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Abstract

This paper studies market clearing in matching markets. The model is non-cooperative,
fully decentralized, and in Markov strategies. Workers and firms bargain with each
other to determine who will be matched to whom and at what terms of trade. Once
a worker-firm pair reach agreement they exit the market. Alternative possible matches
affect agents’ bargaining positions. We ask when do such markets clear efficiently and
find that inefficiencies — mismatch and delay — often feature. Mismatch occurs whenever
an agent’s bargaining position is at risk of deteriorating. Delay occurs whenever agents
expect their bargaining position to improve. Delay can be extensive and structured with

vertically differentiated markets endogenously clearing from the top down.
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1 Introduction

We study thin matching markets, particularly labor markets, featuring decentralized nego-
tiations that involve heterogeneous agents from both sides of the market. We capture one
dimension of heterogeneity through constraints restricting who can match to whom. Firms
might be able to employ only workers they have interviewed; some positions might only be
filled through referrals; and some people may simply be unqualified for some positions. On
top of this, we allow for variability in how well-suited different workers are to fill different
vacancies. We take these matching constraints and heterogeneities as given, and ask when
decentralized negotiations can clear markets efficiently.

We assume players exit the market once they reach an agreement. Exit shapes the set of
alternative matches available to players remaining in the market. We contend that in many
decentralized labor markets agreements are reached sequentially, and the market context in
which the remaining workers and firms bargain evolves. For instance, when negotiating with
a firm, a worker might use the possibility of taking a position with another firm to achieve
a higher wage. But this bargaining stance may be undermined if that position is filled by
a different worker. When the changing market context affects the terms that are agreed in
equilibrium, we find that markets fail to clear efficiently. People delay when they expect the
market to evolve in their favor, and match inefficiently when they expect the market to evolve
against them.

In our model there are multiple buyers, multiple sellers, matching is one-to-one, and each
buyer-seller pair generates some pair-specific surplus if matched. Time is infinite, and in each
period a single agent is selected at random to make a proposal. The proposer chooses an
unmatched player and offers a split of the surplus that the pair would generate if matched.
If the offer is accepted, the pair exits the market. If it is rejected, the pair remains in the
market. While non-stationarities created by matched pairs exiting complicate matters, the
endogenous evolution of the market is central to our results. We find it is this that creates
scope for bargaining frictions, and we investigate the role of market evolution in driving
inefficiencies, both mismatch (inefficient matching) and delay.

We study the Markov perfect equilibria (MPE) in which strategies only depend on the set
of players who remain in the market. Restricting attention to such stationary equilibria is

common in the bargaining literature,! can be motivated on grounds of complexity,? and has

1See, for example, Rubinstein and Wolinsky (1985, 1990), Gale (1987), Polanski and Winter (2010), Abreu
and Manea (2012b).

2Maskin and Tirole (2001) argue for considering MPE on the basis of complexity. Further, the conclusions
of Bhaskar, Mailath and Morris (2013), which are reached in a more general setting and can be applied to our
model, imply that only MPE are purifiable. Finally, Sabourian (2004) provides additional motivation specific
to bargaining in markets.



received some experimental support.?

Our primary focus is on the existence of an efficient MPE (that is, an equilibrium in
which buyers and sellers are matched to maximize total surplus) when players are patient (or
equivalently, interactions are frequent). We consider equilibria that are efficient for sufficiently
patient players, as well as limiting equilibria that only become efficient as the discount factor
converges to 1. Interpreting the probability that a player is selected to make an offer as
the bargaining power of that player, suppose the surplus generated by an efficiently matched
pair is split in proportion to these bargaining powers. We refer to these payoffs as agents’
Rubinstein payoffs, as they would obtain in the limit if all efficient pairs bargained bilaterally.*
Our first main result establishes that an efficient MPE exists for sufficiently patient players
if and only if Rubinstein payoffs are in the core of the market (that is, if no pair of players
can deviate and benefit by matching to each other when all players receive their Rubinstein
payoffs). Moreover, if this condition holds, all players receive their Rubinstein payoffs in the
limit as they become arbitrarily patient. If it is a mutual best response for players to ignore the
market context and bargain bilaterally with each other when discount factors are sufficiently
high, there is an MPE in which players do so. As a result, players match efficiently. If not,
there is no efficient MPE when players are sufficiently patient. Thus, whenever the market
context matters and players’ bargaining positions evolve as others exit the market, there does
not exist an efficient MPE.

To gain some intuition for why there is no efficient MPE when Rubinstein payoffs are
outside the core, note that if all players were to just bargain bilaterally with their core matches
they would receive their Rubinstein payoffs, and there would then be at least one player ¢ who
would prefer to deviate and reach agreement with some other player j. If so, in order to
preserve efficiency, this alternative match would have to serve as a binding outside option,
bounding i’s payoff while not being exercised. However, if ¢ and j never agreed, then i’s
efficient partner would benefit by waiting for j to exit the market and by agreeing with ¢ only
when his bargaining position decays. Thus, in such instances, there is no equilibrium in which
all players agree with their efficient partners with certainty.

This intuition also identifies a limitation of the aforementioned efficiency result. If j never
exits before 7 in equilibrium, then ¢’s efficient partner cannot weaken ¢’s bargaining position by

delaying. So when there is no danger of binding alternative matching opportunities being lost,

3Agranov and Elliott (2017) investigate bargaining in a laboratory experiment in an environment closely
related to the one we study. The MPE organize the data well and substantially better than standard alternative
theories and in particular efficient perfect equilibria. They find empirical support for several predictions we
make in this paper.

4We refer to these payoffs as Rubinstein payoffs as they are the unique limiting equilibrium outcome in
bilateral bargaining settings with random proposers, the classical generalization to random proposers of the
bilateral bargaining setting with alternating offers analysed in Rubinstein (1982).



we might expect there to be an MPE that is inefficient away from the limit, but that exhibits
vanishingly small inefficiencies in the limit as players become arbitrarily patient. Indeed, in a
two-player setting, Sutton (1986) establishes that, as agents become perfectly patient, outside
options can bound payoffs from below while being exercised with a probability converging to
zero. Investigating this possibility, we look for MPE that exhibit vanishing inefficiencies in
the limit. We begin by studying MPE that exhibit no delay or mismatch in the limit. In such
equilibria, agents may provide binding alternative matching opportunities and never exit the
market because in equilibrium they are unmatched. In this case, a modified version of our
main result continues to hold in the limit, and MPE will exhibit no delay or mismatch in the
limit only if suitably modified Rubinstein payoffs belong to the core. Permitting delay in the
limit, there is another way in which binding alternative matching opportunities might affect
payoffs without resulting in mismatch in the limit. This requires players to endogenously
exit in sequence. In particular, all players except one efficient pair may choose to delay with
probability one in the limit while waiting for this pair to reach agreement and exit the market.
If so, the agreeing pair of players would have alternative matching opportunities that are
never lost before their exit. Consequently, their bargaining positions would not evolve; and
alternative matches can bound the payoffs of this pair of players while being exercised with a
vanishingly small probability in the limit. It might be reasonable to postulate that no such
equilibrium would ever exist as it requires delay in the limit from pairs of players who expect
to be matched with probability one in the limit. Perhaps surprisingly, endogenous delay of
this form, resulting in sequential exit from the market, can occur in equilibrium. With four
players and equal bargaining powers we find necessary and sufficient conditions for such an
MPE to exist. The market must be highly vertically differentiated and clear from the top.
This is consistent with anecdotal evidence from high-skill labor markets. In sports and in the
movie industry, markets are sometimes reported to be held up until a star is matched.

Delay is possible in our model despite information being perfect because the order of play
is random. As time progresses and matched pairs exit the market, the strength of players’
bargaining positions evolves stochastically. Equilibrium delay stems from favorable beliefs
about the market evolution (for instance, beliefs about tempting alternative matches for their
bargaining partners exiting the market). In limiting equilibria with sequential exit, such
favorable beliefs are driven by vanishingly small probabilities of an inefficient match occurring,

which increase the expected payoffs of all delaying players.

Related Literature: We study decentralized bargaining in thin markets. The prototypical
market we intend to speak to is a labor market for high skill individuals. Such markets are
inherently thin, and characterized by heterogeneities and by decentralized negotiations. Our

approach is closest to the literature analyzing non-cooperative bargaining in thin markets.



This literature takes the coalitional bargaining approach, but restricts the coalitions which
can generate surplus and reach agreement to pairs of players. As there are large literatures
considering coalitional approaches to non-cooperative bargaining and bargaining in large mar-
kets, we do not attempt a complete review of these. Instead, we just highlight some of the

most closely related work.

Because of the additional generality, coalitional bargaining models are typically a better
fit for political negotiations and committee decision making. The closest papers to ours in
this literature, Moldovanu and Winter (1995) and Okada (2011), also link cooperative and
non-cooperative approaches. Moldovanu and Winter consider a bargaining model with no
discounting and deterministic proposer orders. They find conditions on the proposer order for
a core outcome to be reached in a stationary equilibrium.’ The indeterminacy of equilibrium
bargaining outcomes caused by the lack of discounting is critical for their analysis. Our
conclusions rule out this indeterminacy by studying the limit of a model in which delay
costs vanish, and can nevertheless relate players’ bargaining power (or equivalently, proposal
probability) to the existence of an efficient MPE. Like us, Okada finds conditions under which
no efficient MPE exists, and relates these conditions to the core. However, in the assignment
economies we consider, the conditions he identifies are generically violated when there are
two or more players on each side of the market, implying that an efficient equilibrium never
exists.® In contrast, an efficient MPE exists for a positive measure subset of the parameter
space in our decentralized bargaining model. Moreover, even when such conditions fail, we

show that there can be equilibria with vanishing inefficiencies as delay costs become small.

A vast literature has considered decentralized bargaining in large markets, meaning either
that the number of players is infinite or that agreeing players are replaced by exact repli-
cas.” Seminal work includes Rubinstein and Wolinsky (1985), Gale (1987), and Binmore and
Herrero (1988). The literature has focused on deriving conditions for equilibrium outcomes
to approximate competitive equilibria (or equivalently, core outcomes) when the frictions get
small. Lauerman (2013) provides a tight characterization of when these two outcomes can be
expected to coincide. Most papers in this literature study steady state outcomes,® but Moreno
and Wooders (2002) is an exception. As in some equilibria of our model, they find delay can
occur in the limit. But unlike our model, equilibrium outcomes in their setting are always

competitive as players become infinitely patient.

5Their main conclusion establishes that a core outcome is reached when there is a stationary equilibrium
that holds for any proposer order. In our model, except in trivial cases, an efficient equilibrium never exists
for all proposer probabilities.

6See Section 5 of the online appendix for a more detailed comparison.

"See Manea (2013) for how the replica assumption relates to steady state outcomes in large markets.

8Some examples, with a particular focus on network bargaining, include Atakan (2010), Manea (2011) and
Polanski and Lazarova (2014).



The most closely related work to ours models non-cooperative bargaining without replace-
ment in thin markets. This literature includes Rubinstein and Wolinsky (1990), Corominas-
Bosch (2004), Gale and Sabourian (2006), Polanski (2007), Polanski and Winter (2010),
Abreu and Manea (2012a, 2012b), Kanoria et al (2014), and Polanski and Vega Redondo
(2014). These papers embed different degrees of coordination into their bargaining proto-
cols. Corominas-Bosch (2004) investigates the existence of competitive equilibria in markets
with homogeneous surpluses (a link in the bipartite network indicates that the two players
would generate a unit of surplus if matched) and alternating non-exclusive offers. The setup
differs from the one considered here, and requires a high degree of coordination both at the
offer stage (as players on one side propose simultaneously to everyone on the other side of
the market) and at the acceptance stage (as more than one assignment may be possible).
Polanski (2007) also considers a setting with homogeneous surpluses and strong coordination
(as a maximum matching is used to select which players bargain bilaterally each period); and
links subgame perfect equilibrium outcomes to the Dulmage-Mendelsohn decomposition of the
bipartite network.

The closest papers to ours are Gale and Sabourian (2006) and Abreu and Manea (2012a,
2012b). Gale and Sabourian (2006) differs from us insofar as all players are simultaneously
matched into pairs before an agent in each pair is selected to be the proposer with equal
probability. They include heterogeneous surpluses, but assume that different sellers have
identical objects to sell, so that a given buyer generates the same surplus with all sellers.
They provide an example in which all MPE payoffs are non-competitive and, therefore, the
market outcome is inefficient.

Abreu and Manea (2012a, 2012b) consider environments with homogeneous surpluses in
which players cannot necessarily be partitioned into buyers and sellers (implying that a core
match might not exist or be unique). One of the extensions of Abreu and Manea (2012a)
analyzes a protocol close to the one we consider, but does not restrict attention to stationary
equilibria. Their conclusions prove the existence of non-stationary equilibria that converge
to efficiency as the time elapsed between offers vanishes. Abreu and Manea (2012b), like
us, focuses on limiting stationary equilibria, but in the context of a bargaining protocol in
which players are randomly paired to bargain.” As in Gale and Sabourian (2006), an important
contribution of their paper is to provide examples in which all MPE are inefficient. While both
Gale and Sabourian (2006) and Abreu and Manea (2012b) identify interesting and important
features of market inefficiencies, neither provides general conditions to ensure that an efficient
limiting stationary equilibrium exists or does not exist. But, such conditions are important

in order to assess the extent of bargaining frictions in markets. To fulfill this goal, we select

9Each period, a link is selected according to some probability distribution, and then a player on that link
is selected with equal probability to propose.



a protocol that favours the existence of efficient equilibria, and introduce a slightly stronger
notion of efficiency (as we explain in Section 5).

In protocols that select links to determine the proposer, when an inefficient link is selected,
players must either disagree or match inefficiently. Allowing players to choose to whom they
make an offer prevents delay and mismatch from being necessary features of equilibrium
play and simplifies the characterization of efficient MPE. In the conclusions, we make this
point explicitly by discussing an example contained in Abreu and Manea (2012b). Given
the possibility of inefficiency, we select a bargaining protocol that is predisposed to admit
an efficient MPE. To clarify the role of bargaining frictions, we further restrict attention to
environments in which the surplus maximizing match exists and is unique. This alleviates
coordination problems that might arise,'” and is the generic case whenever the market can
be partitioned into two sides. Our results clarify that disagreement is possible even between
players who are matched in the unique efficient match, and that the multiplicity of equilibria
is driven by the underlying coordination game and not by the multiplicity of core matches. As
is customary in the literature, we allow bargaining frictions, represented by the time elapsed
between offers, to get small. Despite making these modeling choices, we find inefficiencies to

be a common feature in these market and we find conditions for these to occur.

Roadmap: The next two sections introduce the economy (Section 2) and the directed-search
bargaining protocol analyzed (Section 3). Section 4 defines solution concepts and presents the
baseline characterization. Section 5 introduces our efficiency criteria and relates them to wel-
fare. Several examples preview the main conclusions in Section 6. All the main contributions
on stationary equilibrium welfare are in Section 7. The relationship to the search literature
and alternative bargaining protocols are discussed in Section 8. All the proofs of propositions
are in the appendix, while the proofs of remarks and several additional robustness checks can

be found in the online appendix.

2 The Assignment Economy

An assignment economy consists of a set of players N = {1,...,n} and an n by n matrix S
characterizing the surplus that can be generated by any two players in the economy. The 77
entry of S, s;; > 0, denotes the surplus generated when players ¢ and j are matched. The
surplus matrix S can be interpreted as a network. The network is assumed to be undirected
(so that s;; = s for any 4,j € N) and bipartite (so that, for some partition (P, %) of the
set of players N, s;; = 0 whenever 7,5 € P, for k € {1,2}). The two assumptions imply that

the surplus generated in a match is independent of the identity of the player who initiates the

10Gection 2 in the online appendix for a more detailed comparison on this point.



match, and that surplus can be generated only by players of different types. By assumption,
workers generate surplus only with firms, men generate surplus only with women, and buyers

generate surplus only with sellers.

A match is a map p: N — N such that pu(u(i)) =i for any i € N. If pu(i) = i, we say that
player ¢ is unmatched. If p(i) = j, then ¢ and j generate surplus s;;. Let M (N) denote the
set of possible matches for a given set of players N. An efficient match n for an assignment

economy S is a match that maximizes surplus

2 Sin(i) = Max {Z Swu')}-

iEN MEM(N)

The core of the market consists of the set of match and payoff vector pairs (p, u) satisfying:

(1] wi 4 vy = Sipg) for any i € N,
2] w; +uj > s;; for any i,j € N.

Shapley and Shubik (1971) establish that any core match is an efficient match, and that
a unique efficient match exists when no two positive links have the same value.!’ As the
condition for uniqueness is generic, our analysis restricts attention to economies with a unique
efficient match. Thus, throughout the analysis we refer to the unique efficient match 7 as the
core match.

Although condition [2] rules only out the existence of profitable pairwise-deviations, Shap-
ley and Shubik (1971) establish that this suffices to rule out the existence of profitable
coalitional-deviations. The lowest and the highest payoff that player ¢ can receive in a core

outcome will be denoted by w; and ;.

3 Matching and Bargaining

The analysis considers a non-cooperative, infinite-horizon bargaining protocol in which players
choose whom to bargain with. All players discount the future by a common factor ¢ € (0, 1).
At the beginning of the game, all players are active, but they can become inactive as the
game unfolds. In every period, a single player i € N is selected at random to be the proposer,
with probability p;, > 0. If proposer i is active, he can make an offer to at most one other
active player. We adopt as a convention that a player failing to make an offer chooses to offer
to himself. An offer from player i to a player j # i consists of a surplus split z;; € [0, s;5],

where z;; denotes the amount of surplus generated by the new match, s;;, that he intends to

HFormally, the efficient match is unique if s;; > 0 implies sy # s;; for all kl # ij.

7



leave to j. The player receiving the offer then has a binary choice, to accept (1) or reject (0)
the offer. If j rejects the offer, both players remain active, and the game moves to the next
stage. Otherwise, players ¢ and j become inactive, and their final payoffs are determined by
the discounted value of the shares that they have agreed upon. In particular, the value at the

beginning of the game to players 7 and j of reaching an agreement z;; at stage ¢ is
Uj = 5t_11’ji and wu; = (St_l(sz'j - sz)

In the next stage the proposer is selected according to the same probability distribution.'?
If an inactive player is selected the game moves to the subsequent period. The game ends
when the surplus generated by any pair of active players is zero. The structure of the game is
common knowledge among players. Information is perfect. Thus, all players observe any offer

previously made and the corresponding acceptance decision.

Histories and Strategies: Denote the set of histories at date ¢ observed by any player after
the new proposer has been selected by H' = N x [N2 x R, x {0,1}]""". Such histories consist
of the identity of the current proposer, the identities of past proposers, whom they offered to,
the offer they made and whether the offer was accepted or rejected. Denote the set of histories
of length t observed after an offer has been made by R* = N x R, x H'. Let R = U;R" and
H = U,H". Finally, let H; denote the subset of histories in H in which player 7 is the proposer,

and let R; denote the subset of histories in R in which player ¢ is the responder.

We say that player ¢ € N is active at history h € H if player ¢ has never accepted an offer
and has never made an offer that was accepted. For any history h € H, let A(h) C N denote
the set of active players after history h. Throughout, A(:) denotes the simplex of a finite set.
The strategy of an active player ¢ € A(h) when making an offer consists of a pair of functions,

p; and y;, such that
pi(h) € A(A(R)) and x;(h) € RAM! for h e H;.

The first map p;(h) describes the probability distribution over players who may receive an
offer from ¢ at any given history, while the second map x;(h) identifies the amount of surplus
that ¢ would offer to each potential partner. The strategy of an active player i € A(h) when

receiving an offer instead consists a single function, «;, such that

Oéz(h> c [O, ].] for h € Rz

12Results are unaffected by updating proposal probabilities conditional on being active. However, we opted
to keep the expected time to propose of each player stationary across periods.



The map «;(h) describes the probability that an offer is accepted. Strategy profiles are denoted
by omitting the dependence on players, (p, X, ) = {pi, Xi> % };cn-

4 MPE Existence and Characterization

The analysis restricts attention to stationary Markov perfect equilibria in which strategies

depend only on the set of active players in the game.

Definition 1 A subgame perfect equilibrium (p, x,«) is a Markov perfect equilibrium (MPE)
if strategies coincide whenever active player sets coincide. That is, for any two histories
h,h' € H such that A(h) = A(R'):

[1] p(h) = p(h') and x(h) = x(I'),

2] a(i,z|h) = a(i,z|h') for any offer (i,2) € N x R,.

Strategies are stationary as calendar date is not part of the Markov state. As we only consider
stationary MPE, we often omit the word “stationary” and make the dependence on the active
player set explicit (thereby omitting the dependence on histories). Notation (p‘s, X°, oz5) will
occasionally be used to clarify that equilibrium strategies may also depend on the discount
factor 9. But, we omit this dependence when redundant.

Some of the results consider MPE behavior in the limit as the discount factor converges

to 1. To simplify the discussion we introduce a notion of limiting equilibrium.

Definition 2 A limiting Markov perfect equilibrium (LMPE) (p, X, @) is the limit of a selec-

tion {p5, x°, a‘;}ézo from the MPE correspondence as  converges to 1.

Throughout the text the expression equilibrium will refer to an MPE, and the expression
limiting equilibrium will refer to an LMPE. In order to simplify notation, we invoke the

following two conventions for all 7,7 € A
A—i = A\{Z} and A—ij = A\{Z,j}

For any MPE (p, x,«) and any set of players A C N, let m;;(A) denote the agreement

probability between players i € A and j € A_; when i is selected to make an offer,

A = pUlA) oyl ulA)A),
Pr(i offers to j) Pr(y a\crcepts)

and let m;;(A) denote the probability that i does not reach agreement when selected to make

an offer,

Ti(A) =1 =3 e mii(A).

9



Also, let V;(A) denote the expected payoff — or equivalently value — of an active player i at
the beginning of a subgame in which the set of active players is A, and let v;(A) denote the
MPE value of an active player ¢ when he is chosen to be the proposer.

We begin by proving equilibrium existence and by providing a preliminary characteriza-
tion of equilibrium bargaining values. For convenience, let py = > jeAbj- The character-
ization allows for mixed strategy equilibria. Fix an active player set A and consider any
Markovian strategy profile (p,x,«) and its associated values and agreement probabilities
(m, V) € [A(A) x R]", where we omit the dependence on A for clarity. As in numerous
bargaining models, subgame perfection dictates that a proposer never offers to another player
more than that player’s present discounted value of staying in the game. As players can choose
whom to bargain with, proposers necessarily offer to those players who leave them with the
highest surplus, argmax;. 4 . {si; — dV;}, whenever such surplus exceeds the value of remain-
ing unmatched, 0V;. Formally, we define the value of proposing at active player set A for a
player ¢ € A by

v; = max{0V;, max;jea ,{s;; —V;}}.

It follows that for any active player set A C N, MPE values V(A) for any player i € A must

be a fixed point of the following system of value equations

Vi= pivi +2ea pil (w4 75)0V; _'_\Z:keA_ijﬂ-jké‘/i(A*jk)] + (1 =pa)dV; ,

no player proposes

i proposes j agrees with 7 or delays j agrees ;zrith k+i,j

for some profile of agreement probabilities 7(A) satisfying

7Tij:0 if vi>sij—5‘/jandj7éi,

a0 (1)
T = 0 if v; > 5‘/;

Proposition 1 An MPE exists. Moreover, {m(A),V(A)},cy is a profile of MPE values and
agreement probabilities if and only if it solves system (1) at any active player set A C N.

Existence is proved by applying Kakutani’s fixed point theorem. The result extends Propo-
sition 1 and Lemma 1 in Abreu and Manea (2012b) to environments in which players are
allowed to choose whom to offer to and in which the surplus generated in a match depends on
the identity of the players. While MPE are not unique, MPE values are uniquely determined
by MPE agreement probabilities.

The result implies that no player ¢ € A can delay with an active player set A in equilibrium
if there exists a player j € A such that 6V, 4+ 0V; < s;;. Thus, in any MPE displaying on-path
delay it must be that §V; 4+ 0V; > s;; at some on-path subgame. Moreover, as V; and V; are a

discounted weighted average of the possible future agreements ¢ and j can reach on-path, if ¢

10



and j delay they must collectively expect higher payoffs from delaying and letting the market

evolve than from reaching agreement now.

5 Efficiency, Welfare and Delay

Next, we introduce the two efficiency criteria and the notion of delay that will be analyzed in
the following sections. Let E denote the set of unmatched players in the core of the original
assignment economy, E = {i € N|n(i) =i}, and let C'(N) denote the set of possible active

player sets that may arise as core matches are removed from the game,
C(N)={AlA=VUen{i,n(0))} UE for some M C N}.

We are interested at active player sets in C'(N) as only such subgames can arise with positive
probability in equilibria in which players eventually match efficiently. The properties of the
core imply that the core partner of every player must coincide at all active player sets A €
C(N).

Consider a social planner who is able to impose terms of trade and agreement probabilities,
but is otherwise constrained by the environment of the game. For a high enough discount
factor, this constrained social planner will implement only efficient matches and will do so at
the first available opportunity. An MPE with these features is said to be strongly efficient. It
requires that every player who is matched in the core of the assignment economy agrees on
a division of surplus with his core partner at the very first opportunity. One way in which
surplus can be lost is through delay. However, when delay costs are small (that is, when ¢ is
close to 1) little surplus is dissipated by deferring agreements. We therefore also consider a
weaker efficiency criterion which only requires that nobody ever matches with players other
than their core partner. We refer to these MPE as weakly efficient MPE. Results then establish
that all players must eventually agree on a division of surplus with their core partners in any
such MPE.'3

Definition 3 Consider an MPE (p, x,«). If for all A € C(N):

o Tiniy(A) =1 for alli € A, the MPE is strongly efficient;

o Tinei)(A) + 7 (A) =1 for alli € A, the MPE is weakly efficient.

13In terms of utilitarian welfare, for all § sufficiently high, strongly efficient MPE maximize the ex-ante sum
of expected payoffs, whereas weakly efficient MPE will not unless they are also strongly efficient. Even in
strongly efficient MPE, however, the sum of values is necessarily below total surplus, as it takes time for the
core match to form. Moreover, in a strongly efficient MPE all active player sets in C(/N) obtain with positive
probability. But, this is not the case for weakly efficient MPE, as the market may clear sequentially.
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Neither efficiency criterion is satisfied when an inefficient match obtains with positive proba-
bility. As we assume § < 1, this may rule out instances in which an inefficient match occurs
with vanishingly small probability as § — 1. To address these, we apply the two efficiency
criteria to the limiting equilibria. For convenience, given a profile MPE (p‘S, X‘S,a‘s) for all
6 < 1, define limiting agreement probabilities as 7;;(A) = lims_; 7);(A) for all i,j € A and
the limiting values as V;(A) = lims_,; V?(A) for all i € A (when these limits exist).

Definition 4 Consider an LMPE (p, x, ). If for all A € C(N):
o Tinw)(A) =1 foralli € A, the LMPE is strongly efficient;
o Tin(i)(A) +7i(A) =1 for alli € A, the LMPE is weakly efficient.

While we establish that both strongly and weakly efficient LMPE generate the same surplus
in the limit, it is instructive to separate them for the purpose of classifying limiting efficient
equilibrium play. The strong and weak efficiency taxonomy parses efficiency loss through
inefficient matching versus inefficient delay. When applying our efficiency criteria to LMPE,
it is worthwhile noting that active player sets outside C'(N) may now occur with positive
probability for all § < 1.

As customary, refer to the sum of ex-ante values, > ..\ Vi(N), as utilitarian welfare. The
next proposition establishes that utilitarian welfare converges to total surplus, D ;. ySinei), as
0 — 1 in any weakly efficient LMPE. This motivates our efficiency criterion by showing that

no welfare can be lost from delay in any such equilibrium.

Proposition 2 Any weakly efficient LMPE maximizes surplus,

ZieNVi(N) = ZieNSin(i)'

The result is intuitive and relies on delay costs vanishing at a sufficiently fast rate as 6 — 1.
Its proof also establishes why in any MPE all players cannot simultaneously delay with posi-
tive probability at some active player set. Since weakly efficient LMPE maximize utilitarian
welfare, Proposition 2 implies that these equilibria are always “asymptotically efficient” as de-
fined in Abreu and Manea (2012a, 2012b). In principle though, asymptotically efficient LMPE
may exists in which players match inefficiently at active player sets that belong to C'(N), but
that do not materialize on the equilibrium path.'* Limiting weak efficiency refines asymptotic

efficiency by requiring the equilibrium to be efficient in the limit at any active player set in

HM1f the short side of the market has at most two players, min; |P;| = 2, then all LMPE must be weakly
efficient in any core subgame A # N. Thus, all asymptotically efficient equilibria must be weakly efficient
LMPE. Moreover, any asymptotically efficient equilibrium, in which all players in A\E agree with positive
probability in every subgame A € C(N), must be a weakly efficient LMPE.
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C(N), and not just at those active player sets which are reached with positive probability
on path.'” In doing so, it rules out asymptotically efficient equilibria which are sustained
by the threat of inefficient matching at some core subgame, instead requiring the consistent
selection of efficient equilibria throughout all subgames that can be reached following efficient
matching. Relative to earlier studies, the stronger welfare criterion allows a novel approach
which entails: disciplining limiting agreement probabilities in all core subgames; and then
exploiting the recursive structure of stationary equilibria to derive stronger implications on
efficient equilibrium payoffs and on their existence.

Our notion of equilibrium delay requires the existence of a player with a positive value

who chooses to forgo the option to make an acceptable offer with positive probability.
Definition 5 An MPE (p, x, «) displays delay if for some A C N and some player i € A

The definition applies only to players with a positive value, as it is immediate that players with
zero continuation value might well prefer to disagree. In Section 6, we present two examples

in which a player with a positive continuation value chooses to delay on the equilibrium path.

6 Examples

Before proceeding to the main analysis, consider a few examples to illustrate the model, the
solution concepts, the efficiency definitions and to preview some of the main conclusions. The
first example establishes that equilibrium mismatch can occur. The second shows how mis-
match inefficiencies can occur for § < 1, but disappear in the limit; so that there is a strongly
efficient limiting equilibrium. The third demonstrates on-path equilibrium delay, and the
fourth shows a weakly efficient limiting equilibrium in which players delay and endogenously

exit the market in a fixed sequence. These examples can be skipped.

Example 1: Consider an assignment economy populated by four players who propose with
equal probabilities. Surpluses in the market are as depicted in Panel I of Figure 1.

The unique efficient assignment matches player a to b and player ¢ to d whenever y < 200,
while it matches only player a to d when y > 200. Multiple core assignments exist at y = 200.
Proposition 1 can be used to derive MPE payoffs and strategies in this game for any discount

factor. To make the discussion more transparent, suppose that the discount factor is close to

5 Formally, asymptotically efficient MPE require the conditions defining weakly efficient LMPE to hold only
for active player sets A € C'(N) that materialize with positive probability on the equilibrium path, rather than
requiring the same conditions but for all A € C(N).
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Figure 1: Panel I displays the assignment economy. MPE agreement probabilities m;;(N) are
shown: in Panel II for y € [0, 100]; in Panel III for y € (100, 143]; in Panel IV for y € [144, 200];
in Panel V for y € (200,00). An arrow between two players represents a positive agreement
probability. A self-arrow represents a positive disagreement probability.

unity. When y < 100, players only make offers to their core partners. It is then as if each
player bargains bilaterally with their efficient partner and all players achieve an LMPE payoff
of 50. Given this no player is ever tempted to offer to anyone other than their core match.
These equilibrium offer strategies for active players A = {a,b, c,d} are shown in Panel II of
Figure 1.

For values of y € (100, 200), bilateral bargaining cannot be a solution. Indeed, if everyone
only offered to their efficient match, players a and d would both have a profitable deviation
to offer to each other. When y € (100,1000/7), players a and d randomize in equilibrium
between offering to their respective core matches and bargaining with each other (Panel I1T of
Figure 1). By offering to each other with positive probability, a and d reduce the continuation
values of their efficient partners. In equilibrium they do this until they are indifferent between
offering to each other and to their efficient partners. As y increases, this requires the strong
players to offer to each other with higher probability, and at y = 1000/7 they reach the corner
solution in which indifference requires them to offer to each other with probability 1. As y
grows further to y € [1000/7,200), players a and d continue to offer only to each other, and
still accept offers made by their respective core matches (Panel IV of Figure 1). There is now
mismatch with probability 1/2. Despite this inefficiency, the unique equilibrium is in pure
strategies. '

The final case is the one in which y > 200, and in which the efficient assignment matches
player a to d. If so, players a and d continue offering to each other with probability 1. However,
b and ¢ stop making offers to players a and d, as any acceptable offer would have to exceed the
entire surplus in the relevant relationship (Panel V of Figure 1). This change affects limiting

payoffs discontinuously. When y < 200, player b always makes an acceptable offer to a, leaving

6For 4 € (100,1000/7), in the limit as § — 1 players a and d make offers to their respective core partners
with probability ¢ = (2/2y2 — 600y + 50000 —)/(200 —y) € (0, 1), the unique LMPE payoff of players a and
d amounts to V, = (y + 50 4+ 50¢)/(3 4 ¢), while that of players b and ¢ amounts to V;, =V, —y + 100. For
y € [1000/7,200), the LMPE payoff of a and d further increases to V, = (y + 50)/3, whereas that of b and ¢
decreases to V, = (400 — y)/12.
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Figure 2: The plot depicts the payoffs, the MPE surplus and the efficient surplus as a function
of s,q = y for Example 1. The payoff of players a and d is denoted by V,, whereas V;, denotes
the payoff of b and c.

¢ to bargain bilaterally with d with probability 1/4. Thus, ¢ gets a limiting payoff of 50 with
probability 1/4. For y > 200, however, b stops making acceptable offers to a, and so ¢ receives
a payoff of 0 with certainty. Note that this discontinuity occurs precisely at the value of y for

which the core match is not unique. Figure 2 depicts LMPE values and surplus for all .

Example 2: The next example shows that alternative matches which cannot be lost can
act like outside options and bound payoffs while being exercised with probability 0 as players

become arbitrarily patient.
@ ® @, ©
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Figure 3: Panel I displays the assignment economy, while Panel II displays MPE agreement.
The limiting equilibrium shown is strongly efficient as lims_,; ¢° = 0.

Consider the three-player market depicted in Panel I of Figure 3. The unique core match of
the market matches players e and f, leaving ¢ unmatched. Assume again that players propose
with equal probability and that discount factors are sufficiently close to unity. If so, players
e and f offer to each other with probability 1 in the unique MPE, whereas player ¢ offers to
player f with probability ¢° € (0,1), where lims_,; ¢° = 0. Although ¢° — 0 in the limit, the
mere presence of player ¢ significantly affects bargaining outcomes. Players e and f would
share the 10 units of surplus evenly were they to bargain in solitude. However, because c

never exits the market, he acts like an outside option for f. Indeed, player f extracts the
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same limiting surplus that he would get were he to bargain in solitude with player e while
having access to an outside option with value 8. The limiting payoffs converge to 8 for player
f, to 2 for player e, and to 0 for player c¢. Even though player ¢ does not make an acceptable
offer in the limit, the equilibrium does not display delay by our definition, because the payoff
of player ¢ equals exactly 0 for all § sufficiently close to 1. While the equilibrium described
is not strongly or weakly efficient for < 1, because there is then positive probability of
mismatch, in the limit that probability converges to zero, and so the limiting equilibrium is

strongly efficient.'”

Example 3: In example 1, we saw that mismatch could arise when players feared loosing
valuable alternative matches. The next example shows that on-path delay can occur when

players expect the market to evolve in their favor.
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Figure 4: Panel I displays the assignment economy, while Panel II displays MPE agreement.
Player f delays with probability 1.

Consider the six-player assignment economy depicted in Panel I of Figure 4, in which agents
are selected to propose with equal probability. We show an equilibrium exists in which f delays
making offers with probability 1 when selected to propose if all other players are still active
in the market. Panel II of Figure 4 shows the equilibrium offer strategies in this MPE. To
solve this game, we use backward induction. Under the proposed equilibrium, if the protocol
selects agent e as the first proposer, agent e makes an offer to agent f that will be accepted.
If so, the remaining subgame coincides precisely with the game discussed in Example 1, so we
know the MPE payoffs for all the remaining players in the subgame. If agent c is selected as
the first proposer and agrees with d, then in the following subgame agents e and f bargain
bilaterally, as do agents a and b. If agents a or d are selected as the first proposers instead,
then agent b must remain unmatched, while agents ¢, e, and f are left in precisely the subgame
we considered in Example 2. Finally, if agent b is the first proposer, he agrees with a, and
players c, d, e, and f are left in a subgame. While we have not solved this subgame yet, in
the unique MPE all players offer to their efficient partner like in Example 1. Limit payoffs for
¢,d,e and f are then 50,50,5 and 5. With these subgames in mind, it is easy to write down

"For § close to 1, in the unique MPE of this example we have that V.(N) = 0, V.(N) = (266 — 24)/6,
Vi(N) =8/5 and q = (276% — 635 + 36) /(1352 — 12).
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the value equations for the six agents and solve them. For instance, the value equation for

agent ¢ simply amounts to

V(N) = p[ 20Vi(E) +0Vilc,d) + (100 — 6Va(N)) + 8Vi(E)) + OVL(N)],

a or d propose b proposes ¢ proposes e proposes f delays

where V,(&;) denotes the value of player ¢ in Example ¢ € {1,2}. Solving the value functions
establishes that no player has a profitable deviation from the proposed strategies and that
player f must delay for all sufficiently high values of §. Taking limits as 6 — 1 the payoffs
of the six players converge to V (V) = (55/3,230/3,230/3,55/3,13/2,7/2). Agents a through
d achieve the same limiting values as in Example 1. The additional option available to ¢ (of
matching with f) does not improve ¢’s terms of trade as it never binds. Nevertheless, the
option of matching to ¢ incentivizes f to delay. There is positive probability that a and d will
reach agreement first, and in this case f’s bargaining position with e improves. While such
threats are factored into the limiting payoff of e, and f ends up indifferent between delaying
and making an offer to e when selected to propose first, f must delay with certainty to extract

the maximum possible equilibrium value out of his potential future outside option.'®

Example 4: In example 1, alternative matches which were lost with positive probability did
not act like outside options; in example 2 instead, alternative matches which never exited the
market did act like outside options with limiting patience. The final example shows that there
is another way in which matches can act as outside options without distorting trade. There
can be sequential exit, in that all but one pair of players delay with probability 1 in the limit.
For those players everyone else waits for, alternative matches never exit the market before

them and can act like outside options.

T afT e

100 10

oG © e
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Figure 5: Panel I displays the assignment economy, while Panel II displays MPE agreement.

The LMPE features sequential exit. As lims_,; ¢° = 0, in the limit ¢ and d wait for a and b to
reach an agreement before reaching an agreement themselves.

8Delay in this example is driven only by the endogenous evolution of bargaining positions. Players can
choose whom to bargain with (which implies that no player has to delay to be matched to his equilibrium
partner), and the efficient match is unique (which shuts down possible coordination problems among players).
In Section 2 of the online appendix, we show that when multiple efficient matches exist, delay can arise just
because players fail to coordinate on one of the efficient matches.
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Consider the market depicted in Panel I of Figure 5. This market is vertically differentiated.
Both b and d generate a higher surplus with a than ¢, while both a and ¢ generate more surplus
with b than d. Vertical differentiation is so strong that the match between a and b generates
ten times more surplus than the match between ¢ and d. The efficient match is assortative,
and matches a to b and ¢ to d. There is no strongly or weakly efficient MPE for 6 < 1, and
no strongly efficient LMPE in this example. There is, however, a weakly efficient LMPE. For
high enough ¢ < 1 there is an MPE in which player ¢ delays with probability 1, player d agrees
with a with probability ¢° > 0 and delays with probability 1 — ¢°, while a and b always agree
with each other. Moreover, lims_,; ¢° = 0, so in the limit ¢ and d both delay with probability 1
and wait for a and b to reach agreement before bargaining with each other. The market thus

clears from the top. The limit payoffs of ¢ and d are 5, a receives 80 and b gets 20.

7 MPE Efficiency and Frictions

We now present the main conclusions on equilibrium welfare. The analysis begins by charac-
terizing payoffs in any efficient MPE and by deriving necessary and sufficient conditions for
the existence of such MPE for ¢ close to 1. These conditions relate the primitives of the bar-
gaining model to the core of the assignment economy. The second part of the section derives
similar conclusions for limiting equilibria, and identifies when alternative matches can serve as
outside options affecting bargaining outcomes without distorting trade. Broadly, the analysis
establishes that inefficiency is a necessary feature of all MPE in which players’ bargaining
positions evolve as others reach agreement. An efficient MPE exist only when each pair of effi-
ciently matched players can bargain in isolation, ignoring the market context, without having
a profitable deviation (outside options provided by alternative matching opportunities cannot
bind). The results for limiting efficient MPE provide the same message, but are more subtle.
Agents cannot have binding temporary outside options, provided by matching opportunities to
players who may exit the market before them, but can have binding permanent outside options,

provided by matching opportunities to players who never exit the market before them.

Efficient Equilibria and Payoffs: To state results, it is useful to introduce three relevant
payoff profiles. The first of these identifies the LMPE values that players would achieve while
bargaining bilaterally with their core match. For any player i € N, let o; denote the Rubinstein

payoff of player i,
Pi

0= ———o
Di 1 Pn(s)

Sin(i)-

The second profile identifies the highest payoff that players could achieve while offering to

players that are unmatched in the core of the assignment economy. For any player ¢ € N, let
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w; denote the outside payoff of player 1,
Ww; = maneEUi Sij‘

In the bargaining game, players that are unmatched in the core act as permanent outside
options in efficient equilibria, as they never exit the market. The third and final profile
identifies the LMPE payoffs that players would achieve while bargaining bilaterally with their
core match when facing permanent outside options equal to w (Shaked and Sutton (1984),
Sutton (1986), Binmore and Herrero (1988)). For any player i € N, let 6; denote the shifted
Rubinstein payolff,

0= SinG) — Wiy I wya) = o
o otherwise

Outside options cannot bind for both players in a core match. If they did, an alternative match
that generates a weakly higher surplus would be feasible (as outside options are unmatched
in the core). But, that would contradict the optimality of the core match or its uniqueness.
While we will identify necessary and sufficient conditions for the existence of an MPE
which is efficient, it will be helpful to highlight two potentially separate sources of distortions,
namely, inefficient matching and delay in reaching agreements. Both distortions are driven
by the endogenous evolution of bargaining power that results from the random order of play.
But, whereas mismatch is necessarily a hard friction, as it permanently destroys surplus,
delay can be a soft friction, in that its effects on welfare can become negligible when discount
factors are sufficiently close to unity. Proposition 3 establishes that delay cannot be the sole
source of frictions in the model, as mismatch is necessary for delay. Pinning down weakly
efficient equilibria thus amounts to identifying strongly efficient equilibria. The proposition

also characterizes equilibrium payoffs in any efficient MPE.

Proposition 3 Any weakly efficient MPE is strongly efficient. Moreover, in any subgame
A € C(N) of any weakly efficient MPE, payoffs amount to

Pi .
V;(A):( )32- o foralli e A.
(L=0) +8(pi +pue) ) "

The proof shows that players never delay in any weakly efficient equilibrium as delay necessarily
weakens their bargaining position relative to their core match. Payoffs are then derived by
simple manipulation and the observation that behavior in subgames that are off the equilibrium

path cannot affect the terms of trade in any equilibrium path subgame, as players could reach
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such subgames only by exiting the game. As strongly efficient MPE coincide with weakly
efficient MPE, henceforth we simply refer to them as efficient equiltbria. Efficient MPE payoffs
are stationary and independent of the set of active players along the equilibrium path, and
converge to Rubinstein payoffs. When the cost of delaying is non-negligible, bargaining is
efficient only when alternative matches have no effect on outcomes and players achieve the
same payoff they would get by bargaining with their efficient match in solitude.

To understand matching incentives in the model consider the case in which delay costs
are large. If so, players have strong motive to negotiate only with their preferred bargaining
partners as the cost of rejecting offers is extremely high. If so, equilibrium matching could be
efficient only if matching with one’s core partner would generate at least as much surplus as
matching with any other player. Indeed, the existence of an efficient MPE requires players’
preferred bargaining partners to coincide with their core partners when delay costs are large.
The next remark formalizes these observations. If for some ¢ > 0 an efficient MPE exists for
any 0 € (0,1) such that |x — 6| < ¢, we say that an efficient MPE exists for all values of o
close to x. A preferred match'® p at an active player set A C N is a map p : A — A that
satisfies

Sip(s) = Max;cq sy forallie A.

Remark 1 For all § close to 0:
(a) all MPE maximize utilitarian welfare if the preferred match is unique at all A C N;
(b) an efficient MPE exists if the core match is the unique preferred match at N ;

(c¢) an efficient MPE exists only if the core match is a preferred match at N.

For ¢ sufficiently high, an MPE maximizes utilitarian welfare if and only if it satisfies our
efficiency criterion.”’ However, for low ¢ this is no longer the case. When delay costs are suf-
ficiently high, maximizing welfare may require matching players contingent on the realization
of the sequence of proposers. In particular, for sufficiently low 9, utilitarian welfare is maxi-
mized when players agree with their preferred match, as delay costs dominate any allocative
efficiency consideration.

To provide a comparison with the high ¢ case and different bargaining protocols, Remark
1 part (b) considers when the core match will be reached. In our directed bargaining protocol,
this occurs when players’ preferred match coincides with their core match; in other words,
when players prefer to bargain bilaterally with their core match without negotiating with any

other partner. In contrast, classical random matching models, such as Gale and Sabourian

9 A preferred match may not be a match as u(u(i)) # i.
20When 4 is close to 1, an MPE maximizes utilitarian welfare if and only if it is strongly efficient. But by
Proposition 3 the set of weakly and strongly efficient MPE coincide.
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(2006) and Abreu and Manea (2012b), never implement the core match with probability 1, as
in these models players would agree with anyone they meet when ¢ is sufficiently low.

It is easy to find examples of inefficient equilibria that do not maximize welfare for in-
termediate costs of delay. However, inefficiencies may be driven by the large costs associated
with disagreement. Indeed, one could interpret discounting as the source of matching frictions.
However, the next results consider only the case in which delay costs are sufficiently small.

Nevertheless, inefficiencies do not vanish.

Proposition 4 An efficient MPE exists for all § close to 1:

(a) if Rubinstein payoffs are in the interior of the core,
oi+0;>s;; foralli,j € N such that j # n(i); (2)
(b) only if Rubinstein payoffs are in the core,
oi+0; > s foralli,jeN. (3)

Proposition 4 shows that, whenever Rubinstein payoffs do not belong to the core, players
must agree with partners other than their core match with positive probability. When players
consider agreeing with their respective core matches, the other active players act as fictitious
outside options. But for these outside options to affect bargaining outcomes, these options
must sometimes be exercised.”’ Such behavior however necessarily leads to mismatch, surplus
dissipation, and possibly delay. Only when Rubinstein payoffs live in the core of the assignment
economy, is there an efficient MPE.?? The sufficient condition for the existence of an efficient
MPE is intuitive, but does not guarantee that every Markovian equilibrium is efficient. Indeed,
Section 1 of the online appendix presents an example in which condition (2) holds, but in which
multiple MPE exist for all § close to 1. Coordination problems in offer strategies are the source
of the multiplicity.?*

Proposition 4 establishes that bargaining inefficiencies are pervasive when negotiations are

21Consider again Example 1, and in particular panel III of Figure 1, so that y € (100,143]. Suppose an
efficient equilibrium is played, and so, by Proposition 3, ¢ = 1. A strategy available to b is to reject all offers
from a and to delay when selected to be the proposer until ¢ and d exit the market. Doing so will result in a
bargaining bilaterally with b in the resulting subgame, and in the limit, b will obtain a payoff of 50. Thus, for
a to receive a limiting payoff greater than 50, a must exercise his temporary outside option and inefficiently
match to d with positive probability in equilibrium.

22Qur result does not speak to the non-generic case in which Rubinstein payoffs are on the boundary of
the core. In such cases a discount factor equal to 1 may be required to guarantee the existence of an efficient
MPE. In Section 2 of the online appendix, we show why no conclusive result is possible in such cases.

231t would be compelling to conclude by arguing that if an MPE exists for arbitrarily high and low values
of ¢ that implements the core match, then it also exists for any intermediate value. However, the incentive
constraints characterizing such MPE are quadratic in § and this conclusion does not hold in general.
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decentralized and take place in a market context (for instance, if workers’ possible alternative
vacancies affect the wages they are able to negotiate). In particular, the result implies that
bargaining is inefficient whenever the market context matters. In other words, markets are
able to clear efficiently only when all players can optimally bargain bilaterally with their
efficient partners, ignoring all alternatives. Moreover, these inefficiencies persist even when the
discount factor is high and the exogenous frictions imposed by time preferences and sequential
play become small. In Section 8, we explore the consequences of Proposition 4 in classical
labor market settings, and show that vertical differentiation and increasing differences are not
sufficient for the existence of an efficient equilibrium.

To further explore the key conditions in Proposition 4, we apply the definition of Rubinstein

payoffs. The existence of an efficient MPE then requires that, for all 7 and j,

Di Dj )
— ) Sy + | ————— ) Sini) = Sii-
(pi+pn(i)> n(3) (pj+pn(j) Jn(J) J

An interesting special case is when a social norm determines the relative bargaining power
of firms to workers in labor markets. For instance, all agents on one side of the market may
propose with the same probability p!, while all agents on the other side of the market may

propose with the same probability p?. If so, the condition simplifies to

1 2
p p
<p1 +p2> S ¥ (pl +p2) i) 2 i

for all ¢« € P, and 5 € P,. So, there is an efficient MPE only if, for each worker-firm pair
in the economy, a weighted average of the surplus in the worker’s efficient match and in the
firm’s efficient match weakly exceeds the surplus that pair could generate together. Weights
capture the bargaining power of workers relative to firms, and both surpluses are weighted
equally when p' = p%. In many cases, like example 1, there does not exist any values of p
and p? that satisfy the above condition and so there is no social norm of this form that can
eliminate inefficiencies.

The conclusions on efficiency have several implications, which are summarized in the next
remark. These imply that: (a) any core payoff can be implemented as an LMPE by appro-
priately selecting the vector of proposal probabilities; (b) for any pair {i,7(i)}, proportional
changes in proposal probabilities cannot affect limiting bargaining outcomes; (c) efficiency is
easier to achieve in economies which have a large core; (d) any MPE without on-path delay
must lead to agreement on the core match with positive probability. For convenience, say that
surpluses S support more core payoffs than S" in the strong set order if any core payoff profile

in S’ is also a core payoff profile in S.**

24For instance, S supports more core payoffs than S’ if for all i € N: s;; = s;j whenever j = n(i); and

22



Remark 2 The following are consequences of Proposition 4:
(a) As § — 1, any interior core payoff is an MPE payoff for some probabilities p € A(N).

(b) If an efficient MPE exists for all § close to 1 for probabilities p, then it also exists for all
d close to 1 for probabilities p such that p;/pyu) = p;-/p’n(i) for alli € N.

(c¢) If an efficient MPE exists for all 6 close to 1 for surpluses S’, then it also exists for all §

close to 1 for surpluses S that support more core payoffs than S".

(d) The core match obtains with strictly positive probability in any MPE without on-path delay.

The first part of the result implies that the closure of the set of MPE payoffs that obtain for
some proposal probabilities contains the core of the assignment economy. Thus, the core can
be spanned by varying proposal probabilities. As the assumptions imposed on the assignment
economy imply that the interior of the core is non-empty, for any such surplus matrix it is
possible to find proposer probabilities that guarantee the existence of an efficient MPE. By
interpreting players’ proposal probability as their bargaining power, the second part shows
that when delay costs are small a player’s bargaining power matters only relative to that of
his efficient match in any efficient MPE. The third part implies that economies with larger
cores are more likely to result in efficient bargaining outcomes. The final part obtains because
in any MPE without on-path delay it is impossible to find a subset of players who prefer
to exchange their respective core matches, and thus some players must optimally agree with
their efficient match. However, as we saw in Examples 3 and 4, on path delay can occur in

equilibrium and the no delay condition is non-trivial.?’

Limiting Efficiency: Efficient LMPE may differ considerably from efficient MPE. Proposi-
tion 4 considers only 6 < 1 and so categorizes as inefficient any equilibrium in which mismatch
occurs with a vanishingly small probability as § converges to 1. Moreover, Examples 2 and
4 establish that mismatch can occur in equilibrium with vanishingly small probability. This
section studies this possibility asking when inefficiencies can be small in this sense.

The first result of this section extends Proposition 3 showing that strongly efficient LMPE
converge to shifted Rubinstein payoffs. Whenever these payoffs differ from Rubinstein payoffs
and delay is costless, unmatched players in E can act as permanent outside options without
distorting the limiting equilibrium match. In Example 2, for instance, player ¢ had an effect
on player f’s terms of trade in the limit without ever matching to f. The result also extends

the negative efficiency conclusions of Proposition 4 to markets in which delay costs vanish. In

sij < s;; whenever j # n(i).
25We stress again that Example 2 does not fit our definition of equilibrium delay, as in the unique LMPE
the only player who delays has a continuation value equal to zero.
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the limit, equilibria cannot be efficient if shifted Rubinstein payoffs are outside the core of the

assignment economy.

Proposition 5 In any strongly efficient LMPE, the payoff of any player i € A in any
equilibrium-path subgame A € C(N) converges to

Moreover, a strongly efficient LMPE exists only if shifted Rubinstein payoffs are in the core,
gi+0; > s, foralli,jeN. (4)

Core unmatched players can affect the limiting terms of trade without ever agreeing, because
they belong to every equilibrium path subgame. Core matched players, instead, cannot play
such a role in a strongly efficient LMPE as, in the limit, they exit the game at the first available
instance by agreeing with their core match. In addition to demonstrating the robustness of the
conclusions previously reached, Proposition 5 uncovers a crucial difference between temporary
alternative matches that can be lost as the market evolves and permanent alternative matches
that cannot be lost as the market evolves. We term the former temporary outside options
and the latter permanent outside options. Furthermore, the result clarifies why bargaining
frictions arise endogenously as a strategic response to possible changes in market composition.
It is the concern of an alternative match exiting the market, thereby weakening the bargaining
position of a player, that induces this player to agree with an inefficient partner even when o
converges to 1. As we have seen in Example 3, similar considerations regarding the evolution
of the market can also lead to delay on equilibrium path.

When shifted Rubinstein payoffs are in the interior of the core, they coincide with Rubin-
stein payoffs by construction. If so, by Proposition 4 an efficient equilibrium exists for any
sufficiently high value of §, and thus a strongly efficient LMPE exists in this case. Strongly
efficient LMPE may also exist even when shifted Rubinstein payoffs are on the boundary of
the core, as was the case in Example 2. If so, distortions vanish only when the discount factor
approaches unity.

Next, we consider weakly efficient LMPE and their properties. The main result establishes
that, whereas only core unmatched players can act as permanent outside options in strongly
efficient LMPE, all players can potentially act as permanent outside options in some weakly
efficient LMPE. However, for this to be the case, the market must clear sequentially, one core
match at a time. If so, even players who are ultimately matched can act as permanent outside
options by only matching after some other players have matched. To formalize the discussion

it is convenient to introduce a notion of sequential agreement.
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Definition 6 A weakly efficient LMPE is a sequential LMPE, if for some A € C(N) such
that |A\E| > 4 and for some i € A\FE

lim(;*)l Wjj(A) =1 fO’l” anyj c A—Z’W(l) (5)

Sequential LMPE display sequential agreement in that all players in the market, except for
one pair, delay reaching an agreement until that pair has exited the market. Sequential
equilibria require extensive delay to occur despite delay being costly. In particular, pairs
who will eventually be matched with probability 1 have to prefer to delay instead of reaching
agreement with each other, even though doing so reduces the value of any agreement they can
reach. None of the earlier literature, including the examples in Gale and Sabourian (2006)
and Abreu and Manea (2012b), feature sequential agreement.

The next result establishes that any weakly efficient LMPE whose limiting payoffs do not
converge to shifted Rubinstein payoffs must be sequential. Two LMPE are said to be payoff

equivalent if the ex-ante limiting values coincide in the two equilibria for all players.

Proposition 6 Any weakly efficient LMPE that is not payoff equivalent to a strongly efficient

LMPE is sequential. Moreover, sequential LMPE exist in some markets.

An important and immediate implication of Proposition 6 is that when shifted Rubinstein
payoffs are outside of the core either there is no efficient LMPE or all efficient LMPE are
sequential.’® Proposition 6 therefore helps pin down when weakly efficient LMPE exist. When
exit is sequential, all players remain in the market until a given core match exits, thereby acting
effectively as permanent outside options for this match. Proposition 6 further reinforces our
central message that inefficiencies are ubiquitous. Indeed, even in a weakly efficient LMPE,
outside options cannot affect bargained outcomes without being exercised with strictly positive
probability if they are temporary and can be lost on the equilibrium path. Nevertheless,
people who are efficiently matched can provide effectively permanent outside options through
sequential exit. Although Proposition 6 does not characterize weakly efficient LMPE payoffs,
insights in its proof suggest that it should be possible to derive a (not very tractable) payoff
set which necessarily contains all weakly efficient LMPE payoffs.?” If so, by the same logic of
Proposition 4, no weakly efficient LMPE would exist whenever such a set does not intersect

the core.

26By Proposition 5, if a LMPE is payoff equivalent to a strongly efficient LMPE, it must generate shifted
Rubinstein payoffs. But, if these payoffs are outside of the core, at least one player has a strict incentive to
offer to an inefficient partner.

2TTo do so, consider any subset of players M € P;\E (where m = |M|) and consider any order over such
players, M = {o(1),...,0(m)} (where o(i) identifies the i*" ranked player in M). Define the Rubinstein chain
payoffs associated to this order o and this subset M as a payoff profile u € R*™ (for players in M and their
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It is intriguing that sequential exit can occur in equilibrium. The observation conforms
with empirical regularities in some matching markets which can clear from the top down.
However, delay is a knife-edge phenomenon in most bargaining models without asymmetric
information. It might be thought that sequential LMPE will require very specific parameter
restrictions on the bargaining problem. To address this issue systematically, we conclude by
characterizing the set of sequential LMPE in the context of a 4 player market with equal
proposer probabilities. Let N = {a,b,c,d} and p; = p for i € N. To avoid redundancies when

stating results we adopt the following labelling convention:

e ab and cd are the core matches, Su, + Seq > Saq + Spe;
e ab is the most valuable core match, s, > S.q4;

e ad is the most valuable non-core match, s,; > ..

We also omit the dependence on N when obvious. The final result on efficient LMPE charac-
terizes payoffs in a sequential LMPE, and delivers necessary and sufficient conditions for the

existence of such an LMPE.

Remark 3 Given our convention, if a sequential LMPE exists, then for all § close to 1
Tab = Tba = Tee = Tda + Tad = 1, Taa >0, limsq maq = 1.
Moreover, in any such LMPE

lims_1 Vi = Saa — 04 lims_,; V. = o,

lims_y1 Vi = Sap — Saa +0q  limsy Vg = 04

Finally, a sequential LMPE exists if and only if

Sab + s d Spe — Sed Sp + s d
Sab > Sad > ———— > Spe > Seq and = < _>= <.
2 2(Sab — Sad) — Sab+ Sed

respective core partners) such that

Uo(1) = To(1)s Un(o(i)) = So(i)n(o(i)) — Uo(s) for i>1,

Uo(i) = So(i)n(o(i—1)) — Un(o(i—1)) for i > 1.

Now, for any partition of P{\F and for any associated order for each element of the partition, define the
collection of Rubinstein chain payoffs as a payoff vector in R™ such that: (1) in every element of the partition
payoffs correspond to the chosen Rubinstein chain payoffs; (2) players in E get nothing. Take the union over
all partitions of P;\E and take the union over all possible orders for each element of the chosen partition; and
define such payoff set by ¥. Our conjecture is that in any weakly efficient LMPE payoffs must belong to V.
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The remark pins down agreement probabilities at a high frequency of interaction in any se-
quential LMPE. In such equilibria, players a and d always reach agreement before ¢ and d. As
c and d end up bargaining bilaterally with each other, they have limit payoffs equal to their
Rubinstein payoffs. Thus, when players a and d are bargaining, it is as if a had a permanent
outside option of value s,q — 04. AS Sqq — 04 > 04, this outside options binds and a gets a
limit payoff of s,q — 04, leaving b with the residual surplus sq, — (Sqq — 04).% This equilibrium
conforms to previous intuitions. Alternatives within the market can affect the terms of trade
only if they remain in the market indefinitely.

Conditions (6) have natural interpretations. Given our labeling convention, the require-
ment that su, > Sqq > Spe > Seq implies that the market must be vertically differentiated.
Moreover, the first match to reach agreement is the most valuable core match. We therefore
rationalize top-down sequential exit as a limiting efficient market outcome in a complete in-
formation decentralized bargaining game. Delay in bargaining is hard to get, but real world
experience suggests that matching markets can occasionally be held up while clearing from the
top. Our model delivers such behavior as an equilibrium phenomenon in thin markets with-
out any asymmetric information. The second condition in (6) requires Sqq > (Sap + Seq)/2, Or
equivalently s,q > 0, + 04. This condition implies that shifted Rubinstein payoffs are outside
of the core. If so, by Proposition 5, there is no strongly efficient LMPE, and by Proposition
6 any weakly efficient LMPE must be sequential.

Figure 6: Panel I plots the lower bound for { for different combinations of s.; and sp.. As
¢ < 1, regions of the parameter space where lower bound is greater than 1 are regions in which
no sequential LMPE exists. Panel II shows the lower bound only when ¢ < 1.

The final condition in (6) is the hardest to interpret. Although payoffs must be super-
modular by the first part of (6), they cannot be log-supermodular by the second part of (6).

28Tn effect b also has a permanent outside option, worth sy, — o.. However, this outside option does not
bind. Payoffs are thus pinned down by chains of outside options in any sequential LMPE. These chains are
evocative of those discussed in Elliott (2015).
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Log-supermodularity, in this context, requires that s,;Scq > SaaSee, and the final condition in
(6) rules this out.? In combination with the other conditions, it requires the market to be
highly vertically differentiated (such that proportion of surplus generated by the worst match
relative to the best match, s.q/sq, is small). To see this it is instructive to consider the po-
tential extent of mismatch inefficiencies in the assignment economy (which also captures how
supermodular surpluses are). For convenience normalize s,, = 1 and define the fraction of
potential surplus that is obtained by mismatching as ¢ = (Saq + Spe) / (1 + Seq) € (0,1). The
final and key restriction to the parameter space identified in Remark 3 can then be restated

in terms of this parameter as requiring

2(1 + Sbc) (Sbc + Scd) - (]- + Scd)(sbc - Scd)

C Z 2(3bc + Scd)(l + Scd)

We plot this lower bound on the relative efficiency of the wrong matches in Figure 6. The
plot shows that when s.4 is relatively large there is no sequential LMPE. More precisely there
is a sequential LMPE only if s.g < 1 — 2s.. Since by Remark 3 sp. > s.q4, a sequential LMPE
exists only if s.q/s. < 1/3. So, the less productive core match must be at least three times
less productive than the most productive core match. This upper bound on the relative value
of s.q becomes much tighter when the potential loss associated with mismatch ( is at least
5%. Indeed, for ¢ < 0.95 a similar calculation establishes that s.q/se < 0.133; so s.q can
be at most 13.3% as productive as s.,.>" We conclude that sequential LMPE only exist in
sufficiently vertically differentiated markets, and only in extremely differentiated markets if

mismatch generates a considerable amount of inefficiency.

8 Discussion

Assortative Matching:  The labor market search literature has extensively studied a
particular form of heterogeneity, vertically differentiated markets with assortative matching,
as in, for instance, Shimer and Smith (2000), Eeckhout (2006), Smith (2006), Eeckhout and
Kircher (2010). To appreciate the content of our efficiency implications we consider this special
case of our model.

It will be convenient to introduce some new notation. For this section we refer to the two

29The second part of condition (6) can be rewritten as

2(Sadsbc - sabscd) 2 Scd(sab + Sed — Sbe — Sad) + Sab(sbc - scd) > 0.

30Example 4 in Section 6 provides some specific parameter values for which sequential exit occurs. In this
example Scq/Sqp = 0.1 and ¢ = 0.955.
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sides of the market as workers and firms. Let W = {1,...,w} and F = {1, ..., f} denote the
sets of workers and firms respectively, and let the surplus generated by worker ¢ and firm j be
given by a function S : W x F' — R, satisfying the following conditions:
[C1] S(i,4) > S(¢,7) if and only if ¢ < ¢';
[C2] S(i,j) > S(i,j') if and only if j < j’;
[C3] S(i,j) —S(i,5") > S(,5)— S(,j") if and only if i < ¢ and j < j'.
Condition C1 requires workers to be vertically differentiated, C2 requires firms to be vertically
differentiated, and C3 requires increasing differences in the surpluses that worker-firm pairs
can generate. Surplus is generated only in matches between workers and firms. In contrast
to our previous notation, there can now be a worker-type ¢ and a firm-type 7. Thus typically
S(i,i) # 0 and S(i,7) # S(j,) unless the surplus generated by the i*" ranked worker matching
to the 5" ranked firm is the same as the surplus generated by ;' ranked worker matching to
the *" ranked firm. Let the set of functions satisfying these conditions be denoted by S. It
is well known that in such markets the unique core match is the assortative match in which
worker k is matched to firm k if & < min{w, f}, while all the remaining agents are unmatched.
We use our efficiency results to find conditions under which decentralized bargaining would
result in an efficient and thus assortative match. For convenience, let the vector p denote the
proposal probabilities of firms, where entry p; is the proposal probability of firm &, and let
q denote the proposal probabilities of workers, where entry ¢ is the proposal probability of
worker k. Thus, a vertically differentiated market is defined by the tuple {W, F, S, p, ¢}.

Remark 4 If w = f, pr = qx = p for all k < max{w, f}, and S(i,j) = S(j,4) for all
i,7 < min{w, f}, then for all § close to 1 there is an efficient MPE. However, if at most two
of these three conditions hold, there exists a vertically differentiated market for which there is
no weakly efficient LMPE.

Remark 4 shows that, although there are natural conditions under which there is a strongly
efficient MPE (the strongest efficiency criterion of the four we consider), these conditions are
fairly restrictive and require the market to be highly symmetric. There must be the same
number of workers as firms, the k™ ranked worker and firm must have the same proposal
probabilities, and the surplus generated by the i*" ranked worker matching to the ;' ranked
firm must be the same as the surplus generated by the ;™ ranked worker matching to the
ith ranked firm. When any one of these conditions is not satisfied, there are surpluses S € S
for which there is no weakly efficient LMPE (the weakest efficiency criterion of the four we

consider).

Random Matching: The directed search matching protocol considered in our analysis was

chosen to minimize frictions. To appreciate the pure delay frictions that arise when players
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cannot choose whom to bargain with, consider the eight-player line network shown in Figure
7. We provide a brief discussion of such inefficiencies as means of comparison to our model.

A comprehensive analysis of the example appears in Section 4 of Abreu and Manea (2012b).

SVA VS Vs

1 1 1 1 1 1 1

¢ & &

Figure 7: The Eight-Player Line Network

Suppose that matching opportunities are as shown in Figure 7 and that each link is selected
with equal probability. An efficient LMPE requires players to disagree with a probability that
converges to 1 whenever links be, de or fg are selected. For this to be the case, the combined
continuation values from disagreement of the two players on the link must exceed 1 in the
limit, or converge to 1 from above. With the random matching protocol, efficient LMPE exist
in the line networks with 4 or 6 players. But, this is not the case in the line network with 8
players. In a four-player line network, the two end players are weak as they get no surplus
when the middle players agree. An efficient LMPE exists in which, for § close to 1, the two
middle players exploit such advantage by agreeing with a vanishingly small probability, and in
which the continuation values of the end players are diminished to the point where the middle
players are indifferent between delaying and agreeing with each other. With eight players, this
no longer works. In such networks, players d and e disagree when initially matched. Despite
this, their bargaining positions improve relative to the four-player line network as they retain
the option to agree with each other in subgames in which their core partners exit. Because
of this, players b and c strictly prefer to agree if initially matched for sufficiently high values
of §. Abreu and Manea (2012b) establish in fact that, in the unique LMPE, players b and ¢
must inefficiently agree with probability 1 when matched even when delay costs vanish. If,
instead, players were selected to propose with equal probability and were able to choose to
whom to agree with, a strongly efficient MPE would always exist as shown in Proposition 7
of the online appendix.

Preventing players from choosing bargaining partners amplifies frictions, as players have
to either hold out for their desired partner when presented with an alternative matching
opportunity or agree with inefficient partners. We opted for a setting in which players were
allowed to choose bargaining partners to diminish the hold-up frictions associated to waiting
for the preferred match. Yet, we still found frictions to be common feature of decentralized

negotiations because of non-stationarities in the evolution of bargaining power.
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Limitations and Evidence: We study the Markov perfect equilibria of a simple bargaining
game with many buyers and many sellers, seeking necessary and sufficient conditions for the
existence of efficient Markov perfect equilibria. Necessary conditions, however, do not rule out
the existence of efficient non-Markovian equilibria,?' while sufficient conditions do not rule out

the existence of inefficient Markov perfect equilibria.*?

Our protocol is fairly standard and chosen to give the best chance to efficient outcomes
while remaining decentralized. To this end, we allow the proposer to choose whom to offer
to, study the generic case in which the efficient match is unique, and look at equilibria in
which delay costs are small. A key feature of our model is that players’ bargaining positions
(and, more precisely, their limit payoffs) can change stochastically. We find that these non-
stationarities in the evolution of bargaining power are closely linked to inefficiencies, which
can include both mismatch and delay. In all weakly efficient LMPE, players’ limit payoffs
are stationary on the equilibrium path and do not depend on the order in which people are
selected to propose. This can occur either because no alternative match provides a binding
alternative (Proposition 3), or because binding alternative matches are only provided by those
who are unmatched when the market clears efficiently (Proposition 4), or because there is
sequential exit and the market endogenously remains stationary while all players wait for a
given pair to exit the market before reaching agreements themselves (Proposition 5).

While we view our protocol as natural, many alternative bargaining protocols are equally
reasonable. For instance, random matching protocols may describe players bumping into
each other at random, while the protocol we study might be a better fit for thin, highly
heterogenous markets, in which everyone knows everyone else, and in which search is more
likely to be directed. It is not clear whether similar results would hold in the alternative
model with random matching. On the one hand, in the limit incentives look very similar
to our model, but on the hand, away from the limit random matching forces players to forgo
matching inefficiently but immediately, in order to match to their efficient partner later. There
are many other alternative protocols. One would be to include the right to make a counter-
offer back to the proposer. Another would make a player declining an offer the new proposer.
One more would fix a predetermined and commonly known proposer order. We would not
expect results close to ours to hold in these environments, as strategically these environments
seem fundamentally different.

In practice, interactions in markets are unlikely to be as constrained as any of these bargain-

ing protocols; and players are likely to have much more freedom to endogenously determine,

31 An efficient subgame perfect equilibrium may always exist, as proven by Abreu and Manea (2012a) for
networks with homogeneous surpluses.

32We show in Section A of the Online Appendix that inefficient MPE can exist at the same time as efficient
MPE.
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among other things, who moves when. Indeed, we show that there always exist offer proba-
bilities that generate efficient outcomes. If these are endogenously determined then efficiency
might be improved or even restored. Nevertheless, while norms might evolve to affect offer
probabilities and increase efficiency, they would need to be tailored to the intricacies of a given
market to eliminate inefficiencies (see the discussion following Proposition 4).

Fully endogenizing who makes offers to whom when would come at the cost of tractability.
The value of simple theory comes from its ability to provide useful insights in richer settings.
Whether our theory, including the equilibrium selection, obtains this goal or not is ultimately
an empirical question.

While identifying mismatch empirically is hard because counterfactual productivities are
not directly observed, Elliott and Agranov (2017) run a laboratory experiment to circumvent
this issue. They begin by studying an experimental protocol that mirrors our bargaining proto-
col. They find extensive inefficiencies, and show that the Markov perfect equilibrium outcomes
correctly predict which markets exhibit mismatch and which exhibit more mismatch than oth-
ers. However, inefficient matches occur considerably more often than predicted.** They then
run a second laboratory experiment, but without an experimental protocol. Participants are
permitted to make offers to anyone else at any time, accept offers they have received at any
time and withdraw offers they have made at any time. They find that inefficiencies remain
in the market.** Indeed, in this experiment there is not sufficient evidence to reject that
inefficiencies are different from the MPE predictions at the 5% level. While this should not
be interpreted as evidence that players play the MPE of our bargaining game in an entirely
different bargaining environment, it does suggest that in more realistic bargaining situations

the inefficiencies we document remain, and that the MPE provide useful intuitions.*”
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9 Proof Appendix

Proof of Proposition 1. We first establish the characterization for MPE values, and then
proceed to establish existence. Fix a discount factor 6 € (0,1). Consider an MPE strategy
profile (p,x,a) and its corresponding MPE payoffs V(A) € R for any active player set
A C N. Fix any subset A C N. By subgame perfection, we know that the acceptance
decision by a player 7 € A faced with an offer x must be such that he accepts an offer if
xz > 0V;(A), and rejects it if x < 6V;(A). Clearly, this implies that it cannot be optimal to
offer z > §V;(A) to player j, as the proposer could profitably deviate to an offer in (0V;(A), x).
Thus, in any MPE every player would offer at most 0V;(A) to player j, and the only offers
player j may accept with positive probability are offers of §V;(A) with positive probability.
Therefore, a proposer ¢ € A would make offers with positive probability only to a player j
that maximizes his residual payoff s;; —0V;(A). Recall that 7;;(A) is the joint probability that
player ¢ offers 6V;(A) to player j and that the offer is accepted, and that m;(A) is the joint
probability that ¢ does not agree when proposing. We frequently abuse notation by dropping
the dependence of m;; on A where it should not cause confusion. The payoff of any player
k € A_;; at the beginning of the following period is given by Vi(A_;;) if an agreement was
reached, and by V;(A) otherwise. Therefore, at a history in which the set of active players is
A and in which ¢ is the proposer, the expected payoff of a player k € A_; must be given by

D iea , Tii0Vi(Ai) + (1= 325ca , Tij)0Vi(A).

When i is chosen to propose, if §[V;(A) + V;(A)] < s;; for some j € A_;, then ¢ offers with
certainty to players j who maximize s;; — 6V;(A), and agreement obtains with certainty. The

latter observation obtains from the following argument. If m; > 0, then the expected payoff
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conditional on offering §V;(A) to players j who maximize s;; — §V;(A),

> jea  Tij(si; — 0Vi(A)) + (1 - ZjeA_iﬂ—i]) dVi(A),

must be strictly smaller than s;; —0V;(A). The payoff conditional on i offering §V;(A) +« to j,
for e > 0is s;; —6V;(A) —¢, as j accepts with probability 1 any offer exceeding 0V;(A). Hence,
it cannot be optimal to offer more than 6V;(A). It also cannot be optimal to offer less than
dV;(A) since all such offers are rejected and since §V;(A) < s;; — 6V;(A). Thus, if 7; > 0 and
0[Vi(A) + V;(A)] < s;;, a profitable deviation always exists. Therefore, 0[V;(A) + V;(A)] < s
for some j € A_; implies m; = 0. Similarly, §[V;(A) + V;(A)] > s;; for any j € A_; implies
mi; = 1. If maxjea , {sij — 0[Vi(A) + V;(A)]} = 0, then m; € [0,1]. Thus, any agreement
probability m; € A(A) for player ¢ compatible with equilibrium values V' € R4 must belong

1m

R if ' ' e '
II;(V]A) = {m € A(A) ‘ iy =0 if 0V, <maxeca ,{s;; — IV} }

e =0 if sy — 0Vy < max{dV;, max;eca_, {si; — 0V;}}
Next consider the correspondence f;(V|A) : R = R4l where for k # i,

fu(V|A) (1 —mi) maxjea_, {si; — 0Vj} + 6V
fi(V]A) = fi(VIA) | = ZjeA_ikﬂ-ij(;Vk(A—ij) + (mir + 7)) O Vi m € IL(V]A) ¢,

where the expressions in the square brackets give the components of a |A| x 1 vector. Let
fir(V|A) denote the k'™ entry of f;(V|A). The correspondence fix(-]A) identifies the set of
expected payoffs compatible with our partial equilibrium analysis for a player k € A and for
any history in which A is the set of active players and i is the proposer. Next, define the

correspondence
F(V|A) = 3 capifi(VIA) + (1= X icapi) OV (7)

The k™ entry of such a correspondence, F(-|A), identifies the set of possible expected payoffs
for a player k € A for any history in which A is the set of active players. Thus, the argument
establishes that V' is an MPE payoff only if it is a fixed point of the correspondence in (7),
Ve F(V|A).

Next, we establish that the converse must hold too. In particular, we argue that if V(A) €
F(V(A)|A) for any subset A C N, then V(A) is an MPE payoff profile for any subgame

in which A is the set of active players. At any subgame in which A are the active players,

37



consider a strategy in which any player i € A chooses p;(A) = m;, xi(j, A) = §V;(A), and

1 if > 6Vi(A)

7 ba 7A =
(g, 4) {0 it @< 6Vi(A)

For any finite set of players N, the proposed strategy clearly must be an MPE in any subgame
in which no more than one player is active, as any such subgame is eventless. By induction,
suppose that the proposed strategy is an MPE for any subset of active players of size k < n—1,
in order to show that it is an MPE for any subgame in which the set of active players has
size k + 1. Consider a subgame in which the set of active players A has cardinality k 4+ 1.
Fix an MPE payoff profile V(A’) for all subgames in which the cardinality of the set of active
players A’ does not exceed k. Furthermore, given such values, suppose that we can find a
payoff profile V(A) such that V(A) € F(V(A)|A) (we establish below that such a fixed point
exists). If so, no player receiving an offer can profitably deviate from strategy «, as no change
in the acceptance rule can strictly increase the payoff. Similarly, given the acceptance rule, the
proposer’s strategy (p, x) is optimal given that offers are made only to those players who leave
the highest residual surplus to the proposer (provided that such surplus exceeds the value of
being unmatched). Thus, V(A) is an MPE payoff in any subgame with a set of active players
A. Consequently, if V(A) € F(V(A)|A) for any subset A C N, then V(A) is an MPE payoft
profile.

To establish existence, also proceed by induction. Existence follows in subgames in which
no more than one player is active, as such subgames are eventless. Assume by induction that an
MPE exists for any subset of active players of size £ < n—1, in order to show that it exists for
any subgame in which the set of active players A has size k+ 1. If so, consider MPE strategies
for all subgames of size k£ and derive MPE payoffs for all such subgames. Given such values,
construct the correspondence F'(-|A) as in (7). Observe that the correspondence II;(-|A) is
upper-hemicontinuous with non-empty convex images. Thus, f;(:|A) is upper-hemicontinuous
with non-empty convex images; and so, the correspondence F'(:-|A) is upper-hemicontinuous
with non-empty convex images, as it is a convex combination of the correspondences f;(-|A)
for i € A. By Kakutani’s fixed point Theorem F'(-|A) has a fixed point. Moreover, such a
fixed point is an MPE payoff of this subgame, and can be used to construct consistent MPE
strategies and consequently agreement probabilities 7 € A(A)Y in every subgame, as argued

above. m

Proof of Proposition 2. For convenience, define the limiting agreement probability for a
given player j € A\E as (;(A) = lims_; pjmjn;)(A), and let Bp(A) = >, pPk(A) for any
B C A. Recall that V;(A) = lims_,; V;(A). We begin by showing that for any active player
set A € C(N) such that A\E # (), there exists a player ¢ € A\E such that 3;(A) > 0. This
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is the case since weak efficiency and §;(A) = 0 for all player i € A\E, imply 7;(A) = 1 for
all players i € A\FE. But, if so, for ¢ close to 1, any player i would weakly prefer delaying to
offering to (i), or equivalently

OVi(A) +0Vye) (A) 2 sinGi)- (8)
This would lead to a contradiction though as the sum of payoffs exceeds total surplus

>icaVi(4) = ZieA\EVi(A) > (1/0)Xicanp, Sint) > 2icanp, Sinti)

where the first and third inequalities are trivial while the second holds by adding the inequal-
ities in (8) and observing that s;,;) = 0 if i € E. Thus, in any non-trivial active player set
A € C(N) of any weakly efficient LMPE, there exists a player ¢ € A\ E such that ;(A) > 0.

To prove the result, we proceed by induction on the size of the active player set within
C(N). We show that in any weakly efficient LMPE V;(A) + V) (A) = sy for any i € A\E
and any A = C(N). The latter then immediately implies surplus maximization by feasibility.
If E # (0, begin by considering the active player set E € C(N). If so, any weakly efficient
LMPE trivially maximizes surplus as all links are worth zero. Next, consider any active player
set A= FEU{i,n(i)} for some i € N\E. As the LMPE is weakly efficient, there exists a player
j € A\E such that ;(A) > 0. But if so, by taking limits of system (1), we obtain

Vi(A) = B;(A)(sin) — Vo) (A)) + (1 = B;(A)V;(A).

The latter implies that V;(A) + Vyi)(A) = siy@)- Finally, by induction assume that any weakly
efficient LMPE satisfies V;(A) + Vyi)(A) = siyq) for any i € A\E and any A € C(N) with
cardinality |A| < |E|+ 2k. Consider any set A € C(N) with cardinality |A| = |E|+ 2(k + 1).
For any player i € A\F, defining A(i) = A_;,;)\F and taking limits of system (1) establishes
that

(Bave(A) = By (A))Vi(A) = Bi(A) (siney — Vaiy(A)) + Dkean Oe(AVilA k). (9)

By the induction hypothesis, we know that for all k € A(7)

Vil A kn@i)) + Vi) (A k(i) = Singiy-

Exploiting this observation while adding equation (9) for player i to that for player 7(i),
implies that

Bave(A)(Vi(A) + Vi (A) = 3 e 2Bk (A)Sin),
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or equivalently V;(A) + V,u)(A) = si) since by weak efficiency there exists a player j € A\FE
such that 5;(A) > 0. The latter concludes the proof and establishes that any weakly efficient

LMPE maximizes surplus. m

Proof of Proposition 3. We begin by pinning down strongly efficient MPE payoffs. Consider
an MPE strategy in which any player i € N offers to his core match n(i) with probability 1 at
any active player set A € C(N). If players follow the prescribed strategy, only core matches
are ever consummated, and only subgames A € C(NN) occur on the equilibrium path. As the
core match maximizes the total surplus in an assignment economy, the core match of a player
does not change when other core pairs exit the market (that is, it coincides at any subgame
A € C(N)). By Proposition 1, we know that any proposer ¢ € A necessarily offers an amount
equal to 6V,;)(A) and that any player 7 € A accepts any offer exceeding §V;(A). As players
negotiate with only core partners on the equilibrium path, at any A € C(N) we guess that

Vi(A) = Vi(A_jni)) whenever i € A_jy ;). (10)
Thus, at any A € C(N), equilibrium payoffs for every player i € A satisfy
Vi(A) = pilsin@y — 0V (A)) + (1 = pi)oVi(A).

Solving the latter equation for player i with the one for player (i) implies that

Pi Dn (i)
Vi(A) = ———— | Sin) — 07— (Sine) — 0Vi(4)) | ,
W =T <377() TS g i) — OVl ))>
which after some manipulation yields
Vi(A) - Sint (11)

- 1-— (5 + 5pi + 5p77(i) (@)

which verifies (10) as value functions are unique for given proposal probabilities by the proof

of Proposition 1.

To establish the first part then, by contradiction postulate the existence of a weakly efficient
MPE that is not strongly efficient. If so, along any equilibrium path, players either agree with
their core partner or delay, which implies that any equilibrium-path subgame is associated
to an active players A set which belongs to C'(N). Formally, such a requirement amounts to
finding a fixed point of the MPE characterization in Proposition 1 which satisfies m;(A) +
Tin@)(A) = 1 for any i € A and any A € C(N). If such an equilibrium were to exist, an
argument equivalent to the first part of the proof would imply that for any i € A and any
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Ae C(N)
_ PiTin(i) (A)

Vi(4)

Sin(i)-

But this would give rise to the desired a contradiction as any player ¢« would strictly pre-
fer immediate agreement with his core match rather than disagreement, since V;(A) strictly

increases in m;,(;)(A). ®

Proof of Proposition 4. First, we establish part (a). Payoffs in any subgame A € C'(N) of
an efficient MPE are pinned down by Proposition 3 for any ¢ € (0,1). We show that complying
with efficient strategies yields an equilibrium for any sufficiently high value of §. Recall that
any player j € A accepts any offer that is worth at least §V;(A). Suppose, by contradiction,
that some player i € A at some subgame A € C'(NN) has a profitable deviation which entails
offering to 7 # n(i) when all players comply with strongly efficient strategies. For such an
offer to be profitable for i, at any sufficiently high ¢ it must be that

Sij — OVj(A) > sina) — 6V (A). (12)
However, by taking limits, as d converges to 1, on both sides of this inequality, we obtain
Sij = 0j 2 Sini) ~ On(i) = Oi-

This obviously contradicts the assumption that Rubinstein payoffs are in the interior of the
core: 0; + 0; > s;; for all 4,7 € A such that j # n(¢). Thus, any player ¢ € A at any subgame
A € C(N) cannot have a profitable deviation when making offers if the discount factor is
sufficiently high, which implies the existence of a strongly efficient MPE for any § close to 1.
Next, we establish part (b). By contradiction, assume that a strongly efficient MPE exists
for any 4 close to 1, but that o; + 0; < s;; for some pair ¢,j € N. Recall that player ¢ has a
strictly profitable deviation from a strongly efficient equilibrium if condition (12) holds. Since
0V; = o0; and 0V; — o, condition (12) must hold for sufficiently high values of ¢ and player i

must have a profitable deviation for any sufficiently high value of §. m

Proof of Proposition 5. To pin down LMPE values, for any player ¢ € N, define the outside

option partner for player ¢ as follows

)\(Z) - arg ma%(jeE Sij If w; >0 .
7 if w;=0

Therefore, w; = s;);). An LMPE is strongly efficient if at any active player set A € C'(IV), all
players i € E agree with their core matches (i) with a probability that converges to 1 (that
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is, Tin@)(A) = 1), and all players ¢ € E delay with a probability that converges to 1 (that
is, m;i(A) = 1). Recall that only subgames A € C'(N) occur on the equilibrium path with
positive probability in the limit in a strongly efficient LMPE. Moreover, outside options A(7)
must coincide at every subgame A € C'(IN) since the core match coincides at any such active

player set and since all core unmatched players are active at any such active player set.

To establish that any strongly efficient strategy compatible with equilibrium necessarily
yields shifted Rubinstein payoffs as limiting payoffs, we proceed by induction on the size of
the active player set within C'(N), and show that for any A € C'(IN) any strongly efficient
LMPE satisfies

Vi(A) =5, for any j € A. (13)

First, consider the smallest active player set in C'(N), namely, A = E, when such a set is
not empty. If so, s;; = 0 for any ¢,j € E. Obviously, V;(E) = 6; = 0 for any j € E. Next,
consider any active player set A = E'U {i,n(:)} for some ¢ € N\E. Clearly, not both players
in {i,n(i)} can have binding outside options. If they did, then

8ix(i) T Sn()A(n(i) = Sin(i)

and an alternative match that generates a weakly higher surplus would be feasible (since both
A(7) and A(n(i)) would be unmatched in the core), thereby contradicting the optimality of
the core match or its uniqueness. Without loss of generality, if a player has a binding outside
option, let that player be 4, so that 7, = max{w;,0;} and 7,4 = Sy — 0;. Observe that
if a player j € E plays a strategy converging to efficiency, then for sufficiently high ¢ he
must weakly prefer delaying to offering to a player in {i,7(7)}, as 7;;(A) = 1. If so, then

vj(A) = dV;(A) and the valuation of such a player necessarily satisfies

Vi(A) = (1 =pi = py))V;(4) = Vi(A) =0,

by the characterization in Proposition 1, the definition of strongly efficient LMPE, and the
linearity of the limit operator. Therefore, condition (13) holds for any player ;7 € E. Next,
consider player j € {i,n(i)}. If complying with a strongly efficient strategy is a limiting
equilibrium, then for sufficiently high ¢ it must be that v;(A) = s,y —0V,(;)(A), as Ty (A) =
1. If so, then for any player k € F,

SinG) — OVa) (A) > s — OVi(A) = s,
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which in turn implies that

Vi(A) = p; (sin) — Vo (A)) + (1 = p)Vi(4) = Vi(A) = sp,

which establishes that V;(A) > w;. If indeed V;(A) > w; for any player j € {i,n(i)}, then
for any player £ € E and any d close to 1, we would have that that 6V (A) + 0V;(A) > sji.
If so, no player k£ would ever agree with j. If so, the strategy would be strictly efficient for

sufficiently high ¢ and the result would follow by Proposition 4 as

> . Dj
Vi(A) = lim Sin(i) = 05 > W;j.
5(4) = lim 1= 8+ 0p; + 0pygy "~ 7

Otherwise, suppose that V;(A) = w;. If so, taking limits on the characterization in Proposition

1 implies that

Vo (A) = Py (8in) — Vi(A)) 4+ (1 = py(i)) Vo) (A) = $inii) — wj-

The previous observations together imply that Vj.(A) = &} for any k € A, as V;(A) = &; =
max{wi, O'i} and ‘77](1) (A) = Sin(i) — 0.

Next, by induction assume that 1_/](A) = 0; for any j € A and any active player set
A € C(N) with cardinality |A| = |E| + 2k. If so, we show V;(A) = 5, for any j € A and
any set A € C(N) with cardinality |A| = |E|+ 2(k + 1). Consider such a set A. If a player
j € E complies with a strongly efficient strategy, then v;(A) = 0V;(A) for ¢ close to 1, and

the valuation necessarily satisfies

Vi(A) = (1 = pa)Vi(A) + 2 pca gPrVi(A k)
= (1 -pap)V;(4) = Vj(4) =0,

where the first equality follows from the characterization in Proposition 1 and the definition
of strongly efficient strategy, while the second equality follows from the induction hypothesis.
If a player j € A\E complies with a strongly efficient strategy, then v;(A) = s;,;y — 0V (j)(A)
for 0 close to 1. Thus, defining A(j) = A_;;(j)\E, the valuation necessarily satisfies

Vi(A) = (1 = pag) — ) Vi(A) + i (sini) — Vo) (A) + ke acy Pk Vi(A k)
= (1= pag) — ) Vi(A) +0i(8jn() — Vo) (A)) + g,

where equalities hold for the same reasons stated above. In this case, the limiting value
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equations for players j and 7(j) admit a unique solution at

Vi(A) =5, and V,(;)(A) = Gy5).

To prove the second part of the result observe that strongly efficiency LMPE mandate play
according to the strategies characterized above and payoffs converging to shifted Rubinstein
payoffs,

Vi(A) =5; for any i € A and any A € C(N).
Towards a contradiction, suppose that agents complied with these strategies, but that o;+0; <
s;; for some pair ¢,7 € N. If so, the definition of shifted Rubinstein payoffs would then
immediately imply that j ¢ {n(i),\(¢)}. If so however, ¢ would have a profitable deviation
when selected to make the first offer in the game. Subgame perfection ensures that ;7 would
accept any offer greater than §V;(A). Now if the player complied with the prescribed strategy

by offering to his core partner, his limiting payoff would amount to
lim§_>1 UZ(A) = 5'1'.

However, by deviating and offering to j exactly dV;(A), his payoff would increase to

lims_,; [Sij — 5‘/3(14)] = Sij — ‘/J(A) = Sij — 5-]' > 0;.

Thus, for any value of § sufficiently close to 1, player ¢ would have a strict incentive to deviate

and make an acceptable offer to 7. m

Proof of Proposition 6. In a weakly efficient LMPE, 7;,(;)(A) + 7;(A) = 1 for any player
i € A for every A € C(N). Thus, all players i € E delay with a probability converging
to 1 (that is, m;(A) = 1). In the limit, if all players comply with such strategies, only
subgames A € C(N) occur on the equilibrium path with positive probability. Recall that
the proof of Proposition 2 established that at any active player set A € C(N) such that
A\FE # () of a weakly efficient LMPE, there exists a player i € A\E such that 5;(4) > 0
(where §;(A) = piTin)(A)). To establish that any weakly efficient LMPE that is not strongly
efficient must be sequential, we again proceed by induction on the size of the active player
set within C(V), and show that there exists A € C(N) such that only one core match
agrees. That is for some i € A\FE such that (5) holds. First, consider the smallest active
player set in C'(N), namely, A = E, when such set is not empty. If so, any weakly efficient
LMPE is strongly efficient as the two definitions coincide. Next, consider any active player
set A= FEU{i,n(i)} for some i € N\E. Clearly, there must be agreement on the core match,
that is 7i,3)(A) = Tpa)i(A) = 1, as 6Vi(A) + V) (A) < Siy@) by feasibility. Thus, any weakly
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efficient LMPE is strongly efficient.

Next, assume by induction that any weakly efficient LMPE is strongly efficient for any
active player set A € C(N) with cardinality |A| = |E| + 2k. Consider any set A € C'(N) with
cardinality |A| = |E| + 2(k + 1). If a player j € E complies with a weakly efficient strategy,
then v;(A) = dV;(A) for § close to 1. If so, the valuation of j necessarily satisfies

Vi(A) = (1 = Bae(A)Vi(A) + FpeapBe(AVi(Apmam })
= (1= Bap(A)Vj(4) = V;(4)=0,

where the first equality follows by taking limits of value equations and the definition of weakly
efficient strategy, where the second equality follows by the induction hypothesis, and where
the implication trivially obtains as S\ g(A) > 0 given that at least 1 core match agrees with
positive probability in the limit. If a player j € A\ E complies with a weakly efficient strategy,
then for ¢ close to 1 it must be that v;(A) = max{0V;(A), sj,;) — Vi) (A)} by weak efficiency.
Taking limits of value equations for any j € A\E while defining A(j) = A_j,j\E establishes
that

—Jjn

Vi(A) = (1= Bagy = B)Vi(A) + Bi(A) [sime) = Ve (D] + X2 Br(A) V(A )

keA(j)
= (1= Bag) — B)V;(A) + B;(A) [sint) — Vo) (A)] + Bagy(A)a;, (14)

where the second equality follows by weak efficiency and induction.

If 3;(A) = 0 for all players i € A(3), then the equilibrium must be sequential by definition.*®
Otherwise, there exists a weakly efficient LMPE in which least two core matches in A reach
agreement with positive probability. If so, 5;(A) > 0 and B;(A) > 0 for i # 7(j), and thus
Bag) > 0 for any j € A\E. But, if so, the limiting value equations (14) for players j and 7(j)

admit a unique solution at

Vi(A) = 6; and Vi;)(A) = ().
The weakly efficient LMPE must be payoff equivalent to a strongly efficient LMPE at A
thereby fulfilling the induction hypothesis. This establishes that any weakly efficient LMPE

that is not strongly efficient must be sequential.

The existence of a sequential LMPE follows by Example 4. =

361f so, Vi(A) = 5, for all i € A(j)UE since A(j) # 0 and V;(A\{k,n(k)}) = &, for all k € A\E by induction
hypothesis.

45



Decentralized Bargaining in Matching Markets:
Online Appendix

Matt Elliott*and Francesco Nava'

January 2018

Abstract

The online appendix discusses: MPE multiplicity; the non-generic cases of core-match
multiplicity and of boundary core payoffs; the relationship to Okada (2011); and omitted

proofs.

*Faculty of Economics, Cambridge University and Division of Humanities & Social Sciences, California

Institute of Technology, melliott@hss.caltech.edu
tDepartment of Economics, London School of Economics, f.nava@lse.ac.uk



1 MPE Multiplicity

This short section presents an economy in which condition (2) in Proposition 3 holds, but in

which multiple MPE exist for all § close to 1. Consider the 4-player economy in Figure 7 with
Pa =Py = 4/10 and p. = pg = 1/10.

36 35 35 36

Figure 7: A Four Player Complete Network with Surplus Heterogeneity

The economy clearly satisfies condition (2) as
Oy +04=0p+0.=36>35.

Thus, an efficient MPE always exits for all § close to 1; and consequently a strongly efficient
LMPE exists. However, for all § close to 1, an inefficient MPE also exists with the following
proposal probabilities,

Tad = Toe = Ted = Tde = 1.

By setting V, =V}, and V; = V,, value equations (1) for the inefficient equilibrium reduce to

4 2 4
Vo= 1535 —0Vo) + E5va(ab) + 10 Valad),
1

Vi= 1ol

1 4
36 — 5Vd) + 55‘/;1 + EdVd(ad)

Solving for subgame values, establishes that

2(350 - 690 — 2507) o 36 — 46
d pu—

Vo= =@ =) (5-0)2—-0)

Taking limits then implies that lims ,; V, = 128/5 = 25.6 and lims_,; V; = 8. Limit values

then satisfy all the equilibrium incentive constraints, as

2V, > 36, 2V, < 36,
Vo +Va<35, 36—-V;>35-1V,.

As incentive constraints are strict and value functions continuous, players strictly prefer to
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comply with the strategy for all § close to 1. Thus, the proposed strategy is an MPE all ¢ close
to 1 and so an LMPE. Hence, multiple equilibria may exist even when condition (2) holds
and the core match is unique. Intuitively, multiplicity may arise because directed search and
partner selection bring about coordination problems as players’ bargaining powers are jointly

determined by the entire profile of agreement probabilities.

2 Multivalued Core

The complications that arise when the core is multivalued (that is, when multiple matches are
efficient) are closely related to those that occur when Rubinstein payoffs are on the boundary
of the core, as any core payoff must be on the boundary of the core in such instances. When
multiple matches are efficient, each efficient match is associated with a possibly different vector
of Rubinstein payoffs. For any efficient match n, let 6”7 € RNl denote the vector of Rubinstein
payoffs associated with the efficient match 7. Consider an alternative efficient match v # 7.
Shapley and Shubik (1972) establish that if the pair (1, 0") is a core outcome so is the pair
(7,0M), in that for all players i, o7 + 07, = siy) and o} + 07l = siy). As (i) # (i) for
some player 7, the core outcome (1, 0") must be on the boundary of the core as players ¢ and
~(7) have a weakly profitable pairwise deviation.

Scenarios in which Rubinstein payoffs are on the boundary of the core payoffs, leads to
complications. Our equilibrium construction can lead to payoffs that are outside the core for
all 9 < 1, such that some player has a profitable deviation to offer inefficiently, even when

limit payoffs belong to the core. We illustrate this in the following example.

QR

Figure 8: Four Player Complete Network with Unit Surplus

Consider the four player economy in which all matches are possible and generate a surplus
of 1 depicted in Figure 8. Suppose first that all players move with equal probability. If so,
the match (ab, cd) is efficient and for this match each player’s Rubinstein payoff is 1/2. These
payoffs belong to the boundary of core. If we attempt the efficient MPE construction we use
when players’ payoffs are in the interior of the core, with certainty player a would offer to
b, b would offer to a, ¢ would offer to d, and d would offer to c¢. In this example, as is the

case with core-interior Rubinstein payoffs, these offer strategies constitute an efficient MPE.



For instance, given these strategies, continuation values for players b and d coincide whenever
player a is selected as the proposer. Thus, player a is indifferent between offering to b or d,
and offering to b is a best response for a as equilibrium play dictates.

Suppose then that players propose respectively with probabilities
Pa=pp=3/8 and p.=ps=1/8.

The match (ab,cd) remains efficient, and for this match each player’s Rubinstein payoff is
1/2. Thus, as before, Rubinstein payoffs are on the boundary of the core. However, if we now
attempt the efficient MPE construction we use for interior Rubinstein payoffs, we no longer
find an equilibrium. By complying with these strategies all player still receive limit payoffs of
1/2, but for all 6 < 1 player a has a profitable deviation by offering to d. As d waits longer
than b to be matched in expectation, d’s continuation value is lower than b’s for § < 1. Hence,
a prefers to deviate and offer to d. In the other efficient match (ad, cb), Rubinstein payoffs are
3/4 for a and b and 1/4 for ¢ and d. These Rubinstein payoffs do not belong to the core as ¢
and d have a profitable pairwise deviation. If a were to offer to d, d were to offer to a, b were
to offer to ¢, and ¢ were to offer to b with certainty, player ¢ would have a profitable deviation
by offering to d.

This example is intended to illustrate the subtleties that may arise when Rubinstein payoffs
are on the boundary of the core. Although there are no strictly profitable deviations in the
limit as § — 1, there may be strictly profitable deviations for all § < 1. Whether this happens
or not depends on whether the sum of payoffs for each pair of efficiently matched players
converges from above or below to the surplus they generate, which in turn depends on the
fine details of the game. Nevertheless, there is one canonical case in which there always exists
an efficient MPE when Rubinstein payoffs are on the boundary of the core. An assignment

economy is said to be simple if s;; € {0,1} for all ¢, j € N.

Proposition 7 Consider a simple assignment economy in which all players are selected to
propose with equal probability. Then, there exists a strongly efficient MPFE if the Rubinstein

payoffs associated with an efficient match belong to the core.

Symmetry in these settings suffices for the existence of strongly efficient MPE. In fact, since
all players on one side of the market receive the same payoff and since delay destroys surplus,
the sum of payoffs for each pair of efficiently matched players must converge from below to the
surplus they generate. In general though, core match multiplicity may lead to discontinuities
in equilibrium payoffs which would further complicate efficiency conclusions (as is the case in

Example 2 when y equals 200).



To conclude the discussion, we show an example in which core match multiplicity leads
to MPE multiplicity and to additional delay frictions. Consider the six-player assignment
economy depicted in Panel I of Figure 9, in which agents a and f propose with probability
1/4, whereas all other players propose with probability 1/8. In such an example, the efficient

matches are pinned down by the value of parameter y. We consider values of y € [2, 3].

TN R AP

2 y 2 y 2
7 & © o & Oe
I II
Figure 9: In Panel I the assignment economy; in Panel II agreement probabilities.

For all values of y € [2, 3], Rubinstein payoffs do not belong to the core in any core match.
We consider whether there can be an equilibrium in which a and f delay making an offer.
Suppose that agents ¢ and d agree with each other when proposing. If so, by delaying agent a
may end up bargaining bilaterally with agent b provided that players c or d are selected before
either b or e. As in this scenario a ends up in a strong position vis-a-vis b, player a could in
principle prefer delay. To explore this possibility, we assume that agents a and f delay with
probability 1 — ¢, and we look for conditions on ¢ and y under which there is an equilibrium
with the agreement probabilities shown in Panel II of Figure 9. Finding agents’ MPE values
in the relevant subgames and taking the limit yields

. . 16 + ¢(17 =3
hm(;_)l ‘/a(N) = hm(;_)l Vf(N) = 24q:_ 12q y))

. . 7+ 3
lims 1 V() = lims oy V() = =2,

lims_1 Vo(N) = lims_y Vy(N) = 1.

All values are strictly positive for any y € [2,3] and any ¢ € [0,1]. Moreover, 0V,/0q > 0
for y < 3, but 9V,/dq = 0 for y = 3. Thus, player a and f do not delay and set ¢ = 1
for y < 3. But, there might be equilibrium delay for y = 3. In fact, an equilibrium exists in
which ¢ = 0 when y = 3. This discontinuity arises because multiple matches are efficient when
y = 3. Although agent a delays, there is an efficient match in which he is unmatched. With
heterogeneities, instances of multiple efficient matches are non-generic. When the core match
is unique, delay occurs only because of fundamental strategic reasons, as we documented in

Examples 3 and 4.



3 Relationship to Okada (2011)

There are some similarities between Okada (2011) and our paper. Both papers relate the exis-

tence of an efficient MPE in a non-cooperative bargaining game to whether different statistics

belong to the core of an associated cooperative game. Nevertheless, the models are signifi-

cantly different in a crucial dimension. Okada models coalitional bargaining, while we allow

only pairs of players to bargain. The models are geared towards different applications (leg-

islative bargaining for Okada, while decentralized markets in our case) and, in this section, we

argue that applying Okada’s model to decentralized markets may lead to strange predictions.
Consider the 4-player example shown in Figure 10. In terms of Okada’s notation, this is

coalitional game with N = {a, b, ¢, d} and

(1) v(N) = Sap + Sea,

(2) v(a,b) =v(a,b,c) =v(a,b,d) = Sap,

(3) v(c,d) = v(a,c,d) = v(b,c,d) = Scq,

(4) o

a,

S) = 0 for any other coalition S C N.

Sab Sed
Figure 10: A Four Player Economy

For an efficient equilibrium as defined by Okada, each agent must make an acceptable proposal
to the grand coalition with probability 1 if selected as proposer. Unlike in our model, this
option is available to agents and by offering to grand coalition all players can reach an outcome
immediately eliminating any losses from agents’ limited patience. By Okada’s Proposition 3.1,
in an efficient stationary equilibrium, the expected payoffs are given by the solution to the

following system of value equations

Vi=npi [U(N) — (5Zj€N\iVj] +0Vid jenpj foralli e N.

In the limit as § — 1, this yields expected payoffs

. Di .
lims_,, V; = v(N) forall i € N.
s (pa+pb+pc+pd) (%)

Moreover, Okada shows that an efficient equilibrium only exists if these payoffs belong to the

core of the associated cooperative game. In the limit, two necessary conditions for an efficient

5



equilibrium are
V: + Vn(i) > U(i,n(i)) > Sin(s) forall7 e N.

Substituting the efficient payoff characterization and rearranging the conditions simplify to

(pa + pb)scd Z (pc + pd)sab and (pc + pd)sab Z (pa + pb>Scd-

But if so, an efficient MPE only exists if (p, + pp)Sca = (Pe + pa)Sap- This condition is a knife-
edge. Indeed, even if the condition was satisfied, any perturbation to the surpluses by some
small independent noise terms (drawn from continuous distributions) would lead to the condi-
tion being violated with probability 1. The knife-edge nature of the condition is not an artifact
of the of the example, but a general feature of Okada’s setting in the context of assignment
economies which implies that efficient outcomes are very unlikely to occur with multilateral
negotiations. Intuitively, having to agree with all players, imposes further constraints on
agreeable outcomes and restrict the scope for efficient negotiations. In contrast in our setting,
a strongly (and thus weakly) efficient MPE would exist for any values of (pa, po, Pes D, Sabs Sed)s
as Rubinstein payoffs would belong to the core for any such parameter values. Intuitively with
bilateral negotiations, non-core partners cannot affect bargaining outcomes and constrain ef-
ficiency when they generate no surplus with their alternative partners.

The example highlights the differences in the approach and the conclusions relative to
Okada (2011). His model most suitable for situations in which coalitions can jointly bargain.
In contrast, ours is intended to capture decentralized markets in which buyer-seller pairs
bargain in solitude. When this is the case, decentralized negotiations may actually lead to

more efficient and arguably more plausible outcomes.

4 Omitted Proofs

Proof of Remark 1. First, establish part (a). By assumption there is a unique preferred
match at any active player set. Thus, for all ¢ € A and all A C N, if maxjea s;; > 0 then
argmax;c 4 si; 1s a singleton. Moreover, i’s continuation value when selected as the proposer

satisfies
limg_m UZ(A) = lim5_>0 max{(SVZ(A), maneA\i {Sij — (5‘/3(14)}} = maneA\i Sijs

as Vj(A) < maxyea sjr < oo for all players j € A and active player sets A C N. Hence,
in all MPE for all § close to 0, m;(A) = 1 if and only if j = argmax;., s;;. If we have

that maxgc4 sir > 0 at some active player set A C N, then there is a unique player j =



argmax;c 4 sir, and for all 0 close to zero

maxgea(sij — sig) > 5ZkeA Ska(k)-

Thus, independently of the constraints imposed on subsequent matching, expected social sur-
plus is maximized by matching agent ¢ to agent j, if agent i is selected as the proposer.
Maximizing utilitarian welfare for ¢ all close to 0 simply amounts to setting m;;(A) = 1 if and
only if j = argmax;c 4 ;5. S0, all MPE maximize utilitarian welfare for all 4 close to zero."
Now, establish part (b). Payoffs in any subgame A € C(N) of an efficient MPE are pinned
down by Proposition 2 for any ¢ € (0,1). We show that, if s;,; > s;; for all i # j, complying
with efficient strategies is an equilibrium when ¢ is sufficiently low. Recall that any player
j € A accepts any offer that is worth at least §V;(A). Suppose, by contradiction, that some
player i € A at some subgame A € C(N) has a profitable deviation which entails agreeing
with 7 # n(i) when all are playing efficient strategies. For such an offer to be profitable for
player ¢, it must be that

sij = OVi(A) 2 sine) — V(o) (A)- (19)

By taking limits on both sides of the inequality as d converges to 0, we obtain
Sij 2 Sin(i)-

But this cannot be as players strictly prefer their core match by assumption, s;; < ;). Thus,
any player i € A at any subgame A € C(N) does not have a profitable deviation when the
discount factor is sufficiently low, which implies the existence of an efficient MPE for any ¢
close to 0.

Next, establish part (c¢). By contradiction, assume that an efficient MPE exists for all 6 close to
0, but that s;; > s;,;) for some j # (7). If so, player i has a strictly profitable deviation from
an efficient equilibrium if condition (19) holds strictly. But, since §V;(A) — 0 and 0V;(A) — 0,
condition (19) must be strict for § sufficiently low, and thus player ¢ must have a profitable

deviation. m
Proof of Remark 2. To establish part (a), let u be a vector of core payoffs associated to
the core match 7. Consider two players i,j € N such that n(i) = j, and set

pi__w

bj  Sij — W

If the preferred match is not unique, then a planner maximizing welfare may have preferences over preferred
partners that differ from those of the proposer. Thus, for all § close 0 there may be no welfare maximizing
MPE.



This condition ensures that 7 and j receive their core payoffs, u; and u;, if everyone plays
the strategies characterized in the proof of Proposition 2. This removes at most N/2 degrees
of freedom from the vector p. Thus, it is straightforward to find a probability vector p that

satisfies the above condition for all : € N.

Part (b) is a trivial consequence of the Rubinstein payoffs not being affected by proportional
changes in probabilities. Part (c) is also straightforward. Let U(S) denote the set of core
payoffs when the surplus matrix is S. Observe that if the surplus changes from S to S’, it
must be that s;,;) = s;n(i) for any ¢« € N. This is because the core match cannot change when
S changes to S’, and because s;,(;) 7 s;n(i) implies that any core payoff in S would not belong
to S’ (since u; + Uy = Siy() for any w € U(S)). Thus, Rubinstein payoffs in the two markets
must coincide,

o= (01,...,0,) = (0}, ..., 0
The conclusion then follows immediately from these observations, since o € U(S) C U(5").

To prove part (d), it is useful to introduce the notions of an offer graph and a cyclical offer
graph. For any subgame with active player set A C N and any MPE, the offer graph (A, Q)

consists of a directed graph with vertices in A and with edges satisfying
ij€G & i1e€A and je {k|mx(A)>0}Un().

We say that an offer graph is cyclical whenever there exists a subset of active players choosing
to make offers so as to exchange their respective core partners with one another. Formally, an
offer graph is cyclical if there exists a map ¢ : N — N and a set of players ¥ C P, N A for
k € {1,2} such that

(D))= = ijeq,
(2) (i) # n(i) for some i € F,
3) {w(@)li € F} = {n(@)[i € F}.

Next, we establishes that MPE offer graphs are never cyclical. If offers were cyclical, a subset
of players who prefer offering to one another’s core matches instead of their own core match
would exist. These players would have to achieve a higher aggregate surplus by matching with
non-core partners, thereby violating the efficiency properties of the core. Formally, suppose
the offer graph is cyclical. By revealed preferences for any player i € F' and ¢(i) such that
Tipi)(A) > 0, subgame perfection requires that

Sig(i) = 0WVia(i) = Sinti) — OVi(a)-

8



Furthermore, because of cyclicality, by summing over all players in F' we would have that

Dier(Sig) — Vo) = 2icr(SinG) — Vi) & DicrSiot) = DicrSin()-

However, this leads to a contradiction as core match was assumed to be be unique.

Next, we establish that the core match always obtains with positive probability in an MPE
without delay. The uniqueness of the core match and the non-negativity of surpluses imply that
all players on one side of the market are matched at the unique core allocation.? Fix an MPE
without delay. No delay implies that every player with a positive value agrees with probability
1 when selected to propose in every possible subgame. Without loss of generality, suppose that
PiNA>P,NA. If for any A there exists 1 € P; N A such that Win(i)<A) > 0, the conclusion
obviously holds. Thus assume that this is not the case. Then for some A, m;,;)(A) = 0 for
all + € PL N A. Next, we show that this leads to a contradiction, as the offer graph would
necessarily be cyclical. Pick any match ¢ satisfying ¢(i) = j for m;;(A) > 0, and (i) # n(i)
for any ¢ € P, N A. Such a match exists because players in P, N A do not delay, and because
Tin@)(A) = 0. Observe that, since the core match is unique, P, = {n(i)|i € PN A} N Ps.
Furthermore, by construction it must be that P, O {¢(i)|i € P, N A} N P,. Since n(i) # n(k)
for any 7,k € P, N A, there must exist a set F' C P, such that

{p(@)li € F} = {n()li € F},

as otherwise a player i € P, N A would exist such that (i) = n(i). This in turn implies the
desired contradiction to the first part of the proposition, as the offer graph would necessarily

be cyclical. m

Proof of Remark 3. For convenience, when A = N, value functions and proposal probabil-
ities omit the dependence on the active player set A. First observe that players on one of the
two core matches never delay in any weakly efficient LMPE for all  close to 1. Delay on both

core matches would require
0V +0Vp > sap and Ve +0Vy > Seq, (20)

which violates feasibility as Zie NVi > Sap + Scq. Thus, in any weakly efficient LMPE there
exists a core match in which no player delays. Call such a match in(i) so that ;47,3 = 0.
Next observe that players agree at most on one of the two non-core with positive probability

in any weakly efficient LMPE for all ¢ close to 1. Agreement on both non-core matches would

2This is the only result in which the assumption on non-negativity of the surplus is substantive.



require

oV, +0Vy =5, and 6V, + 0V. = sp..

But this would violate the weak efficiency of the limiting equilibrium as

(151_1(3 Y kenVie = Sad + Spe < Sap + Sca-

Thus, in any weakly efficient LMPE there exists a non-core match with disagreement. As this
link must involve either i or 7(7) it is without loss of generality to call such a match ij, so
that m;; = 0. This establishes that m;,;) = 1 and that m;; = 1. Furthermore, there must be
agreement in match 7()n(j). If instead we had that 7, () + Ty;)me) = 0, value equation for

a player k € {j,n(7)} would simplify to
Vi = (1= 2p)dVi + 2pdVi({4,n(4)}) = (1 — 2p)dVi + 2pdo.

Thus, 0V + 0V, ;) < Siy(j) and the equilibrium would be strongly efficient and not sequential.
Thus, 7)) + Tnme > 0. Finally, observe that m,),;) = 0. Otherwise,

Sin(s) — OVi = Sn(ym) — Vi) = Vi),

where the first equality would hold by player 7(i)’s indifference, while the latter by player
n(j)’s indifference. This implies that 6V; + 0V,4) > sie). But, as j and n(j) delay, the
condition (20) would be satisfied and the values would be infeasible. Thus, we must have that
Ty = 1 for all ¢ close to 1. This completely pins down the acceptance probabilities up to

relabelling, and consequently, for m, ), = ¢, the value equations reduce to

Sn(im(@) = OVaei) + 0Vi()
Vaay = (1 = p)0Viu) + p(Sine — 0Vi)
Vagy = (L= 2p)0Va) + 2p0Vayy ({5, 1(4)}) (21)
Vi=(1—p—pq)dV; +pgdVi({i,7}) + p(Sin) — 0Vai))
Vi = (1—2p—pq)éV; +pqéV;({i, j}) + 2psV; ({7, n(4)})

where obviously for any k,l € N, we have that

Vi(kl) = dﬁ&cz-

First observe that 7(j)’s value equation trivially implies that V,;y < V) ({7,7(4)}) for all
§ < 1. As j delays when A = N, s,y — 0V; < 0Vyjy. Thus sj,) < 0V + 0V,0({7,m(5)}).

10



Towards a contradiction, suppose that 6V; < éV;({j,n(j)}). Then s;,;y < éV;({7,7(5)}) +
Vi ({7,m(j)}) and n(j) would have a profitable deviation delaying instead of offering to j in
the subgame where only j and n(j) are active. We therefore conclude that 6V; > 6V;({7,1n(j)}).
From j’s value function, this implies that V;({i,5}) > V;({j,n(j)}). Moreover, with equal
proposal probabilities, this is equivalent to s;; > sj,;). By adding this inequality to the
inequality defining the core match, s,y + Sjn) > Sy(im@) + Sij, we further obtain that s, >
n(n(i)-

In any sequential LMPE lims_,; ¢ = 0. Taking limits of value equations (21) as § — 1,

immediately delivers that

lims—1 Vi) = Snaim@) — nl) lims—1 Vi) = o)

lims 1 Vi = i) — Sym) + 0ngy  lims—n Vi = oy

Now observe that player (i) always possesses a deviation that sets ¢ = 0 (namely rejecting

any offer from n(j) when A = N). If so, i’s and 7(7)’s value functions reduce to

~

Vo = (1= p)6Vio) + p(Sin — 6V3)

and n(i) secures a payoff ‘A/n(i) = — 0y(i)- For ¢ > 0 to be an equilibrium for all §

1*5&2})5 Sin(i) )
close to 1 such a deviation cannot be profitable. Thus, V; ;) > V) for all ¢ close to 1, and

W Vi) = Spm) = 0a) = Snn) = (800)/2) 2 Sin(0)/2 = o) = lim V).

This implies that 2s,)n;) = Sjy) + Sine), Which by efficiency and uniqueness of the core
immediately implies that s,),;) > si;. We thus conclude that

Sin(i) > Sn(inG) > Sij = SinG)

and, invoking our labelling conventions, that n(i) = a, i = b, j = ¢, and 7(j) = d.

To establish the final part of the result, we first find necessary conditions for the existence
of a sequential LMPE, and then show that these conditions are also sufficient. Recall that the
previous part of the proof establishes that a sequential LMPE exists only if

Sab = Sad > Sbc Z Sed- (22)

For the proposed strategy profile to be an equilibrium ¢ and d weakly prefer to delay instead
of offering to each other and so 0V, 4+ 0V, > s.4 for all ¢ sufficiently close to 1. Moreover,
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lims_,1 6(V. + V) = seg. Thus the strategy is consistent with equilibrium behavior only if
0(V. + V) to converges to s.q from above. By solving value equations (21) it is possible to
show that

lim 5(‘/0 + ‘/d) — Sed o Scd(sbc - Scd) + 23ad(5bc + Scd) - 5ab<5bc + 3Scd>
ST 10 2D12(5a0 — Sad) — (St — Sea)] |

(23)

If spe = Seq then the right hand side of equation (23) reduces to —s.q/p < 0 which is not
consistent with equilibrium behavior. Thus, s;. > s.q. Next observe that the denominator in
equation (23) must be positive since s, — Sqq > 0 by (22) and since Sqp — Sag > Sbe — Sea DY
definition of the core. Thus, as the denominator is always positive, equation (23) is satisfied

if and only if the numerator is also positive. This requires that

Spe — S Spe + S
be cd 2 9 be cd.
Sab — Sad Sab + Sed

(24)
The first part of the proof also establishes that a strategy is consistent with weak efficiency
only if 25,4 > Sap + Sca. However, if s,q = (Sap + Sca)/2, by substituting s,q in (24) one obtains

Spe — S Spe + S
be cd Z 4 be cd :
Sab — Secd Sab + Sed

which with some rearrangement in turn implies that
0 2 3 (Sab - Scd) (sbc + Scd> + 230d (Sab - Sbc) ;

which cannot be by (22). Thus, 25,4 > Su + Seq- Combining the above inequalities establishes
that
Sab > Sad > (Sab + Sed)/2 > Spe > Sea-

This establishes why the above condition is necessary for the existence of a sequential LMPE.

To show this condition is sufficient we verify that no player can have a profitable deviation
given the agreement probabilities pinned down in the first part of the proof. First observe

that ¢ and b prefer delaying to offering to each other as
lim 6(Vy + Vo) = Sap = Saa + 0 + 0c = Sab + Sea = Sad > Sve,
5

where the last inequality holds by the uniqueness of the efficient match. By construction, d is
indifferent about offering to a or delaying. Players ¢ and d weakly prefer delaying to offering

to each other as argued earlier in the proof. Players a and b weakly prefer offering to each

12



other than delaying as

. 6(‘/(1 + ‘/b) — Sab Sed — 2Sad

lim =

0—1 1—9 2p
which implies that 0V, + 0V, < s, for all § close to 1. Thus, for sufficiently high 9, a and
b prefer offering to each other than delaying. As we have already established that b prefers

<0,

delaying to offering to ¢, b’s optimal offer strategy is to offer to a with probability 1 for all §

close to 1. Player a prefers offering to b than offering to d as

. Sab — 5‘/{) — Sad — 6‘/d 2Sad — Sed
lim =

0.
0—1 1—96 2p ~

Thus, it is optimal for a to offer to d with probability 1. Finally, mixing probabilities are
consistent with a weakly efficient LMPE as the probability that d and a agree converges to

zero from above by
2 2 ad — 2ab T ¢
lim 9 _ (2504 — Sab — Scd) >0,
11 =08 p(2Sap — 2Sad — Sbe + Sed)

where the inequality holds as the numerator is positive by 2s,q > Sup + Scq, While the denomi-
nator is positive by Sqp — Sqq > 0 and Sqp — Saq > Spe — Sea- All players thus best respond for §
close to 1, and so the condition we needed to show is sufficient for the existence of a sequential
LMPE is indeed sufficient. m

Proof of Proposition 7. Any simple assignment economy S can be represented as an
unweighted bipartite network L C P; X P, in which links capture the opportunity to generate
a unit surplus. For any component of the network LcC L, let Ly, C P, denote the projection of

L on P,. The components of any such network must be of two types: (i) balanced components

with the same number of players on both sides, ’ﬁl Q‘; (ii) unbalanced components with

more players on one side k € {1,2}, f/k‘ > ‘IA/T . We begin by invoking a result implied by

conclusions from Corominas-Bosch (2004).

Remark (Corominas-Bosh 2004): Any unweighted bipartite network L C P; X P, possesses
a sub-network L' C L such that:

(a) any efficient match in L belongs to L’;

(b) in unbalanced components of L', the unique core payoff of all players on the long side is 0
and that of all players on the short side is 1;

(c) in balanced components of L', all players one side receiving payoff g € [0,1] and all the

remaining players receiving payoff 1 — f is a core outcome.

By the assumptions on the economy immediately observe that Rubinstein payoffs are 1/2 on
any efficient match. Thus, by the Corominas-Bosh Remark, these payoffs are in the core if and

only if all players who have a neighbor in L belong to balanced components in the resulting

13



sub-network L'. If so, pick any efficient match 7. Suppose that any player i € N agrees with
n(i) with probability 1 when proposing in any equilibrium path active player set A € C"(N).
As in the proof of Proposition 2, these strategies, imply that, in any equilibrium-path subgames

A € C"(N), the continuation value of any player i € A satisfies

p

Vil4) = 5 — 5+ 26p

where p denotes the proposal probability of the representative player. If so, player ¢ has no
strictly profitable deviation when proposing, since all other players have the same continuation

value as 7(i) and since

2p

Thus, the constructed strategies are a MPE. m

Proof of Remark 4. By Proposition 3 in the main document, a sufficient condition for the
existence of an efficient MPE is that there exist no worker ¢ and firm j who have a weakly
profitable pairwise deviation when receiving their Rubinstein payoffs. As the efficient match

is assortative, the core match of worker ¢ is firm ¢. Thus, there is an assortative MPE if, for
all 7 # 7,

q; . Pj . ..
S(1,7) + S(7,9) > 85(i,7),
pi + G (6,4) pj +q; (G:J) (i.5)

where S(k, k) =0 for all £ > minw, f.
If w = f, no agent is unmatched in the efficient match. Along with the condition that

p; = ¢; = p, the above expression then simplifies to
S(i,4) + 507, 5) > 2506, 4) = S0, j) + S04, ), (25)

where the equality follows from the condition that S(i,j) = S(j,4). The existence of an
efficient MPE then follows, as condition (25) holds by the increasing differences assumption
C3.3

To prove the second part of the remark, we show that there exist vertically differentiated
markets for which there is no weakly efficiently LMPE whenever we relax one of three condi-
tions in the statement of the result: (i) w = f; (ii) p; = ¢; = p for all ¢; and (iii) S(7,5) = S(j,1)
for all 4, 7 < min{w, f}. We do so by relying on the earlier results as well as the following two

lemmas (which are proven below).

3This also follows by applying results from Eeckhaut (2006).
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Lemma 1 There is no weakly efficient LMPE in any market S € S satisfying (ii) and (iii)
ifw=2, f=3, and

max{S(1,1)/2,5(1,3)} + S(2,2) — S(2,3) < S(1,2), S(1,2)/2 < S(2,3).

Lemma 2 There is no weakly efficient LMPE, ifw = f =2, S(1,1) =9, 5(1,2) = S(2,1) =
6, S(2,2) =4, p1 = g2 = 1/16 and py = q: = 7/16.

Unbalanced Market: Lemma 1 identifies conditions on market S € S for the non-existence
of weakly efficient LMPE in markets satisfying (ii) and (iii), but violating (i). What remains
to be shown is that conditions are not vacuous and can be satisfied for some S € S. Consider

the economy
S(1,1) =25; S(2,1) = 5(1,2) = 20; S(2,2) = 16; S(1,3) = 12.

The economy trivially fulfills C1, C2 and C3; and thus S € S. Moreover, we have that
S(1,2)/2 =10 < $(2,3) = 12 and

max{S(1,1)/2,S(1,3)} + 5(2,2) — 5(2,3) = 19 < 5(1,2) = 20.

Thus the economy S satisfies the conditions of Lemma 1 and no weakly efficient LMPE exists.

Heterogeneous Probabilities: Lemma 2 provides an example in which conditions (i) and
(iii) are satisfied, but condition (ii) is violated and there does not exist a weakly efficient
LMPE.

Asymmetric Surpluses: Finally, consider the case in which S(i,7) # S(j,4). Setting w =
f = 2, we appeal directly to Remark 3 for a characterization of when there is no weakly
efficient LMPE. To do so, it suffices to observe that the surpluses can satisfy C1-C3 (and thus
belong to §), while violating conditions for weak efficient LMPE existence identified in this

result.

For convenience, in the proof of the next two lemmas, whenever A = N, we omit the depen-

dence on the active player set A from value functions and proposal probabilities. =

Proof of Lemma 1. By Proposition 3, an efficient MPE exists only if, for no worker-firm

pair such that ¢ # j, we have that

q; . V2 . ..
S(i,1) + S(7,7) <S8, 7),
e (4,17) it (4,9) < S(i,7)
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where S(k, k) = 0 for k > min{f, w}. But (ii) implies that this condition must be violated as
S(2,2)/2 < S(1,2)/2 < S(2,3).

The first inequality holds by C1 and the second by assumption. By Proposition 4 there is
no strongly efficient LMPE if shifted Rubinstein payoffs are not in the core. In this case, the
profile of shifted Rubinstein payoffs are

gy =max{S5(1,1)/2,5(1,3)} and &5 = S(2,3);
ol =5(1,1) =5, 6] =5(2,2)—a¥ and & =0.

Thus, no strongly efficient LMPE exists as S(1,2) > ¢ + 3.

By Proposition 5, any weakly efficient LMPE that is not strongly efficient must be sequen-
tial LMPE. Next, we focus on ruling out the existence of a sequential LMPE. Recall that by
the proof of Proposition 2 we have that, at any active player set A € C'(N), a player i € A\E
agrees with positive probability in any weakly efficient LMPE for all sufficiently high 6. So,
if only one worker is active at A, any weakly efficient LMPE is strongly efficient. So for the
LMPE to be sequential one core match must delay in th limit when A = N.

Let A = N. Suppose that worker 1 and firm 1 delay with probability 1 in the limit,
By = B{ = 0. If so, with probability 1, worker 1 and firm 1 end up in the subgame B; C N

in which worker 2 and firm 2 exit. In this subgame there is a unique MPE with limit payoffs
VE(By) = max{S(1,3), S(1,1)/2} and V{(B)) = S(1,1) - {*(By).

As this subgame is reached with probability 1, V;* = V;*(B;) and V) = V//(B;). In a weakly
efficient LMPE, the probability that worker 2 and firm 3 agree must converge zero. For worker
2 not to benefit by offering to firm 3, requires V;* > S(2,3). By Proposition 2, we also know
that a weak efficient LMPE would further require V;* + V' = S(2,2). But for these conditions

to hold at once we would have that
S(2,2) — 5(2,3) > V5.

Finally, in a weakly efficient LMPE, worker 1 must prefer delaying than offering to firm 2 for
0 sufficiently high, which requires

VeV > 5(1,2).
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Combining these observations we find that
max{S(1,3),S(1,1)/2} + 5(2,2) — 5(2,3) = V" + Vi > 5(1,2),

which contradicts the assumption in the statement of our result. Thus, there is no sequential
LMPE in which worker and firm 1 delay.

Next suppose instead that worker 2 and firm 2 delay with probability 1 in the limit,
By = 5{ = 0. If so, with probability 1, worker 2 and firm 2 end up in the subgame By C N

in which worker 1 and firm 1 exit. In this subgame there is a unique MPE with limit payoffs
V3*(Bg) = 5(2,3) and Vi (By) = 5(2,2) — V;"(Ba).

As firm 3 delays with positive probability, V3f (B3) = 0 for all § sufficiently high. As this
subgame is reached with probability 1, V¥ = V¥(B,), Vi = VJ(B,), and V§ = VJ/(By).
Suppose that there is a weakly efficient LMPE in which firm 3 and worker 1 agree with
positive probability for all sufficiently high § < 1. If so, S(1,3) > (Vi + V5). But in the
limit, this implies that V;* = S(1, 3). If so however, worker 1 would benefit by offering to firm
2 with strictly positive probability in the limit by C3 as

S(1,2) =V =5(1,2) — 5(2,2) + S(2,3) > S(1,3) = V.

This contradicts the premise that this is a weakly efficient LMPE. Thus, firm 3 and worker 1

must reach agreement with probability 0 when all players are active for all sufficiently high ¢.

Consider now the subgame in which worker 1 and firm 2 are not active. If so, for all ¢
sufficiently high, we have that worker 2’s continuation value is S(2,3)/0. The latter follows
because by assumption we have that S(2,3) > 5(2,1)/2 and because in the unique MPE of
this subgame firm 3 must mix between delaying and agreeing with worker 2 for all sufficiently
high § (as in Example 2 in the main document). Similarly, in the subgame in which worker
1 and firm 1 are not active, worker 2’s continuation value is S(2,3)/d. Next consider the
value equation of worker 2 when all players are active, and recall that 7}% = 7r§1 = 0 for all
sufficiently high 0. As we have characterized the value equation of worker 2 in every other

subgame, the value equation at N simplifies to
Vy' = p(rfy +mdy + iy +7115)S(2,3) + (1= plafy + 7y + i + i) )Vy”
From this, we conclude that for all sufficiently high § < 1, V;* < S(2,3). However, for worker
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2 to delay with positive probability in the limit, it must be that for all sufficiently high § < 1

S(Vi +V3") > 6V3" > 5(2,3)

which is a contradiction. So, there can be no sequential LMPE. =

Proof of Lemma 2. As w = f = 2, shifted Rubinstein payoffs are the same as their
Rubinstein payoffs. Moreover, these payoffs do not belong to the core as, by the previous
inequalities, pS(1,1) + pS(2,2) < S(1,2). So, there are no efficient MPE by Propositions 3,
and no strongly efficient LMPE by Proposition 4. If so, any weakly efficient LMPE must be
sequential by Proposition 5. Thus, we establish there is no sequential LMPE. For notational

ease, denote unconditional link-agreement probabilities as

Vij = pﬂfj +pj7rjf- for any (7,j) € W x F.

First observe that in any weakly efficient LMPE that is not a (weakly) efficient MPE, we
must have max{vyy, vi2} > 0 for all § < 1 sufficiently high. Moreover, min{vy;,vi5} = 0 for

all § < 1 sufficiently high. If vy; > 0, then one of the following two conditions would hold:
(al) S(1,2) — 6V > 5(1,1) — 6V (a2) S(1,2) — 6V > 5(2,2) — Vi,
If v15 > 0, then one of the following two conditions would hold:
(b1) S(1,2) — 6V > §(2,2) — 6V3%; (b2) S(1,2) —6Vy > S(1,1) — 6V,
If (al) and (b1) held at once, then summing inequalities would yield a contradiction, as
25(1,2) > S(1,1) + S(2,2).
But, as the same argument applies when (al) and (b2) hold, or when (a2) and (b1) hold, or

when (a2) and (b2) hold, it must be that min{vy, v12} = 0.

Define the following two-player active player sets, where the first entry denotes the active

buyer and the second the active seller:
B1 - {2,2}, B2 - {2, 1}, Bg = {1, 1}, B4 = {].,2}
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In the unique MPE of each of these subgames we have that

Vy'(Br) = 8%2;25)) - % = V3" (B1) & Vi (B) = ;é(% ?) — ; =V (By);
Vi (Ba) = g 3= V(B & V] (Ba) = 50 5 3= V(B
V(B = S0 = VB & W) = gk ¢ = V(B
Ve(B) = SR 3= TEB) & VI (B) = 0P s = T (B,

In any sequential LMPE one of the two core pairs agrees in the limit, while the other does not

by Propositions 2 and 5. Thus, four possible cases must be considered for ¢ sufficiently high:

(A) ng +7T§2 <1, 7% + 7 < 1, and ﬂ{l + % = 0.
B f f 1. 7w w 1 d f wo__
(B) miy + 7 < 1, ) + 75 < 1, and my; + 75 = 0.
C f f w w d f wo__
(C) mdy + 7y < 1, ¥ + w8y < 1, and 7y, + 74 = 0.

(D) wf, +7l, <1, 7% + 7% < 1, and 7}, + 7 = 0.
Case A: For sufficiently high § < 1, the value equations of worker 2 and firm 2 amount to

Vo' = (1 —v11) 0Vy" 4+ 0110V, (By),
Vva = (1 — V11 — U21) 5‘/2f + ’()11(5‘/2“)(81) + U215‘/2w(B4>,

Rearranging the first of these equations implies that V" < 6V, (By), while the second equation
implies that V;/ < 6V;/(B,) where the latter holds for § high enough as V;/ (By) > Vi (By).
We therefore have that for all sufficiently high ¢ < 1,

Vet + Vi < (V3 (By) + Vi (By)) < S(2,2).

But, as worker 2 and firm 2 delay in the limit, we must have §(V + Vi) > S(2,2) for all
sufficiently high 0 < 1 which is a contradiction. So, there is no such weakly efficient LMPE.

Case B: The argument here is identical to that for Case A. Writing out the value equations
for firm 1 and worker 1 and rearranging them, shows that V;' < 6V//(B;) and Vi < §V;*(Bs).

Combining these equations yields
Vi Vi < 0(V/ (Bs) + V¥ (Bs)) < S(1,1).
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But as firm 1 and worker 1 delay in the limit, (V' +V;#) > S(1,1), which is a contradiction.
So, there is no such weakly efficient LMPE.

Case C: Writing out the value equations we get:

Vi = q1(S(1,1) = 6V{) + 0020V (Bs) 4+ (1 — q1 — v92)0V}, (26)
Vi = pi(S(1,1) = 0Vi) + v020V{ (Bs) + 0120V (Bs) + (1 — py — vas — v12) 6V, (27)
Vol = 0120V5" (Bg) + v110V5 (By) + (1 — v11 — v19) 0V4", (28)
Vi = vi6Vy (BY) + (1 — v11)0V (29)

In any sequential LMPE, it must be that either vy = 0 for all § < 1 sufficiently large or
lims_,; v9o = 0. Allowing for these possibilities, there are three subcases to be considered. For
all § < 1 sufficiently high we could have (a) 7% < 1 and 7, > 0; (b) 7% < 1 and 7, = 0; or
(¢) 7% =1 and 7}, > 0. Further, if 7% < 1 then

5(172) - 5‘/2f = S(la 1) - 5‘/1]07 (30)

while if 7}, > 0 then
S(1,2) — oV = 6V . (31)

In subcase (a), both worker 1 and firm 2 play a mixed strategy. If so, the conjectured
equilibrium is pinned down by a system of value equations that includes (26-31). Substituting
equations (28) and (29) into (30) and (31) eliminates V' and V;*. Rearranging these new
equations creates expressions for V| and Vlf in terms of just the mixing probability 7{.
Substituting these expressions into equations (26) and (27) to eliminate V}* and Vlf then gives
a system of two equations in just the mixing probabilities (7}, ng, 7T§2 and 735). Using these
equations to eliminate ng, we get an expression for 7} in terms of just parameters, 9, 7r§2 and
Tay. Taking limits, and using that in a sequential LMPE we must have 7?52 + g = 0, we get
that 7} = —%. As mixing probabilities cannot be negative, this implies that we cannot have

both worker 1 and firm 2 both offering to each other with positive probability.

In subcase (b), worker 1 plays a mixed strategy but firm 2 does not. If so, the conjectured
equilibrium is pinned down by a system of value equations that includes (26-30). Equation
(29) identifies V5 in terms of just parameters and V;/ = 7/2. Manipulating equations (28),
(26) and (27), we get an expression for Vi in terms of just the mixing probabilities 7%, 72,
and 73,. Moreover, using that 7’?52 + 75 = 0 and 7} = 1, we get that Vlf = 3. Combining
these values with equation (30) yields a contradiction. So, we cannot have that worker 1 offers

to firm 2, but firm 2 does not offer to worker 1.

In subcase (¢), firm 2 plays a mixed strategy, but worker 1 does not. If so, the conjectured
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equilibrium is pinned down by a system of value equations that includes (26-29) and (31).
Combining equations (26) and (27) to eliminate V;/ gives an expression for Vi just in terms of
just mixing probabilities. Substituting equation (29) into equation (31) to eliminate V; gives
a second expression for V" just in terms of mixing probabilities. Using these two expression

to eliminate V" gives

; (70— 8)(5(835 — 318) + 192)(8(7md, + w4 — 16) + 16)(3(Td, + 73 — 8) + 16)

= , (32
2 75(5(8(6® + 16(17017L, + 2437, — 5056)) — 768(14mh, + 274 — 99)) — 24576) (32

for & = 76(581ml, + 837 — 708) — 202307d, — 28907, 4 34592.

If so, there are two further possibilities to consider: voy > 0 and v9g = 0. If v9y > 0, we
have that 8(Vy + V) = S(2,2) as worker 2 and firm 2 must delay with positive probability
for all sufficiently high § < 1 in any sequential LMPE. Substituting equations (29) and (28)
into this expression to eliminate V2f and V", we get a second expression for ng in terms of
just parameters. Eliminating W{l by combining this equation with equation (32) yields an

expression for 74, which is linear in 7T£2,
T = W(8) — Trly.
Clearly, 7% < U(0) as 7, > 0. Minor manipulations then establish that lims_; ¥(8) = 0 and
lims_y1 OU(4)/0d > 0.

This implies that ¥(J) < 0 for all sufficiently high § < 1, and thus that 7%, < 0 for all
sufficiently high 6 < 1. But, this is a contradiction, and so vy = 0.
Setting vge = 0, equation (32) simplifies to

; 32(6 — 2)(5 — 1)(76 — 8)(5(830 — 318) + 192)

2T 75 (5(6(5(12390 — 8648) + 20224) — 19008) + 6144)

This implies that 7?51 = 0 and that
limy_,1 Ol /06 > 0

Thus, for all sufficiently high values of § < 1, we would have 7, < 0. But again this is a
contradiction as 7r§1 is a probability, and so there is not sequential LMPE consistent with the
proposal probabilities.

Case D: The argument is identical to that for Case C, but with worker 1 swapping roles with

firm 2 and worker 2 swapping roles with firm 1. =
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