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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include instrumental variables or differ-
ence-in-differences models) by adding additional control variables on
the right hand side of the regression. If such additions do not affect the
coefficient of interest (much) a study is presumed to be reliable. We
caution that such invariance may result from the fact that the observed
variables used in such robustness checks are often poor measures of the
potential underlying confounders. In this case, a more powerful test of
the identifying assumption is to put the variable on the left hand side of
the candidate regression. We provide derivations for the estimators and
test statistics involved, as well as power calculations, which can help
applied researchers interpret their findings. We illustrate these results
in the context of estimating the returns to schooling.

JEL classifications: C31, C52
Keywords: Balancing, variable addition, robustness checks, speci-

fication testing, Hausman test
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1 INTRODUCTION

The identification of causal effects depends on explicit or implicit assumptions

which typically form the core of a debate about the quality and credibility of a

particular research design. In regression based strategies, this is the claim that

variation in the regressor of interest is as good as random after conditioning on

a sufficient set of control variables. In instrumental variables models, it involves

the assumption that the instrument is as good as randomly assigned. In panel

or differences-in-differences designs, it is the parallel trends assumption. The

credibility of a design can be enhanced when researchers can show explicitly

that these assumptions are supported by the data. This is often done through

some form of balancing tests or robustness checks.

The research designs mentioned above are all variants of regression strate-

gies. If the researcher has access to a variable for a potentially remaining

confounder, tests of the identifying assumption take two canonical forms. The

variable can be added as a control on the right hand side of the regression.

The identifying assumption is confirmed if the estimated effect of interest is in-

sensitive to this variable addition—we call this the coefficient comparison test.

Alternatively, the variable can be placed on the left hand side of the regression

instead of the outcome variable. A zero coefficient on the causal variable of

interest then confirms the identifying assumption. This is the balancing test

which is typically carried out using baseline characteristics or pre-treatment

outcomes in a randomized trial or in a regression discontinuity design.

Researchers often rely on one or the other of these tests. The main point of

our paper is to show that the balancing test, using the proxy for the candidate

confounder on the left hand side of the regression, is generally more powerful.

This is particularly the case when the available variable is a noisy measure

of the true underlying confounder. The attenuation due to measurement error

often implies that adding the candidate variable on the right hand side as a

regressor does little to eliminate any omitted variables bias. The same mea-

surement error does comparatively less damage when putting this variable on

the left hand side. Regression strategies work well in finding small but relevant
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amounts of variation in noisy dependent variables. We collect basic results for

the relevant parameters in the presence of measurement error in Section 3.

These two testing strategies are intimately related through the omitted

variables bias formula. The omitted variables bias formula shows that the co-

efficient comparison test involves two regression parameters, the coefficient

from the balancing test and the coefficient from the added regressor in the

outcome equation. Both of these parameters have to be non-zero for the co-

efficient comparison test to fail and actual confounding to take place. The

balancing test focuses on a single parameter. The two tests therefore inves-

tigate the same hypothesis under the maintained assumption that the added

regressor matters in the outcome equation. The ultimate source of the power

loss in the coefficient comparison test comes from estimating a nuisance pa-

rameter. This is a standard reason for power differences in the econometrics

literature but turns out to be relatively unimportant in the numerical exam-

ples we present. The nuisance parameter in the coefficient comparison test is

more difficult to estimate when there is more measurement error in the added

regressor. In the examples we study in Section 5, measurement error is the

source of quantitatively meaningful power differences between the two tests.

A second point we are making is that the two strategies, coefficient com-

parison and balancing, both lead to explicit statistical tests. The balancing

test is a simple t-test used routinely by researchers. When adding a covariate

on the right hand side, comparing the coefficient of interest across the two re-

gressions can be done using a generalized Hausman test. In practice, we have

not seen this test carried out in applied papers, where researchers typically

just eye-ball the results (an exception is Gelbach, 2016). We provide the rele-

vant test statistics and discuss how they behave under measurement error in

Section 4. We demonstrate the superior power of the balancing test under

different scenarios in Section 5.

The principles underlying our analysis are well known but the consequences

do not seem to be fully appreciated in applied work. McCallum (1972) and

Griliches (1977) are classic references for the issues arising when regression

controls are measured with error. Battistin and Chesher (2014) discuss identi-
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fication in the presence of a mismeasured covariate in non-linear models based

on assumptions about the degree of measurement error in the covariate. We

follow McCallum (1972) and Griliches (1977) in framing our discussion around

the omitted variables bias arising in linear regressions, the general framework

used most widely in empirical studies. The insights we exploit build on Pis-

chke and Schwandt (2012) but we go beyond the analysis in all of these papers

in our explicit discussion of testing, which forms the core of our inquiry.

Our focus is on specification testing for a particular research design. The

statistical model we discuss below—a baseline regression and an augmented

regression with additional covariates—bears a close relationship to models in

a large literature, which attempts to use control strategies for point or interval

identification. One recent strand of this literature is interested in the selection

of control variables in a causal regression and inference for the parameter of

interest after such an initial variable selection step (Belloni, Chernozhukov and

Hansen, 2014a, b; Chernozhukov et al., 2017; Chernozhukov et al., forthcom-

ing). A second strand uses the relationship between a treatment variable of

interest and observed covariates to model the corresponding relationship with

additional unobserved confounders in order to estimate the true causal effect

(Altonji, Elder and Taber, 2005; Altonji et al., 2013; and Oster, forthcoming).

Although this literature is focused on identification of the causal parameter,

the tools can be used for specification checking as well, so in practice the con-

ceptual difference to our approach may not be quite as sharp. Nevertheless,

the parameters of interest are different, and our focus is on statistical inference

about the credibility of a given baseline design rather than identification of the

causal parameter.

Also related is an older literature by Hausman (1978), Hausman and Taylor

(1980), and Holly (1982) (see also the summary in MacKinnon, 1992, section

II.9), which considers the relative power of the Hausman test compared to

alternatives, in particular an F -test for the added covariates in the outcome

equation when potentially multiple covariates are added. This comparison ef-

fectively maintains that there is a lack of balance, and instead tests whether

the added regressors matter for explaining the outcome. While this is a dif-
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ferent exercise from ours, this literature highlights the potential power of the

Hausman test when it succinctly transforms a test with multiple restrictions

(like the F -test for the added covariates) into a test with a single restriction

(the coefficient comparison test). We discuss how to extend our framework to

multiple added controls in Section 5.3. Our basic findings largely carry over

to this setting but we also reach the conclusion that the Hausman test has a

role to play when the goal is to summarize a large number of restrictions.

Griliches (1977) uses estimates of the returns to schooling as example for

the methodological points he makes. Such estimates have formed a staple of

labor economics ever since. We use Griliches’ data from the National Longi-

tudinal Survey of Young Men to briefly illustrate our power results in Section

6. It is well suited for our purposes because the data contain various test

score measures which can be used as controls in a regression strategy (as in

Griliches, 1977), as well as a myriad of other useful variables on individual and

family background. The empirical results illustrate and support our theoretical

claims.

2 A SIMPLE FRAMEWORK

Consider the following simple framework starting with a population regression

equation

yi = βssi + esi (1)

where yi is an outcome like log wages, si is the causal variable of interest, like

years of schooling, and esi is the regression residual. The researcher proposes

this short regression model to be causal, i.e. βs is the parameter of interest.

This might be the case because the data come from a randomized experiment,

so the simple bivariate regression is all we need. More likely, the researcher

has a particular research design applied to observational data. For example, in

the case of a regression strategy controlling for confounders, yi and si would be

residuals from regressions of the original outcome and treatment variables on

the chosen controls. In the case of panel data or differences-in-differences de-

signs the controls are sets of fixed effects. In the case of instrumental variables,
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si would be the predicted value from a first stage regression. In practice, (1)

encompasses a wide variety of empirical approaches, and should be thought of

as a short-hand for these. We have this broader interpretation in mind but for

presentational clarity we use the simple bivariate regression throughout the

discussion in our paper. All subsequent regression equations and results also

inherit the structure of the actual underlying research design but we illustrate

results in terms of the simple bivariate formulation in (1). We also suppress

constants to avoid clutter.

Now consider the possibility that the population regression parameter βs

from (1) may not actually capture a causal effect. There may be a candidate

confounder xi, so that the long regression

yi = βlsi + γxi + ei (2)

generates a coefficient βl which might differ from βs. To make things concrete,

in the returns to schooling context, xi would be a measure of the remaining

part of an individual’s earnings capacity which is also related to schooling, like

ability or family background.

Researchers who find themselves in a situation where they start with a

proposed causal model (1) and a measure for a candidate confounder xi typi-

cally do one of two things: They either regress xi on si and check whether si is

significant, or they include xi on the right hand side of the original regression

as in (2), and check whether the estimate of β changes materially when xi

is added to the regression of interest. The first strategy constitutes a test for

“balance,” a standard check for successful randomization in an experiment.

The second strategy is a “coefficient comparison test.” An appreciable differ-

ence between βl and βs suggests that the original estimate βs does not have

a causal interpretation. Researchers typically interpret passing either of these

tests as strengthening the case for a causal interpretation of the parameter

βs. In case the tests reject, the researcher concludes that neither parameter is

likely to be causal, and the research design is a flawed one.

It is tempting to conclude that strategy (2) is preferable because the com-

parison of βl and βs does not just carry information about the validity of re-
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gression (1) but also provides a better estimate βl. It is important to caution

against this interpretation. If xi is an imperfect control or there are multiple

omitted variables in (1) then (2) does not necessarily reduce the omitted vari-

ables bias (Frost, 1979 or more recently De Luca, Magnus and Peracchi, 2017

and Kassenboehmer and Schurer, 2017). The literatures along the lines of Al-

tonji, Elder and Taber (2005) and Belloni, Chernozhukov and Hansen (2014b)

all start from the premise that there is a set of regressors xi so that regression

(2) is preferable, at least in principle. Only in the special case where xi is the

only missing confounder and we measure it without error will the parameter

βl from the controlled regression be the causal effect of interest. In practice,

there is usually little reason to believe that these two conditions are met, and

hence a difference between βl and βs only indicates a poor research design.

The relationship between the two testing strategies is easy to see. Write

the regression of xi on si, which we will call the balancing regression, as

xi = δsi + ui. (3)

The change in the coefficient on si after adding xi to the regression (1) is given

by the omitted variables bias formula

βs − βl = γδ. (4)

This change consists of two components, the coefficient γ on xi in the outcome

equation (2) and the coefficient δ from the balancing regression.

Here we consider the relationship between these two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis

H0 : δ = 0, (5)

compared to the inspection of the coefficient movement βs − βl. The lat-

ter strategy of comparing βs and βl is often done informally, but it can be

formalized as a statistical test of the null hypothesis

H0 : βs − βl = 0, (6)
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which we will call the coefficient comparison test. From (4) it is clear that (6)

amounts to

H0 : βs − βl = 0⇔ γ = 0 or δ = 0. (7)

This highlights that the two approaches formally test the same hypothesis

under the maintained assumption γ 6= 0. We may often have a strong sense

that γ 6= 0; i.e. we are dealing with a variable xi which we believe affects the

outcome, but we are unsure whether it is related to the regressor of interest si.

In this case, both tests would seem equally suitable. Nevertheless, in other cases

γ may be zero, or we may be unsure. In this case, the coefficient comparison

test seems to dominate because it directly addresses the question we are after,

namely whether the coefficient of interest β is affected by the inclusion of xi

in the regression.

Be this as it may, our main point is a practical one, that the coefficient

comparison test suffers particularly when the true confounder (γ 6= 0) is mea-

sured with error. In general, confounders like xi may not be easy to measure.

If the available measure for xi contains classical measurement error, the esti-

mator of γ in (2) will be attenuated, and the comparison βs − βl will be too

small (in absolute value) as a result. The estimator of δ from the balancing

regression is still consistent in the presence of classical measurement error; this

regression simply loses precision because the mismeasured variable is on the

left hand side. The measurement error drives a wedge between the asymp-

totic values of the two test statistics and the balancing test becomes relatively

more powerful than the coefficient comparison test. In order to make these

statements precise, we start by reviewing results for the relevant population

parameters in the case of classical measurement error in the following section,

before moving on to inference, power calculations, and simulations.
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3 POPULATION PARAMETERS IN THE PRES-

ENCE OF MEASUREMENT ERROR

The candidate variable xi is not observed. Instead, the researcher works with

the mismeasured variable

xmi = xi +mi. (8)

We start by assuming the measurement error mi is classical, i.e. E (mi) = 0,

Cov (xi,mi) = 0, Cov (si,mi) = 0. In Section 5 below we also investigate the

impact of mean-reverting measurement error. As a result of the measurement

error, the researcher compares the regressions

yi = βssi + esi

yi = βmsi + γmxmi + emi . (9)

Notice that the short regression does not involve the mismeasured xi, so

that βs = βl + γδ as before. However, the population regression coefficients

βm and γm are now different from βl and γ from equation (2):

βm = βl + γδθ

γm = γ (1− θ) . (10)

The amount of measurement error is captured by the parameter θ:

θ =
σ2
m

σ2
u + σ2

m

,

where σ2· denotes the variance of the random variable in the subscript (McCal-

lum, 1972; Garber and Klepper, 1980). 1 − θ is the multivariate attenuation

factor, which takes the role of the familiar attenuation factor λ = σ2
x/ (σ2

x + σ2
m)

in a bivariate regression. Recall that ui is the residual from the balancing

regression (3). Notice that θ involves only the variation in xmi which is or-

thogonal to si. This is the part of the variation in xmi relevant to the estimate

of γm in regression (9), which also has si as a regressor. Approaches along

the lines of Battistin and Chesher (2014), Altonji, Elder and Taber (2005),
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and Oster (forthcoming), which effectively treat eq. (2) as structural, require

assumptions on θ or a function of it for point identification.

The population coefficient βm differs from βl but less so than βs. In fact,

with classical measurement error βm lies between βs and βl, as can be seen

from (10). The parameter γm is attenuated compared to γ; the attenuation

is bigger than in the case of a bivariate regression of yi on xmi without the

regressor si if xmi and si are correlated because σ2
u < σ2

x.

These results highlight a number of issues. The gap βs − βm is too small

compared to the desired βs − βl, directly affecting the coefficient comparison

test. This is a consequence of the fact that γm is biased towards zero. Ceteris

paribus, this is making the assessment of the hypothesis γ = 0 more difficult,

which in turn affects the inference for βs = βl.

Finally, with the mismeasured xmi , the balancing regression becomes

xmi = δmsi + umi (11)

= δsi + ui +mi.

This regression involves measurement error in the dependent variable, which

has no effect on the population parameter δm = δ. Because the variance of

the residual in (11) is larger than in (3) the estimator δ̂m is less efficient than

δ̂ in the case with no measurement error.

4 INFERENCE

In this section, we consider how conventional standard errors and test statis-

tics for the quantities of interest are affected in the homoskedastic case (see

Appendix A for details on the setup, derivations, and an extension to robust

standard errors). The primitive disturbances are si, ui, ei, and mi, which we

assume to be uncorrelated with each other. Other variables are determined

by (2), (3), and (8). We use these results to analyze the power of the two

alternative tests in the next section. Starting with theoretical results for the

baseline homoskedastic case, we extend these results in simulations. Our basic

conclusions are the same in all these different scenarios.
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Start with the estimator δ̂m and its associated t-statistic. δ̂m is still a

consistent estimator for δ but its standard error is inflated compared to the

case with no measurement error. Denoting the estimated standard error of

a given estimator by ŝe(·), a test based on the t-statistic tδm = δ̂m/ŝe
(
δ̂m
)

remains consistent because mi is correctly accounted for in the residual of the

balancing regression (11). However, the t-statistic is asymptotically smaller in

absolute value than in the error free case. As n→∞, the scaled t-statistic is

plim

(
1√
n
tδm

)
=
√

1− θ δ(
σu
σs

) .
This means the null hypothesis (5) is rejected less often. The test is less pow-

erful than in the error free case (θ = 0); the power loss is captured by the term
√

1− θ.
We next turn to γ̂m, the estimator for the coefficient on the mismeasured

xmi in (9). The parameter γ is of interest since it determines the coefficient

movement βs − βl = γδ in conjunction with the result from the balancing

regression. For ease of exposition, we impose conditional homoskedasticity of

emi given si and xmi here and leave the more general case to Appendix A.3.2.

Denote the asymptotic standard error by se(·), i.e. se(·) ≡ 1√
n
plim{

√
nŝe(·)}.

The asymptotic standard error for γ̂m is

se (γ̂m) =

√
1− θ√
n

√
θγ2 +

σ2
e

σ2
u

.

Measurement error enters the standard error in two ways: the first is an at-

tenuation factor compared to the standard error for a correctly measured xi,

while the second is an additive effect which depends on the value of γ. The

parameters in the two terms are not directly related, so se (γ̂m) ≷ se (γ̂).

Measurement error does not necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement error

attenuates the parameter γm towards zero, the attenuation factor is 1 − θ.

The standard error is attenuated in the same direction; this is reflected in the
√

1− θ factor, which multiplies the remainder of the standard error calcula-

tion. The second influence from measurement error comes from the term θγ2,
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which results from the fact that the residual variance V ar (emi ) is larger when

there is measurement error. The increase in the variance is related to the true

γ, which enters the residual.

The t-statistic for testing whether γm = 0 has a limit

plim

(
1√
n
tγm

)
=
√

1− θ γ√
θγ2 + σ2

e

σ2
u

.

In addition to the two sources of measurement error in the standard error,

the t-statistic involves the attenuation factor 1 − θ for the coefficient γm. As

in the case for the balancing regression, the t-statistic for γ̂m is smaller than

tγ for the error free case. But in contrast to the balancing test statistic tδm ,

measurement error reduces tγm relatively more, due to the fact that measure-

ment error in a regressor both attenuates the relevant coefficient towards zero

(captured by
√

1− θ) and introduces additional variance into the residual (the

θγ2-term) in the denominator. As a result, classical measurement error makes

the assessment of whether γ = 0 more difficult compared to the assessment

of whether δ = 0. As we will see, this contributes to the greater power of the

balancing test statistic.

Finally, consider the quantity βs−βm, which enters the coefficient compar-

ison test. Before proceeding we note that the covariance term in the expression

for the asymptotic variance of β̂s − β̂m

V ar
(
β̂s − β̂m

)
= V ar

(
β̂s
)

+ V ar
(
β̂m
)
− 2Cov

(
β̂s, β̂m

)
(12)

reduces the sampling variance of β̂s − β̂m. This covariance term is positive

and generally sizable compared to V ar
(
β̂s
)

and V ar
(
β̂m
)

since the regres-

sion residuals esi and emi are highly correlated. Because 2Cov
(
β̂s, β̂m

)
gets

subtracted, looking at the standard errors of β̂s and β̂m alone can potentially

mislead the researcher into concluding that the two coefficients are not signif-

icantly different from each other when in fact they are.

The coefficient comparison test itself can be formulated as a t-test as well,

since we are interested in the movement in a single parameter, i.e.

t(βs−βm) =
β̂s − β̂m

ŝe(β̂s − β̂m)
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where ŝe(β̂s− β̂m) is a consistent standard error estimator. Using (4) and (10)

we obtain

plim

(
1√
n
t(βs−βm)

)
=
√

1− θ δγ√
γ2 σ

2
u

σ2
s

+ θδ2γ2 + δ2 σ
2
e

σ2
u

(13)

Under the alternative hypothesis (δ 6= 0) and the maintained assumption

γ 6= 0, the three test satistics are asymptotically related in the following way:

plim

(
1

1√
n
t(βs−βm)

)2

= plim

(
1

1√
n
tδm

)2

+ plim

(
1

1√
n
tγm

)2

(14)

This result highlights a number of things. First of all, under the main-

tained hypothesis γ 6= 0, the balancing test alone is more powerful. This is

not surprising at all, since the balancing test only involves estimating the pa-

rameter δ while the coefficient comparison test involves estimating both δ and

γ. Imposing γ 6= 0 in the coefficient comparison test is akin to tγm →∞, and

this would restore the equivalence of the balancing and coefficient comparison

tests. Note that the power advantage from imposing γ 6= 0 exists regardless

of the presence of measurement error.

The second insight is that measurement error affects the coefficient com-

parison test in two ways. The test statistic is subject to both the attenuation

factor
√

1− θ and the term θδ2γ2 in the variance, which is inherited from the

t-statistic for γ̂m. Importantly, however, all these terms interact in the coef-

ficient comparison test. In our numerical exercises below, it turns out that

the way in which measurement error attenuates γm compared to γ is a ma-

jor source of the power disadvantage of the coefficient comparison test. Our

simulations demonstrate that the differences in power between the coefficient

comparison and balancing tests can be substantial when there is considerable

measurement error in xmi .
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5 POWER COMPARISONS

5.1 Asymptotic and Monte Carlo Results with Classical
Measurement Error

The ability of a test to reject when the null hypothesis is false is described

by the power function of the test. The power functions here are functions of

d, the values the parameter δ might take on under the alternative hypothesis,

while we keep γ 6= 0 fixed. Using our results from the previous section, it is

easy to demonstrate that under the alternative hypothesis δ 6= 0,

Powertδm (d) > Powert(βs−βm)
(d; γ) . (15)

We give a full derivation in Appendix A.

In practice, this result may or may not be important. In addition, when

the standard error is estimated, the powers of the two tests may differ from the

theoretical results above. Therefore, we carry out a number of Monte Carlo

simulations to assess the performance of the two tests.

Table 1: Parameters for Power Calculations and Implied R2s

𝜎"# = 1  β = 1  
𝜎&# = 3  g = 3  
𝜎(# = 30  n = 100  

 
d 

R2 
θ = 0 θ = 0.7 θ = 0.85 

0 0.48 0.16 0.09 
0.5 0.53 0.23 0.16 
1.0 0.59 0.33 0.27 
1.5 0.66 0.44 0.39 
2.0 0.72 0.54 0.50 

 
NOTE: The implied population R2’s do not depend on n, but the
subsequent power calculations do.

Table 1 displays the parameter values we use as well as the implied values

of the population R2 of regression (9). The values were chosen so that for
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intermediate amounts of measurement error in xmi the R2s are reflective of

regressions fairly typical of those in applied microeconomics, for example, a

wage regression. Note that the amounts of measurement error we consider are

comparatively large. In our empirical application we use variables like mother’s

education and the presence of a library card in the household as measures of

family background. We suspect that these variables pick up at most a minor

part of the true variation of family background, even in the presence of other

covariates, so that values of θ = 0.7 or θ = 0.85 for the measurement error are

not unreasonable.
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Figure 1: Theoretical Rejection Rates. d is the value the coefficient in the
balancing equation takes on under the alternative hypothesis.

In Figure 1, we start by plotting the theoretical power functions for both

tests for three different magnitudes of the measurement error. We calculate

these power functions using the t-distribution with n − 2 degrees of freedom,

consistent with how Stata 14 performs the balancing test (this distribution

14



choice makes little difference with our sample size of 100). The thin lines show

the power functions with no measurement error. The power functions can be

seen to increase quickly with d, and both tests reject with virtual certainty

once d exceeds values of 1. The balancing test is slightly more powerful but

this difference is small, and only visible in the figure for a small range of d.

The medium thick lines correspond to θ = 0.7, i.e. 70% of the variance

of xmi is measurement error after partialling out si. Measurement error of

that magnitude visibly affects the power of both tests. The balancing test still

rejects with certainty for d > 1.5, while the coefficient comparison test does

not reject with certainty for the parameter values considered in the figure.

This discrepancy becomes even more pronounced when we set θ = 0.85 (thick

lines). The power of the coefficient comparison test does not rise above 0.65

in this case, while the balancing test still rejects with probability 1 when d is

around 2.

The results in Figure 1 highlight that there are parameter combinations

where the balancing test has substantially more power than the coefficient

comparison test. In other regions of the parameter space, the two tests have

more similar power, for example, when d < 0.5. While we highlight the con-

sequences of measurement error throughout the paper, we should note that

formally any particular value of θ can be mimicked by an appropriate combi-

nation of values for γ and σ2
u. This is an immediate consequence of the fact

that the classical measurement error model is underidentified by one param-

eter. In that sense “measurement error” is simply a label for a certain set of

parameter values. It is always difficult to choose empirically relevant values

for simulations, and we take comfort from the fact that the results emerging

from this section are also reflected in the empirical example in Section 6.

Before going on to simulations of more complicated cases, we contrast the

theoretical power functions in Figure 1, based on asymptotic approximations,

to simulated rejection rates of the same tests in Monte Carlo samples. Figure

2 shows the power functions for the two tests without measurement error

(θ = 0) and with a large amount of measurement error (θ = 0.85), as well

as their simulated counterparts. We computed 25,000 replications in these
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simulations, and each repeated sample contains 100 observations. Without

measurement error, the theoretical power functions are closely aligned with

the empirical rejection rates (thinner lines). Adding measurement error, this

is also true for the balancing test (the solid thicker lines are on top of each other

and not distinguishable) but not for the coefficient comparison test (broken

thicker lines).
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Figure 2: Theoretical and Simulated Rejection Rates. Comparison of asymp-
totic rejection rates (from Figure 1) with rejection rates based on Monte Carlo
simulations. Baseline refers to the theoretical rejection rates without measure-
ment error. d is the value the coefficient in the balancing equation takes on
under the alternative hypothesis.

Figure 2 reveals that the empirical rejection rates of the coefficient compar-

ison test in the presence of measurement error deviate substantially from the

power function calculation based on the asymptotic approximation. This dis-

crepancy is almost completely explained by the fact that we use the asymptotic
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values of standard errors in the calculations but estimated standard errors in

the simulations. The joint distribution between the coefficient and standard

error estimators is difficult to characterize, especially in the case of the coef-

ficient comparison test, so we abstract away from the sampling variation in

estimating the standard errors in the theoretical derivations of the power func-

tions. Figure 2 shows that the test is severely distorted under the null in the

simulations; it barely rejects more than 1% of the time for a nominal size of 5%.

While this problem leads to too few rejections under the null, it is important

to note that the same issue arises for positive values of d until about d < 1.5.

For larger values of d the relationship reverses. In other words, for moderate

values of d the coefficient comparison test statistic is biased downwards under

the alternative, and the test has too little power. This highlights another ad-

vantage of the balancing test—a standard t-test where no such problem arises.

We note that this is a small sample problem, which goes away when we increase

the sample size (in unreported simulations). We suspect that this problem is

related to the way in which the coefficient comparison test effectively combines

the simple tδm and tγm test statistics in a non-linear fashion, as can be seen in

equation (14), and the fact that tγm sometimes is close to 0 in small samples

despite the fact that we fix γ substantially above 0.

5.2 Monte Carlo Results with Mean-reverting Measure-
ment Error

The homoskedastic case with classical measurement error is highly stylized and

does not correspond well to the situations typically encountered in empirical

practice. We explore the case of mean reverting measurement error (Bound

et al., 1994) using simulations in this sub-section. Some additional results can

be found in Appendix D. We generate measurement error as

mi = κxi + µi

where κ is a parameter and Cov (xi, µi) = 0, so that κxi captures the error

related to xi and µi the unrelated part. When −1 < κ < 0, the error is mean
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reverting, i.e. the κxi-part of the error reduces the variance in xmi compared

to xi.

The case of mean reverting measurement error captures a variety of ideas,

including the one that we may observe only part of a particular confounder

made up of multiple components. Imagine we would like to include in our

regression a variable xi = w1i + w2i, where w1i and w2i are two orthogonal

variables. We observe xmi = w1i. For example, xi may be family background,

w1i is mother’s education and other parts of family background correlated

with it, and w2i are all relevant parts of family background which are uncorre-

lated with mother’s education. As long as selection bias due to w1i and w2i is

the same, this amounts to the mean reverting measurement error formulation

above. Note that λ = V ar (xi) /V ar (xmi ) > 1 in this case, so the mismeasured

xmi has a lower variance than the true xi. This scenario is also isomorphic to

the model studied by Oster (forthcoming). See Appendix B for details.

The mismeasured xmi can now be written as

xmi = (1 + κ) δsi + (1 + κ)ui + µi,

so mean reversion directly affects the coefficient in the balancing regression,

which will be smaller than δ for a negative κ. As a result, the balancing test

will reject less often. At the same time, a negative κ offsets and possibly

reverses the attenuation bias on γ. This brings the power functions of the

balancing and coefficient comparison tests closer together.

For the simulations we set κ = −0.5, so the error is mean reverting. We

also fix σ2
µ in the simulations. However, it is important to note that the

nature of the measurement error will change as we change the value of d under

the alternative hypotheses. xi depends on δ and the correlated part of the

measurement error depends in turn on xi. We show results for two cases

with σ2
µ = 0.75 and σ2

µ = 2.25. Under the null, these two parameter values

correspond to λ = 2 and λ = 1, respectively. The case λ = 2 corresponds

to the Oster (forthcoming) model just described with V ar (w1i) = V ar (w2i).

These models exhibit relatively large amounts of mean reversion. Figure 3

demonstrates that the balancing test again dominates for these parameter
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values. The gap is small for the σ2
µ = 0.75 case but grows with σ2

µ, the

classical portion of the measurement error. This finding is not surprising as

the mean-reversion part in the measurement error biases the estimate of γ in

the opposite direction from the classical part and can in principle flip the sign

of the bias around. As a result, the coefficient comparison test could have

greater power.
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Figure 3: Simulated Rejection Rates with Mean Reverting Measurement Error.
Comparison of baseline rejection rates (from Figure 1) with simulated rejection
rates based on mean reverting measurement error and robust standard errors.
d is the value the coefficient in the balancing equation takes on under the
alternative hypothesis.

5.3 Multiple Controls

So far we have concentrated on the case of a single added regressor xi. Often in

empirical practice we may want to add a set of additional covariates at once. It

is straightforward to extend our framework to that setting. Some interesting
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new issues arise in this analysis.

Suppose there are k added regressors, i.e. xi is a k × 1 vector, and

yi = βlsi + x′iγ + ei (16)

xi = δsi + ui

βs − βl = γ ′δ

where γ, δ and ui are k × 1 vector analogs of their scalar counterparts in

Section 2. The coefficient comparison test compares the βs from eqs. (1)

and (16) just as before. Lee and Lemieux (2010) suggest a balancing test

for multiple covariates in the context of evaluating regression discontinuity

designs. Let x(j) denote the n × 1 vector of all the observations on the j-th

x-variable. Stack all the x-variables on the left-hand-side of the regression to

obtain 
x(1)

x(2)

...
x(k)

 =


s 0 0 0
0 s 0 0
0 0 ... 0
0 0 0 s



δ1
δ2
...
δk

+


u(1)

u(2)

...
u(k)

 ,
where s = [s1, s2, ..., sn]′ and u(j) is the vector of residuals corresponding to

covariate x(j). The balancing test is an F -test for the joint significance of the

δ coefficients, the null is δ = 0.

We will call this stacking of equations the left-hand-side (LHS) balancing

test. While it is the natural multivariate extension, an alternative would be

to regress s on the covariates x

si = π′xi + vi

(including any other covariates implicit in the regressions in eq. (16)) and test

whether the coefficient vector π is significantly different from zero. This is a

standard F -test. We refer to this test as the right-hand-side (RHS) balancing

test. Notice that even though the balancing variables are now on the right,

this is conceptually still a balancing test. Applied researchers sometimes use

this RHS test; for example, Bruhn and McKenzie (2009) report it being used

in some experimental studies in development economics.
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While putting the balancing variables on the RHS might at first glance seem

unusual, it turns out that the LHS and RHS tests are closely related. This

should not be surprising as both tests exploit the joint covariance matrix of

the x(j) and s. This can be seen most clearly in the case of a single covariate xi

(i.e. k = 1), where the LHS and the RHS tests using a conventional covariance

matrix for homoskedastic residuals are numerically identical.

The intuiton for this is the following: In the single covariate case, the F -test

amounts to the overall F -test for the significance of the regression. This, in

turn, is a function of the R2 of the regression. Since only two variables xi and

si are involved, this is the square of the correlation coefficient between the two.

But the correlation coefficient is not directional, so the forward and reverse

regression have to deliver the same F -statistic (in the case when covariates are

present in the regression, replace the R2 and correlation coefficient with their

partial equivalents in this argument).

With multiple covariates (k > 1), the LHS and RHS tests are no longer

equivalent. However, the scaled F -statistics of the two tests have the same

probability limit in the special case where the LHS regression has a spherical

error structure var(ui) = σ2Ik and the RHS regression is homoskedastic, as

we show in Appendix C. (See Ludwig, Mullainathan and Spiess, 2017 for a

similar result).

How do the balancing tests with multiple covariates perform in practice?

Figures 4 and 5 show simulations using a similar design as described in Ta-

ble 1 for all k balancing equations. We set k = 4 and generate normally

distributed, spherical errors and impose homoskedasticity and independence

when performing the joint test of the δj’s or the π′js. Our experiments with

other moderate values of k for the most part did not reveal different insights.

With multiple covariates there are different ways of specifying the alternative

hypotheses now. The null hypothesis may fail for one, various, or all of the k

covariates. We show rejection rates under two polar versions of the alternative

hypothesis. Figure 4 shows simulations for the case where all covariates are

unbalanced, i.e. δ1 = δ2 = . . . = δk = d. Figure 5 analyzes the case where

only the first covariate is unbalanced while the others remain balanced, i.e.
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δ1 = d, δ2 = . . . = δk = 0.
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(a) 4 covariates, x1-x4 not balanced

Figure 4: Simulated Rejection Rates with Multiple Controls: All Covariates
Unbalanced. Simulated rejection rates for simultaneous tests for adding 4 ad-
ditional covariates at once. All covariates are unbalanced under the alternative
hypothesis; d is the value the coefficient in the balancing equation takes on
under the alternative hypothesis for all covariates simultaneously.
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Figure 5: Simulated Rejection Rates with Multiple Controls: One Covariate
Unbalanced. Simulated rejection rates for simultaneous tests for adding 4
additional covariates at once. Only one of the 4 covariates is unbalanced
under the alternative hypothesis; d is the value the coefficient in the balancing
equation takes on under the alternative hypothesis for this covariate.

These figures highlight a number of results. The LHS and RHS balancing

tests are indeed very similar as their power functions virtually lie on top of

each other in both figures. When all covariates are unbalanced as in Figure

4 and when measurement error is absent, the Hausman test turns out to be

an efficient test in combining the k separate hypotheses into one single test-

statistic, which is generated from the estimates of only two parameters, the

long and short β’s. The balancing tests, on the other hand, have to rely on the

estimation of k parameters. In this case, the rejection rates for the coefficient

comparison test (thin broken lines) therefore lie above the ones for both the

balancing tests (thin solid and dash-dot lines). In the presence of measurement

error, however, the balancing tests are again more powerful than the coefficient
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comparison test as can be seen from the juxtaposition of the thicker lines.

This power advantage of the balancing tests is greater when only one co-

variate is unbalanced as can be seen in Figure 5. Both tests are less powerful

in this case, but the power loss for the coefficient comparison test is now much

more pronounced. This is particularly noticeable in the case with measure-

ment error in the covariates (thick lines) but the balancing tests outperform the

coefficient comparison test even without measurement error in this case. Em-

pirically relevant cases may often lie in between these extremes. Researchers

may be faced with a set of potential controls to investigate, some of which

may be unbalanced with the treatment while others are not. Figures 4 and 5

demonstrate that the balancing test will frequently be the most powerful tool

in such a situation, but the coefficient comparison test also has a role to play

in the multivariate case.

The simulations reveal some further insights. With measurement error, the

small sample issue of the coefficient comparison test, which we highlighted in

Figure 2, arises again. On top of this, we found in unreported simulations that

both the LHS and RHS balancing tests with robust standard errors (clustered

standard errors across equations for the LHS test and heteroskedasticity-robust

standard errors for the RHS test) have a size distortion under the null hypoth-

esis and reject too often. This is due the standard small sample distortion of

these covariance matrices discussed in the literature (MacKinnon and White,

1985; Chesher and Jewitt, 1987; Angrist and Pischke, 2009, chap. 8). We

find that this bias tends to get worse when more covariates are added. Ap-

plied researcher may be most interested in the testing strategies discussed here

when k is large (so that a series of single variable balancing tests is unattrac-

tive), and will want to rely on a robust covariance matrix. An upward size

distortion may be less of an issue for a conservative researcher in a balancing

test (where it means the researcher will falsely decide not to go ahead with a

research design where the covariates are actually balanced) than in a test for

the presence of non-zero treatment effects (where the same bias leads to false

discoveries). Nevertheless, we suspect that most applied researchers would

prefer a test with a correct size under the null and a steep power function. As
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a result, research on improvements for the bias problem in multivariate tests

is therefore particularly important (we discuss some current approaches in our

working paper Pei, Pischke and Schwandt, 2017).

The upshot is that it is in principle straightforward to extend the balancing

test to multiple covariates. An interesting finding is that a RHS test offers a

computationally simple alternative that closely mimics the performance of the

more standard LHS balancing test. Yet, at this point implementation issues

related to the small sample bias of robust covariance estimators also hamper

our ability to confidently carry out balancing tests for multiple covariates.

Moreover, sometimes we are interested in the robustness of the original results

when the number of added regressors is very large. An example would be a

differences-in-differences analysis in a state-year panel, where the researcher is

interested in checking whether the results are robust to the inclusion of state

specific trends. The balancing test does not seem to be the right framework to

deal with this situation. The coefficient comparison test has a role to play in

this scenario.

6 EMPIRICAL ANALYSIS

We illustrate the theoretical results in the context of estimating the returns

to schooling using data from the National Longitudinal Survey of Young Men

(NLS). This is a panel study of about 5,000 male respondents interviewed

from 1966 to 1981. The data set has featured in many prominent analyses of

the returns to education, including Griliches (1977) and Card (1995). We use

the NLS extract posted by David Card and augment it with the variable on

body height measured in the 1973 survey. We estimate regressions similar to

equation (2). The variable yi is the log hourly wage in 1976 and si is the

number of years of schooling reported by the respondent in 1976. Our samples

are restricted to observations without missing values in any of the variables

used.

Table 2 presents OLS regressions for the return to schooling controlling for

the respondent’s score on the Knowledge of the World of Work test (KWW), a
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Table 2: Regressions for Returns to Schooling and Specification Checks Controlling for the KWW Score

 Dependent Variable 

 Log hourly earnings  
Mother's years of 

education 	
  
Library card 

at age 14 	
  
Body height 

in inches 

 (1) (2) (3) (4) (5)  (6) 	
   (7) 	
   (8) 
        	
   	
   	
   	
  

Years of education 0.0609 0.0596 0.0608 0.0603 0.0591   0.2500   0.0133   0.0731 
(0.0059) (0.0060) (0.0059) (0.0059) (0.0060)   (0.0422) 

 
(0.0059)   (0.0416) 

            

KWW score 0.0070 0.0068 0.0069 0.0069 0.0067   0.0410   0.0076   0.0145 
(0.0015) (0.0016) (0.0016) (0.0015) (0.0016)   (0.0107)  (0.0016)   (0.0117) 

                 

Mother's years of education   0.0053     0.0048             
  (0.0037)     (0.0037)             

                       

Library card at age 14     0.0097   0.0045             
    (0.0215)   (0.0216)             

                       

Body height in inches       0.0078 0.0075             
      (0.0034) (0.0034)             

 	
   	
   	
     	
   	
   	
   	
   	
   	
  

p-values      	
   	
   	
   	
   	
   	
  
Coefficient comparison test 	
   0.161 0.651 0.156 0.084       
LHS balancing test: individual 	
        0.000   0.025   0.079 
LHS balancing test: joint 	
          0.000   
RHS balancing test: joint 	
          0.000   
	
  

NOTE: The number of observations is 1,773 in all regressions. Heteroskedasticity robust standard errors in parentheses.
The joint LHS balancing test is conducted via the suest Stata command. All regressions control for experience, experience-
squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and
living in an SMSA in 1966.
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variable used by Griliches (1977) as a proxy for ability. Additional covariates

are experience, race, and past and present residence. The estimated return to

schooling is 0.061.

In columns (2) to (4) we include variables which might proxy for the re-

spondent’s family background, mother’s education (column 2), whether the

household had a library card when the respondent was 14 (column 3), and

body height measured in inches (column 4). Mother’s education captures an

important component of a respondent’s family background. The library card

measure has been used by researchers to proxy for parental attitudes (e.g.

Farber and Gibbons, 1996). Body height is determined by parents’ genes and

by nutrition and disease environment during childhood. It is unlikely a par-

ticularly powerful control variable but it is predetermined and correlated with

family background, self-esteem, and ability (e.g. Persico, Postlewaite and Sil-

verman, 2004; Case and Paxson, 2008).

Conditional on the KWW score, these three variables are only weakly cor-

related with earnings and only the coefficient for body height is marginally

significant. The estimated return to education moves very little when these

additional controls are included; the differences to column (1) are in the order

of 0.001. In column (5) we enter all three variables simultaneously. The co-

efficients on the controls are slightly attenuated, and the return to education

falls slightly further to 0.059. Below the estimates in columns (2) to (5), we

display the p-values comparing each of the estimated returns to education to

the one from column (1). None of the tests reject at the 5% level. These results

from the coefficient comparison test seem to confirm the impression that the

coefficient movements are not statistically significant.

It might be tempting to conclude from this evidence that the return to

schooling estimated in column (1) should be given a causal interpretation but

this conclusion is premature. A first caution actually comes from the coefficient

comparison test in column (5), which is significant at the 10% level. The

coefficient movement of 0.002 is not large, and the individual standard errors

in columns (1) and (5) of 0.006 do not suggest that this movement might be

significant. Eq. (12) warns that relying on the individual standard errors can
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be rather misleading. Nevertheless, most researchers would probably not find

the evidence in columns (1) to (5) worrisome enough to abandon their research

project.

More potent warnings emerge from the balancing regressions in columns

(6) to (8), where we regress maternal education, the library card, and body

height on education while controlling for the KWW score. The education

coefficient is positive and strongly significant for mother’s education and the

library card, and more marginally so for body height. Moreover, both the LHS

and RHS joint balancing tests reject the hypothesis that all three controls are

balanced with a p-value of virtually zero. The magnitudes of the coefficients,

particularly mother’s education, are substantively important. These estimates

reflect selection bias: individuals with more education have significantly better

educated mothers, were more likely to grow up in a household with a library

card, and experienced more body growth when young. Our interpretation of

these results is that education levels are related to family background in these

regressions but the available background measures are fairly useless as controls

when put on the right-hand side. These measurement problems matter less

for the estimates in columns (6) to (8), and these specifications are therefore

informative about the role of selection. Comparing the p-values at the bottom

of the table to the corresponding ones for the coefficient comparison test in

columns (2) to (4) demonstrates the superior power of the balancing test and

illustrates the message of our paper in a forceful fashion.

7 CONCLUSION

Using predetermined characteristics as dependent variables offers a useful spec-

ification check for a variety of identification strategies popular in empirical

economics. We argue that this is the case even for variables which might be

poorly measured and are of little value as control variables. Such variables are

available in many data sets. We encourage researchers to be more inventive in

finding such measures and perform balancing tests with them more frequently.

We show that this is generally a more powerful strategy than adding the same
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variables on the right hand side of the regression as controls and looking for

movement in the coefficient of interest.

We have illustrated our theoretical results with an application to the re-

turns to education. We find the balancing test indeed to be useful for gauging

selection bias due to confounders, even when they are potentially measured

poorly. It is important to point out that the balancing test does not address

any other issues which may also haunt a successful empirical investigation of

causal effects. One possible issue is measurement error in the variable of in-

terest. This is exacerbated as more potent controls are added to a regression.

Griliches (1977) shows that a modest amount of measurement error in school-

ing may explain patterns of returns in controlled and uncontrolled regressions.

Another issue, also discussed by Griliches, is that controls like test scores might

themselves be influenced by schooling, which would make them bad controls.
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A Derivations of Key Results

A.1 Statistical Framework and Population Regression
Parameters

In this subsection, we summarize the baseline statistical framework along with

the balancing and coefficient comparison tests introduced in Section 2. Under

the assumptions we propose as part of the statistical framework, we find the

expressions of various population regression parameters. These population

parameters will be used in deriving the power functions of the two statistical

tests in subsequent subsections.

Let (si, xi, yi,mi) for i = 1, ...n be i.i.d. variables. The five relevant regres-

sions are:1

xi = δsi + ui (A1)

yi = βssi + esi (A2)

yi = βlsi + γxi + ei (A3)

xmi = δmsi + umi (A4)

yi = βmsi + γmxmi + emi (A5)

with xmi = xi +mi being a noisy measure of xi. In this subsection, we simply

think of these equations as projections: the coefficients are population regres-

sion parameters, and the residuals ui, e
s
i , ei, u

m
i , emi are orthogonal to the

respective regressors by construction.

As mentioned in Section 2, a researcher may propose to give βs a causal

interpretation. This is because the researcher has carried out a randomized

experiment or applied a particular research design to observational data. In the

case of a regression strategy with controls, for example, yi and si are residuals

from regressions of the original outcome and treatment variables on the chosen

1To simplify exposition, we omit the constant in the regressions throughout the paper
with the understanding that s, x, m, and y are normalized to have mean zero.
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controls. The researcher is interested in testing her design using additional

confounders. If she were to directly observe xi, the balancing test would entail

testing δ = 0 in regression (A1), and the coefficient comparison test would

entail testing βs − βl = 0 from regressions (A2) and (A3). Unfortunately,

she only has access to xmi , so the actual balancing test entails testing δm = 0

in regression (A4), and the actual coefficient comparison test entails testing

βs − βm = 0 from regressions (A2) and (A5).

In the baseline framework, we assume that m is classical and hence uncor-

related with s and u, and therefore x:

Assumption 1. Cov(mi, si) = Cov(mi, ui) = 0.

As mentioned in Section 5.1, we also impose conditional homoskedasticity

of ui and mi given si in the theoretical derivations, and we abstract away from

the sampling variation in estimating the standard errors:

Assumption 2. a) The variances of ui, mi and si exist, which we denote by

σ2
u, σ2

m and σ2
s respectively. V ar(ui|si) = σ2

u and V ar(mi|si) = σ2
m; b) σu, σm

and σs are known constants.

Define θ ≡ σ2
m/ (σ2

u + σ2
m). We collect expressions for the population re-

gression coefficients δm, βm, and γm in terms of the other model parameters,

as discussed in Section 3, in Lemma 1.

Lemma 1. Under Assumptions 1 and 2,

a) δm = δ and umi = ui +mi,

b) γm = γ(1− θ),
c) βm = βl + γδθ,

d) θ = 1−λ
1−R2 , where λ = V ar(xi)

V ar(xmi )
is the reliability of xmi , and R2 is the

population R2 of the regression of xmi on si.

Proof. For part a), under the two Assumptions,

δm =
Cov(xmi , si)

V ar(si)
=
Cov(xi, si)

V ar(si)
= δ

and umi = ui +mi directly follows.
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For part b), performing an anatomy to the multiple regression (A5), we

have

γm =
Cov(yi, ui +mi)

V ar(ui +mi)
= γ

σ2
u

σ2
u + σ2

m

, (A6)

where ui +mi is the residual from the population regression of xmi on si under

Assumptions 1 and 2. Equation (A6) becomes

γm = γ(1− θ). (A7)

For part c), the omitted variable bias formula implies

βs = βl + γδ

βs = βm + γmδ,

and therefore

βm = βl + γδθ. (A8)

To see why

θ =
1− λ

1−R2
, (A9)

in part d) holds, notice that

V ar(xi) = δ2σ2
s + σ2

u

V ar(xmi ) = δ2σ2
s + σ2

u + σ2
m

R2 = 1− σ2
u + σ2

m

δ2σ2
s + σ2

u + σ2
m

,

from which equation (A9) mechanically follows.

A.2 Balancing Test

In this subsection, we derive the power function of the balancing test.

Proposition 1. Under Assumptions 1 and 2, the large-sample power function

of the balancing test at the five-percent level when δ = d is2

1− Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+ Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
.

2It is also possible to specify the value of δ under the alternative hypothesis as a function
of n, δ = h/

√
n. This local alternative framework prevents tδm from exploding. The two

formulations lead to the same power function.
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Proof. Under Assumptions 1 and 2, the asymptotic variance of δ̂m can be

directly calculated using part a) of Lemma 1, and the resulting test statistic

for the null hypothesis that the balancing coefficient δ is zero is

tδm =
δ̂m

se
(
δ̂m
) =

δ̂m

1√
n

√
σ2
u+σ

2
m

σs

.

Note that

θ =
σ2
m

σ2
u + σ2

m

⇒ σ2
u + σ2

m =
σ2
u

1− θ
Hence

tδm = δ̂m
√
nσs
√

1− θ
σu

.

The rejection probability when δ = d and when using critical value C is

Pr (|tδm | > C) = Pr (tδm > C) + Pr (tδm < −C)

= Pr

 δ̂m

se
(
δ̂m
) > C

+ Pr

 δ̂m

se
(
δ̂m
) < −C


= Pr

 δ̂m − d

se
(
δ̂m
) > C − d

√
nσs
√

1− θ
σu


+ Pr

 δ̂m − d

se
(
δ̂m
) < −C − d√nσs√1− θ

σu


≈ 1− Φ

(
C − d

√
nσs
√

1− θ
σu

)
+ Φ

(
−C − d

√
nσs
√

1− θ
σu

)
when n is large.3 Therefore, the large-sample power function of the balancing

3Assuming σu, σm and σs to be constants in Assumption 2 conveniently allows us to apply
large sample normal approximation. In the case of the balancing test with normal u and m,

however, we can also proceed with the estimated se
(
δ̂m
)

based on the homoskedasticity-

only estimator. It is a standard result that the t-statistic is then the ratio of a normal
random variable and an independent χ2 random variable, which will allow us to characterize
the power function. The characterization becomes much more difficult, however, a) when
we employ the heteroskedasticity-robust standard error estimator or b) for the coefficient
comparison test. For a) see ongoing work in Hansen (2017), and for b) see Zellner (1963)
for a related derivation.
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test at the five percent level is

Powertδm (d) = 1−Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
.

A.3 The Coefficient Comparison Test

A.3.1 Coefficient Comparison Test under Homoskedasticity of emi

For the coefficient comparison test βs − βm = 0, the test statistic is

t(βs−βm) =
β̂s − β̂m√

V ar(β̂s − β̂m)
,

which is asymptotically standard normal. We apply the delta method to the

omitted variables bias formula

β̂s − β̂m = δ̂mγ̂m

to derive the variance. Specifically, we can relate V ar(β̂s− β̂m) to the asymp-

totic variances of δ̂m and γ̂m and their asymptotic covariance:

V ar
(
β̂s − β̂m

)
= γ2 (1− θ)2 V ar

(
δ̂m
)

+ δ2V ar (γ̂m)

+ 2δγ (1− θ)Cov
(
δ̂m, γ̂m

)
. (A10)

We have already shown in Proposition 1 that

V ar(δ̂m) =
1

n

σ2
u

(1− θ)σ2
s

, (A11)

and we derive V ar (γ̂m) and Cov
(
δ̂m, γ̂m

)
in the remainder of this subsection.

To simplify the derivation, we make the following three assumptions:

Assumption 3. si, ui, ei and mi are mutually independent.

Assumption 4. E[u3i ] = 0.

Assumption 5. V ar(emi |si, xmi ) is constant.
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Assumption 3 strengthens Assumption 1, and is needed in the proofs of

Propositions 2 and 3 below. Assumptions 4 and 5 are imposed to simplify

the expressions in Proposition 2, although we relax Assumption 5 in the next

subsection and provide the a more general result regarding the power function

of the coefficient comparison test.

Note that all of the Assumptions 1-5 are satisfied in the DGP’s we adopt

for the Monte Carlo simulations underlying Figure 2, that is, when si, ui,

ei, mi follow a joint normal distribution with a diagonal variance covariance

matrix (see subsection D.1 for details). In subsection A.3.2, we also derive the

general expression of V ar(β̂s − β̂m) when Assumption 5 is relaxed.

Proposition 2. Under Assumptions 2-5, the large-sample power function of

the coefficient comparison test at the five-percent level when δ = d is

1− Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
+ Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
(A12)

where

Vβ (d; γ) ≡ (1− θ)
(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
.

Proof. As mentioned above, we apply the delta method to β̂s − β̂m = δ̂mγ̂m.

With V ar(δ̂m) already derived in Proposition 1, we need the expressions of

V ar(γ̂m) and Cov
(
δ̂m, γ̂m

)
. In order to derive V ar(γ̂m), first note that under

Assumptions 2, 3, and 5

V ar (γ̂m) =
1

n

V ar (emi )

V ar (ui +mi)
, (A13)

where ui+mi is the residual from the population regression of xmi on si. Since

V ar (ui +mi) = σ2
u + σ2

m, the missing piece in equation (A13) is V ar (emi ).

Plugging the results from Lemma 1 into (9), we get

yi = βmsi + γmxmi + emi

=
(
βl + γδθ

)
si + γ (1− θ)xmi + emi

=
(
βl + γδ

)
si + γ (1− θ) (ui +mi) + emi
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Since

yi = βlsi + γ (δsi + ui) + ei

=
(
βl + γδ

)
si + γui + ei,

matching residuals yields

γui + ei = γ (1− θ) (ui +mi) + emi

emi = γθui − γ (1− θ)mi + ei

V ar (emi ) = γ2θ2σ2
u + γ2 (1− θ)2 σ2

m + σ2
e

= γ2

((
σ2
m

σ2
u + σ2

m

)2

σ2
u +

(
σ2
u

σ2
u + σ2

m

)2

σ2
m

)
+ σ2

e

= γ2θσ2
u + σ2

e .

So

V ar (γ̂m) =
1

n

γ2θσ2
u + σ2

e

σ2
u + σ2

m

=
1− θ
n

(
γ2θ +

σ2
e

σ2
u

)
. (A14)

As for Cov(δ̂m, γ̂m), first note that

δ̂m − δ =

∑
i(ui +mi)si∑

i s
2
i

(A15)

γ̂m − γm =

∑
i e
m
i x̃

m
i∑

i(x̃
m
i )2

(A16)

where x̃mi = xmi − δ̂msi is the residual from regressing xmi on si. By Assumption

3 along with the fact that and δ̂m
p→ δ, the asymptotic joint distribution of

the numerators in equations (A15) and (A16) is

1√
n

[ ∑
i(ui +mi)si∑

i e
m
i x̃

m
i

]
d−→N

([
0
0

]
,

[
(σ2

u + σ2
m)σ2

s E[si(ui +mi)
2emi ]

E[si(ui +mi)
2emi ] E[(ui +mi)

2(emi )2]

])
.
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By Assumptions 3 and 4,

E[si(ui +mi)
2emi ] = E[si(ui +mi)

2(γθui − γ (1− θ)mi + ei)]

= 0.

Since the denominators of equations (A15) and (A16) converge in probability

to positive constants,

Cov(δ̂m, γ̂m) = 0. (A17)

Plugging equations (A11), (A14) and (A17) into (A10) yields

V ar(β̂s − β̂m) ≡ 1

n
Vβ (d; γ)

=
1

n
(1− θ)

(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
. (A18)

Recall from the proof of Lemma 1 that

βs − βm = δγm = δγ (1− θ) ,

so the power function of the coefficient comparison test is

Powert(βs−βm)
(d; γ) = 1−Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
+Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
.

A.3.2 Relaxing Homoskedasticity of emi

In this subsection, we provide the expression for V ar(β̂s − β̂m) while relaxing

the conditional homoskedasticity of emi , i.e. Assumption 5. Our derivation

of this asymptotic variance expression still relies on equation (A10). Since

equations (A11) and (A17) are not affected by Assumption 5, we will only

need the general expression for V ar (γ̂m).

Proposition 3. Under Assumptions 2-4, the large-sample power function of

the coefficient comparison test at the five-percent level when δ = d is given by
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(A12), where

Vβ (d; γ) = (1− θ)
(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
+ γ2δ2

[
(κu − 3σ4

u)θ
2

(σ2
m + σ2

u)
2

+
(κm − 3σ4

m)(1− θ)2

(σ2
m + σ2

u)
2

]
with κm ≡ E[m4

i ] and κu ≡ E[u4i ].

Proof. Representing model (9) in matrix form,

yi = W′
iΓ + emi ,

where Wi = (si, x
m
i )′ and Γ = (βm, γm)′. The asymptotic variance-covariance

matrix of the regression estimator Γ̂ is

1

n
E[WiW

′
i]
−1E[WiW

′
i(e

m
i )2]E[WiW

′
i]
−1.

Expressing E[WiW
′
i] in terms of the fundamental model parameters is straight-

forward:

E[WiW
′
i] = E

[
s2i six

m
i

six
m
i (xmi )2

]
=

[
σ2
s δσ2

s

δσ2
s δ2σ2

s + σ2
u + σ2

m

]
.

Writing out the entries in the matrix E[WiW
′
i(e

m
i )2]:

E[WiW
′
i(e

m
i )2]

= E


s2i (e

m
i )2︸ ︷︷ ︸

(i)

six
m
i (emi )2︸ ︷︷ ︸
(ii)

six
m
i (emi )2 (xmi )2(emi )2︸ ︷︷ ︸

(iii)

 .
Below we express quantities (i) to (iii) in terms of the model parameters.

Utilizing Assumptions 2-4, we have the expressions for (i) to (ii):

E[s2i (e
m
i )2] = E[s2i (γθui − γ(1− θ)mi + ei)

2]

= σ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e), (i)
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E[six
m
i (emi )2] = E[si(δ0 + δsi + ui +mi) · (emi )2]

= δ0E[si(e
m
i )2] + δE[s2i (e

m
i )2]

+ E[siui(γθui − γ(1− θ)mi + ei)
2]

+ E[simi(γθui − γ(1− θ)mi + ei)
2]

= δσ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e), (ii)

For the expression of (iii)

E[(xmi )2(emi )2] = E[(δ0 + δsi + ui +mi)
2(emi )2]

= δ20E[(emi )2] + δ2E[s2i (e
m
i )2]

+E[u2i (γθui − γ(1− θ)mi + ei)
2]

+E[m2
i (γθui − γ(1− θ)mi + ei)

2]

+2δ0δE[si(e
m
i )2] + 2δ0E[ui(e

m
i )2]

+2δ0E[mi(e
m
i )2] + 2δE[siui(e

m
i )2]

+2δE[simi(e
m
i )2] + 2E[uimi(e

m
i )2].

Note that

E[si(e
m
i )2] = 0

E[ui(e
m
i )2] = E[mi(e

m
i )2] = 0

E[siui(e
m
i )2] = E[simi(e

m
i )2] = 0,

and we only need to find the expressions for

E[u2i (γθui − γ(1− θ)mi + ei)
2]

= E[u2i {γ2θ2u2i + γ2(1− θ)2m2
i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= γ2θ2E[u4i ] + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e

= γ2θ2κu + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e ,

E[m2
i (γθui − γ(1− θ)mi + ei)

2]

= E[m2
i {γ2θ2u2i + γ2(1− θ)2m2

i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= γ2θ2σ2
uσ

2
m + γ2(1− θ)2κm + σ2

mσ
2
e ,
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and

E[uimi(e
m
i )2] = E[uimi(γθui − γ(1− θ)mi + ei)

2]

= E[uimi{γ2θ2u2i + γ2(1− θ)2m2
i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= −2γ2θ(1− θ)σ2
uσ

2
m.

Putting these terms together,

E[(xmi )2(emi )2] = δ20E[(emi )2] + δ2E[s2i (e
m
i )2]

+ E[u2i (γθui − γ(1− θ)mi + ei)
2]

+ E[m2
i (γθui − γ(1− θ)mi + ei)

2]

+ 2E[uimi(e
m
i )2]

= δ20{γ2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e}

+ δ2σ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e)

+ {γ2θ2κu + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e}

+ {γ2θ2σ2
uσ

2
m + γ2(1− θ)2κm + σ2

mσ
2
e}

− {4γ2θ(1− θ)σ2
uσ

2
m}. (iii)

Now that we have the expression for both E[WiW
′
i] and E[WiW

′
i(e

m
i )2], we

can compute the asymptotic variance of γ̂m

V ar (γ̂m) =
1

n

{
(1− θ)

(
γ2θ +

σ2
e

σ2
u

)

+ γ2
[

(κu − 3σ4
u)θ

2

(σ2
m + σ2

u)
2

+
(κm − 3σ4

m)(1− θ)2

(σ2
m + σ2

u)
2

]
︸ ︷︷ ︸

(a)

 .

Compared to its expression under homoskedasticity (A14), we have an extra

term (a) that accounts for the excess kurtosis of the u and m distributions. It
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follows that

Vβ (d; γ) = n · V ar
(
β̂s − β̂m

)
= (1− θ)

(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
+ γ2δ2

[
(κu − 3σ4

u)θ
2

(σ2
m + σ2

u)
2

+
(κm − 3σ4

m)(1− θ)2

(σ2
m + σ2

u)
2

]
.

Note that when ui and mi are normal, κu − 3σ4
u = 0 and κm − 3σ4

m = 0,

and the variance expression above simplifies to that of equation (A18). Since

V ar
(
β̂s − β̂m

)
increases in κu and κm while the balancing test is unaffected

by the heteroskedasticity of em, the power advantage of the balancing test is

larger when ui and mi have thicker tails than a normal distribution.

B Comparison with Oster (forthcoming)

The Oster (forthcoming) formulation of the causal regression takes the form

yi = βsi + γw1i + w2i + ei,

where w1i is an observed covariate and w2i is an unobserved covariate, uncor-

related with w1i. To map this into our setup, think of the true xi as capturing

both w1i and w2i, i.e. xi = w1i + 1
γ
w2i. Furthermore, there is equal selection,

i.e.
Cov(si, γw1i)

γ2σ2
1

=
Cov(si, w2i)

σ2
2

,

where σ2
1 and σ2

2 are the variances of w1i and w2i, respectively. Then, Oster’s

(forthcoming) regression can be written as

yi = βsi + γxi + ei,

which is our regression (2).

Our observed xri = w1i, so measurement error is mi = −w2i

γ
. Measurement

error here is mean reverting (hence we use the r superscript on x to distinguish

it from the classical measurement error case), i.e.

mi = κxi + µi (A19)
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with κ < 0. Notice that

Cov (mi, xi) = −σ
2
2

γ2
,

and hence

κ =
−σ2

2/γ
2

σ2
1 + σ2

2/γ
2

(A20)

and

µi = −w2i

γ
− κ

(
w1i +

w2i

γ

)
= −κw1i −

(1 + κ)

γ
w2i

=
σ2
2/γ

2

σ2
1 + σ2

2/γ
2
w1i −

σ2
1/γ

σ2
1 + σ2

2/γ
2
w2i.

It turns out that µi implicitly defined in (A19) and κ given by (A20) imply

Cov(xi, µi) = 0 and Cov(si, µi) = 0. Hence, these two equations represent

mean reverting measurement error as defined in the body of the manuscript.4

In the subsections that follow, we will provide expressions of our two tests as

well as those in Oster (forthcoming) using the seven model parameters, β, γ,

σ2
s , σ

2
e , σ

2
1, σ2

2, and σ1s ≡ Cov(w1i, si).
5

B.1 The Balancing and Coefficient Comparison Tests
with Mean Reverting Measurement Error

In this subsection, we denote the relevant quantities with the r superscript to

signify that we are working with the mean reverting measurement error. The

balancing regression equation is

xri = δrsi + uri ,

4Note that Cov(si, µi) = 0 depends on the equal selection assumption. With proportional
selection, i.e.

φ
Cov(si, γw1i)

γ2σ2
1

=
Cov(si, w2i)

σ2
2

,

and φ 6= 1 we would have Cov(si, µi) 6= 0.
5Note that σ2s ≡ Cov(w2i, si) is a function of σ2

1 , σ2
2 , σ1s, and γ following the equal

selection condition.
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with the population parameter δr being

δr =
Cov(xri , si)

V ar(si)
=
Cov(w1i, si)

σ2
s

=
σ1s
σ2
s

.

The asymptotic standard deviation of δ̂r is

se(δ̂r) =
1√
n

√
V ar(uri )

σs
.

Since

V ar(uri ) = V ar(xri )− (δr)2σ2
s

= σ2
1 −

σ2
1s

σ2
s

,

se(δ̂r) =
1√
n

√
V ar(uri )

σs

=
1√
n

√
σ2
1σ

2
s − σ2

1s

σ2
s

.

For the coefficient comparison test, we run the two regressions

yi = βssi + esi

yi = βrsi + γrw1i + eri .

The omitted variable bias formula gives us

βs = β +
γσ1s
σ2
s

+
σ2s
σ2
s

= β + γδr +
σ2s
σ2
s

and (
βr

γr

)
=

(
β
γ

)
+

1

σ2
1σ

2
s − σ2

1s

(
σ2
1 −σ1s

−σ1s σ2
s

)(
σ2s
0

)
=

(
β
γ

)
+

(
σ2
1σ2s

σ2
1σ

2
s−σ2

1s

− σ1sσ2s
σ2
1σ

2
s−σ2

1s

)
.
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Therefore,

βr − βs =
σ2
1σ2s

σ2
1σ

2
s − σ2

1s

− γσ1s
σ2
s

− σ2s
σ2
s

=
σ2
1σ2s

σ2
1σ

2
s − σ2

1s

− γσ1s + σ2s
σ2
s

.

For V ar(β̂s − β̂r) needed for the coefficient comparison test, we again rely on

the omitted variable formula

β̂s − β̂r = δ̂rγ̂r

and the delta method

V ar(β̂s − β̂r) = (γr)2V ar(δ̂r) + (δr)2V ar(γ̂r)

+ 2δrγrCov(δ̂r, γ̂r).

We already derived the expression for V ar(δ̂r) above and will now derive

V ar(γ̂r) and Cov(δ̂r, γ̂r). For simplicity, we are going to assume homoskedas-

ticity of eri conditional on si and w1i, which is true, for example, when si, w1i,

w2i and ei are joint normal. It follows that

V ar(γ̂r) =
1

n

V ar(eri )

V ar(uri )
,

where

V ar(eri ) = V ar(yi)−

(
β +

σ2
1σ2s

σ2
1σ

2
s−σ2

1s

γ − σ1sσ2s
σ2
1σ

2
s−σ2

1s

)′(
σ2
s σ1s

σ1s σ2
1

)(
β +

σ2
1σ2s

σ2
1σ

2
s−σ2

1s

γ − σ1sσ2s
σ2
1σ

2
s−σ2

1s

)
with

V ar(yi) = β2σ2
s + γ2σ2

1 + σ2
2 + 2βγσ1s + 2βσ2s + σ2

e .

For Cov(δ̂r, γ̂r), we can follow the same reasoning as in subsection A.3.1 and

show that it is equal to zero. Plugging in the expressions for γr, δr, V ar(δ̂r),

and V ar(γ̂r), we obtain

V ar(β̂s − β̂r)

=
1

n

γ2σ4
1σ

2
1sσ

2
s(σ

2
1s − σ2

1σ
2
s) (3γ2σ2

1 + σ2
2 − σ2

e) + γ4σ10
1 σ

6
s + 2γ2σ4

1σ
2
2σ

2
sσ

4
1s − σ6

1s (γ2σ2
1 + σ2

2) 2

γ2σ4
1σ

4
s (σ2

1s − σ2
1σ

2
s)

2
.

(A21)
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In the simple case where the mean reversion coefficient κ = 0, we have σ2 = 0

from (A20), which implies that xi = w1i and that w2i = 0 (almost surely).

This is the same as in the classical measurement case with θ = 0. The reader

can easily check that (A21) with σ2 = 0 is the same as (A18) with θ = 0.

Unlike in the classical measurement error case, it is not always true that

V ar(β̂s − β̂r) > V ar(δ̂r). For example, when σe is small, the coefficient com-

parison test may dominate – this is the result of δ̂r being attenuated. But as

σe increases, the balancing test regains its advantage. As we will see below,

this dependence on σe of the coefficient comparison test contrasts with the

asymptotic bias in Oster (forthcoming).

B.2 Relevant Quantities in Oster (forthcoming)

We now express the quantities in Oster’s Proposition 1, which we restate using

population parameters

β = β̃ − [β̊ − β̃]
Rmax − R̃
R̃− R̊

.

Her β̃ and β̊ correspond to our βs and βr respectively, and the various R2’s

are:

R̊ = 1− V ar(esi )

V ar(yi)

R̃ = 1− V ar(eri )

V ar(yi)

Rmax = 1− V ar(ei)

V ar(yi)

Therefore,
Rmax − R̃
R̃− R̊

=
V ar(eri )− V ar(ei)
V ar(esi )− V ar(eri )

.

We have derived above the expression for V ar(eri ), and analogously the ex-

pression forV ar(esi ) is

V ar(esi ) = V ar(yi)− β2
sσ

2
s

= β2σ2
s + γ2σ2

1 + σ2
2 + 2βγσ1s + 2βσ2s + σ2

e

− (β + γ
γσ1s
σ2
s

+
σ2s
σ2
s

)2σ2
s .
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It follows that

R2
max −R2

r

R2
r −R2

s

=
σ2
1σ

2
2σ

2
s

γ2σ4
1σ

2
s − γ2σ2

1sσ
2
1 − σ2

1sσ
2
2

,

and that the bias

Π ≡ [β̊ − β̃]
Rmax − R̃
R̃− R̊

=

[
σ2
1σ2s

σ2
1σ

2
s − σ2

1s

− γδr − σ2s
σ2
s

]
σ2
1σ

2
2σ

2
s

γ2σ4
1σ

2
s − γ2σ2

1sσ
2
1 − σ2

1sσ
2
2

Note that Π does not depend on σe, which is not surprising given that Oster’s

Proposition 1 focuses on identification. In comparison, our coefficient compar-

ison test depends on σe, because the variation in e is important for inference.

Given this difference in foci, there is no one-to-one correspondence between

Oster’s Π and our t(β̂s−β̂r): for a given value of Π in Oster, there are different

values of t(β̂s−β̂r) for the coefficient comparison test, and vice versa.

C Comparison of the LHS and RHS Balancing

Tests

We compare the LHS and RHS balancing tests introduced in Section 5.3. The

F -statistic of the LHS balancing test is

FLHS =
1

k
δ̂
′
V̂ ar(δ̂)−1δ̂,

where we use a consistent variance estimator V̂ ar(δ̂) for V ar(δ̂). On the other

hand, the F -statistic for the RHS balancing test following the regression

si = π′xi + vi

is

FRHS =
1

k
π̂′V̂ ar(π̂)−1π̂ (A22)

with V̂ ar(π̂) being a consistent estimator for V ar(π̂).

We introduce the multivariate analog of Assumption 2 regarding ui and si

in equation (16) and the existence of the relevant moments:
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Assumption 6. The variances of ui and si exist, as does E[(xix
′
i)(si−π′xi)2].

V ar(ui|si) = E[uiu
′
i].

Lemma 2. Under Assumption 6,

a) k
n
FLHS

p→ σ2
sδ
′(E[uiu

′
i])
−1δ.

b) k
n
FRHS

p→ σ4
sδ
′E[(xix

′
i)(si − π′xi)2]−1δ

Proof. For part a), Assumption 6 implies that

nV̂ ar(δ̂)
p→ 1

σ4
s

E[s2iuiu
′
i] =

1

σ2
s

E[uiu
′
i].

Hence,
k

n
FLHS

p→ σ2
sδ
′(E[uiu

′
i])
−1δ. (A23)

For b),

π = Ωx
−1ς (A24)

where Ωx = V ar(xi) and ς = Cov(xi, si). The probability limit of the variance

estimator is

nV̂ ar(π̂)
p→ Ωx

−1E[(xix
′
i)(si − π′xi)2]Ωx

−1. (A25)

Plugging (A24) and (A25) into (A22), the probability of the scaled F -stat of

the RHS balancing test is

k

n
FRHS

p→ ς ′E[(xix
′
i)(si − π′xi)2]−1ς

= σ4
sδ
′E[(xix

′
i)(si − π′xi)2]−1δ (A26)

The probability limits (A23) and (A26) are in general different. An analyt-

ical comparison between the two is complicated, as it depends on the higher

moments of s and u. However, we show below that the two scaled F -statistics

have the same probability limits, in the special case where the LHS balancing

regression has a spherical error structure and the RHS balancing regression is

homoskedastic.
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C.1 Special Case: Spherical LHS Error Structure and
Homoskedastic RHS Regression

We consider the special case where the RHS regression is homoskedastic and

the LHS balancing regression has a spherical error structure:

Assumption 7. V ar(vi|xi) is constant and V ar(ui) = σ2
uIk.

Note that Assumption 7 is satisfied if s and u are both normally dis-

tributed.

Proposition 4. Under Assumptions 6 and 7, plim k
n
FLHS = plim k

n
FRHS.

Proof. Combining Assumption 7 with (A23) in the proof of Lemma 1, the LHS

F -statistic simplifies to

k

n
FLHS

p→σ2
sδ
′δ

σ2
u

For the RHS F -statistic, homoskedasticity in Assumption 7 allows us to write

E[(xix
′
i)(si − π′xi)2] = E[xix

′
i]E[(si − π′xi)2]

To find the expression of E[xix
′
i]E[(si − π′xi)2], first note that

σ2
s = V ar(π′xi) + E[(si − π′xi)2]

so

E[(si − π′xi)2] = σ2
s − V ar(π′xi)

with

V ar(π′xi) = π′Ωxπ

= ς ′Ωx
−1ς

= σ4
sδ
′Ωx

−1δ. (A27)

Since rank(δδ′) = 1 and tr[(σ2
sδδ

′)( 1
σ2
u
Ik)
−1] = σ2

s

σ2
u
δ′δ, by Miller (1981) we have

Ωx
−1 =

1

σ2
u

I − 1

1 + σ2
s

σ2
u
δ′δ

1

(σ2
u)

2
σ2
sδδ

′

=
1

σ2
u

I − σ2
s

(σ2
u)

2 + σ2
uσ

2
sδ
′δ
δδ′. (A28)
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Plugging (A28) into (A27):

V ar(π′xi) =
σ4
sδ
′δ

σ2
u

− σ6
s(δ
′δ)2

(σ2
u)

2 + σ2
uσ

2
sδ
′δ

=
σ4
sδ
′δ[(σ2

u)
2 + σ2

uσ
2
sδ
′δ]− σ6

s(δ
′δ)2σ2

u

(σ2
u)

2[σ2
u + σ2

sδ
′δ]

=
σ4
sδ
′δ(σ2

u)
2

(σ2
u)

2[σ2
u + σ2

sδ
′δ]

=
σ4
sδ
′δ

σ2
u + σ2

sδ
′δ

It follows that

E[(si − π′xi)2] = σ2
s − V ar(π′xi)

= σ2
s −

σ4
sδ
′δ

σ2
u + σ2

sδ
′δ

=
σ2
s [σ

2
u + σ2

sδ
′δ]− σ4

sδ
′δ

σ2
u + σ2

sδ
′δ

=
σ2
sσ

2
u

σ2
u + σ2

sδ
′δ

As a result, the probability limit of k
n
FRHS is

σ4
sδ
′E[(xix

′
i)]
−1E[(si − π′xi)2]−1δ

=σ4
sδ
′Ω−1

x

σ2
u + σ2

sδ
′δ

σ2
sσ

2
u

δ

=σ4
sδ
′
(

1

σ2
u

I − σ2
s

(σ2
u)

2 + σ2
uσ

2
sδ
′δ
δδ′
)
σ2
u + σ2

sδ
′δ

σ2
sσ

2
u

δ

=σ4
s

(
δ′δ(σ2

u + σ2
sδ
′δ)

σ2
sσ

4
u

− (δ′δ)2σ2
s

σ2
sσ

4
u

)
=σ4

s

(
δ′δσ2

u

σ2
sσ

4
u

)
=
σ2
sδ
′δ

σ2
u

.

Therefore,

plim
k

n
FLHS = plim

k

n
FRHS.
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D Simulations: Summary of Data Generating

Processes and Additional Results

D.1 Summary of Data Generating Processes

In this subsection, we present a succinct summary of the data generating

processes (DGP’s) used in the Monte Carlo simulations.

• Baseline DGP (Figure 2):
si
ui
ei
mi

 ∼ N




0
0
0
0

 ,


1 0 0 0
0 3 0 0
0 0 30 0
0 0 0 σ2

m




yi = si + 3xi + ei

xi = d · si + ui

xmi = xi +mi (A29)

when θ = 0, σ2
m = 0; when θ = 0.85, σ2

m = 17.

• Mean reverting measurement error DGP (Figure 3): Replace equation

(A29) in the baseline DGP with

xmi = −0.5 (d · si + ui) + µi

where σ2
µ = 0.75 or σ2

µ = 2.25.

• Multiple controls DGP (Figure 4): in the baseline DGP,

– Replace ui with ui ∼ N(0, σ2
uI) and mi with mi ∼ N(0, σ2

mI);

– Replace xi = d · si + ui with xi = d · si + ui, where

∗ d = (d, d, ..., d)′ in panels (a) and (c)

∗ d = (d, 0, ..., 0)′ in panels (b) and (d);

– Replace xmi = xi +mi with xmi = xi +mi.

• Heteroskedastic DGP (Figure D.2):
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– Everything is the same as in the baseline DGP, except generate ui

and ei conditional on si:(
ui
ei

)
|si ∼ N

[ 0
0

]
,

 ( e|si|

1+e|si|

)2
σ2
0u 0

0
(

e|si|

1+e|si|

)2
σ2
0e


with σ2

0u and σ2
0e set so that the unconditional variances σ2

u = 3 and

σ2
e = 30 match those in the baseline DGP.

• Binary x DGP (Figure D.2): in the baseline DGP,

– Replace σ2
s = 1 with σ2

s = 0.25;

– Replace xi = d · si + ui with

Pr (xi = 1) = Φ (d · si) ;

– Replace xmi = xi +mi with

Pr (xmi = 1|xi = 0) = Pr (xmi = 0|xi = 1) = τ

with τ = 0 or τ = 0.1.

D.2 Additional Results

We explore additional scenarios using simulations in this section beyond those

included in the main text. Figure D.2 shows the original theoretical power

functions for the case with no measurement error from Figure 1. It adds em-

pirical rejection rates from simulations with heteroskedastic errors ui and ei of

the form

σ2
u,i =

(
e|si|

1 + e|si|

)2

σ2
0u

σ2
e,i =

(
e|si|

1 + e|si|

)2

σ2
0e.

We set the baseline variances σ2
0u and σ2

0e so that the unconditional variances

σ2
u = 3 and σ2

e = 30 match the variances in Figure 1. The test statistics used in
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the simulations employ robust standard errors. We plot the rejection rates for

data with no measurement error and for the more severe measurement error

scenario given by θ = 0.85. As can be seen in Figure D.2, both the balanc-

ing and the coefficient comparison tests lose some power with heteroskedas-

tic residuals and a robust covariance matrix compared to the conventional,

homoskedastic baseline (thin lines). Otherwise, the main findings look very

similar to those in Figure 1. Heteroskedasticity does not seem to alter the

basic conclusions appreciatively.

We presented results in the main text on mean reverting measurement error

when x and m are continuous. Another prominent case of mean reverting

measurement error is the one where xi is a dummy variable. In this case, the

balancing equation is a binary choice model, and hence inherently non-linear.

While we assume that the researcher continues to estimate (3) as a linear

probability model, we generate xi as follows:

Pr (xi = 1) = Φ (δsi) , (A30)

where Φ (·) is the normal distribution function as before. Measurement error

takes the form of misclassification, and we assume the misclassification rate to

be symmetric:

Pr (xmi = 1|xi = 0) = Pr (xmi = 0|xi = 1) = τ.

Compared to the baseline parameters in Table 1, we set σ2
s = 0.25, and τ = 0.1

in our simulations. The model remains the same in all other respects. We use

robust standard errors in estimating (9) and (11).

Various issues arise from the nonlinear nature of (A30). One is the fact

that plim
(
δ̂
)

from estimating (11) linearly is not going to equal the δ we used

in the probit equation (A30) to generate x. The relationship between plim
(
δ̂
)

and δ is concave. In Figure D.2, we plot rejection rates against values of δ,

although the quantity plim
(
δ̂
)

is probably more comparable to what we put

on the x-axis in the previous figures that summarize the simulation results

from linear models. We note that results look qualitatively very similar when
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we plot rejection rates against the empirical averages of δ̂ from estimating (11)

as a linear probability model.

Another issue is that measurement error in xi will now lead to a biased

estimate of δ in estimating (11). This is true even if we were to use a probit and

estimated a model like (A30). The bias takes the form of attenuation, just as in

the case of a binary regressor with measurement error (see Hausman, Abrevaya

and Scott-Morton, 1998). This is a corollary of our result that mean reverting

measurement error also reduces the power of the balancing test. Of course, we

know from the relationship (14) between the test statistics that the coefficient

comparison test will also suffer from the same power loss.

The thin lines in Figure D.2 reveal a sizable power advantage for the bal-

ancing test even without any misclassification. This result is in stark contrast

to the linear models we have analyzed, where a large power loss for the coef-

ficient comparison test only resulted once we introduced measurement error.

In fact, it is possible to think of the binary nature of xi itself as a form of

mismeasurement. Equation (A30) defines Pr (xi = 1) as a latent index, but

the outcome regression (2) uses a coarse version of this variable in the form of

the binary xi.

In our parameterization, the coefficient comparison test never reaches a

rejection rate of 1, and the power function levels off at a far lower level. As

d increases, the power of the balancing test goes to 1. In the linear model,

the rejection rate of tγ is independent of d. Because of the nonlinear nature of

(A30) this is no longer true here, and the average value of tγ across repeated

samples actually falls for higher values of d. Drawing on (14), the power of the

coefficient comparison test will equal the power of tγ when tδ →∞. This is not

a specific feature of the binary case but is generally true for the relationship

between the three test statistics. However, in the binary case this implies that

the power of the coefficient comparison test may decline with d.6

6The reason for the decline of tγ with d in our parameterization is as follows: the standard
error of γ̂ depends on the residual variance of the long regression, which is independent of
d, and on the variance of the residual from regressing xi on si (because si is partialled out
in the long regression). When d = 0, this latter residual is just equal to xi itself, which is
binary. But si is continuous, so as d increases, partialling out si transforms the binary xi
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Adding measurement error to the binary regressor xi makes things worse as

is visible from the thick lines in Figure D.2. The power loss of the balancing test

is comparatively minor for the relatively low misclassification rate of τ = 0.1 we

are using. Much of the loss for the balancing test results from the binary nature

of the xi variable in the first place. The coefficient comparison test is affected

by misclassification error to a much higher degree because tγ is affected, the

Hausman, Abrevaya and Scott-Morton (1998) result notwithstanding.

into a continuous variable, which has less variance than in the d = 0 case. As the effective
variance in this regressor falls, the standard error of γ̂ goes up and tγ goes down.
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Figure A.1: Simulated Rejection Rates with Heteroskedasticity. Comparison
of baseline rejection rates (from Figure 1) with simulated rejection rates based
on heteroskedastic errors and robust standard errors. d is the value the coef-
ficient in the balancing equation takes on under the alternative hypothesis.
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Figure A.2: Simulated Rejection Rates with Binary Control and Misclassifi-
cation. Rejection rates for a binary control variable that is misclassified (i.e.
its binary value is flipped) with probability τ . d is the value the coefficient in
the balancing equation takes on under the alternative hypothesis.
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