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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include instrumental variables or differ-
ence-in-differences models) by adding additional control variables on
the right hand side of the regression. If such additions do not affect the
coefficient of interest (much) a study is presumed to be reliable. We
caution that such invariance may result from the fact that the observed
variables used in such robustness checks are often poor measures of the
potential underlying confounders. In this case, a more powerful test of
the identifying assumption is to put the variable on the left hand side of
the candidate regression. We provide derivations for the estimators and
test statistics involved, as well as power calculations, which can help
applied researchers interpret their findings. We illustrate these results
in the context of estimating the returns to schooling.

JEL classifications: C31, C52
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1 INTRODUCTION

The identification of causal effects depends on explicit or implicit assumptions
which typically form the core of a debate about the quality and credibility of a
particular research design. In regression based strategies, this is the claim that
variation in the regressor of interest is as good as random after conditioning on
a sufficient set of control variables. In instrumental variables models, it involves
the assumption that the instrument is as good as randomly assigned. In panel
or differences-in-differences designs, it is the parallel trends assumption. The
credibility of a design can be enhanced when researchers can show explicitly
that these assumptions are supported by the data. This is often done through
some form of balancing tests or robustness checks.

The research designs mentioned above are all variants of regression strate-
gies. If the researcher has access to a variable for a potentially remaining
confounder, tests of the identifying assumption take two canonical forms. The
variable can be added as a control on the right hand side of the regression.
The identifying assumption is confirmed if the estimated effect of interest is in-
sensitive to this variable addition—we call this the coefficient comparison test.
Alternatively, the variable can be placed on the left hand side of the regression
instead of the outcome variable. A zero coefficient on the causal variable of
interest then confirms the identifying assumption. This is the balancing test
which is typically carried out using baseline characteristics or pre-treatment
outcomes in a randomized trial or in a regression discontinuity design.

Researchers often rely on one or the other of these tests. The main point of
our paper is to show that the balancing test, using the proxy for the candidate
confounder on the left hand side of the regression, is generally more powerful.
This is particularly the case when the available variable is a noisy measure
of the true underlying confounder. The attenuation due to measurement error
often implies that adding the candidate variable on the right hand side as a
regressor does little to eliminate any omitted variables bias. The same mea-
surement error does comparatively less damage when putting this variable on

the left hand side. Regression strategies work well in finding small but relevant



amounts of variation in noisy dependent variables. We collect basic results for
the relevant parameters in the presence of measurement error in Section 3.

These two testing strategies are intimately related through the omitted
variables bias formula. The omitted variables bias formula shows that the co-
efficient comparison test involves two regression parameters, the coefficient
from the balancing test and the coefficient from the added regressor in the
outcome equation. Both of these parameters have to be non-zero for the co-
efficient comparison test to fail and actual confounding to take place. The
balancing test focuses on a single parameter. The two tests therefore inves-
tigate the same hypothesis under the maintained assumption that the added
regressor matters in the outcome equation. The ultimate source of the power
loss in the coefficient comparison test comes from estimating a nuisance pa-
rameter. This is a standard reason for power differences in the econometrics
literature but turns out to be relatively unimportant in the numerical exam-
ples we present. The nuisance parameter in the coefficient comparison test is
more difficult to estimate when there is more measurement error in the added
regressor. In the examples we study in Section 5, measurement error is the
source of quantitatively meaningful power differences between the two tests.

A second point we are making is that the two strategies, coefficient com-
parison and balancing, both lead to explicit statistical tests. The balancing
test is a simple t-test used routinely by researchers. When adding a covariate
on the right hand side, comparing the coefficient of interest across the two re-
gressions can be done using a generalized Hausman test. In practice, we have
not seen this test carried out in applied papers, where researchers typically
just eye-ball the results (an exception is Gelbach, 2016). We provide the rele-
vant test statistics and discuss how they behave under measurement error in
Section 4. We demonstrate the superior power of the balancing test under
different scenarios in Section 5.

The principles underlying our analysis are well known but the consequences
do not seem to be fully appreciated in applied work. McCallum (1972) and
Griliches (1977) are classic references for the issues arising when regression

controls are measured with error. Battistin and Chesher (2014) discuss identi-



fication in the presence of a mismeasured covariate in non-linear models based
on assumptions about the degree of measurement error in the covariate. We
follow McCallum (1972) and Griliches (1977) in framing our discussion around
the omitted variables bias arising in linear regressions, the general framework
used most widely in empirical studies. The insights we exploit build on Pis-
chke and Schwandt (2012) but we go beyond the analysis in all of these papers
in our explicit discussion of testing, which forms the core of our inquiry.

Our focus is on specification testing for a particular research design. The
statistical model we discuss below—a baseline regression and an augmented
regression with additional covariates—bears a close relationship to models in
a large literature, which attempts to use control strategies for point or interval
identification. One recent strand of this literature is interested in the selection
of control variables in a causal regression and inference for the parameter of
interest after such an initial variable selection step (Belloni, Chernozhukov and
Hansen, 2014a, b; Chernozhukov et al., 2017; Chernozhukov et al., forthcom-
ing). A second strand uses the relationship between a treatment variable of
interest and observed covariates to model the corresponding relationship with
additional unobserved confounders in order to estimate the true causal effect
(Altonji, Elder and Taber, 2005; Altonji et al., 2013; and Oster, forthcoming).
Although this literature is focused on identification of the causal parameter,
the tools can be used for specification checking as well, so in practice the con-
ceptual difference to our approach may not be quite as sharp. Nevertheless,
the parameters of interest are different, and our focus is on statistical inference
about the credibility of a given baseline design rather than identification of the
causal parameter.

Also related is an older literature by Hausman (1978), Hausman and Taylor
(1980), and Holly (1982) (see also the summary in MacKinnon, 1992, section
I1.9), which considers the relative power of the Hausman test compared to
alternatives, in particular an F-test for the added covariates in the outcome
equation when potentially multiple covariates are added. This comparison ef-
fectively maintains that there is a lack of balance, and instead tests whether

the added regressors matter for explaining the outcome. While this is a dif-



ferent exercise from ours, this literature highlights the potential power of the
Hausman test when it succinctly transforms a test with multiple restrictions
(like the F-test for the added covariates) into a test with a single restriction
(the coefficient comparison test). We discuss how to extend our framework to
multiple added controls in Section 5.3. Our basic findings largely carry over
to this setting but we also reach the conclusion that the Hausman test has a
role to play when the goal is to summarize a large number of restrictions.
Griliches (1977) uses estimates of the returns to schooling as example for
the methodological points he makes. Such estimates have formed a staple of
labor economics ever since. We use Griliches” data from the National Longi-
tudinal Survey of Young Men to briefly illustrate our power results in Section
6. It is well suited for our purposes because the data contain various test
score measures which can be used as controls in a regression strategy (as in
Griliches, 1977), as well as a myriad of other useful variables on individual and
family background. The empirical results illustrate and support our theoretical

claims.

2 A SIMPLE FRAMEWORK

Consider the following simple framework starting with a population regression
equation

yi = P’si+ € (1)
where y; is an outcome like log wages, s; is the causal variable of interest, like
years of schooling, and e is the regression residual. The researcher proposes
this short regression model to be causal, i.e. (3° is the parameter of interest.
This might be the case because the data come from a randomized experiment,
so the simple bivariate regression is all we need. More likely, the researcher
has a particular research design applied to observational data. For example, in
the case of a regression strategy controlling for confounders, y; and s; would be
residuals from regressions of the original outcome and treatment variables on
the chosen controls. In the case of panel data or differences-in-differences de-

signs the controls are sets of fixed effects. In the case of instrumental variables,



s; would be the predicted value from a first stage regression. In practice, (1)
encompasses a wide variety of empirical approaches, and should be thought of
as a short-hand for these. We have this broader interpretation in mind but for
presentational clarity we use the simple bivariate regression throughout the
discussion in our paper. All subsequent regression equations and results also
inherit the structure of the actual underlying research design but we illustrate
results in terms of the simple bivariate formulation in (1). We also suppress
constants to avoid clutter.

Now consider the possibility that the population regression parameter 3°
from (1) may not actually capture a causal effect. There may be a candidate

confounder z;, so that the long regression
yi = B'si + v + e (2)

generates a coefficient 3" which might differ from /3°. To make things concrete,
in the returns to schooling context, x; would be a measure of the remaining
part of an individual’s earnings capacity which is also related to schooling, like
ability or family background.

Researchers who find themselves in a situation where they start with a
proposed causal model (1) and a measure for a candidate confounder z; typi-
cally do one of two things: They either regress x; on s; and check whether s; is
significant, or they include x; on the right hand side of the original regression
as in (2), and check whether the estimate of § changes materially when z;
is added to the regression of interest. The first strategy constitutes a test for
“balance,” a standard check for successful randomization in an experiment.
The second strategy is a “coefficient comparison test.” An appreciable differ-
ence between B' and 3° suggests that the original estimate /3° does not have
a causal interpretation. Researchers typically interpret passing either of these
tests as strengthening the case for a causal interpretation of the parameter
5%, In case the tests reject, the researcher concludes that neither parameter is
likely to be causal, and the research design is a flawed one.

It is tempting to conclude that strategy (2) is preferable because the com-

parison of 3" and 3° does not just carry information about the validity of re-



gression (1) but also provides a better estimate 8. It is important to caution
against this interpretation. If z; is an imperfect control or there are multiple
omitted variables in (1) then (2) does not necessarily reduce the omitted vari-
ables bias (Frost, 1979 or more recently De Luca, Magnus and Peracchi, 2017
and Kassenboehmer and Schurer, 2017). The literatures along the lines of Al-
tonji, Elder and Taber (2005) and Belloni, Chernozhukov and Hansen (2014b)
all start from the premise that there is a set of regressors x; so that regression
(2) is preferable, at least in principle. Only in the special case where z; is the
only missing confounder and we measure it without error will the parameter
B! from the controlled regression be the causal effect of interest. In practice,
there is usually little reason to believe that these two conditions are met, and
hence a difference between 3' and 3* only indicates a poor research design.
The relationship between the two testing strategies is easy to see. Write

the regression of x; on s;, which we will call the balancing regression, as
x; = 08; + u;. (3)

The change in the coefficient on s; after adding x; to the regression (1) is given

by the omitted variables bias formula
g — 8 =8 ()

This change consists of two components, the coefficient v on x; in the outcome
equation (2) and the coefficient § from the balancing regression.
Here we consider the relationship between these two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis
H[) 10 = O, (5)

compared to the inspection of the coefficient movement 3° — !. The lat-
ter strategy of comparing 3° and (' is often done informally, but it can be

formalized as a statistical test of the null hypothesis

Hy: p°—p' =0, (6)



which we will call the coefficient comparison test. From (4) it is clear that (6)
amounts to
Hy:3—p'=0&~y=0o0rd=0. (7)

This highlights that the two approaches formally test the same hypothesis
under the maintained assumption v # 0. We may often have a strong sense
that v # 0; i.e. we are dealing with a variable x; which we believe affects the
outcome, but we are unsure whether it is related to the regressor of interest s;.
In this case, both tests would seem equally suitable. Nevertheless, in other cases
~v may be zero, or we may be unsure. In this case, the coefficient comparison
test seems to dominate because it directly addresses the question we are after,
namely whether the coefficient of interest g is affected by the inclusion of x;
in the regression.

Be this as it may, our main point is a practical one, that the coefficient
comparison test suffers particularly when the true confounder (v # 0) is mea-
sured with error. In general, confounders like x; may not be easy to measure.
If the available measure for x; contains classical measurement error, the esti-
mator of v in (2) will be attenuated, and the comparison 3% — 8 will be too
small (in absolute value) as a result. The estimator of § from the balancing
regression is still consistent in the presence of classical measurement error; this
regression simply loses precision because the mismeasured variable is on the
left hand side. The measurement error drives a wedge between the asymp-
totic values of the two test statistics and the balancing test becomes relatively
more powerful than the coefficient comparison test. In order to make these
statements precise, we start by reviewing results for the relevant population
parameters in the case of classical measurement error in the following section,

before moving on to inference, power calculations, and simulations.



3 POPULATION PARAMETERS IN THE PRES-
ENCE OF MEASUREMENT ERROR

The candidate variable x; is not observed. Instead, the researcher works with
the mismeasured variable

7

We start by assuming the measurement error m; is classical, i.e. E (m;) =0,
Cov (x;,m;) =0, Cov (s;,m;) = 0. In Section 5 below we also investigate the
impact of mean-reverting measurement error. As a result of the measurement

error, the researcher compares the regressions

yi = [°s;+e;
yi = [Msi+Ay"al + e (9)

Notice that the short regression does not involve the mismeasured z;, so
that 8% = B' + 6 as before. However, the population regression coefficients

™ and 4™ are now different from ! and v from equation (2):

™ = B 400
7" = v (1-6). (10)

The amount of measurement error is captured by the parameter 6:

2

Om

2 27
oy + o7,

where o2 denotes the variance of the random variable in the subscript (McCal-
lum, 1972; Garber and Klepper, 1980). 1 — 6 is the multivariate attenuation
factor, which takes the role of the familiar attenuation factor A = 02/ (02 + 02,)
in a bivariate regression. Recall that u; is the residual from the balancing
regression (3). Notice that 6 involves only the variation in z!* which is or-
thogonal to s;. This is the part of the variation in z]" relevant to the estimate
of 4™ in regression (9), which also has s; as a regressor. Approaches along
the lines of Battistin and Chesher (2014), Altonji, Elder and Taber (2005),



and Oster (forthcoming), which effectively treat eq. (2) as structural, require
assumptions on # or a function of it for point identification.

The population coefficient 5™ differs from /' but less so than 3°. In fact,
with classical measurement error 8™ lies between 3* and /3!, as can be seen
from (10). The parameter v is attenuated compared to =y; the attenuation
is bigger than in the case of a bivariate regression of y; on z" without the
regressor s; if " and s; are correlated because 02 < o2

These results highlight a number of issues. The gap ° — ™ is too small
compared to the desired 8° — !, directly affecting the coefficient comparison
test. This is a consequence of the fact that v is biased towards zero. Ceteris
paribus, this is making the assessment of the hypothesis v = 0 more difficult,
which in turn affects the inference for 5° = 3.

Finally, with the mismeasured z}", the balancing regression becomes

= 0"s; +ul" (11)

This regression involves measurement error in the dependent variable, which
has no effect on the population parameter 6™ = §. Because the variance of
the residual in (11) is larger than in (3) the estimator 5™ is less efficient than

0 in the case with no measurement error.

4 INFERENCE

In this section, we consider how conventional standard errors and test statis-
tics for the quantities of interest are affected in the homoskedastic case (see
Appendix A for details on the setup, derivations, and an extension to robust
standard errors). The primitive disturbances are s;, u;, €;, and m;, which we
assume to be uncorrelated with each other. Other variables are determined
by (2), (3), and (8). We use these results to analyze the power of the two
alternative tests in the next section. Starting with theoretical results for the
baseline homoskedastic case, we extend these results in simulations. Our basic

conclusions are the same in all these different scenarios.



Start with the estimator ™ and its associated t-statistic. o™ is still a
consistent estimator for § but its standard error is inflated compared to the
case with no measurement error. Denoting the estimated standard error of
a given estimator by Se(s), a test based on the t-statistic tsm = om /se (3’”)
remains consistent because m; is correctly accounted for in the residual of the
balancing regression (11). However, the t-statistic is asymptotically smaller in
absolute value than in the error free case. As n — oo, the scaled t-statistic is

. 1 o
plim (%t5m> = m@
This means the null hypothesis (5) is rejected less often. The test is less pow-
erful than in the error free case (0 = 0); the power loss is captured by the term
V1-46.

We next turn to 4™, the estimator for the coefficient on the mismeasured
™ in (9). The parameter 7 is of interest since it determines the coefficient
movement 3° — ! = ~J in conjunction with the result from the balancing
regression. For ease of exposition, we impose conditional homoskedasticity of
el given s; and x" here and leave the more general case to Appendix A.3.2.
Denote the asymptotic standard error by se(s), i.e. se(e) = \/Lﬁplim{\/ﬁs%(-)}.

The asymptotic standard error for 3™ is

v1—106 2
0724—06.
vn 2

Measurement error enters the standard error in two ways: the first is an at-

se(Y") =

u

tenuation factor compared to the standard error for a correctly measured z;,
while the second is an additive effect which depends on the value of v. The
parameters in the two terms are not directly related, so se (3™) = se (7).
Measurement error does not necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement error
attenuates the parameter 4™ towards zero, the attenuation factor is 1 — 6.
The standard error is attenuated in the same direction; this is reflected in the
V1 — 6 factor, which multiplies the remainder of the standard error calcula-

tion. The second influence from measurement error comes from the term 62,

10



which results from the fact that the residual variance Var (e) is larger when
there is measurement error. The increase in the variance is related to the true
v, which enters the residual.

The t-statistic for testing whether v™ = 0 has a limit

plim (Lt,},m) = \/TH+

vn \/ 0y + %
In addition to the two sources of measurement error in the standard error,
the t-statistic involves the attenuation factor 1 — 6 for the coefficient 4. As
in the case for the balancing regression, the ¢-statistic for 4™ is smaller than
t, for the error free case. But in contrast to the balancing test statistic tsm,
measurement error reduces t,m relatively more, due to the fact that measure-
ment error in a regressor both attenuates the relevant coefficient towards zero
(captured by /1 — ) and introduces additional variance into the residual (the
0~2-term) in the denominator. As a result, classical measurement error makes
the assessment of whether v = 0 more difficult compared to the assessment
of whether § = 0. As we will see, this contributes to the greater power of the

balancing test statistic.

Finally, consider the quantity 8°— ™, which enters the coefficient compar-
ison test. Before proceeding we note that the covariance term in the expression

for the asymptotic variance of BS — Bm
Var (B\S — Bm> = Var (Bs) + Var (Bm> —2Cov (Bs, Bm) (12)

reduces the sampling variance of §° — ™. This covariance term is positive

and generally sizable compared to Var <BS> and Var (Bm) since the regres-

sion residuals e] and e]" are highly correlated. Because 2Cov (35, §m> gets
subtracted, looking at the standard errors of BS and B\m alone can potentially
mislead the researcher into concluding that the two coefficients are not signif-
icantly different from each other when in fact they are.

The coefficient comparison test itself can be formulated as a t-test as well,
since we are interested in the movement in a single parameter, i.e.

B —pm

11
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where sAe(BS - §m> is a consistent standard error estimator. Using (4) and (10)

we obtain

. 1 )
plim (_t(ﬁsﬂm)> =v1-46 - J - (13)
v VPG 465+ 28

Under the alternative hypothesis (§ # 0) and the maintained assumption
v # 0, the three test satistics are asymptotically related in the following way:

2 2 2
: 1 . 1 . 1
plim Sl B plim | — ; +plim | — ; (14)
nt(Be—=pm) ok V™

This result highlights a number of things. First of all, under the main-

tained hypothesis v # 0, the balancing test alone is more powerful. This is
not surprising at all, since the balancing test only involves estimating the pa-
rameter ¢ while the coefficient comparison test involves estimating both § and
7. Imposing v # 0 in the coefficient comparison test is akin to t,m» — oo, and
this would restore the equivalence of the balancing and coefficient comparison
tests. Note that the power advantage from imposing v # 0 exists regardless
of the presence of measurement error.

The second insight is that measurement error affects the coefficient com-
parison test in two ways. The test statistic is subject to both the attenuation
factor v/1 — @ and the term 66292 in the variance, which is inherited from the
t-statistic for ™. Importantly, however, all these terms interact in the coef-
ficient comparison test. In our numerical exercises below, it turns out that
the way in which measurement error attenuates 7™ compared to 7 is a ma-
jor source of the power disadvantage of the coefficient comparison test. Our
simulations demonstrate that the differences in power between the coefficient
comparison and balancing tests can be substantial when there is considerable

measurement error in x;".
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5 POWER COMPARISONS

5.1 Asymptotic and Monte Carlo Results with Classical
Measurement Error

The ability of a test to reject when the null hypothesis is false is described
by the power function of the test. The power functions here are functions of
d, the values the parameter ) might take on under the alternative hypothesis,
while we keep v # 0 fixed. Using our results from the previous section, it is

easy to demonstrate that under the alternative hypothesis § # 0,
Poweryy, (d) > Powery .z, (d;7) - (15)

We give a full derivation in Appendix A.

In practice, this result may or may not be important. In addition, when
the standard error is estimated, the powers of the two tests may differ from the
theoretical results above. Therefore, we carry out a number of Monte Carlo

simulations to assess the performance of the two tests.

Table 1: Parameters for Power Calculations and Implied R?s

o2 =1 p=1
o2 = y=3
o2 =30 n =100
RZ
d 0=0 0=0.7 6 =0.85
0 0.48 0.16 0.09
0.5 0.53 0.23 0.16
1.0 0.59 0.33 0.27
1.5 0.66 0.44 0.39
2.0 0.72 0.54 0.50

NOTE: The implied population B*’s do not depend on n, but the
subsequent power calculations do.

Table 1 displays the parameter values we use as well as the implied values

of the population R? of regression (9). The values were chosen so that for
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intermediate amounts of measurement error in z" the R%s are reflective of
regressions fairly typical of those in applied microeconomics, for example, a
wage regression. Note that the amounts of measurement error we consider are
comparatively large. In our empirical application we use variables like mother’s
education and the presence of a library card in the household as measures of
family background. We suspect that these variables pick up at most a minor
part of the true variation of family background, even in the presence of other
covariates, so that values of € = 0.7 or 6 = 0.85 for the measurement error are

not unreasonable.
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Figure 1: Theoretical Rejection Rates. d is the value the coefficient in the
balancing equation takes on under the alternative hypothesis.

In Figure 1, we start by plotting the theoretical power functions for both
tests for three different magnitudes of the measurement error. We calculate
these power functions using the t-distribution with n — 2 degrees of freedom,

consistent with how Stata 14 performs the balancing test (this distribution

14



choice makes little difference with our sample size of 100). The thin lines show
the power functions with no measurement error. The power functions can be
seen to increase quickly with d, and both tests reject with virtual certainty
once d exceeds values of 1. The balancing test is slightly more powerful but
this difference is small, and only visible in the figure for a small range of d.

The medium thick lines correspond to 6 = 0.7, i.e. 70% of the variance
of " is measurement error after partialling out s;. Measurement error of
that magnitude visibly affects the power of both tests. The balancing test still
rejects with certainty for d > 1.5, while the coefficient comparison test does
not reject with certainty for the parameter values considered in the figure.
This discrepancy becomes even more pronounced when we set § = 0.85 (thick
lines). The power of the coefficient comparison test does not rise above 0.65
in this case, while the balancing test still rejects with probability 1 when d is
around 2.

The results in Figure 1 highlight that there are parameter combinations
where the balancing test has substantially more power than the coefficient
comparison test. In other regions of the parameter space, the two tests have
more similar power, for example, when d < 0.5. While we highlight the con-
sequences of measurement error throughout the paper, we should note that

formally any particular value of # can be mimicked by an appropriate combi-
2

nation of values for v and o;. This is an immediate consequence of the fact
that the classical measurement error model is underidentified by one param-
eter. In that sense “measurement error” is simply a label for a certain set of
parameter values. It is always difficult to choose empirically relevant values
for simulations, and we take comfort from the fact that the results emerging
from this section are also reflected in the empirical example in Section 6.
Before going on to simulations of more complicated cases, we contrast the
theoretical power functions in Figure 1, based on asymptotic approximations,
to simulated rejection rates of the same tests in Monte Carlo samples. Figure
2 shows the power functions for the two tests without measurement error
(0 = 0) and with a large amount of measurement error (f = 0.85), as well

as their simulated counterparts. We computed 25,000 replications in these

15



simulations, and each repeated sample contains 100 observations. Without
measurement error, the theoretical power functions are closely aligned with
the empirical rejection rates (thinner lines). Adding measurement error, this
is also true for the balancing test (the solid thicker lines are on top of each other
and not distinguishable) but not for the coefficient comparison test (broken

thicker lines).
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0 .5 1 1.5 2
d
— Balancing test, baseline —— CC test, baseline
— Balancing test, 8=0, simulated —— CC test, 6=0, simulated

— Balancing test, 8=.85, asymptotic == CC test, 8=.85, asymptotic
=== Balancing test, 6=.85, simulated == (CC test, 6=.85, simulated

Figure 2: Theoretical and Simulated Rejection Rates. Comparison of asymp-
totic rejection rates (from Figure 1) with rejection rates based on Monte Carlo
simulations. Baseline refers to the theoretical rejection rates without measure-
ment error. d is the value the coefficient in the balancing equation takes on
under the alternative hypothesis.

Figure 2 reveals that the empirical rejection rates of the coefficient compar-
ison test in the presence of measurement error deviate substantially from the
power function calculation based on the asymptotic approximation. This dis-

crepancy is almost completely explained by the fact that we use the asymptotic
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values of standard errors in the calculations but estimated standard errors in
the simulations. The joint distribution between the coefficient and standard
error estimators is difficult to characterize, especially in the case of the coef-
ficient comparison test, so we abstract away from the sampling variation in
estimating the standard errors in the theoretical derivations of the power func-
tions. Figure 2 shows that the test is severely distorted under the null in the
simulations; it barely rejects more than 1% of the time for a nominal size of 5%.
While this problem leads to too few rejections under the null, it is important
to note that the same issue arises for positive values of d until about d < 1.5.
For larger values of d the relationship reverses. In other words, for moderate
values of d the coefficient comparison test statistic is biased downwards under
the alternative, and the test has too little power. This highlights another ad-
vantage of the balancing test—a standard ¢-test where no such problem arises.
We note that this is a small sample problem, which goes away when we increase
the sample size (in unreported simulations). We suspect that this problem is
related to the way in which the coefficient comparison test effectively combines
the simple ¢5m and t,m test statistics in a non-linear fashion, as can be seen in
equation (14), and the fact that ¢,m sometimes is close to 0 in small samples

despite the fact that we fix vy substantially above 0.

5.2 Monte Carlo Results with Mean-reverting Measure-
ment Error

The homoskedastic case with classical measurement error is highly stylized and
does not correspond well to the situations typically encountered in empirical
practice. We explore the case of mean reverting measurement error (Bound
et al., 1994) using simulations in this sub-section. Some additional results can

be found in Appendix D. We generate measurement error as
m; = KT + [l
where k is a parameter and Cov (z;, u;) = 0, so that kz; captures the error

related to x; and p; the unrelated part. When —1 < x < 0, the error is mean
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reverting, i.e. the xz;-part of the error reduces the variance in x* compared
to x;.

The case of mean reverting measurement error captures a variety of ideas,
including the one that we may observe only part of a particular confounder
made up of multiple components. Imagine we would like to include in our
regression a variable x; = wy; + we;, where wy; and wy; are two orthogonal
variables. We observe z]" = wy;. For example, x; may be family background,
wy; is mother’s education and other parts of family background correlated
with it, and w.; are all relevant parts of family background which are uncorre-
lated with mother’s education. As long as selection bias due to wy; and ws; is
the same, this amounts to the mean reverting measurement error formulation
above. Note that A = Var (z;) /Var (") > 1 in this case, so the mismeasured
x!" has a lower variance than the true x;. This scenario is also isomorphic to
the model studied by Oster (forthcoming). See Appendix B for details.

The mismeasured z]" can now be written as
l';n = (1+/€)5SZ+ (1+/€)UZ+/L1,

so mean reversion directly affects the coefficient in the balancing regression,
which will be smaller than ¢ for a negative k. As a result, the balancing test
will reject less often. At the same time, a negative xk offsets and possibly
reverses the attenuation bias on . This brings the power functions of the
balancing and coefficient comparison tests closer together.

For the simulations we set kK = —0.5, so the error is mean reverting. We
also fix aﬁ in the simulations. However, it is important to note that the
nature of the measurement error will change as we change the value of d under
the alternative hypotheses. z; depends on 6 and the correlated part of the
measurement error depends in turn on z;. We show results for two cases
with o7 = 0.75 and o7, = 2.25. Under the null, these two parameter values
correspond to A = 2 and A = 1, respectively. The case A = 2 corresponds
to the Oster (forthcoming) model just described with Var (wy;) = Var (wy).
These models exhibit relatively large amounts of mean reversion. Figure 3

demonstrates that the balancing test again dominates for these parameter
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values. The gap is small for the ai = 0.75 case but grows with O’Z, the
classical portion of the measurement error. This finding is not surprising as
the mean-reversion part in the measurement error biases the estimate of v in
the opposite direction from the classical part and can in principle flip the sign
of the bias around. As a result, the coefficient comparison test could have

greater power.

Rejection probability

0 .5 1 1.5 2
d
— Balancing test, baseline —— CC test, baseline
— Balancing test, 02 =.75 —— CCtest, 02,=.75
=== Balancing test, 0? =2.25 == CCtest, 02=2.25

Figure 3: Simulated Rejection Rates with Mean Reverting Measurement Error.
Comparison of baseline rejection rates (from Figure 1) with simulated rejection
rates based on mean reverting measurement error and robust standard errors.
d is the value the coefficient in the balancing equation takes on under the
alternative hypothesis.

5.3 Multiple Controls

So far we have concentrated on the case of a single added regressor x;. Often in
empirical practice we may want to add a set of additional covariates at once. It

is straightforward to extend our framework to that setting. Some interesting
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new issues arise in this analysis.

Suppose there are k added regressors, i.e. x; is a k x 1 vector, and

yi = Blsi+xpy+e (16)
X; = 0s;+u;
=B = 4

where 7, d and u; are £ x 1 vector analogs of their scalar counterparts in
Section 2. The coefficient comparison test compares the fs from egs. (1)
and (16) just as before. Lee and Lemieux (2010) suggest a balancing test
for multiple covariates in the context of evaluating regression discontinuity
designs. Let x(;) denote the n x 1 vector of all the observations on the j-th

x-variable. Stack all the xz-variables on the left-hand-side of the regression to

obtain
X(1) s 0 0 O 01 U(q)
X(2) _ 0s 0O 52 + U(2)
00 .. 0 ’
X(k) 0 0 0 s 5k; U(k)

where s = [s1, 59, ..., 5,)" and uy;) is the vector of residuals corresponding to
covariate X(;). The balancing test is an F-test for the joint significance of the
0 coeflicients, the null is 6 = 0.

We will call this stacking of equations the left-hand-side (LHS) balancing
test. While it is the natural multivariate extension, an alternative would be

to regress s on the covariates x
S; = ﬂ',XZ‘ + v;

(including any other covariates implicit in the regressions in eq. (16)) and test
whether the coefficient vector 7 is significantly different from zero. This is a
standard F-test. We refer to this test as the right-hand-side (RHS) balancing
test. Notice that even though the balancing variables are now on the right,
this is conceptually still a balancing test. Applied researchers sometimes use
this RHS test; for example, Bruhn and McKenzie (2009) report it being used

in some experimental studies in development economics.
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While putting the balancing variables on the RHS might at first glance seem
unusual, it turns out that the LHS and RHS tests are closely related. This
should not be surprising as both tests exploit the joint covariance matrix of
the x(;) and s. This can be seen most clearly in the case of a single covariate x;
(i.e. kK =1), where the LHS and the RHS tests using a conventional covariance
matrix for homoskedastic residuals are numerically identical.

The intuiton for this is the following: In the single covariate case, the F-test
amounts to the overall F-test for the significance of the regression. This, in
turn, is a function of the R? of the regression. Since only two variables z; and
s; are involved, this is the square of the correlation coefficient between the two.
But the correlation coefficient is not directional, so the forward and reverse
regression have to deliver the same F-statistic (in the case when covariates are
present in the regression, replace the R? and correlation coefficient with their
partial equivalents in this argument).

With multiple covariates (k > 1), the LHS and RHS tests are no longer
equivalent. However, the scaled F-statistics of the two tests have the same
probability limit in the special case where the LHS regression has a spherical
error structure var(u;) = oI, and the RHS regression is homoskedastic, as
we show in Appendix C. (See Ludwig, Mullainathan and Spiess, 2017 for a
similar result).

How do the balancing tests with multiple covariates perform in practice?
Figures 4 and 5 show simulations using a similar design as described in Ta-
ble 1 for all £ balancing equations. We set & = 4 and generate normally
distributed, spherical errors and impose homoskedasticity and independence
when performing the joint test of the d;’s or the 7’s. Our experiments with
other moderate values of k for the most part did not reveal different insights.
With multiple covariates there are different ways of specifying the alternative
hypotheses now. The null hypothesis may fail for one, various, or all of the &
covariates. We show rejection rates under two polar versions of the alternative
hypothesis. Figure 4 shows simulations for the case where all covariates are
unbalanced, i.e. 0 = 0y = ... = 0, = d. Figure 5 analyzes the case where

only the first covariate is unbalanced while the others remain balanced, i.e.

21



| -
>
z
So
o
o
[
L ]
=
Q0
(0]
o
C\! -
od==""
T T T T T
0 .5 1 1.5 2
d
— LHS Bal test, 6=0 - - RHS Bal test, 6=0 —— CCtest, 6=0

= | HS Bal test, 6=.85 ='= RHS Bal test, 6=.85 == CC test, 6=.85

Figure 4: Simulated Rejection Rates with Multiple Controls: All Covariates
Unbalanced. Simulated rejection rates for simultaneous tests for adding 4 ad-
ditional covariates at once. All covariates are unbalanced under the alternative
hypothesis; d is the value the coefficient in the balancing equation takes on
under the alternative hypothesis for all covariates simultaneously.
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Figure 5: Simulated Rejection Rates with Multiple Controls: One Covariate
Unbalanced. Simulated rejection rates for simultaneous tests for adding 4
additional covariates at once. Only one of the 4 covariates is unbalanced
under the alternative hypothesis; d is the value the coefficient in the balancing
equation takes on under the alternative hypothesis for this covariate.

These figures highlight a number of results. The LHS and RHS balancing
tests are indeed very similar as their power functions virtually lie on top of
each other in both figures. When all covariates are unbalanced as in Figure
4 and when measurement error is absent, the Hausman test turns out to be
an efficient test in combining the k separate hypotheses into one single test-
statistic, which is generated from the estimates of only two parameters, the
long and short 8’s. The balancing tests, on the other hand, have to rely on the
estimation of k& parameters. In this case, the rejection rates for the coefficient
comparison test (thin broken lines) therefore lie above the ones for both the
balancing tests (thin solid and dash-dot lines). In the presence of measurement

error, however, the balancing tests are again more powerful than the coefficient
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comparison test as can be seen from the juxtaposition of the thicker lines.

This power advantage of the balancing tests is greater when only one co-
variate is unbalanced as can be seen in Figure 5. Both tests are less powerful
in this case, but the power loss for the coefficient comparison test is now much
more pronounced. This is particularly noticeable in the case with measure-
ment error in the covariates (thick lines) but the balancing tests outperform the
coefficient comparison test even without measurement error in this case. Em-
pirically relevant cases may often lie in between these extremes. Researchers
may be faced with a set of potential controls to investigate, some of which
may be unbalanced with the treatment while others are not. Figures 4 and 5
demonstrate that the balancing test will frequently be the most powerful tool
in such a situation, but the coefficient comparison test also has a role to play
in the multivariate case.

The simulations reveal some further insights. With measurement error, the
small sample issue of the coefficient comparison test, which we highlighted in
Figure 2, arises again. On top of this, we found in unreported simulations that
both the LHS and RHS balancing tests with robust standard errors (clustered
standard errors across equations for the LHS test and heteroskedasticity-robust
standard errors for the RHS test) have a size distortion under the null hypoth-
esis and reject too often. This is due the standard small sample distortion of
these covariance matrices discussed in the literature (MacKinnon and White,
1985; Chesher and Jewitt, 1987; Angrist and Pischke, 2009, chap. 8). We
find that this bias tends to get worse when more covariates are added. Ap-
plied researcher may be most interested in the testing strategies discussed here
when £ is large (so that a series of single variable balancing tests is unattrac-
tive), and will want to rely on a robust covariance matrix. An upward size
distortion may be less of an issue for a conservative researcher in a balancing
test (where it means the researcher will falsely decide not to go ahead with a
research design where the covariates are actually balanced) than in a test for
the presence of non-zero treatment effects (where the same bias leads to false
discoveries). Nevertheless, we suspect that most applied researchers would

prefer a test with a correct size under the null and a steep power function. As
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a result, research on improvements for the bias problem in multivariate tests
is therefore particularly important (we discuss some current approaches in our
working paper Pei, Pischke and Schwandt, 2017).

The upshot is that it is in principle straightforward to extend the balancing
test to multiple covariates. An interesting finding is that a RHS test offers a
computationally simple alternative that closely mimics the performance of the
more standard LHS balancing test. Yet, at this point implementation issues
related to the small sample bias of robust covariance estimators also hamper
our ability to confidently carry out balancing tests for multiple covariates.
Moreover, sometimes we are interested in the robustness of the original results
when the number of added regressors is very large. An example would be a
differences-in-differences analysis in a state-year panel, where the researcher is
interested in checking whether the results are robust to the inclusion of state
specific trends. The balancing test does not seem to be the right framework to
deal with this situation. The coefficient comparison test has a role to play in

this scenario.

6 EMPIRICAL ANALYSIS

We illustrate the theoretical results in the context of estimating the returns
to schooling using data from the National Longitudinal Survey of Young Men
(NLS). This is a panel study of about 5,000 male respondents interviewed
from 1966 to 1981. The data set has featured in many prominent analyses of
the returns to education, including Griliches (1977) and Card (1995). We use
the NLS extract posted by David Card and augment it with the variable on
body height measured in the 1973 survey. We estimate regressions similar to
equation (2). The variable y; is the log hourly wage in 1976 and s; is the
number of years of schooling reported by the respondent in 1976. Our samples
are restricted to observations without missing values in any of the variables
used.

Table 2 presents OLS regressions for the return to schooling controlling for
the respondent’s score on the Knowledge of the World of Work test (KWW), a
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Table 2: Regressions for Returns to Schooling and Specification Checks Controlling for the KWW Score

Dependent Variable

Log hourly carnings Mother's years of ~ Library card Body height

9¢

education atage 14 in inches
(€] 2 3 4 (©) Q) (N ®
. 0.0609 0.0596 0.0608 0.0603 0.0591 0.2500 0.0133 0.0731
Years of education
(0.0059) (0.0060) (0.0059) (0.0059) (0.0060) (0.0422) (0.0059) (0.0416)
KWW score 0.0070  0.0068 0.0069 0.0069 0.0067 0.0410 0.0076 0.0145
(0.0015) (0.0016) (0.0016) (0.0015) (0.0016) (0.0107) (0.0016) (0.0117)
. 0.0053 0.0048
Mother' f t
other's years of education (0.0037) (0.0037)
. 0.0097 0.0045
L t 14
ibrary card at age (0.0215) (0.0216)
Body height in inches 0.0078  0.0075
(0.0034) (0.0034)
p-values
Coefficient comparison test 0.161 0.651 0.156  0.084
LHS balancing test: individual 0.000 0.025 0.079
LHS balancing test: joint 0.000
RHS balancing test: joint 0.000

NOTE: The number of observations is 1,773 in all regressions. Heteroskedasticity robust standard errors in parentheses.
The joint LHS balancing test is conducted via the suest Stata command. All regressions control for experience, experience-
squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and
living in an SMSA in 1966.



variable used by Griliches (1977) as a proxy for ability. Additional covariates
are experience, race, and past and present residence. The estimated return to
schooling is 0.061.

In columns (2) to (4) we include variables which might proxy for the re-
spondent’s family background, mother’s education (column 2), whether the
household had a library card when the respondent was 14 (column 3), and
body height measured in inches (column 4). Mother’s education captures an
important component of a respondent’s family background. The library card
measure has been used by researchers to proxy for parental attitudes (e.g.
Farber and Gibbons, 1996). Body height is determined by parents’ genes and
by nutrition and disease environment during childhood. It is unlikely a par-
ticularly powerful control variable but it is predetermined and correlated with
family background, self-esteem, and ability (e.g. Persico, Postlewaite and Sil-
verman, 2004; Case and Paxson, 2008).

Conditional on the KWW score, these three variables are only weakly cor-
related with earnings and only the coefficient for body height is marginally
significant. The estimated return to education moves very little when these
additional controls are included; the differences to column (1) are in the order
of 0.001. In column (5) we enter all three variables simultaneously. The co-
efficients on the controls are slightly attenuated, and the return to education
falls slightly further to 0.059. Below the estimates in columns (2) to (5), we
display the p-values comparing each of the estimated returns to education to
the one from column (1). None of the tests reject at the 5% level. These results
from the coefficient comparison test seem to confirm the impression that the
coefficient movements are not statistically significant.

It might be tempting to conclude from this evidence that the return to
schooling estimated in column (1) should be given a causal interpretation but
this conclusion is premature. A first caution actually comes from the coefficient
comparison test in column (5), which is significant at the 10% level. The
coefficient movement of 0.002 is not large, and the individual standard errors
in columns (1) and (5) of 0.006 do not suggest that this movement might be

significant. Eq. (12) warns that relying on the individual standard errors can
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be rather misleading. Nevertheless, most researchers would probably not find
the evidence in columns (1) to (5) worrisome enough to abandon their research
project.

More potent warnings emerge from the balancing regressions in columns
(6) to (8), where we regress maternal education, the library card, and body
height on education while controlling for the KWW score. The education
coefficient is positive and strongly significant for mother’s education and the
library card, and more marginally so for body height. Moreover, both the LHS
and RHS joint balancing tests reject the hypothesis that all three controls are
balanced with a p-value of virtually zero. The magnitudes of the coefficients,
particularly mother’s education, are substantively important. These estimates
reflect selection bias: individuals with more education have significantly better
educated mothers, were more likely to grow up in a household with a library
card, and experienced more body growth when young. Our interpretation of
these results is that education levels are related to family background in these
regressions but the available background measures are fairly useless as controls
when put on the right-hand side. These measurement problems matter less
for the estimates in columns (6) to (8), and these specifications are therefore
informative about the role of selection. Comparing the p-values at the bottom
of the table to the corresponding ones for the coefficient comparison test in
columns (2) to (4) demonstrates the superior power of the balancing test and

illustrates the message of our paper in a forceful fashion.

7 CONCLUSION

Using predetermined characteristics as dependent variables offers a useful spec-
ification check for a variety of identification strategies popular in empirical
economics. We argue that this is the case even for variables which might be
poorly measured and are of little value as control variables. Such variables are
available in many data sets. We encourage researchers to be more inventive in
finding such measures and perform balancing tests with them more frequently.

We show that this is generally a more powerful strategy than adding the same
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variables on the right hand side of the regression as controls and looking for
movement in the coefficient of interest.

We have illustrated our theoretical results with an application to the re-
turns to education. We find the balancing test indeed to be useful for gauging
selection bias due to confounders, even when they are potentially measured
poorly. It is important to point out that the balancing test does not address
any other issues which may also haunt a successful empirical investigation of
causal effects. One possible issue is measurement error in the variable of in-
terest. This is exacerbated as more potent controls are added to a regression.
Griliches (1977) shows that a modest amount of measurement error in school-
ing may explain patterns of returns in controlled and uncontrolled regressions.
Another issue, also discussed by Griliches, is that controls like test scores might

themselves be influenced by schooling, which would make them bad controls.
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Appendix (For Online Publication Only)

A Derivations of Key Results

A.1 Statistical Framework and Population Regression
Parameters

In this subsection, we summarize the baseline statistical framework along with
the balancing and coefficient comparison tests introduced in Section 2. Under
the assumptions we propose as part of the statistical framework, we find the
expressions of various population regression parameters. These population
parameters will be used in deriving the power functions of the two statistical
tests in subsequent subsections.

Let (s;, s, y;,m;) for i = 1,...n be i.i.d. variables. The five relevant regres-

sions are:!

T = 08; + u; (A1)
yi = [°s; + € (A2)
yi = B'si +vxi + € (A3)
;' =0"s; +u" (A4)
v = B"s " a 4 el (A5)

with =" = x; + m; being a noisy measure of z;. In this subsection, we simply
think of these equations as projections: the coefficients are population regres-

m m
i €

sion parameters, and the residuals u;, e

Soen, u are orthogonal to the
respective regressors by construction.

As mentioned in Section 2, a researcher may propose to give 5° a causal
interpretation. This is because the researcher has carried out a randomized
experiment or applied a particular research design to observational data. In the
case of a regression strategy with controls, for example, y; and s; are residuals

from regressions of the original outcome and treatment variables on the chosen

ITo simplify exposition, we omit the constant in the regressions throughout the paper
with the understanding that s, x, m, and y are normalized to have mean zero.
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controls. The researcher is interested in testing her design using additional
confounders. If she were to directly observe z;, the balancing test would entail
testing 0 = 0 in regression (Al), and the coefficient comparison test would

entail testing 3* — ' = 0 from regressions (A2) and (A3). Unfortunately,

m
7

she only has access to x!, so the actual balancing test entails testing 6™ = 0
in regression (A4), and the actual coefficient comparison test entails testing
p% — ™ = 0 from regressions (A2) and (A5).

In the baseline framework, we assume that m is classical and hence uncor-

related with s and u, and therefore x:
Assumption 1. Cov(m,, s;) = Cov(m;,u;) = 0.

As mentioned in Section 5.1, we also impose conditional homoskedasticity
of u; and m; given s; in the theoretical derivations, and we abstract away from

the sampling variation in estimating the standard errors:

Assumption 2. a) The variances of u;, m; and s; exist, which we denote by

2 2 2 2

o2, o2 and o? respectively. Var(u;|s;) = o2 and Var(my|s;) = 02,; b) 0u, Om

and o are known constants.

Define § = 02,/ (62 + 02,). We collect expressions for the population re-
gression coefficients ¢, ™, and ™ in terms of the other model parameters,

as discussed in Section 3, in Lemma 1.

Lemma 1. Under Assumptions 1 and 2,
a) 0™ =9 and u" = u; +my,
b) 4™ =~(1-10),
c) ™ =B+ 700,

d) 6 = {2, where X = VVC;T(% is the reliability of =7, and R? is the

population R* of the regression of ™ on s;.

Proof. For part a), under the two Assumptions,

Cov(zf*,s;)  Cov(x;, s;)
om = = =0
Var(s;) Var(s;)

and u" = u; + m,; directly follows.
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For part b), performing an anatomy to the multiple regression (A5), we

have

Car ) 2
_ Cov(ys, u; +m;) o; (A6)

Var(u; +m;) o2+ 02’

m

where u; +m; is the residual from the population regression of z]* on s; under

Assumptions 1 and 2. Equation (A6) becomes

= (1— ). (A7)
For part c), the omitted variable bias formula implies

5 =B +90

B =B+ "8,
and therefore

p™ =B+ 6. (A8)
To see why

=12 (A9)

in part d) holds, notice that

Var(z;) = 60 + o2

Var(zl") = %02 + o2 + o2,

R2_1_ o2+ o2
6202 + 02 + 02,
from which equation (A9) mechanically follows. O

A.2 Balancing Test

In this subsection, we derive the power function of the balancing test.

Proposition 1. Under Assumptions 1 and 2, the large-sample power function
of the balancing test at the five-percent level when § = d is®

—‘/ﬁ%m> + o (—1.96 . d—\/ﬁas\/ﬂ) .

Oy Oy

1—<I>(1.96—d

2Tt is also possible to specify the value of § under the alternative hypothesis as a function
of n, § = h/y/n. This local alternative framework prevents ¢sm from exploding. The two
formulations lead to the same power function.
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Proof. Under Assumptions 1 and 2, the asymptotic variance of 5™ can be
directly calculated using part a) of Lemma 1, and the resulting test statistic

for the null hypothesis that the balancing coefficient § is zero is

~ ~

R

té‘m - - .
se <5m> A Voiton

n O

Note that

2 2
oy + o7,

Hence
Vnosv1—6
Ou ’
The rejection probability when § = d and when using critical value C' is

Pr(|tsm| > C) = Pr(tsm >C)+ Pr(tsm < —C)

~ ~

m m

0
= Pr W>C + Pr @<—O
m—d Vo /1—0
@>0_d0—u

Y e e s A

56(37”) Ou
~ 1—<I><C—d—\/ﬁg‘”1_0>+<I><—C—d—\/ﬁgs 1_9)

Oy Ou

= Pr

when n is large.®> Therefore, the large-sample power function of the balancing

3 Assuming o, 0., and o, to be constants in Assumption 2 conveniently allows us to apply
large sample normal approximation. In the case of the balancing test with normal v and m,

however, we can also proceed with the estimated se (gm) based on the homoskedasticity-

only estimator. It is a standard result that the t-statistic is then the ratio of a normal
random variable and an independent x2? random variable, which will allow us to characterize
the power function. The characterization becomes much more difficult, however, a) when
we employ the heteroskedasticity-robust standard error estimator or b) for the coefficient
comparison test. For a) see ongoing work in Hansen (2017), and for b) see Zellner (1963)
for a related derivation.
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test at the five percent level is

Vi—4d -
Powery,, (d) = 1—® (1.96 - dM) +O (—1.96 _ gVnov1-0 VG) .

Oy Oy

O

A.3 The Coefficient Comparison Test
A.3.1 Coefficient Comparison Test under Homoskedasticity of e]"

For the coefficient comparison test 5° — ™ = 0, the test statistic is

—6m) = Bm
\/ Var

which is asymptotically standard normal. We apply the delta method to the

omitted variables bias formula
/68 _ /Bm — 5m;>\/m

to derive the variance. Specifically, we can relate Var(gs — Bm) to the asymp-

totic variances of 6™ and ~™ and their asymptotic covariance:
Var (ﬁ Bm> =~2(1-0)Var (3’”) + 8*Var (™)
+20y(1—=6)Cov (5 Y > (A10)

We have already shown in Proposition 1 that

Sy 1 oo

and we derive Var (y™) and Cov (5 ,7 ) in the remainder of this subsection.

To simplify the derivation, we make the following three assumptions:
Assumption 3. s;, u;, e; and m; are mutually independent.

Assumption 4. E[u}] = 0.

m

Assumption 5. Var(e|s;,xI") is constant.
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Assumption 3 strengthens Assumption 1, and is needed in the proofs of
Propositions 2 and 3 below. Assumptions 4 and 5 are imposed to simplify
the expressions in Proposition 2, although we relax Assumption 5 in the next
subsection and provide the a more general result regarding the power function
of the coefficient comparison test.

Note that all of the Assumptions 1-5 are satisfied in the DGP’s we adopt
for the Monte Carlo simulations underlying Figure 2, that is, when s;, u;,
e;, m; follow a joint normal distribution with a diagonal variance covariance
matrix (see subsection D.1 for details). In subsection A.3.2, we also derive the

general expression of Var(gs — Bm) when Assumption 5 is relaxed.

Proposition 2. Under Assumptions 2-5, the large-sample power function of

the coefficient comparison test at the five-percent level when § = d is

1-@ (1.96 - dM> +® (—1.96 - dM> (A12)

Vs (d;v) Vs (d;7)
where 5 52,2
Yoy, O,

Proof. As mentioned above, we apply the delta method to B\S — Bm = S’"?m
With Var(gm) already derived in Proposition 1, we need the expressions of
Var(y™) and Cov (gm, /y\m> In order to derive Var(3™), first note that under
Assumptions 2, 3, and 5

Var (G™) = 1 Var (e™)

= -2t Al
nVar (u; +m;)’ (A13)

where u; +m; is the residual from the population regression of z]* on s;. Since
Var (u; +m;) = o2 + 02, the missing piece in equation (A13) is Var (el).

Plugging the results from Lemma 1 into (9), we get

v = B"si+y"x] e
= (ﬁl+750)s,~+7(1—0)m§”+e;"
= (5l+75)si+fy(1—9)(ui—|—mi)+e§”
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Since

yi = Blsi+y(0si+ w)+e
= (B +70) si +yui + e,

matching residuals yields

e = HOu;—y(1—0)m; +e¢;

(2

Var(e]') = 720203 + 2 (1-— 9)2 afn + az

2 2 2 2
2 Om 2 Oy 2 2
! ((Cg C?n> h <612l, CTQn) m) ‘

= %02 + o2

So
Var (3™) = %%
= # (729 + Z—g) : (A14)
As for C’ov(gm, ~™), first note that
P g P ZZL")S" (A15)
~m m i‘f;né;nl

Yoy = S @) (A16)
where 2" = " —™s, is the residual from regressing z}" on s;. By Assumption
3 along with the fact that and om B 0, the asymptotic joint distribution of
the numerators in equations (A15) and (A16) is

= [ 2w+ ma)s; ]

vl e

d 0 (0% + 02) o2 E[si(u; + m;)?el

- ({ 0 } ’ [ Blsy(us +mef’) El(u +m)(e)?) | )

1
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By Assumptions 3 and 4,

E[si(u; +m;)?el] = Elsi(u; +my)*(v0u; — v (1 — 0) my; + ;)]
= 0.

Since the denominators of equations (A15) and (A16) converge in probability

to positive constants,

o~

Cov(6™,7™) = 0. (A17)
Plugging equations (A11), (A14) and (A17) into (A10) yields

S
Var(p®—p™) = EV5 (d; )
. 1 7205 2 9 5203

Recall from the proof of Lemma 1 that
B =B =0y" =0y (1-0),

so the power function of the coefficient comparison test is

ny(l1—0 ny(l1—0
Powery g, (d;y) =1-® (1.96 — d%) +o (—1.96 — d%) :

]

A.3.2 Relaxing Homoskedasticity of e

In this subsection, we provide the expression for Var(gs — B\m) while relaxing
the conditional homoskedasticity of e]*, i.e. Assumption 5. Our derivation
of this asymptotic variance expression still relies on equation (A10). Since
equations (Al1l) and (A17) are not affected by Assumption 5, we will only

need the general expression for Var (™).

Proposition 3. Under Assumptions 2-4, the large-sample power function of

the coefficient comparison test at the five-percent level when 6 = d is given by
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(A12), where

252 6202
Vg (d, ’}/) = (1 — 0) <% + 9(52’72 + 7)

(Ky — 30002 (K — 302)(1 — 9)2}

(0%, +02)? (07, + 02)?

+ ’72(52 [
with k,, = E[m}] and k, = Fluf].
Proof. Representing model (9) in matrix form,

y; = WL + el

7

where W; = (s;,2") and T' = (8™,~4™)". The asymptotic variance-covariance
matrix of the regression estimator T is

1
—E[W, W] E[W,Wi(e]")] E[W,; W] .

n

Expressing E[W;W/] in terms of the fundamental model parameters is straight-

forward:

W = i i
E[WZWJ E |: SiI;n (xm)Q

s2 s }
(A

_ | e 007
| do? doi+oi+02 |7
Writing out the entries in the matrix E[W,W/(e™)?]:
E[W;Wi(e}")’]
si(el)?  sal(e]")’
—— ——

_ B () (i)
s (ef")? (@))% (e)?
———

(iii)
Below we express quantities (i) to (iii) in terms of the model parameters.
Utilizing Assumptions 2-4, we have the expressions for (i) to (ii):
Elsi(e")!] = Elsi(70u; — v(1 — 0)m; + €;)°]
=0:(v*00, + (1 = 0)°0y, + 07), (i)
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E[s;x]"(e

m
%

For the expression of (iii)

B[]

Note that

1

)*(€]

m
7

)’]

)| = Elsi(Jo + s + ui + my) - ()]
= o B[si(e}")"] + 6 E[s} (e]")’]
+ Elsiui(Y0u; — (1 — 0)m; + e;)?]
+ Elsim;(v0u; — (1 — 0)m; + e;)?]
= G020 + (1~ 0% + o),

m

E[(60 + 05; + u; + my)*(e])?]

G E(e]")*] + 6°Elsi (ef")’]

+Eu? (v0u; — (1 — 0)m; + €;)?]

+E[m} (vu; — (1 = 0)m; + ¢;)’]

+2806 E[s:(€")?] + 260 E[u;(ef")?]
)

+280E[m;(el")?] + 26 E[siu;(e")?]

=3

=3

+28 E[symi(el™)?] + 2E[u;m;(el™)?].

and we only need to find the expressions for

Elui(v0u; — (1 = 0)m; + ¢;)?]

Elu{7*0*u? ++*(1 = 6)*m] + ¢}

—29%0(1 — O)uym; + 270use; — 2y(1 — 0)mye;}]
VO2E[uf] + 741 — 0)*0202 + o20?

Vky + (1 — 0)%0 0 + oo

2 2

e’

E[mZ (y0u; — v(1 — 0)m; + €;)?]
Emi{y?0%u; ++*(1 — 0)°m? + €]
—29%0(1 — O)u;m; + 270uze; — 2y(1 — 0)mye;}]

V0?0202 + 42 (1 — 0)’ Ky, + 0202

m-e’
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and

Eluimi(e)?] = Eluymi(v0u; — v(1 — 0)m; + €;)?]
= Elum{v*0*u; +v*(1 — 0)*m7 + €7
—2720(1 — O)uym; + 2v0uze; — 27(1 — O)m e, }]
= —29%0(1 — 0)o2o2.

Putting these terms together,

El(af")*(e]")?] = % E[(e]")’] + 0*Elsi(e]")]
+ Blui(y0u; — (1 — 0)m; + e;)?]
+ Elm2(v0u; — (1 — 0)m; + €;)?]
+ 2B [uim;(e]")?]
= 02{7*0%0% + 7*(1 — 0)*02 + o2}
+ 6202 (v?0%02 + v*(1 — 0)%02, + 02)
+ {20k, + (1 — 0)%0202, + 0202
2

+ {7*0*c202 + (1 — 0) %Ky, + 0207
—{47%0(1 — 9)o202 ). (iii)

Now that we have the expression for both E[W,;W/] and E[W;W/(e)?], we

can compute the asymptotic variance of 3™

Var (3™) :%{(1-9)( 29+‘7_§>

. (Ko — 30;‘;)92 N (Km — 3031)(1 — 6)2
NCETAE (02, + 02)?

(a)

-

Compared to its expression under homoskedasticity (A14), we have an extra

term (a) that accounts for the excess kurtosis of the u and m distributions. It
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follows that
Vs (d;y) =n-Var (B\S — Bm>

2 2 2 2
veo 0°o;
:(1—9) <—+9(52’}/2+7)

o} b
+ 7252 (Ku — 3‘73)92 (Km — 3‘7;1;1)(1 - 9)2
(03 +03)? (o0 +03)? '
Note that when wu; and m; are normal, k, — 302 = 0 and &, — 302 = 0,

and the variance expression above simplifies to that of equation (A18). Since
Var (BS - Bm> increases in k, and k,, while the balancing test is unaffected
by the heteroskedasticity of ™, the power advantage of the balancing test is

larger when u; and m; have thicker tails than a normal distribution. O

B Comparison with Oster (forthcoming)

The Oster (forthcoming) formulation of the causal regression takes the form
Yi = Bsi +ywi; + wa; + €,

where wy; is an observed covariate and wo; is an unobserved covariate, uncor-
related with wy;. To map this into our setup, think of the true x; as capturing
both wy; and wo;, ie. x; = wy; + %wgi. Furthermore, there is equal selection,
i.e.

Cov(si, ywy;) - Cov(si, wy;)

2 2 2 ,
Y o7 03

where 0% and o2 are the variances of w;; and ws;, respectively. Then, Oster’s

(forthcoming) regression can be written as
Yi = Bsi +yxi + e,

which is our regression (2).

Our observed z7 = wy;, SO measurement error is m; = — Y2
7 ? o1

. Measurement
error here is mean reverting (hence we use the r superscript on z to distinguish

it from the classical measurement error case), i.e.
m; = Kx; + i (A19)
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with £ < 0. Notice that

Cov (m;, z;) = —%,
and hence 0 o
_ —2_"2/27 ~ (A20)
oy + UQ/’Y
and
Hi = - (wu + wm)
7 7
(1+ k)
= —RWwy — 2i
Y
03/ oi/y

W1; Wy; .
2 2 /.2l 2 2 /2 U2
01 +02/7 01 +02/7

It turns out that y; implicitly defined in (A19) and x given by (A20) imply
Cov(zxi, ;) = 0 and Cov(s;, ;) = 0. Hence, these two equations represent
mean reverting measurement error as defined in the body of the manuscript.*
In the subsections that follow, we will provide expressions of our two tests as
well as those in Oster (forthcoming) using the seven model parameters, 3, -,
02, 0% 0% 02 and o1, = Cov(wy, 8;).

B.1 The Balancing and Coefficient Comparison Tests

with Mean Reverting Measurement Error

In this subsection, we denote the relevant quantities with the r superscript to
signify that we are working with the mean reverting measurement error. The

balancing regression equation is

T o__ (s 7
x; =0"s; +u,

4Note that Cov(s;, p;) = 0 depends on the equal selection assumption. With proportional
selection, i.e.
Cov(s;,ywii)  Cov(si, wa;)
O 52 = PR
Yo7 03
and ¢ # 1 we would have Cov(s;, p;) # 0.
®Note that oy5 = Cov(wa;,s;) is a function of 0f, 03, 015, and v following the equal
selection condition.
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with the population parameter " being

5 — Cov(ry,s;)  Cov(wy,si) o1
 Var(s;) o2 ol

S

The asymptotic standard deviation of 5 is

Var(uf)

Since

2 07
prd 0-1 - 0_38,
~ 1 Vv T
se(d7) = %w
S
1 \Jojo? - ai,
Vn o3

For the coefficient comparison test, we run the two regressions
yi = s + €]
Yi = ["si + 7w + €.

The omitted variable bias formula gives us

s __ VO01s 025
AR

O2s

2
Os

2
i 1 0'1 —O015 095
(720'2 — o'2 —0 0‘2 0
1%s 1s 1s s
0’%0’23
BN L[| #Forom
r‘)/ _ _01s02s :
2 .2 2

010507

= B+90"+

and

VR
=
N—
I
VR
o ™
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Therefore,
0'20' o o
ﬂr N 55 _ 1Y2s i 1s . 2s
202 — o2 g2 T 2
1%s 1s s s
2

o 01 02g YO01s + 09g
- 22 2 2 '

0105 O7s O

For Var(gs — BT) needed for the coefficient comparison test, we again rely on

the omitted variable formula

and the delta method

Var(5* = 5") = (")*Var(9") + (5")*Var(3")
+ 2(5T7TCOU(/5\T, ).
We already derived the expression for Var(g"“) above and will now derive
Var(7") and OO'U(ZS\T, ~"). For simplicity, we are going to assume homoskedas-
ticity of e] conditional on s; and wy;, which is true, for example, when s;, wy;,

wy; and e; are joint normal. It follows that
Var(7") = ———,

where

2 / 2
0702s 2 0102s
B+ =% o’ o B+ =
ry N 0202—0c s 1s 0202—0?
Var(e}) = Var(y;) L o o o2 012095
Y 23 1s 1 Y 2 2

2_ 2_
0j05—07, 01057971

|

with

Var(y;) = 5205 + ’}/20'% + 05 + 20015 + 2B095 + af.
For Couv(d",7"), we can follow the same reasoning as in subsection A.3.1 and
show that it is equal to zero. Plugging in the expressions for 7", d", Var(gr),

and Var(y"), we obtain

Var(8* — )

2 4.2 20 9 2 2 2 2 2 2 410 6 2 4.2 2 4 6 (~2.2 2 2
_l’Y 001,05 (01s — 0i0;) (3v°01 + 05 — 07) + v'0i0] + 2y 01050,01, — oy, (Y o1 + 03)
- 25454 (52 2 +2) 2 )
n Y7010, (Uls —0'10'5)
(A21)
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In the simple case where the mean reversion coefficient x = 0, we have o9 = 0
from (A20), which implies that z; = wy; and that wy; = 0 (almost surely).
This is the same as in the classical measurement case with § = 0. The reader
can easily check that (A21) with o9 = 0 is the same as (A18) with 6 = 0.
Unlike in the classical measurement error case, it is not always true that
Var(gs — B’”) > Var(g”). For example, when o, is small, the coefficient com-
parison test may dominate — this is the result of 5 being attenuated. But as
0. increases, the balancing test regains its advantage. As we will see below,
this dependence on o, of the coefficient comparison test contrasts with the

asymptotic bias in Oster (forthcoming).

B.2 Relevant Quantities in Oster (forthcoming)

We now express the quantities in Oster’s Proposition 1, which we restate using

population parameters

A 3 P Rmaa: - R
B=G-15-pre=t
Her § and B correspond to our 3° and 3" respectively, and the various R?’s
are: v .
b Var(e)
Var(y;)
P Var(e})
Var(y:)
R -1 Var(e;)
Var(y:)
Therefore,

Riaw — R _ Var(e}) — Var(e;)
R—R  Var(es) —Var(e))

)

We have derived above the expression for Var(el), and analogously the ex-

: s -
pression forVar(ef) is

Var(ef) = Var(y) — B2o?

s S

= (207 + 7207 + 0F + 267015 + 200, + 0
YO01s 02s\9 92
- (ﬁ + o2 + o2 ) s°

S S
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It follows that

2 2 2.2 2
Rmax B RT o 01050
2 _ R2 T A24452 _ A242 52 52 220
RT Rs V0105 V701s01 01502
and that the bias
H A > Rmaz - R
= [ — f]mar — T
R—R
2 2 2 2
01023 r 023 0-10-20-5
2.2 2 2 2 -4 -2 242 2 2 -2
0105 — 075 05 V70105 — V70101 — 01403

Note that IT does not depend on o., which is not surprising given that Oster’s
Proposition 1 focuses on identification. In comparison, our coefficient compar-
ison test depends on o., because the variation in e is important for inference.
Given this difference in foci, there is no one-to-one correspondence between
Oster’s II and our tgs_pry: for a given value of II in Oster, there are different

values of tas_pr) for the coefficient comparison test, and vice versa.

C Comparison of the LHS and RHS Balancing
Tests

We compare the LHS and RHS balancing tests introduced in Section 5.3. The
F-statistic of the LHS balancing test is

11—

FLHS == Ed V(M’((As)_ls,

where we use a consistent variance estimator 17677’(3) for Var(8). On the other

hand, the F-statistic for the RHS balancing test following the regression
S; = 7l'/$i + v;
is
1, = 1.
Frps = i Var(m) 7 (A22)

with ‘7(}(7?) being a consistent estimator for Var(w).
We introduce the multivariate analog of Assumption 2 regarding u; and s;

in equation (16) and the existence of the relevant moments:
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Assumption 6. The variances of w; and s; exist, as does E[(x;x})(s;—7'x;)?].

Lemma 2. Under Assumption 6,
a) L Frps & 028 (Bluul]) 6.
b) %FRHS ﬂ) afd’E[(azzm;)(sz — ﬂ'/wi)2]_16

Proof. For part a), Assumption 6 implies that

o= & p 1 2 1
nVar(d) = 0—§E[5¢ wu| = U—gE[uiu’i].
Hence,
k
~Frs 5 078 (Bluw]) 6. (A23)
For b),
=0, (A24)

where Q, = Var(x;) and ¢ = Cov(x;, s;). The probability limit of the variance

estimator is
nVar(w) & Q' E(xx!) (si — w'@:)?] Q. (A25)

Plugging (A24) and (A25) into (A22), the probability of the scaled F-stat of
the RHS balancing test is

k
EFRHS S ¢'El(x;x;)(si — 7",331‘)2]_1@

= 020 B|(z;x}) (s; — 'xz;)?] 1S (A26)
]

The probability limits (A23) and (A26) are in general different. An analyt-
ical comparison between the two is complicated, as it depends on the higher
moments of s and u. However, we show below that the two scaled F-statistics
have the same probability limits, in the special case where the LHS balancing
regression has a spherical error structure and the RHS balancing regression is

homoskedastic.
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C.1 Special Case: Spherical LHS Error Structure and
Homoskedastic RHS Regression

We consider the special case where the RHS regression is homoskedastic and
the LHS balancing regression has a spherical error structure:
Assumption 7. Var(vi|x;) is constant and Var(w;) = c21}.

Note that Assumption 7 is satisfied if s and uw are both normally dis-
tributed.

Proposition 4. Under Assumptions 6 and 7, plz’m%FLHS = plim%FRHS.

Proof. Combining Assumption 7 with (A23) in the proof of Lemma 1, the LHS

F-statistic simplifies to

k » 028’6
—Frps ——
n

u

For the RHS F-statistic, homoskedasticity in Assumption 7 allows us to write
Bl(za)(si — 7'x:)’] = Elzai] E|(s; — 7'x;)?]
To find the expression of E|z;x}]E[(s; — w'x;)?], first note that
o2 = Var(n'z;) + E[(s; — 7'x;)?]
SO
E[(s; — m'x;)?] = 02 — Var(rw'z)
with
Var(w'z;) = n'Q.m
=dQ, ¢
=0t8'Q, 1. (A27)

Since rank(86") = 1 and tr[(0280")(51,) '] = 728’5, by Miller (1981) we have

g

1 1 1

Q, '=—T1- o286’
2T s o)
1 o2
=—1— 5 66’ A28
o2 (02)2 + 02028'6 (A28)
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Plugging (A28) into (A27):
0,00 0%(8'6)?

o2 (02)2 + 020258'6
_ 030'0[(02)? +02028'8] — 0l(8'0)%0
- 202 + 0758
0l8'6(0?)?
(02)*[02 + 020'4)]
0308
02402868

Var(n'z;) =

It follows that

E[(s; — m'x;)?] = 02 — Var(nw'z;)
5 old's
7T 02 4 0288
o2lo? + 028'6) — 0186
02+ 028’6
o202
02+ 0286

As a result, the probability limit of %FRHS is

A8 E|(z:ix})| " El(si — w'x:) 21O
o2+ 035,(56

 4dgio—1
=0,0'82 gy
1 o? o2 4+ 026’8

_4gr S / U S
=t (51~ ot emws®®) o

L [0'0(02+028'8) (8'd)%02
7 ool 020t

802

—% oot

028’8

Therefore,

k
plim—FLHg = plim—FRHS.
n n
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D Simulations: Summary of Data Generating
Processes and Additional Results

D.1 Summary of Data Generating Processes

In this subsection, we present a succinct summary of the data generating

processes (DGP’s) used in the Monte Carlo simulations.

e Baseline DGP (Figure 2):

5 0 10 0 0
Z ~ N 8 ’ 83300 8
m; 0 00 0 o
Y = i + 31 + ¢
Ty =d-s; +u
Tt =z +my (A29)

when 6 = 0, 02, = 0; when 6 = 0.85, 02, = 17.

e Mean reverting measurement error DGP (Figure 3): Replace equation
(A29) in the baseline DGP with

' =—0.5(d- s +u;) +
where ai = 0.75 or ai = 2.25.
e Multiple controls DGP (Figure 4): in the baseline DGP,

— Replace u; with u; ~ N(0,02I) and m; with m; ~ N(0,02 I);
— Replace z; = d - s; + u; with &; =d - s; + u;, where

x d=(d,d,...,d) in panels (a) and (c)

x d = (d,0,...,0) in panels (b) and (d);

— Replace z]" = z; + m; with =" = x;, + m,.
e Heteroskedastic DGP (Figure D.2):
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— Everything is the same as in the baseline DGP, except generate u;

and e; conditional on s;:

elsil 2 2
( . ) |si ~ N { 0 } <1+e\si|) T0u 0

0 elsil 2 2

0 <1+e|5i|) e
with 02, and 02, set so that the unconditional variances 2 = 3 and
&2 = 30 match those in the baseline DGP.

€;

e Binary x DGP (Figure D.2): in the baseline DGP,

— Replace 02 = 1 with 02 = 0.25;

— Replace z; = d - s; + u; with
Pr(z; =1)=®(d- s;);
— Replace 2" = x; +m; with
Pr(z*=1lz; =0)=Pr(z]" =0|z; =1) =171
with 7=0or 7 =0.1.

D.2 Additional Results

We explore additional scenarios using simulations in this section beyond those
included in the main text. Figure D.2 shows the original theoretical power
functions for the case with no measurement error from Figure 1. It adds em-

pirical rejection rates from simulations with heteroskedastic errors u; and e; of

2 el ) 2
Oui = (1 +€Si|> Oou

2 el ’ 2
Oei = (1 + esz’|> e

We set the baseline variances o2, and o2, so that the unconditional variances

the form

72 = 3 and 72 = 30 match the variances in Figure 1. The test statistics used in
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the simulations employ robust standard errors. We plot the rejection rates for
data with no measurement error and for the more severe measurement error
scenario given by 6 = 0.85. As can be seen in Figure D.2, both the balanc-
ing and the coefficient comparison tests lose some power with heteroskedas-
tic residuals and a robust covariance matrix compared to the conventional,
homoskedastic baseline (thin lines). Otherwise, the main findings look very
similar to those in Figure 1. Heteroskedasticity does not seem to alter the
basic conclusions appreciatively.

We presented results in the main text on mean reverting measurement error
when x and m are continuous. Another prominent case of mean reverting
measurement error is the one where x; is a dummy variable. In this case, the
balancing equation is a binary choice model, and hence inherently non-linear.
While we assume that the researcher continues to estimate (3) as a linear

probability model, we generate x; as follows:
Pr(z;=1)=®(Js;), (A30)

where @ (o) is the normal distribution function as before. Measurement error
takes the form of misclassification, and we assume the misclassification rate to

be symmetric:
Pr(z"=1lz; =0)=Pr(z]" =0]|z; = 1) = 7.

Compared to the baseline parameters in Table 1, we set 02 = 0.25, and 7 = 0.1
in our simulations. The model remains the same in all other respects. We use
robust standard errors in estimating (9) and (11).

Various issues arise from the nonlinear nature of (A30). One is the fact

that plim (5) from estimating (11) linearly is not going to equal the J we used

in the probit equation (A30) to generate x. The relationship between plim (5)
and 0 is concave. In Figure D.2, we plot rejection rates against values of ¢,
although the quantity plim (3) is probably more comparable to what we put
on the x-axis in the previous figures that summarize the simulation results

from linear models. We note that results look qualitatively very similar when
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we plot rejection rates against the empirical averages of § from estimating (11)
as a linear probability model.

Another issue is that measurement error in x; will now lead to a biased
estimate of 0 in estimating (11). This is true even if we were to use a probit and
estimated a model like (A30). The bias takes the form of attenuation, just as in
the case of a binary regressor with measurement error (see Hausman, Abrevaya
and Scott-Morton, 1998). This is a corollary of our result that mean reverting
measurement error also reduces the power of the balancing test. Of course, we
know from the relationship (14) between the test statistics that the coefficient
comparison test will also suffer from the same power loss.

The thin lines in Figure D.2 reveal a sizable power advantage for the bal-
ancing test even without any misclassification. This result is in stark contrast
to the linear models we have analyzed, where a large power loss for the coef-
ficient comparison test only resulted once we introduced measurement error.
In fact, it is possible to think of the binary nature of x; itself as a form of
mismeasurement. Equation (A30) defines Pr(z; = 1) as a latent index, but
the outcome regression (2) uses a coarse version of this variable in the form of
the binary z;.

In our parameterization, the coefficient comparison test never reaches a
rejection rate of 1, and the power function levels off at a far lower level. As
d increases, the power of the balancing test goes to 1. In the linear model,
the rejection rate of ¢, is independent of d. Because of the nonlinear nature of
(A30) this is no longer true here, and the average value of ¢, across repeated
samples actually falls for higher values of d. Drawing on (14), the power of the
coefficient comparison test will equal the power of ¢, when ¢; — oo. This is not
a specific feature of the binary case but is generally true for the relationship
between the three test statistics. However, in the binary case this implies that

the power of the coefficient comparison test may decline with d.

6The reason for the decline of ¢, with d in our parameterization is as follows: the standard
error of 4 depends on the residual variance of the long regression, which is independent of
d, and on the variance of the residual from regressing z; on s; (because s; is partialled out
in the long regression). When d = 0, this latter residual is just equal to x; itself, which is
binary. But s; is continuous, so as d increases, partialling out s; transforms the binary x;
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Adding measurement error to the binary regressor x; makes things worse as
is visible from the thick lines in Figure D.2. The power loss of the balancing test
is comparatively minor for the relatively low misclassification rate of 7 = 0.1 we
are using. Much of the loss for the balancing test results from the binary nature
of the z; variable in the first place. The coefficient comparison test is affected
by misclassification error to a much higher degree because ¢, is affected, the

Hausman, Abrevaya and Scott-Morton (1998) result notwithstanding.

into a continuous variable, which has less variance than in the d = 0 case. As the effective
variance in this regressor falls, the standard error of 4 goes up and ¢, goes down.
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Rejection probability

o
o
—

1.5 2
d
— Balancing test, baseline - - CC test, baseline
— Balancing test, 8=0, robust - - CC test, 6=0, robust
== Balancing test, 6=.85, robust == CC test, 8=.85, robust

Figure A.1: Simulated Rejection Rates with Heteroskedasticity. Comparison
of baseline rejection rates (from Figure 1) with simulated rejection rates based
on heteroskedastic errors and robust standard errors. d is the value the coef-
ficient in the balancing equation takes on under the alternative hypothesis.
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Rejection probability

0 5 1 1.5 2

— Balancing test, 1=0 —— CCtest, 1=0
=== Balancing test, 1=0.1 == (CC test, 1=0.1

Figure A.2: Simulated Rejection Rates with Binary Control and Misclassifi-
cation. Rejection rates for a binary control variable that is misclassified (i.e.
its binary value is flipped) with probability 7. d is the value the coefficient in
the balancing equation takes on under the alternative hypothesis.
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