficient of consanguinity of 0.01 (equivalent to 1% of genes
identical by recent descent) as a unit of parental consanguinity.

Observational data of birth prevalence of consanguinity-
associated disorders Studies of birth prevalence of
consanguinity-associated disorders undertaken in high-
income settings with advanced diagnostic facilities, access to
optimal care and long-term follow-up have found between
5.6–7.7 consanguinity-affected births per 1000 total births
for each unit of parental consanguinity (0.01F) (Bittles and

Black 2010a; Bittles and Neel 1994; Bundey and Alam
1993; Sheridan et al. 2013) (see Online resource p5).

Summary For the purposes of MGDb, the mid-point of the
available observational studies was used, and the birth preva-
lence of consanguinity-associated disorders was calculated as:

Births=1000 of consanguinity−associated disorders

¼ Population F � 100� 6:5

Step 2—Estimation of actual birth prevalence

Baseline birth prevalence estimates provide an assessment of
the underlying prevalence in the population in the absence of
interventions. However, when estimating the actual birth prev-
alence, the potential effect of the development and expansion
of genetic services should be taken into account. Genetic ser-
vices can provide risk identification and counselling prior to
pregnancy, with a potential impact on couples’ reproductive
choices, including prenatal diagnosis for at-risk pregnancies
when this is feasible, and the option of termination of preg-
nancy (TOP) where this is available and culturally acceptable.
Risk identification may take place prospectively prior to an
affected birth or retrospectively after the diagnosis of an af-
fected child (Fraser 1972).

Estimation of access to genetic services

Genetic services encompass diagnostic, therapeutic and
counselling services for management of individuals and
families affected by a genetic disorder. Information regard-
ing the proportion of the population with access to special-
ist diagnostic and therapeutic services is required to calcu-
late actual birth prevalence from the total ‘baseline birth
prevalence’. Data on access to these services are not rou-
tinely available; we therefore developed a method to esti-
mate access to specialist services (Blencowe et al. 2018).

Table 3 Degrees of parental
consanguinity and corresponding
coefficient of consanguinity

Relationship of parents % of genes identical by descent,
above population average

Coefficient of consanguinity (F)

Double first cousins (D1C): 12.5 0.125

First cousins (1C) 6.25 0.0625

First cousins once removed (1 1/2 C) 3.13 0.0313

Second cousins (2C) 1.56 0.0156

Non-consanguineous – > 0.0

Uncle-niece marriage is common in some communities: F is the same as for double first cousins. Co-efficient of
consanguinity is also referred to as α in some sources, e.g. Bittles and Black 2015

Data source: (Cavalli-Sforza and Bodmer 2013) (see appendix p5)
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Even in settings with high levels of access to specialist services,
including genetic testing, access to TOP for diagnosed affected
pregnancies is dependent on the legal status, national policy and
local clinical practice of TOP for fetal disorders in the country
(Blencowe et al. 2018; UN Population Division 2013). For
countries with no observational data, it is assumed that genetic
counselling and prenatal diagnosis is incorporated into specialist
health services as they develop and that these services will only
be available to a proportion of those accessing health care. In
addition, it is assumed that only women in countries where TOP
for fetal anomaly is legal, or there is documented widespread
practice, will be able to access prenatal diagnosis with the option
of TOP. The maximum possible percentage of pregnancies ter-
minated is calculated, based on the proportion of women esti-
mated to have access to prenatal diagnosis, the legal status of
TOP in the country, and the assumption that all women diag-
nosed with an affected pregnancy and with access to TOP will
terminate the pregnancy. See the third paper in this series for full
details (Blencowe et al. 2018).

Potential effects of risk identification

Prospective risk identification depends on the ability to detect
carriers before they have any affected children, but until recent-
ly, this has been very limited because the diversity of gene
variants underlying most single gene disorders made DNA-
based carrier screening unrealistic. Carrier screening is therefore
currently limited to common disorders detectable by assay of the
protein end-product (e.g. Tay-Sachs disease, haemoglobin dis-
orders). At present, mutation-specific DNA-based screening is
available only for cystic fibrosis and some disorders that are
particularly common in specific population groups, e.g. French
Canadians (Mitchell et al. 1996) and Ashkenazi Jews (Ekstein
and Katzenstein 2001). Surveillance of the existing screening
programmes shows that prospective carrier screening with the
option of prenatal diagnosis can lead to an over 90% fall in
affected birth prevalence (Modell et al. 2017).

Extended family studies have been used to assess the risk
of dominant and X-linked disorders prior to the birth of an
affected child. At present, family studies are rarely offered for
recessive disorders because their power of detecting risk is
very limited in randomly mating populations (Krawczak et
al. 2001). However, their power is much increased when con-
sanguineous marriage is common (Ahmed et al. 2002; Khan et
al. 2010). The effect of extended family studies on affected
birth prevalence is hard to assess, and we identified no reports
seeking to quantify this.

Ongoing developments in genomics such as rapid cost-
effective exome scanning can overcome current barriers to
prospective carrier screening for rare single gene disorders
and may lead to a major reduction in their birth prevalence,
particularly in high income countries (Ellard et al. 2015;
Lazarin and Haque 2016). The combination of developments

in genomics and ongoing retrospective carrier screening ef-
forts in consanguineous populations can generate a greater
knowledge and understanding of variants associated with rare
genetic diseases. In the future, such efforts may inform vari-
ants to investigate through prospective carrier screening.
However, translation of such findings into clinical practice
will require assessment both of the evidence base surrounding
screening for such variants and the ethical, legal and social
implications of such a programme.

Retrospective risk identification enables parents to avoid a
second affected birth by limiting further reproduction or
using prenatal diagnosis with the option of termination of
pregnancy. However, the maximum associated reduction in
affected birth prevalence is relatively modest, ranging from
around 13% when total fertility rate is 2 to 45% when it is
six (Fraser 1972). In practice, the majority of at-risk cou-
ples with fewer than two healthy children undertake further
pregnancies in the hope of obtaining unaffected children
(Petrou et al. 2000; Safari Moradabadi et al. 2015). Access
to preimplantation or early pregnancy diagnosis services,
with the option of TOP, can aid parents to complete their
desired family size whilst avoiding the birth of a second
affected child. However, both physical and cultural barriers
exist to such services, and only a minority of couples glob-
ally can access these (Izquierdo and Berkshire 2010; Melo
and Sequeiros 2012; Zhong et al. 2017). The effect of ret-
rospective detection on overall reduction of affected birth
prevalence is hence low, especially where average family
sizes are 3 or fewer, as in most settings where genetic
services are available. See Online resource p6, (Fraser
1972) and the third paper in this series (Blencowe et al.
2018) for further details.

Estimation of the effect of risk identification on birth
prevalence

Risk identification was assumed to have minimal impact on
birth prevalence for early-onset dominant or X-linked condi-
tions. For recessive disorders, including consanguinity-relat-
ed, the maximum pre-birth reduction was estimated by firstly
allocating each country to one of four groups, based on current
policy and practice. These groups are retrospective risk in-
formation only, retrospective risk information with access
to pre-natal diagnosis and TOP, prospective carrier screen-
ing only and prospective carrier screening with access to
pre-natal diagnosis and TOP. In case of rare single gene
disorders, currently, the majority of risk identification is
retrospective in all settings. Next, the maximum potential
effect of the current policy was estimated based on current
total fertility rate, assuming the average at risk couple aims
for two unaffected children (see Online resource p7 and
(Blencowe et al. 2018) for details). Finally, the maximum
potential reduction in birth prevalence in each country was
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estimated by applying the maximum potential effect of the
country’s policy to the sub-set of the population in each
country estimated to have access to specialist services
(Blencowe et al. 2018).

Estimation of actual live- and stillbirths associated with rare
single gene disorders

The estimated actual prevalence of affected births, live- and
stillborn, in a given country per 1000 total births was estimat-
ed as the baseline birth prevalence minus the maximum num-
ber of cases averted by risk identification per 1000 total births.

Step 3—Estimation of child outcomes

Child mortality outcomes

All mortality rates are adjusted for background mortality
(Moorthie et al. 2017). The number of under-5 deaths is esti-
mated as:

Total under5 deaths ¼ Affected livebirths� under5 case fatality rateð Þ
Adjusted number of under5 deaths ¼ Total under5 deaths

−
Total under5 deaths

100

� �
� national U5MR

� �

Robust follow-up data on consanguinity-associated reces-
sive disorders are available. These show an early mortality of
80–90% in the absence of care (Bittles and Black 2010a), and
28% with optimal care (Bundey and Alam 1993).These data
are assumed to be representative for rare recessive disorders in
general.

Limited or no data on excess mortality with early-onset
dominant, X-linked rare single gene disorders or for the group
classified as ‘genetic type unknown’ are available. Available
evidence from dominant haemoglobin disorders supports the
assumption that early-onset dominant disorders have a higher
mortality than recessive disorders. X-linked disorders are typ-
ically less severe, and hence are assumed to have a lower
mortality. No data on survival are available for the group

classified as ‘genetic type unknown’. In order to generate a
conservative estimate, this group is assumed to have the same
mortality risk as X-linked disorders. A summary of case fatal-
ity rates used in MGDb is provided in Table 4. Further details
are available online (Modell et al. 2017).

Child disability outcomes

Whilst allogeneic haematopoietic stem cell transplantation has
been used as a curative treatment for beta-thalassaemia and
severe sickle cell disorders and there is some promising re-
search on the effect of gene editing, there is currently no de-
finitive cure for any rare single gene disorders (King and
Shenoy 2014; Wang and Gao 2014). Therefore, all survivors
affected with rare single gene disorders are assumed to have
some degree of disability. This ranges from conditions such as
phenylketonuria and thalassaemia where affected individuals
with continuing access to appropriate medical intervention
can be ‘well on treatment’, to severe physical and mental
disability for those unable to access care, or with conditions
where no treatment currently exists.

Longer-term outcomes

The steps shown above provide details of requirements to
estimate child outcomes. However, available survival data en-
ables the construction of life-time survival curves, which can
be used in MGDb to calculate mean life expectancy and other
longer term outcomes (Modell et al. 2017).

Regional estimates of baseline birth prevalence
of rare single gene disorders

Figure 2 shows the baseline birth prevalence of rare single
gene disorders obtained by applying the above steps to each
country and grouping intoWorld Health Organization regions.
This figure highlights the important contribution of
consanguinity-associated disorders to total rare single-gene
disorders.

Table 4 Estimated early case fatality rates for rare single gene disorders in Modell Global Database, % of affected livebirths

Care level Dominant X-linked Recessive Genetic type unknown Consanguinity-associated

% neonatal deaths1 No care 36.0 21.0 19.0 21.0 19.0

Optimal care 20.4 12.0 11.0 12.0 11.0

% infant deaths No care 60.0 35.0 39.0 35.0 39.0

Optimal care 34.0 20.0 14.0 20.0 14.0

% under-5 deaths No care 100.0 40.0 84.0 40.0 84.0

Optimal care 50.0 25.0 28.0 25.0 28.0

1 Reliable collective figures for neonatal death are only available for consanguinity-associated and recessive disorders. Rates for other groups are
estimated at 60% of the infant mortality rate
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Discussion

Any genetic diagnosis (whether in an affected or an unaffected
person) involves the family as well as the presenting individ-
ual. Relatives need information on the mode of inheritance
and possible health and reproductive risks for themselves,
access to definitive diagnosis when this is available, and sup-
portive genetic counselling. This requirement, which is spe-
cific for single gene disorders, introduces new concepts, and
new educational and work force requirements into health ser-
vices (Samavat and Modell 2004). It is therefore necessary to
view these disorders as a coherent group.

Three important points are raised in this article. Firstly,
the potential of using existing data to estimate the birth
prevalence and outcomes of rare single gene disorders.
Secondly, the importance of the contr ibution of
consanguinity-associated disorders to total single gene
and overall congenital disorders (Fig. 2). Finally, the po-
tential effect of prospective carrier detection by new
methods of genomic analysis, for increasing the currently
very limited effect of genetic counselling on the birth prev-
alence of rare single gene disorders. However, as stated
above, this requires consideration of the evidence base in
relation to the pathogenicity of particular variants, how
they could be incorporated into prospective screening and
the ethical, legal and social implications of such a venture.

To date, public health approaches to congenital disorders
have tended to focus on congenital anomalies (Black et al.
2010; Liu et al. 2012; Lopez et al. 2006), whilst single gene
disorders are seen as too rare, too diverse and too difficult to
handle. However, they are an important category of congenital
disorder as although individually rare, collectively, they con-
tribute significantly to infant mortality and morbidity (Baird et
al. 1954; Emery and Rimoin 1997; Lacaze et al. 2017). One
barrier to assessing the disease burden of single gene disorders

is that most initiatives for their treatment and/or prevention have
been devised by treating clinicians or lay support groups and so
tend to be specific to particular disorders. The inevitable focus
on individual diagnoses means that the need for patient care
obscures their common mode of inheritance and common ge-
netic service needs and tends to favour competition rather than
co-operation. The development of the Rare Diseases initiative
should help to overcome this difficulty (Dharssi et al. 2017).
Though the definition of a rare disease is based on frequency
rather than cause, around 80% of recognised rare diseases are in
fact single gene disorders. Another barrier is that single gene
disorders can affect any aspect of structure or functioning and
so are scattered through many categories of the International
Classification of Diseases (ICD) (World Health Organization
2010). Therefore, reliance on ICD10 classification can make
analysis for this group of disorders very cumbersome. An alter-
native approach is to apply the basic principles of population
genetics to single gene disorders rather than dealing with indi-
vidual diagnoses, and sufficient information is available to ap-
ply this method for assessing their global birth prevalence.

In this paper, we present this non-ICD-based approach to
assess the collective epidemiology of rare single gene disor-
ders. A notable limitation is the reliance on few data sources to
inform the estimation of their birth prevalence. In recent years
there has been a proliferation in epidemiological data regard-
ing single gene disorders in high income settings, with some
countries establishing national rare disease registries
(www.orpha.net 2017). However, whilst low levels of consis-
tency between studies, poor documentation of methods, con-
fusion between incidence and prevalence and over birth prev-
alence currently limit the use of these sources for accurate
prevalence data. In the future, an adequately funded multi-
country umbrella registry organisation could overcome some
of these barriers and may provide useful comparable preva-
lence data for policy-making.

Fig. 2 Total Baseline birth prevalence of rare single gene disorders, by WHO region
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In the absence of reliable data, several assumptions are
required, including regarding access to care, and women’s
behaviour concerning TOP for an affected pregnancy.
These could affect the accuracy of the estimates of actual
birth prevalence, e.g. over-estimation of access to pre-natal
diagnosis and uptake of TOP would lead to falsely low
livebirth prevalence, which may lead to under-provision
of care for affected children. Under-estimation of access
to optimal care for affected children could result in an
over-estimation of single-gene-associated deaths, and an
under-estimate of the requirements for ongoing care for
those affected living with disability.

In addition, apart from consanguinity-related recessive dis-
orders, data to inform mortality outcomes is limited, often
relying on historical data from high-income settings. In the
future, data from cohort follow-up studies building on the rare
disease registries platforms could provide improved data for
high-income settings.

Despite these limitations, this work demonstrates the
important role of consanguinity in the prevalence of rare
single gene disorders, with around half of all rare single
gene disorders globally estimated as being consanguinity-
associated (Fig. 2). This shows the need to develop appro-
priate genetic services to reach those most at risk. Genetic
counselling has been shown to have a very limited impact,
with around 5% reduction in birth prevalence, when rely-
ing on the current retrospective approach (Blencowe et al.
2018; Modell et al. 2017). This compares with an observed
85% reduction in birth prevalence of thalassaemia and 15%
reduction for sickle cell disorders in Western Europe,
where risk is usually identified prospectively. If prospec-
tive risk identification becomes available for the majority
of recessive disorders using new techniques such as novel
sequencing technologies, and 50% are perceived as severe
and 50% as less severe, the experience of haemoglobin
disorders suggests that their collective birth prevalence,
and associated early mortality and disability, could fall by
50% or more. General deployment of the new diagnostic
methods could therefore cause a reduction of around 10%
in under-5 deaths, with an even more marked effect on
numbers living with disability.

Conclusion

Rare single gene disorders are an important source of mor-
bidity and premature mortality for affected families. When
considered collectively, they account for an important pub-
lic health burden, which is frequently under-recognised.
MGDb provides a method to estimate the burden of these
conditions in settings without empirical data, providing
population-level estimates that can be used now by
programmes and policy makers when planning services.

Estimates using this approach will be strengthened in the
future as more data become available from a variety of
settings to improve the model parameters.
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