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Valuation Compressions in VCG-Based Combinatorial Auctions∗

Paul Dütting† Monika Henzinger‡ Martin Starnberger§

April 18, 2018

Abstract

The focus of classic mechanism design has been on truthful direct-revelation mechanisms. In
the context of combinatorial auctions the truthful direct-revelation mechanism that maximizes
social welfare is the Vickrey-Clarke-Groves mechanism. For many valuation spaces computing
the allocation and payments of the VCG mechanism, however, is a computationally hard prob-
lem. We thus study the performance of the VCG mechanism when bidders are forced to choose
bids from a subspace of the valuation space for which the VCG outcome can be computed effi-
ciently. We prove improved upper bounds on the welfare loss for restrictions to additive bids and
upper and lower bounds for restrictions to non-additive bids. These bounds show that increased
expressiveness can give rise to additional equilibria of poorer efficiency.

1 Introduction

The goal of mechanism design is to devise mechanisms consisting of an allocation rule and a
payment rule that implement desirable outcomes in strategic equilibrium. A fundamental result in
mechanism design theory, the so-called revelation principle, asserts that any equilibrium outcome
of any mechanism can be obtained as a truthful equilibrium of a direct-revelation mechanism.
However, as has been pointed out in prior work [9], the revelation principle says nothing about the
computational complexity of such a truthful direct-revelation mechanism.

In the context of combinatorial auctions the truthful direct-revelation mechanism that maxi-
mizes social welfare is the Vickrey-Clarke-Groves (VCG) mechanism [37, 8, 20]. Unfortunately,
for many valuation spaces computing the VCG allocation and payments is a computationally hard
problem. This is, for example, the case for subadditive, fractionally subadditive, and submodular
valuations [24]. We thus study the performance of the VCG mechanism in settings in which the
bidders are forced to use bids from a subspace of the valuation space for which the allocation and
payments can be computed efficiently. This is obviously the case for additive bids, where the VCG-
based mechanism can be interpreted as a separate second-price auction for each item. Another
class of bids for which this is the case is the class of OXS bids, which stands for ORs of XORs of
singletons and includes additive bids, and the even more general bidding space GS, which stands
for gross substitutes. For OXS bids polynomial-time algorithms for finding a maximum weight
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matching in a bipartite graph such as the algorithms of Tarjan [36] and Fredman and Tarjan [19]
can be used. For GS bids there is a fully polynomial-time approximation scheme due to Kelso and
Crawford [23] and polynomial-time algorithms based on linear programming [12] and convolutions
of M#-concave functions [29, 28, 30].

One consequence of restrictions of this kind, that we refer to as valuation compressions, is that
there is typically no longer a truthful dominant-strategy equilibrium that maximizes social welfare.
We therefore analyze the Price of Anarchy, i.e., the ratio between the optimal social welfare and
the worst possible social welfare at equilibrium. Note that even with fully expressive bids the
Price of Anarchy of the VCG mechanism is not necessarily equal to one. This is because the VCG
mechanism may admit other, inefficient equilibria and the Price of Anarchy metric does not restrict
to dominant-strategy equilibria if they exist. We focus on equilibrium concepts such as correlated
equilibria and coarse correlated equilibria, which naturally emerge from learning processes in which
the bidders minimize internal or external regret [18, 21, 25, 5].

Our Contribution We study valuation compressions in the VCG mechanism and the resulting
Price of Anarchy for a broad range of (complement-free) valuations and restrictions to bids with
different degrees of expressiveness. We consider pairs of valuations and bids from all levels of the
hierarchy that ranges from subadditive over fractionally subadditive, submodular, GS, and OXS to
additive valuations.

We start our analysis by considering fractionally subadditive (or less general) valuations. For
this class of valuations it is known that the restriction to additive bids leads to a Price of Anarchy
with respect to coarse correlated and Bayes-Nash equilibria of exactly 2 [6, 3]. We show an upper
bound of 2 for these equilibrium concepts that applies to non-additive bids. Our proof, just as
the previous results for additive bids, goes through a proof technique called weak smoothness [35].
Establishing weak smoothness, however, requires novel techniques as non-additive bids lead to
non-additive payments for which most of the techniques developed in prior work do not apply.

We also provide a matching lower bound of 2 by showing that for fractionally subadditive
valuations the VCG mechanism satisfies a property known as outcome closure [27]. This property
guarantees that the set of pure Nash equilibria for a less general bid space is contained in the set
of pure Nash equilibria for a more general bid space. As a consequence the same construction
that leads to a pure Nash equilibrium that obtains only one half of the achievable social welfare
for additive bids due to Christodoulou et al. [6] also constitutes a pure Nash equilibrium with
non-additive bids.

We then turn to subadditive valuations. Prior work has shown that for additive bids the Price
of Anarchy is 2 for pure Nash equilibria and at most O(log(m)), where m is the number of items, for
coarse correlated equilibria [3]. The best known bound for additive bids and Bayes-Nash equilibria
is 4 [17]. The O(log(m))-bound of Bhawalkar and Roughgarden [3] goes through weak smoothness
and therefore applies to coarse correlated and Bayes-Nash equilibria. It can be extended to non-
additive bids using our techniques developed for this setting, implying an upper bound of O(log(m))
for these equilibrium concepts. The improved bound of 4 of Feldman et al. [17] does not go through
any of the existing smoothness techniques. To capture this type of argument we introduce a novel
smoothness notion, that we refer to as relaxed smoothness, and show that it also implies bounds
for coarse correlated equilibria. We thus obtain an upper bound of 4 on the Price of Anarchy with
respect to coarse correlated equilibria and restrictions from subadditive valuations to additive bids.

We complement our upper bounds on the Price of Anarchy with respect to coarse correlated and
Bayes-Nash equilibria with a lower bound of 2.4 that applies to pure Nash equilibria and restrictions
to OXS bids. Together with the upper bound of 2 on the Price of Anarchy with respect to pure
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valuations

bids

gross substitutes submodular fractionally sub. subadditive

additive [2,2] [2,4]
OXS
gross substitutes X [2,2]
submodular X X [2.4,O(log(m))]
fractionally sub. X X X

Table 1: Summary of our results (bold) and the related work (regular) for coarse correlated equi-
libria and minimization of external regret through repeated play. The range indicates upper and
lower bounds on the Price of Anarchy.

Nash equilibria and restrictions to additive bids of Bhawalkar and Roughgarden [3] this shows a
strict increase in the Price of Anarchy as we transition from additive bids to the next larger class
OXS.

Finally, as a step towards understanding the complexity of finding an equilibrium of the VCG
mechanism with restricted bids, we show that for subadditive valuations and additive bids deciding
whether there exists a pure Nash equilibrium is NP-hard.

Our analysis leaves a number of interesting open questions, both regarding the computation of
equilibria and regarding improved upper and lower bounds. Some of these questions, in particular
those regarding the computational complexity of equilibria have been addressed in follow-up work.

Related Work The Price of Anarchy in combinatorial auctions in which agents are forced to use
additive bids has been studied in [6, 3, 17] for simultaneous second-price auctions and in [22, 17, 7]
for simultaneous first-price auctions. The case where all items are identical, but additional items
contribute less to the valuation and agents are required to place additive bids has been analyzed
in [26, 11].

Our work differs from these works in that it also considers non-additive bids, which allows to
quantify the impact of expressiveness. A similar question was in parallel and independently of us
studied by Babaioff et al. [1]. They show that some of our findings actually apply to the broader
class of mechanisms that maximize declared welfare, i.e., the sum of the winning agents’ bids. This
includes the VCG-based mechanisms studied here but also other mechanisms such as the Walrasian
mechanism.

On a technical level what ties most of these results together is that they use the smoothness
framework to prove Price of Anarchy guarantees. Smooth games were originally defined and ana-
lyzed in [32, 33]. This work has been extended to mechanisms in [35]. Our work adds to this line
of work by providing an alternative smoothness notion, which gives more flexibility in choosing the
deviating bids and thus more power to prove stronger bounds. Also related is more recent work by
Dütting and Kesselheim [15], which provides a purely combinatorial characterization of algorithms
that lead to mechanisms with a small Price of Anarchy. Our key technical lemmas are closely
related to the notion of permeability defined in this paper.

The equilibrium computation question has previously been addressed in [6], who gave a polynomial-
time algorithm for computing a pure Nash equilibrium for restrictions from submodular valuations
to additive bids and an exponential-time procedure for finding a pure Nash equilibrium for restric-
tions from fractionally subadditive valuations to additive bids. Follow-up work showed hardness
results for pure Nash equilibria [13], for Bayes-Nash equilibria [4], and for no-regret learning [10].
Motivated by this, Daskalakis and Syrgkanis [10] considered an alternative equilibrium concept for
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which polynomial-time learning algorithms exist, while Dütting and Kesselheim [16] proved welfare
guarantees for game-playing dynamics that apply out of equilibrium.

An alternate (non-constructive) way of proving lower bounds on the Price of Anarchy was
recently presented in [34]. This work, amongst others, shows that simultaneous first-price auctions
achieve the best possible Price of Anarchy guarantee for subadditive valuations among all “simple”
mechanisms.

The impact of more or less expressiveness in mechanisms was also studied in [2] and [27, 14].
The former points out that in a combinatorial auction setting the best welfare that can be achieved
strictly increases with a suitably defined notion of expressiveness. The latter shows how in sponsored
search auctions restrictions of the bid space to a subspace of the valuation space can improve the
set of equilibria as a whole by eliminating low revenue equilibria. Our work complements this line
of work by showing that in combinatorial auctions more expressiveness can give rise to additional
equilibria of poorer efficiency.

2 Preliminaries

Combinatorial Auctions In a combinatorial auction there is a set N of n agents and a set M of
m items. Each agent i ∈ N employs preferences over bundles of items, represented by a valuation
function vi : 2M → R≥0. We use Vi for the class of valuation functions of agent i, and V =

∏
i∈N Vi

for the class of valuation profiles of all agents i ∈ N . We write v = (vi, v−i) ∈ V , where vi denotes
agent i’s valuation and v−i denotes the valuations of all agents other than i. We assume that the
valuation functions are normalized and monotone, i.e., vi(∅) = 0 and vi(S) ≤ vi(T ) for all S ⊆ T .

A mechanism M = (f, p) collects bids and computes an allocation and payments. A bid bi by
agent i is a bidding function bi : 2M → R≥0. We use Bi to denote the class of bidding functions of
agent i and B =

∏
i∈N Bi for the class of possible bid profiles. We write b = (bi, b−i) ∈ B, where

bi denotes agent i’s bid and b−i denotes the bids of all agents but i. The mechanism chooses the
allocation according to allocation rule f : B → P(M), where P(M) denotes all possible partitions
X of the set of items M into n sets X1, . . . , Xn, and payments using payment rule p : B → Rn≥0.

We define the social welfare of an allocation X as the sum SW(X) =
∑

i∈N vi(Xi) of the agents’
valuations and use OPT(v) to denote the maximal achievable social welfare. An allocation rule
f maximizes declared welfare if for all bids b it chooses the allocation f(b) that maximizes the
sum of the agents’ bids, i.e.,

∑
i∈N bi(fi(b)) = DWb(M) := maxX∈P(M)

∑
i∈N bi(Xi). We assume

quasi-linear preferences, i.e., agent i’s utility under mechanism M given valuations v and bids b is
ui(b, vi) = vi(fi(b))− pi(b).

We focus on the Vickrey-Clarke-Groves (VCG) mechanism of [37, 8, 20]. Define DWb−i
(S) =

maxX∈P(S)
∑

j 6=i bj(Xj) for all S ⊆M . The VCG mechanisms starts from an allocation rule f that
maximizes declared welfare and computes the payment of each agent i as pi(b) = DWb−i

(M) −
DWb−i

(M \ fi(b)). As the payment pi(b) only depends on the bundle fi(b) allocated to agent i and
the bids b−i of the agents other than i, we also use pi(fi(b), b−i) to denote agent i’s payment.

If the bids are additive then the VCG prices are additive, i.e., for every agent i and every bundle
S ⊆M we have pi(S, b−i) =

∑
j∈S maxk 6=i bk(j). Furthermore, the set of items that an agent wins

in the VCG mechanism are the items for which he has the highest bid, i.e., agent i wins item j
against bids b−i if bi(j) ≥ maxk 6=i bk(j) = pi(j) (ignoring ties). Many of the complications in this
paper come from the fact that these two observations do not apply to non-additive bids.
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Valuation Compressions Our main object of study in this paper are valuation compressions,
i.e., restrictions of the bidding space B to a subspace of the valuation space V .1 More specifically,
we consider valuation spaces V and bid spaces B from the following hierarchy due to Lehmann
et al. [24]:

OS ⊂ OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF.

The class OS is the class of additive functions. The name comes from the fact that it can be
expressed syntactically as ORs-of-XSs (see below). The acronym GS stands for gross substitutes
and the acronym SM for submodular. The most general class in this hierarchy, CF, for complement
free, is the class of subadditive functions.

The classes OXS and XOS are defined syntactically. To define them we need the class of
singleton functions, which we denote by XS. Functions from this class assign the same value to all
bundles that contain a specific item and assign a value of zero to all other bundles. We also need two
operators OR and XOR. The OR (∨) operator is defined as (u∨w)(S) = maxT⊆S(u(T )+w(S \T ))
and the XOR (⊗) operator is defined as (u ⊗ w)(S) = max(u(S), w(S)). Note that the class
of functions that can be expressed as OR of XS valuations is precisely the class OS of additive
functions.

The class OXS is the class of functions that can be described as ORs of XORs of XS functions
and the class XOS is the class of functions that can be described by XORs of ORs of XS functions.
Note that the latter class is simply the maximum over a set of additive functions. So a valuation
vi from this class can be expressed by a set of additive functions a1i , . . . , a

k
i such that vi(S) =

max`=1,...,k
∑

j∈S a
`
i(j) for all S ⊆M.

Another important class is the class β-XOS, where β ≥ 1, of β-fractionally subadditive functions.
A valuation vi is β-fractionally subadditive if for every subset of items T there exists an additive
valuation ai such that (a)

∑
j∈T ai(j) ≥ vi(T )/β and (b)

∑
j∈S ai(j) ≤ vi(S) for all S ⊆ T . The

special case β = 1 corresponds to the class XOS of fractionally subadditive valuations. It can be
shown that the class CF is contained in O(log(m))-XOS (see, e.g., Theorem 5.2 in [3]).

Solution Concepts We use game-theoretic reasoning to analyze how agents interact with the
mechanism, a desirable criterion being stability according to some solution concept. In the complete
information model the agents are assumed to know each others’ valuations, and in the incomplete
information model the agents’ only know from which (possibly distinct) distributions the valuations
of the other agents are drawn. In the remainder we focus on the complete information case. The
definitions and our results for incomplete information are given in Appendix A.

The static game-theoretic solution concepts that we consider in the complete information setting
are:

DSE ⊂ PNE ⊂ MNE ⊂ CE ⊂ CCE,

where DSE stands for dominant strategy equilibrium, PNE stands for pure Nash equilibrium, MNE
stands for mixed Nash equilibrium, CE stands for correlated equilibrium, and CCE stands for coarse
correlated equilibrium.

In our analysis we only need the definitions of pure Nash and coarse correlated equilibria. Bids
b ∈ B constitute a pure Nash equilibrium (PNE) for valuations v ∈ V if for every agent i ∈ N
and every bid b′i ∈ Bi, ui(bi, b−i, vi) ≥ ui(b

′
i, b−i, vi). A distribution B over bids b ∈ B is a coarse

correlated equilibrium (CCE) for valuations v ∈ V if for every agent i ∈ N and every pure deviation
b′i ∈ Bi, Eb∼B[ui(bi, b−i, vi)] ≥ Eb∼B[ui(b

′
i, b−i, vi)].

1This definition is consistent with the notion of simplification in [27, 14]. It differs from the notion of mechanism
expressiveness in [2], which is based on the shattering dimension of the underlying mechanism.
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The dynamic solution concept that we consider in this setting is regret minimization. A sequence
of bids b1, . . . , bT incurs vanishing average external regret if for all agents i,

∑T
t=1 ui(b

t
i, b

t
−i, vi) ≥

maxb′i
∑T

t=1 ui(b
′
i, b

t
−i, vi) − o(T ) holds, where o(·) denotes the little-oh notation. The empirical

distribution of bids in a sequence of bids that incurs vanishing external regret converges to a coarse
correlated equilibrium (see, e.g., Chapter 4 of [31]).

Price of Anarchy We quantify the welfare loss from valuation compressions by means of the
Price of Anarchy (PoA).

The PoA with respect to PNE for valuations v ∈ V is defined as the worst ratio between the
optimal social welfare OPT(v) and the welfare SW(b) of a PNE b ∈ B,

PoA(v) = sup
b: PNE

OPT(v)

SW(b)
.

Similarly, the PoA with respect to MNE, CE, and CCE for valuations v ∈ V is the worst ratio
between the optimal social welfare OPT(v) and the expected welfare Eb∼B[SW(b)] of a MNE, CE,
or CCE B,

PoA(v) = sup
B: MNE, CE or CCE

OPT(v)

Eb∼B[SW(b)]
.

It is not difficult to see that the Price of Anarchy can be arbitrarily bad even if there is only
a single item for sale. As argued in the related literature, however, this requires agents to grossly
overstate their values for certain bundles of items, which seems unnatural (see, e.g., [17]). We
therefore impose the assumption that agents avoid such overbidding strategies by restricting the
action space (and the set of possible deviations from an equilibrium bid profile) Bi of each agent i
to bids bi such that bi(S) ≤ vi(S) for all S ⊆M .

3 Fractionally Subadditive Valuations

We begin our analysis with valuation compressions from β-fractionally subadditive valuations to
less general bids. We show an upper bound on the Price of Anarchy with respect to coarse corre-
lated equilibria and Bayes-Nash equilibria of 2β. We also show a lower bound of 2 on the Price
of Anarchy with respect to pure Nash equilibria for valuation compressions from fractionally sub-
additive valuations to less general bids. We thus show that for fractionally subadditive valuations
increased expressiveness neither improves nor deteriorates the Price of Anarchy.

3.1 Upper Bounds

We establish our upper bounds on the Price of Anarchy by showing that the VCG mechanism
with restricted bids is weakly smooth. Weak smoothness is a parametrized property of mechanisms
that requires that for every valuation profile and every bid profile there exists a “good” unilateral
deviation for each agent. The deviations are only allowed to depend on the valuation profile, and
they are considered to be good if in sum over all agents they ensure high enough utilities.

Definition 1 (Syrgkanis and Tardos [35]). A mechanism M = (f, p) is weakly (λ, µ1, µ2)-smooth
for λ, µ1, µ2 ≥ 0 if for every valuation profile v ∈ V and bid profile b ∈ B there exists a bid ai(v)
for every agent i ∈ N that does not require agent i to overbid such that∑

i∈N
ui((ai, b−i), vi) ≥ λ · OPT(v) − µ1 ·

∑
i∈N

pi(fi(b), b−i) − µ2 ·
∑
i∈N

bi(fi(b)) .
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Syrgkanis and Tardos [35] show that a weakly (λ, µ1, µ2)-smooth mechanism achieves a Price of

Anarchy of at most max (µ1,1)+µ2
λ with respect to both coarse correlated and Bayes-Nash equilibria.

Theorem 1. Consider running the VCG mechanism for β-fractionally subadditive valuations and
fractionally subadditive bids. Then the VCG mechanism is weakly (1/β, 1, 1)-smooth.

We will prove this result with the help of two lemmas. We consider these lemmas, which show
how to deal with non-additive bids, as our main technical contribution.

Lemma 1. Consider running the VCG mechanism for β-fractionally subadditive valuations and
fractionally subadditive bids. Then for all valuations v ∈ V , every agent i ∈ N , and every bundle
of items Qi ⊆M there exists an additive bid ai ∈ Bi that only depends on Qi and vi and does not
require agent i to overbid such that for all bids b−i ∈ B−i,

ui(ai, b−i, vi) ≥
vi(Qi)

β
− pi(Qi, b−i) .

Proof. Fix valuations v, agent i, and bundle Qi. As vi ∈ β-XOS there exists an additive bid
ai ∈ OS for which

∑
j∈Xi

ai(j) ≤ vi(Xi) for all Xi ⊆ Qi, and
∑

j∈Qi
ai(j) ≥ vi(Qi)

β . Consider bids
b−i. Recall our notation for the maximum declared welfare that is achievable by distributing items
S ⊆ M among the agents j 6= i, which we defined to be DWb−i

(S) = maxX∈P(S)
∑

j 6=i bj(Xj). As
the VCG mechanism selects the outcome that maximizes the sum of the bids,

ai(fi(ai, b−i)) +DWb−i
(M \ fi(ai, b−i)) ≥ ai(Qi) +DWb−i

(M \Qi) .

We have chosen ai such that ai(fi(ai, b−i)) ≤ vi(fi(ai, b−i)) and ai(Qi) ≥ vi(Qi)/β. Thus,

vi(fi(ai, b−i)) +DWb−i
(M \ fi(ai, b−i)) ≥ ai(fi(ai, b−i)) +DWb−i

(M \ fi(ai, b−i))
≥ ai(Qi) +DWb−i

(M \Qi)

≥ vi(Qi)

β
+DWb−i

(M \Qi) .

Subtracting DWb−i
(M) from both sides gives

vi(fi(ai, b−i))− pi(fi(ai, b−i), b−i) ≥
vi(Qi)

β
− pi(Qi, b−i) .

As ui((ai, b−i), vi) = vi(fi(ai, b−i))−pi(fi(ai, b−i), b−i) this shows that ui((ai, b−i), vi) ≥ vi(Qi)/β−
pi(Qi, b−i) as claimed.

Lemma 2. Consider running the VCG mechanism for β-fractionally subadditive valuations and
fractionally subadditive bids. For every allocation Q1, . . . , Qn and all bids b ∈ B,

n∑
i=1

[
pi(Qi, b−i)− pi(fi(b), b−i)

]
≤

n∑
i=1

bi(fi(b)) .

Proof. We have pi(Qi, b−i) = DWb−i
(M) − DWb−i

(M \ Qi) and pi(fi(b), b−i) = DWb−i
(M) −

DWb−i
(M \ fi(b)) because the VCG mechanism is used. Thus,

n∑
i=1

[
pi(Qi, b−i)− pi(fi(b), b−i)

]
=

n∑
i=1

[
DWb−i

(M \ fi(b))−DWb−i
(M \Qi)

]
. (1)
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We have DWb−i
(M \ fi(b)) =

∑
k 6=i bk(fk(b)) and DWb−i

(M \ Qi) ≥
∑

k 6=i bk(fk(b) ∩ (M \ Qi))
because (fk(b) ∩ (M \ Qi))i 6=k is a feasible allocation of the items M \ Qi among the agents −i.
Thus,

n∑
i=1

[
DWb−i

(M \ fi(b))−DWb−i
(M \Qi)

]

≤
n∑
i=1

[∑
k 6=i

bk(fk(b))−
∑
k 6=i

bk(fk(b) ∩ (M \Qi))
]

≤
n∑
i=1

[ n∑
k=1

bk(fk(b))−
n∑
k=1

bk(fk(b) ∩ (M \Qi))
]

=

n∑
i=1

n∑
k=1

bk(fk(b))−
n∑
i=1

n∑
k=1

bk(fk(b) ∩ (M \Qi)) . (2)

The second inequality holds due to the monotonicity of the bids. Since XOS = 1-XOS for every
agent k, bid bk ∈ XOS, and set fk(b) there exists a bid ak,fk(b) ∈ OS such that

bk(fk(b)) = ak,fk(b)(fk(b)) =
∑

j∈fk(b)

ak,fk(b)(j) , and

bk(fk(b) ∩ (M \Qi)) ≥ ak,fk(b)(fk(b) ∩ (M \Qi)) =
∑

j∈fk(b)∩(M\Qi)

ak,fk(b)(j) .

As Q1, . . . , Qn is a partition of M every item is contained in exactly one of the sets Q1, . . . , Qn and
hence in n−1 of the sets M \Q1, . . . ,M \Qn. By the same argument for every agent k and set fk(b)
every item j ∈ fk(b) is contained in exactly n− 1 of the sets fk(b)∩ (M \Q1), . . . , fk(b)∩ (M \Qn).
Thus, for every fixed k we have that

∑n
i=1 bk(fk(b) ∩ (M \ Qi)) ≥ (n − 1) ·

∑
j∈fk(b) ak,fk(b)(j) =

(n− 1) · ak,fk(b)(fk(b)) = (n− 1) · bk(fk(b)). It follows that

n∑
i=1

n∑
k=1

bk(fk(b))−
n∑
i=1

n∑
k=1

bk(fk(b) ∩ (M \Qi))

≤ n ·
n∑
k=1

bk(fk(b))− (n− 1) ·
n∑
k=1

bk(fk(b)) =
n∑
i=1

bk(fk(b)) . (3)

The claim follows by combining inequalities (1), (2), and (3).

Proof of Theorem 1. Applying Lemma 1 to the optimal bundles O1, . . . , On and summing over all
agents i, ∑

i∈N
ui(ai, b−i, v) ≥ 1

β
·OPT(v)−

∑
i∈N

pi(Oi, b−i) .

Applying Lemma 2 we obtain∑
i∈N

ui(ai, b−i, v) ≥ 1

β
·OPT(v)−

∑
i∈N

pi(fi(b), b−i)−
∑
i∈N

bi(Xi(b)) .

Remark Lemma 2 and hence Theorem 1 apply whenever bids are at least additive and at most
fractionally subadditive. So, for instance, these results apply with OXS bids when agents are
restricted to use at most k ≥ 1 XORs.
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3.2 Lower Bounds

In order to show our lower bound on the Price of Anarchy with respect to pure Nash equilibria,
we will show that the exact same construction that is used in [6] to show a lower bound of 2 for
restrictions to additive bids also constitutes a pure Nash equilibrium when agents are allowed to
use more general bids. We do so by showing that for fractionally subadditive valuations the VCG
mechanism satisfies a property of mechanisms known as outcome closure.

Definition 2 (Milgrom [27]). A mechanism satisfies outcome closure for a given class V of valuation
functions and a restriction of the class B of bidding functions to a subclass B′ of bidding functions
if for every v ∈ V , every agent i ∈ N , all bids b′−i ∈ B′−i, and every bid bi ∈ Bi there exists a bid
b′i ∈ B′i for which ui(b

′
i, b
′
−i, vi) ≥ ui(bi, b′−i, vi).

Milgrom [27] shows that if a mechanism satisfies outcome closure, then every pure Nash equi-
librium under B′ is also a pure Nash equilibrium under B.

Theorem 2. Consider running the VCG mechanism for fractionally subadditive valuations and a
set of allowable bids that is contained in the class of fractionally subadditive functions and includes
all additive functions. Then the Price of Anarchy with respect to pure Nash equilibria is at least 2.

Proof. It suffices to show that the VCG mechanism satisfies outcome closure for V and the re-
striction of B to B′, where B and B′ can be any of the mentioned classes of bidding functions.
To prove this fix valuations v ∈ V , bids b′−i ∈ B′−i, and consider an arbitrary bid bi ∈ Bi by
agent i. Denote the bundle that agent i gets under (bi, b

′
−i) by Qi and denote his payment by

pi = pi(Qi, b
′
−i). By Lemma 1 there exists a bid b′i ∈ B′i that does not overbid and that sat-

isfies ui(b
′
i, b
′
−i, vi) ≥ vi(Qi) − pi(Qi, b

′
−i) = ui(bi, b

′
−i, vi). This proves that outcome closure is

satisfied.

4 Subadditive Valuations

We now turn to subadditive valuations. Our analysis from the previous section already shows
that the Price of Anarchy with respect to both coarse correlated and Bayes-Nash equilibria is
upper bounded by O(log(m)). In this section we introduce a new smoothness notion that allows
to improve the guarantee for coarse correlated equilibria and additive bids to 4. We also present
a lower bound for pure Nash equilibria and restrictions to OXS bids that shows that the Price of
Anarchy with respect to pure Nash equilibria strictly increases as we go from additive to OXS bids.

4.1 Relaxed Smoothness

Recall that weak smoothness is a parametrized property of mechanisms that requires that for every
valuation profile and every bid profile there exists a good deviation for each agent, where the
deviation may only depend on the valuation profile. Our smoothness notion, that we refer to as
relaxed smoothness, also allows the deviation of an agent to depend on the distribution of the other
agents’ bids.

Definition 3. A mechanism M = (f, p) is relaxed (λ, µ1, µ2)-smooth for λ, µ1, µ2 ≥ 0 if for every
valuation profile v ∈ V , every distribution over bids B, and every agent i there exists a bid ai(v,B−i)
that does not require agent i to overbid such that∑

i∈N
E
b−i

[
ui((ai, b−i), vi)

]
≥ λ · OPT(v) − µ1 ·

∑
i∈N

E
b

[
pi(fi(b), b−i)

]
− µ2 ·

∑
i∈N

E
b
[bi(fi(b))] .
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Relaxed smoothness, just like weak smoothness, implies a bound on the Price of Anarchy for
both coarse correlated and Bayes-Nash equilibria. We present the result for coarse correlated
equilibria. The result for Bayes-Nash equilibria can be found in Appendix A.

Theorem 3. If a mechanism M = (f, p) is relaxed (λ, µ1, µ2)-smooth, then the Price of Anarchy
for coarse correlated equilibria is at most

max{µ1, 1}+ µ2
λ

.

Proof. Fix valuations v. Consider a coarse correlated equilibrium B. For each b from the support
of B denote the allocation for b by f(b) = (f1(b), . . . , fn(b)). Let a = (a1, . . . , an) be defined as in
Definition 3. Then,

E
b∼B

[
SW(f(b))

]
=
∑
i∈N

E
b∼B

[
ui(b, vi)

]
+
∑
i∈N

E
b∼B

[
pi(fi(b), b−i)

]
≥
∑
i∈N

E
b−i∼B−i

[
ui((ai, b−i), vi)

]
+
∑
i∈N

E
b∼B

[
pi(fi(b), b−i)

]
≥ λ ·OPT(v)− (µ1 − 1) ·

∑
i∈N

E
b∼B

[
pi(fi(b), b−i)

]
− µ2 ·

∑
i∈N

E
b∼B

[
bi(fi(b))

]
,

where the first equality uses the definition of ui(b, vi) as the difference between vi(fi(b)) and
pi(fi(b), b−i), the first inequality uses the fact that B is a coarse correlated equilibrium, and the
second inequality holds because a = (a1, . . . , an) is defined as in Definition 3.

Since agents do not overbid this can be rearranged to give

(1 + µ2) · E
b∼B

[SW(f(b))] ≥ λ ·OPT(v)− (µ1 − 1) ·
∑
i∈N

E
b∼B

[pi(fi(b), b−i)] .

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and the result
follows by rearranging terms. For µ1 > 1 we use that Eb∼B[pi(fi(b), b−i)] ≤ Eb∼B[vi(fi(b))] to lower
bound the second term on the right hand side and the result follows by rearranging terms.

4.2 Upper Bound for Additive Bids

The advantage of relaxed smoothness over weak smoothness is that it gives us additional freedom
in choosing deviations for each agent. We next show how the proof technique of Feldman et al. [17]
can be used to show relaxed smoothness of the VCG mechanism for restrictions to additive bids.

Proposition 1. Consider running the VCG mechanism for subadditive valuations and additive
bids. Then the VCG mechanism is relaxed (1/2, 0, 1)-smooth.

To prove this result we need two auxiliary lemmas.

Lemma 3. Consider running the VCG mechanism for subadditive valuations and additive bids.
Then for every agent i ∈ N , every bundle of items Qi ⊆ M , and every distribution B−i over the
bids b−i ∈ B−i of the agents other than i there exists an additive bid ai ∈ Bi that only depends on
Qi and B−i and does not require agent i to overbid such that

E
b−i∼B−i

[ui((ai, b−i), vi)] ≥
1

2
· vi(Qi)− E

b−i∼B−i

[pi(Qi, b−i)] .
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Proof. Let ε > 0. Consider bids b−i of the agents −i. The bids b−i induce a price pi(j) =
maxk 6=i bk(j) for each item j. Let T be a maximal subset of items from Qi such that vi(T ) <
pi(T ) + |T | · ε. Define the truncated prices qi as follows:

qi(j) =

{
pi(j) for j ∈ Qi \ T , and

0 otherwise.

The distribution B−i on the bids b−i induces a distribution Ci on the prices pi as well as a
distribution Di on the truncated prices qi.

We would like to consider a bid bi by agent i that is drawn from the same distribution Di as the
truncated prices. To explicitly deal with ties, we will increase the bid on each item in Qi \ T by ε.
So, to determine the bid bi we first draw b′i from Di and then let bi(S) = b′i(S)+ |S∩Qi \T | ·ε for all
S. We need to argue that the resulting bids are additive and that they do not entail overbidding.
The first condition is satisfied because additive bids lead to additive prices, and so the truncated
prices are additive. To see that the second condition is satisfied assume by contradiction that for
some non-empty set S ⊆ Qi \ T , bi(S) = qi(S) + |S| · ε > vi(S). As pi(S) = qi(S) it follows that

vi(S ∪ T ) ≤ vi(S) + vi(T ) < pi(S) + |S| · ε+ pi(T ) + |T | · ε = pi(S ∪ T ) + |S ∪ T | · ε ,

which contradicts our definition of the set T as a maximal subset of Qi for which the inequality
vi(T ) ≤ pi(T ) + |T | · ε holds.

Consider bid bi. Let fi(bi, pi) be the set of items won with bid bi against prices pi. Let gi(bi, qi)
be the subset of items from Qi won with bid bi against the truncated prices qi. As pi(j) = qi(j)
for j ∈ Qi \ T and pi(j) ≥ qi(j) for j ∈ T we have gi(bi, qi) ⊆ fi(bi, pi) ∪ T . Thus, using the fact
that vi is subadditive, vi(gi(bi, qi)) ≤ vi(fi(bi, pi)) + vi(T ). By the definition of the prices pi and the
truncated prices qi we have pi(Qi)−qi(Qi) = pi(T ) > vi(T )−|T | · ε ≥ vi(T )−|Qi| · ε. By combining
these inequalities we obtain

vi(fi(bi, pi)) + pi(Qi) ≥ vi(gi(bi, qi)) + qi(Qi)− |Qi| · ε .

Taking expectations over the prices pi ∼ Ci and the truncated prices qi ∼ Di gives

E
pi∼Ci

[
vi(fi(bi, pi)) + pi(Qi)

]
≥ E

qi∼Di

[
vi(gi(bi, qi)) + qi(Qi)

]
− |Qi| · ε .

Now recall the process by which we generate bi. Let us make the dependence on b′i visible by
writing bi(b

′
i). Next we take expectations over b′i ∼ Di on both sides of the previous inequality.

Then we bring the pi(Qi) term to the right and the qi(Qi) term to the left. Finally, we exploit
that the expectation over qi ∼ Di of qi(Qi) is the same as the expectation over b′i ∼ Di of b′i(Qi) to
obtain

E
b′i∼Di

[
E

pi∼Ci

[
vi(fi(bi(b

′
i), pi))

]]
− E

b′i∼Di

[
b′i(Qi)

]
≥ E

b′i∼Di

[
E

qi∼Di

[
vi(gi(bi(b

′
i), qi))

]]
− E

pi∼Ci

[
pi(Qi)

]
− |Qi| · ε . (4)

Now, using the fact that b′i and qi are drawn from the same distribution Di, we can lower bound
the first term on the right-hand side of the preceding inequality by

E
b′i∼Di

[
E

qi∼Di

[
vi(gi(bi(b

′
i), qi)

]]
=

1

2
· E
b′i∼Di

[
E

qi∼Di

[
vi(gi(bi(b

′
i), qi)) + vi(gi(bi(qi), b

′
i))
]]
≥ 1

2
· vi(Qi) , (5)
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where the inequality in the last step comes from the fact that the subset gi(bi(b
′
i), qi) of Qi won with

bid bi(b
′
i) against prices qi and the subset gi(bi(qi), b

′
i) of Qi won with bid bi(qi) against prices b′i cover

all of Qi and, thus, because vi is subadditive, it must be that vi(gi(bi(b
′
i), qi)) + vi(gi(bi(qi), b

′
i)) ≥

vi(Qi).
Note that agent i’s utility for bid bi against bids b−i is given by his valuation for the set of items

fi(bi, pi) minus the price pi(fi(bi, pi)). Note further that the price pi(fi(bi, pi)) that he faces is at
most his bid bi(fi(bi, pi)). Finally note that his bid bi(fi(bi, pi)) is at most b′i(Qi \T ) + |Qi \T | · ε ≤
b′i(Qi)+ |Qi| ·ε because of the way we generate bi from b′i and because b′i is drawn from Di. Together
with inequality (4) and inequality (5) this shows that

E
b′i∼Di

[
E

b−i∼B−i

[
ui((bi(b

′
i), b−i), vi)

]]
≥ E

b′i∼Di

[
E

pi∼Ci

[
vi(fi(bi(b

′
i), pi))

]]
− E

[
b′i(Qi)

]
− |Qi| · ε

≥ 1

2
· vi(Qi)− E

pi∼Ci

[
pi(Qi)

]
− 2 · |Qi| · ε .

Since this inequality is satisfied in expectation if bid bi is generated by drawing b′i from distribution
Di there must be at least one a′i from the support of Di and hence a deterministic bid ai that
satisfies it. The claim follows by taking ε→ 0.

Lemma 4. Consider running the VCG mechanism for subadditive valuations and additive bids.
Then for every partition Q1, . . . , Qn of the items and all bids b,∑

i∈N
pi(Qi, b−i) ≤

∑
i∈N

bi(fi(b)) .

Proof. For every agent i and each item j ∈ Qi we have pi(j, b−i) = maxk 6=i bk(j) ≤ maxk bk(j).
Hence an upper bound on the sum

∑
i∈N pi(Qi, b−i) is given by

∑
i∈N maxk bk(j). The VCG

mechanisms selects allocation f1(b), . . . , fn(b) such that
∑

i∈N bi(fi(b)) is maximized.

Proof of Proposition 1. The claim follows by applying Lemma 3 to every agent i and the corre-
sponding optimal bundle Oi, summing over all agents i, and using Lemma 4 to bound

Eb−i∼B−i
[
∑

i∈N pi(Oi, b−i)] by Eb∼B[
∑

i∈N bi(fi(b))].

Remark In the proof of Lemma 3 it is important that additive bids b−i by the agents other than i
induce additive VCG payments pi(S, b−i) =

∑
j∈S pi(j) =

∑
j∈S maxk 6=i bk(j). The VCG payments

induced by more general bids can typically not be expressed within the same bidding language.

4.3 Lower Bound for OXS Bids

We conclude this section by proving a lower bound on the Price of Anarchy with respect to pure
Nash equilibria for restrictions to OXS bids, which is strictly larger than the corresponding upper
bound for additive bids.

Theorem 4. Consider running the VCG mechanism for subadditive valuations and a set of allow-
able bids that is contained in the class of fractionally subadditive functions and includes all OXS
functions. Assume further that there are at least n ≥ 2 agents and m ≥ 6 items. Then for every
δ > 0 there exist valuations v such that the Price of Anarchy for pure Nash equilibria is at least
2.4− δ.
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The proof of this theorem makes use of the following auxiliary lemma, which relates the max-
imum bid on any of the subsets of a set that are by one element smaller to the bid on the set
itself.

Lemma 5. For every fractionally subadditive bid bi ∈ XOS and every set of items X ⊆M it holds
that

max
S⊆X,|S|=|X|−1

bi(S) ≥ |X| − 1

|X|
· bi(X) .

Proof. As bi ∈ XOS there exists an additive bid ai such that
∑

j∈X ai(j) = bi(X) and for every
S ⊆ X we have bi(S) ≥

∑
j∈S ai(j). There are |X| many ways to choose S ⊆ X such that

|S| = |X| − 1 and these |X| many sets will contain each of the items j ∈ X exactly |X| − 1
times. Thus,

∑
S⊆X,|S|=|X|−1 bi(S) ≥ (|X| − 1) · bi(X). For any set T ∈ arg maxS⊆X,|S|=|X|−1 bi(S),

using the fact that the maximum is at least as large as the average, we therefore have bi(T ) ≥
(|X| − 1)/|X| · bi(X).

Proof of Theorem 4. There are 2 agents and 6 items. The items are divided into two sets X1 and
X2, each with 3 items. The valuations of agent i ∈ {1, 2} are given by (all indices are modulo two)

vi(S) =



12 for S ⊆ Xi, |S| = 3

6 for S ⊆ Xi, 1 ≤ |S| ≤ 2

5 + 1ε for S ⊆ Xi+1, |S| = 3

4 + 2ε for S ⊆ Xi+1, |S| = 2

3 + 3ε for S ⊆ Xi+1, |S| = 1

maxj∈{1,2}{vi(S ∩Xj)} otherwise.

The variable ε is a sufficiently small positive number. The valuation vi of agent i is subadditive,
but not fractionally subadditive. (The problem for agent i is that the valuation for Xi is too high
given the valuations for S ⊂ Xi.)

The welfare maximizing allocation awards set X1 to agent 1 and set X2 to agent 2. The resulting
welfare is v1(X1) + v2(X2) = 12 + 12 = 24.

We claim that the following profile of bids b = (b1, b2) can be expressed within OXS and
constitutes a pure Nash equilibrium:

bi(S) =



0 for S ⊆ Xi

5 + 1ε for S ⊆ Xi+1, |S| = 3

4 + 2ε for S ⊆ Xi+1, |S| = 2

3 + 3ε for S ⊆ Xi+1, |S| = 1

maxj∈{1,2}{bi(S ∩Xj)} otherwise.

Given b VCG awards set X2 to agent 1 and set X1 to agent 2 for a welfare of v1(X2)+v2(X1) =
2 · (5 + ε) = 10 + 2ε, which is by a factor 2.4− 12ε/(25 + 5ε) smaller than the optimum welfare.

We can express bi as ORs of XORs of XS bids as follows: Let Xi = {a, b, c} and Xi+1 = {d, e, f}.
Let hd, he, hf and `d, `e, `f be XS bids that value d, e, f at 3 + 3ε and 1 − ε, respectively. Then
bi(T ) = (hd(T )⊗ he(T )⊗ hf (T )) ∨ `d(T ) ∨ `e(T ) ∨ `f (T ).

To show that b is a Nash equilibrium we can focus on agent i (by symmetry) and on deviating
bids ai that win agent i a subset S of Xi (because agent i currently wins Xi+1 and vi(S) =
max{vi(S ∩X1), vi(S ∩X2)} for sets S that intersect both X1 and X2).
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Note that the price that agent i faces on the subsets S of Xi are superadditive: For |S| = 1 the
price is (5 + ε)− (4 + 2ε) = 1− ε, for |S| = 2 the price is (5 + ε)− (3 + 3ε) = 2− 2ε, and for |S| = 3
the price is 5 + ε.

Case 1: S = Xi. We claim that this case cannot occur. To see this observe that because
ai ∈ XOS, Lemma 5 shows that there must be a 2-element subset T of S for which ai(T ) ≥ 2/3·ai(S).
On the one hand this shows that ai(S) ≤ 9 because otherwise ai(T ) ≥ 2/3·ai(S) > 6 in contradiction
to our assumption that ai does not overbid. On the other hand to ensure that VCG assigns S to
agent i we must have ai(S) ≥ ai(T ) + (3 + 3ε). Thus ai(S) ≥ 2/3 · ai(S) + (3 + 3ε) and, hence,
ai(S) ≥ 9(1 + ε). We conclude that 9 ≥ ai(S) ≥ 9(1 + ε), which gives a contradiction.

Case 2: S ⊂ Xi. In this case agent i’s valuation for S is 6 and his payment is at least 1− ε as
we have shown above. Thus, ui(ai, b−i) ≤ 5 + ε = ui(bi, b−i), i.e., the utility does not increase with
the deviation.

5 Computational Complexity of Equilibria

Our final result concerns the computational complexity of finding a pure Nash equilibrium. It states
that for restrictions from subadditive valuations to additive bids it is NP-hard to decide whether
a pure Nash equilibrium exists. The same decision problem is simple for fractionally subadditive
valuations because pure Nash equilibria are guaranteed to exist [6].

Theorem 5. Consider running the VCG mechanism for agents with subadditive valuations and
additive bids. Then it is NP-hard to decide whether there exists a pure Nash equilibrium.

Proof. We reduce from 3-Partition. Given an instance of 3-Partition consisting of a multiset
of 3m positive integers w1, . . . , w3m ∈ (B/4, B/2) that sum up to mB, we construct an instance
of a combinatorial auction in which the agents have subadditive valuations in polynomial time as
follows:

The set of agents is B1, . . . , Bm and C1, . . . , Cm. The set of items is I ∪ J , where I =
{I1, . . . , I3m} and J = {J1, . . . , J3m}. Let Ji = {Ji, Jm+i, J2m+i}. Every agent Bi has valuations

vBi(S) = max{vI,Bi(S), vJ ,Bi(S)},

where

vI,Bi(S) =
∑

Ie∈I∩S
we and vJ ,Bi(S) =


10B if |Ji ∩ S| = 3 ,

5B if |Ji ∩ S| ∈ {1, 2} ,
0 otherwise.

Every agent Ci has valuations

vCi(S) =


16B if |Ji ∩ S| = 3 ,

8B if |Ji ∩ S| ∈ {1, 2} ,
0 otherwise.

The valuations for the items in J are motivated by an example for valuations without a pure Nash
equilibrium in [3]. Note that our valuations are subadditive.

We show first that if there is a solution of our 3-Partition instance then the corresponding
auction has a pure Nash equilibrium. Let us assume that P1, . . . , Pm is a solution of 3-Partition.
We obtain a pure Nash equilibrium when every agent Bi bids wj for each Ij with j ∈ Pi and zero
for the other items; and every agent Ci bids 4B for each item in Ji. The first step is to show that
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no agent Bi would change his strategy. The utility of Bi is B, because Bi’s payment is zero. As
the valuation function of Bi is the maximum of his valuation for the items in I and the items in J
we can study the strategies for I and J separately. If Bi changed his bid and won another item in
I, Bi would have to pay his valuation for this item because there is an agent Bj bidding on it, and,
thus, his utility would not increase. As Bi does not overbid, Bi could win at most one item of the
items in Ji. His value for the item would be 5B, but the payment would be Ci’s bid of 4B. Thus,
his utility would not be larger than B if Bi won an item of J . Hence, Bi does not want to change
his bid. The second step is to show that no agent Ci would change his strategy. This follows since
the utility of every agent Ci is 16B, and this is the highest utility that Ci can obtain.

We will now show two facts that follow if the auction is in a pure Nash equilibrium: (1) We
first show that in every pure Nash equilibrium every agent Bi must have a utility of at least B. To
see this denote the bids of agent Ci for the items Ji, Jm+i, J2m+i in Ji by c1, c2, and c3 and assume
w.l.o.g. that c1 ≤ c2 ≤ c3. As agent Ci does not overbid, c2 + c3 ≤ 8B, and, thus, c1 ≤ 4B. If agent
Bi bade 5B for Ji, Bi would win Ji and his utility would be at least B, because Bi has to pay Ci’s
bid for Ji. As Bi’s utility in the pure Nash equilibrium cannot be worse, his utility in the pure
Nash equilibrium has to be at least B. (2) Next we show that in a pure Nash equilibrium agent Bi
cannot win any of the items in Ji. For a contradiction suppose that agent Bi wins at least one of
the items in Ji by bidding b1, b2, and b3 for the items Ji, Jm+i, J2m+i in Ji. Then agent Ci does
not win the whole set Ji and his utility is at most 8B. As agent Bi does not overbid, bi + bj ≤ 5B
for i 6= j ∈ {1, 2, 3}. Then, b1 + b2 + b3 ≤ 7.5B. Agent Ci can however bid c1 = b1 + ε, c2 = b2 + ε,
c3 = b3 + ε for some ε > 0 without violating no-overbidding to win all items in Ji for a utility of
at least 16B − 7.5B > 8B. Thus, Ci’s utility increases when Ci changes his bid, i.e., the auction is
not in a pure Nash equilibrium.

Now we use facts (1) and (2) to show that our instance of 3-Partition has a solution if the
auction has a pure Nash equilibrium. Let us assume that the auction is in a pure Nash equilibrium.
By (1) we know that every agent Bi gets at least utility B. Combined with (2) we know that
every agent Bi wins only items in I, pays zero, and has exactly utility B. Recall that all we
with e ∈ {1, . . . , 3m} satisfy B/4 < we < B/2. Thus the valuation of an agent Bi is larger than
4 · B/4 = B for a subset of I with more than three items and is smaller than 2 · B/2 = B for a
subset of I with less than three items. Hence, every bidder Bi gets exactly three items in I and
the assignment of the items in I corresponds to a solution of 3-Partition.

A Relaxed Smoothness and Bayes-Nash Equilibria

In this appendix we show that relaxed smoothness also implies an upper bound on the Price of
Anarchy with respect to Bayes-Nash equilibria. For this result it is important that valuations are
distributed independently. In fact, when valuations are correlated the theorem that we show does
not apply.

Definitions In the incomplete information setting valuations are drawn independently from not
necessarily identical distributions. Denote the distribution from which agent i’s valuation is drawn
by Di. Let D = D1 × · · · × Dn. Agent i knows his value vi and the distributions D−i from which
the other agents’ valuations are drawn, but he does not observe the realizations of these random
draws.

A collection of possibly randomized bidding functions bi : Vi → Bi, for 1 ≤ i ≤ n, is a mixed
Bayes-Nash equilibrium if for every agent i, every valuation vi in the support of Di, and every pure
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deviation b′i ∈ Bi,

E
v−i∼D−i

[
ui(bi(vi), b−i(v−i), vi)

]
≥ E

v−i∼D−i

[
ui(b

′
i, b−i(v−i), vi)

]
.

The Price of Anarchy with respect to mixed Bayes-Nash equilibria is the ratio between the
expected optimal social welfare and the expected welfare of the worst mixed Bayes-Nash equilibrium

PoAMBNE = sup
b: MBNE

Ev∼D[OPT(v)]

Ev∼D[SW(b(v))]
.

Theorem We are now ready to prove that relaxed smoothness also implies a bound on the Price
of Anarchy for Bayes-Nash equilibria.

Theorem 6. If a mechanism M = (f, p) is relaxed (λ, µ1, µ2)-smooth then the Price of Anarchy
for mixed Bayes-Nash equilibria is at most

max{µ1, 1}+ µ2
λ

.

Proof. Consider a mixed Bayes-Nash equilibrium b. For each agent i let B−i denote the distribution
over bids b−i ∈ B−i induced by b−i and D−i. Let B denote the distribution over bids b ∈ B induced
by b and D.

In the Bayesian setting Definition 3 is not directly applicable because the deviating bid ai in
this definition may depend on v−i, which is not known to agent i. What we will do instead is the
following: We let each agent i “hallucinate” valuations v̂−i for the agents other than i, where the
“hallucinated” valuations v̂−i are distributed according to D−i, and let him use the corresponding
deviations.

Since no agent wants to deviate to the resulting randomized bid we obtain the following lower
bound on the social welfare:

E
v∼D

[
SW(b(v))

]
=

n∑
i=1

E
vi∼Di

[
E

b−i∼B−i

[
ui(bi(vi), b−i, vi) + pi(fi(bi(v), b−i), b−i)

]]

≥
n∑
i=1

E
vi∼Di

[
E

b−i∼B−i

[
E

v̂
(i)
−i∼D−i

ui
(
ai(vi, v̂

(i)
−i,B−i), b−i, vi

)]]

+ E
vi∼Di

[
E

b−i∼B−i

[
pi(fi(bi(v), b−i), b−i)

]]
= E

v∼D

[ n∑
i=1

E
b−i∼B−i

[
ui
(
ai(vi, v−i,B−i), b−i, vi

)]]
+ E

vi∼Di

[
E

b−i∼B−i

[
pi(fi(bi(v), b−i), b−i)

]]
≥ E

v∼D

[
λ ·OPT (v)− µ1 ·

n∑
i=1

E
b∼B

[pi(fi(b), b−i)]− µ2 ·
n∑
i=1

E
b∼B

[bi(fi(b))]

]
+ E

vi∼Di

[
E

b−i∼B−i

[
pi(fi(bi(v), b−i), b−i)

]]
= λ E

v∼D
[OPT (v)]− (µ1 − 1)

n∑
i=1

E
b∼B

[pi(fi(b), b−i)]− µ2
n∑
i=1

E
b∼B

[bi(fi(b))],
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where the first equality uses quasi-linearity of the utilities, the following inequality uses the equi-
librium condition, the second equality uses stochastic independence and linearity of expectation,
the next inequality uses the smoothness guarantee, and the third and final equality follows by
rearranging terms.

Since agents do not overbid this can be rearranged to give

(1 + µ2) E
v∼D

[SW(b(v))] ≥ λ E
v∼D

[OPT (v)]− (µ1 − 1) E
v∼D

[ n∑
i=1

pi(fi(b(v)), b−i(v))

]
.

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and the result follows
by rearranging terms. For µ1 > 1 we use that Ev∼D[pi(fi(b(v)), b−i(v))] ≤ Ev∼D[vi(fi(b(v)))] =

Ev∼D[SW (b(v))] to lower bound the second term on the right hand side and the result follows by
rearranging terms.
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