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Abstract
Most empirical and theoretical econometric studies of dynamic discrete choice models as-
sume the discount factor to be known. We show the knowledge of the discount factor is not
necessary to identify parts, or even all, of the payoff function. We show the discount factor can
be generically identified jointly with the payoff parameters. On the other hand it is known the
payoff function cannot be nonparametrically identified without any a priori restrictions. Our
identification of the discount factor is robust to any normalization choice on the payoff para-
meters. In IO applications normalizations are usually made on switching costs, such as entry
costs and scrap values. We also show that switching costs can be nonparametrically identified,
in closed-form, independently of the discount factor and other parts of the payoff function. Our
identification strategies are constructive. They lead to easy to compute estimands that are
global solutions. We illustrate with a Monte Carlo study and the dataset used in Ryan (2012).
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1 Introduction

The stationary dynamic discrete decision model surveyed in Rust (1994) has been a subject of much
research in econometric theory and empirical studies. The primitives of the model consist of the
period payoff function, Markov transition law, and discount factor. A well-known characteristic of
a dynamic decision model is that it is not identified. For example, Manski (1993) points out in
general that the discount factor and payoff function cannot be jointly identified nonparametrically.
Most positive identification results in the literature until recently focus on identifying payoff para-
meters while assuming other primitives to be known; e.g. see Magnac and Thesmar (2002), and also
Pesendorfer and Schmidt-Dengler (2008) and Bajari, Chernozhukov, Hong and Nekipelov (2009).
Meanwhile empirical studies typically parameterize the payoft function, parameterize at least part of
the distribution of the variables, and assume the discount factor to be known.

In this paper we are interested in identifying the discount factor jointly with the payoff function
under the linear-in-parameter specification. This parametric model is the most commonly used
specification in practice. When there are finite states the linear specification can represent any
nonparametric function. Most empirical studies assume the value of the discount factor to be known
without any formal justification in this setting. To the best of our knowledge we are not aware of any
prior identification study involving the discount factor in a general parametric model. We provide
conditions under which both the discount factor and payoff parameters can be identified, and propose
an easy to compute estimator for them. Other positive identification results on the discount factor in
the literature use a nonparametric approach. They use exclusion restrictions in the form of variables
affecting future utilities but not current utilities to identify the discount factor; e.g. see Dubé, Hitsch,
and Jindal (2014), Wang (2014), Fang and Wang (2015), and Ching and Osborne (2017). We do not
rely on these assumptions.

A nonparametric payoff function without any restriction cannot be identified even if the discount
factor is known. The fundamental identification characteristic in a discrete choice model can be
traced to the static random utility model of McFadden (1974), where utility is ordinal and its level
cannot be identified. Some form of normalization has to be made. Aguirregabiria and Suzuki (2014,
AS hereafter) recently highlight the undesirable effects that an arbitrary normalization have on
un-normalized parameters and counterfactual studies, and emphasize the importance of identifiable
objects without any normalization; also see Kalouptsidi, Scott, and Souza-Rodrigues (2016a, 2016b).
An important question then is whether our identification result is robust against misspecifying the
normalization choice.

We verify that our identification of the discount factor is robust against any normalization choice.

On the other hand the payoff parameters are generally not individually robust. But some of their



meaningful combinations are. To this end we also contribute to the literature by providing a non-
parametric framework to identify the payoff parameters that arise from changing in the actions of
players between time periods. We call these switching costs'. For example, in an entry/exit model,
they are entry cost and scrap value. Individually the entry cost and scrap value cannot be separately
identified but their difference, namely the sunk entry cost, can be identified. We show that switching
costs can be written explicitly in terms of the observed choice probabilities, independently of the
discount factor as well as other (non switching costs) components of the payoff function. AS has
already shown the sunk entry costs in several IO models can be identified in this fashion. We extend
these results to sunk investment costs that can arise from firm investing and divesting, as well as
individual switching costs themselves under other a priori restrictions.

A general discussion on the non-identification of the dynamic model we consider can be found in
Rust (1994). Positive identification is possible when more structures are imposed on the primitives.
Magnac and Thesmar (2002) have shown the problem of identifying the payoff parameters nonpara-
metrically when all other primitives of the model are assumed to be known can be reduced to a
study of solutions to a linear system; also see Pesendorfer and Schmidt-Dengler (2008) and Bajari et
al. (2009). We are interested in the payoff parameters as well as the discount factor. The discount
factor enters the decision problem recursively and thereby introduces nonlinearity in the model.

Magnac and Thesmar (2002, Section 4.2) suggest that exclusion or parametric restrictions can be
used to identify the discount factor. For the former, their Proposition 4 illustrates in a simple two-
period model the discount factor is in fact typically overidentified. The identifying restriction they
use is that: for some states, utilities in the first period are the same but differ in the second period.
This idea has been elaborated and applied in different empirical contexts by Dubé et al. (2014),
Wang (2014), Fang and Wang (2015), and Ching and Osborne (2017) amongst others. On the other
hand, while it may be plausible to assume identification is possible in a parametric model we are not
aware of any theoretical result that has verified this to be true. In particular establishing parametric
identification in a general nonlinear model is a non-trivial task; see Komunjer (2012) for a recent
illustration. We prove identification using an empirical model that is linear in the payoff parameters
conditioning on the discount factor. We construct a one-dimensional criterion function to be used
for identification. It exploits the conditional linear structure to profile out the payoff parameters
and reduce the nonlinear nature of the problem to just one dimension. The criterion function we
construct to establish identification has a sample counterpart that can be used for estimation.

In many 10 applications, switching costs are often the essence of a dynamic decision problem and

I'We use the term switching costs that shares the same spirit as generic adjustment costs and other inertia. Examples
of usages in various fields of economics and marketing include the cost to change in health insurance plan, changing

of credit and other utility providers, and retailer’s decisions on promotions.



can even be the central object of the dynamic model itself (e.g. see Slade (1998), and also the general
discussions in Ackerberg, Benkard, Berry and Pakes (2007) and Pesendorfer (2010)). Our study on
the switching costs takes a nonparametric approach. We identify combinations of the switching costs
by exploiting empirically motivated exclusion and testable independence assumptions. A key step
involves eliminating common future expected discounted payoffs that arise from different states. Our
result does not depend on the discount factor and some other components of the payoff function.
The robust identification result of this nature has precedence in the literature but has not been
highlighted.? For example, an inspection of Proposition 2 in Aguirregabiria and Suzuki (2014) will
reveal that the same implication of our Theorem 2 has already been obtained for a binary action
game of entry/exit?. We provide closed-form expressions for switching costs and their combinations in
terms of only the observed choice probabilities. They can therefore be trivially estimated. They also
suggest overidentification tests can be constructed by comparing against other estimates of switching
costs obtained under additional assumptions on the model primitives.

Throughout the paper our identification results are obtained using an empirical model under the
assumption that the choice and transition probabilities are nonparametrically identified. These same
probabilities are used to compute expected payoffs in a pseudo-decision problem for all values of the
model parameters as opposed to the actual (or full-solution) model where equilibrium probabilities
are used. The choice probabilities implied by our empirical model can be used to construct pseudo-
likelihood functions as done in Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu
(2008). This empirical model is used because it is tractable. It forms the basis for any two-step esti-
mation procedures, following Hotz and Miller (1993), which are preferred on computational grounds
over a full-solution approach such as the nested fixed-point algorithm of Rust (1987). The estimator
we propose in this paper will be based on the two-step approach of Sanches, Silva, and Srisuma
(2016) with computational simplicity in mind. It is worth noting that, although consistent, a simple
two-step estimator like ours tend to have larger finite sample bias and is less efficient than estima-
tors that enforce the equilibrium restriction of the model. Equilibrium constraints can be imposed
during estimation with additional computational cost, also without the need to solve out a dynamic
optimization problem (cf. Rust (1987)). E.g. Aguirregabiria and Mira (2002, 2007) and Egesdal,
Lai, and Su (2015) have shown the fully efficient maximum likelihood estimator can be obtained in
this way.

When the data come from a single time series, or when they are pooled across short panels of

2In one instance, for a slightly different model with a mixed continuous-discrete decision variable, Hong and Shum
(2010) rely on a deterministic state transition rule to define a pairwise-difference estimator that matches on (and

thereby avoid computing) future expected discounted payoffs from different states.
3We thank an anonymous referee for pointing this out to us.



multiple homogeneous markets, the choice and transition probabilities are nonparametrically iden-
tified under weak conditions. In practice many datasets are short panels, where it would be more
reasonable to assume some form of unobserved heterogeneity exists across markets. A flexible yet
tractable way to model unobserved heterogeneity in this literature is to use a finite mixture model.
For example Aguirregabiria and Mira (2007) suggest economic agents’ payoffs have time-invariant
unobserved market specific component that is unobserved to the econometrician, therefore markets
of different types have different equilibrium distributions on the observables. Kasahara and Shimotsu
(2009) and Arcidiacono and Miller (2011) have given conditions so that the probabilities for each
mixture type can be nonparametrically identified under different frameworks, thereby extending the
scope of applying two-step estimation methods to models with unobserved heterogeneity. All iden-
tification results in our paper are valid in such setting as long as we can identify the type specific
probabilities to be able to set up the corresponding pseudo-decision problem. Specifically the degree
of overidentification on the model primitives increases proportionally to the number of mixture types.

The class of decision problems we consider is a special case of dynamic games described in
Aguirregabiria and Nevo (2010) and Bajari, Hong, and Nekipelov (2010). All of our intuition and
results are applicable to these games. The most parts of this paper focus on the single agent model
for notational simplicity and clarity of idea, and to abstract ourselves away from game specific issues
(such as multiple equilibria). For the same reasoning given for models with unobserved heterogeneity,
the portability of our results to dynamic games is immediate as long as the choice and transition
probabilities can be consistently estimated nonparametrically. The numerical studies of our proposed
estimators are in fact performed in a dynamic game setting. The details on extending our single
agent’s results to games can be found in the Appendix.

We perform a Monte Carlo study of our proposed estimators using the simulation design in
Pesendorfer and Schmidt-Dengler (2008). We then use the same dataset as used in Ryan (2012)
to estimate a dynamic game played between firms in the US Portland cement industry. In our
version of the game, firms choose whether to enter the market as well as decide on the capacity
level of operation (five different levels). We assume firms compete in a capacity constrained Cournot
game, so the period variable profit can be estimated directly from the data as done in Ryan. The
dynamic parameters we estimate are the discount factor, fixed operating cost, and 25 switching cost
parameters. We estimate the model twice. Once using the data from before 1990 and once after
1990. The separation date coincides with implementation of the 1990 Clean Air Act Amendments
(1990 CAAA). Our estimates on switching costs generally appear sensible, having correct signs and
relative magnitudes. They show that firms entering the market with a higher capacity level incur
larger costs, and suggest that increasing capacity level is generally costly while a reduction can return

some revenue. We find that operating and entry costs are generally higher after the 1990 CAAA,



which supports Ryan’s key finding. We are also able to estimate the discount factor to be within the
commonly assumed range with a reasonable precision.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical model and
the basic modeling assumptions. Section 3 gives a joint identification result on the discount factor and
the payoff parameters under the linear-in-parameter specification. Section 4 studies nonparametric
identification of the switching costs. Section 5 illustrates the performance and use of our estimator
with simulated and real data. Section 6 concludes. The Appendix contains details for extending our
identification results to dynamic games and further results on identifying the discount factor.

Notations. We use p(A),CS(A),AT, A1 and AT to respectively denote the rank, column
space, transpose, inverse and Moore-Penrose inverse of matrix A. For any positive integers p, ¢, we

let I, and 0,,, respectively denote the identity matrix of size p and a p X ¢ matrix of zeros.

2 Basic Modelling Framework

We begin by describing an infinite time horizon dynamic discrete choice model as in Rust (1987,
1994).* Given our empirical examples and application below, we shall sometimes refer to our rep-
resentative economic agent as a firm and her payoffs as profits. Let t € {1,2,...,00} denote time.
The random variables in our model are the action and state variables, which we denote by a; and
s; respectively. a; takes values from a finite set of alternatives A = {0,1,...,J}. s; contains two
components, s; = (r,6;) € X x R/™ with X C R. z; is public information to both the firm and
the econometrician, while &, = (¢, (0),...,& (J)) € R’ is private information only observed by the
firm. Future states are uncertain. Today’s action and states affect outcomes for states in the future.
The evolution of the states is summarized by a Markov transition law P (s;41]|s¢,a;). The firm’s
period payoff function is u (ay, s;) € R. Future period’s payoffs are discounted at the rate 5 € [0, 1).
At time ¢ the firm observes s; and chooses an action optimally. Specifically, we assume a; = « (s;)

so that:

a(s) = arg r(rlleajc{u (a,s) + BE [V (5t41) |$t = s,a; = al}, (1)
where V' (s) = max {u(a,s)+ BE[V (st+1) |5t = s,a: = al} .

Using the optimal decision rule we can remove the max operator and write the value function as,

V(s)=E | Bulays)|so=s]. (2)

4The notations for an infinite time stationary model is much simpler relative to a finite time horizon one. Our

identification strategy is valid for finite time horizon models, and with or without absorbing states.



The expectation operators in the displays above integrate out variables with respect to the probability
distribution induced by the equilibrium choice probabilities and Markov transition law. As standard

in the literature we assume the following assumptions.

ASSUMPTION M:
(i) (Additive Separability) For all a,x,¢€:

u(a,z,e) =m(a,z)+¢€(a).

(ii) (Conditional Independence) The transition distribution of the states has the following factor-
ization for all x' &', x, ¢, a:

P (2 ez, e,a) =Q (") G (2'|x,a),

where @) is the cumulative distribution function of e, and G denotes the transition law of ;41
conditioning on xy,a;. Furthermore, €; has finite first moments, and a positive, continuous and
bounded density on R/,

(i11) (Finite Observed State) X = {1,..., K}.

The primitives of the model under this setting consist of (m, 3, @,G). Throughout the paper
we shall assume (G, Q) to be known. G can be identified from the data when (a;,x;, z441) are
observed. Consistent estimation of the joint distribution of (a, 2y, ;1 1) holds under weak conditions
with a single time series, as well as repeated observations from short panels when there is no other
unobserved heterogeneity. @ is typically assumed known in most empirical applications. Conditions
for the identification of () exist when x; is a continuous variable using a large support type argument,
e.g. see Aguirregabiria and Suzuki (2014, Proposition 1), Buchholz, Shum, and Xu (2016, Lemma 4)
and Chen (2014, Theorem 4). Our results do not depend on any continuity assumption to achieve
identification as we take x; to be a discrete random variable.

Our subsequent analysis use the fact that we can identify the choice probability from data as
the starting point, which in turn is informative about (7, 3). More specifically, for any a > 0, let
Av (a,z) = v (a,z) — v (0, ), where v (a,z) denotes the choice-specific value function that serves as

the mean utility in a discrete choice modelling;:

v(a,z) = w(a,z)+ PE[V (St41) |2 =z, a0 = a] , (3)
Prla; = alz; = 2] = Prl[Av(a,z) — Av(d',z) > ¢, (a') — g (a) forall o #a].

By inverting the choice probabilities (Hotz and Miller (1993)) we can recover Av (a, z) for all a > 0, z.



3 Identifying the Discount Factor with Linear-in-Parameter

Payoffs

In this section we assume the payoff function takes on a linear-in-parameter specification. Section
3.1 defines the identification concept for the discount factor and payoff parameters. Section 3.2
provides some representation lemmas that will be useful for defining a criterion function to study

identification. Section 3.3 gives the identification result.

3.1 Definition of Parametric Identification

We will assume Assumption M and the following assumption throughout this section.
ASSUMPTION P (LINEAR-IN-PARAMETER): For all a,z:
T (av T (9) =To (CL, ‘T) + eTﬂ-l (CL, CL’) ’

where my 18 a known real value function, m is a known p—dimensional vector value function and 0

belongs to RP.

Assumption P can be interpreted as nonparametric. For example it can represent an unrestricted
nonparametric function of m by assigning a parameter for each possible pair of ¢ and x. However,
such function is too rich and cannot be identified. We will maintain the parametric appearance for 7
as we will not be exploiting any nonparametric restriction in our identification study of the discount
factor.

The role of 7 is to represent the payoff components that are identifiable without the knowledge
of the discount factor or other model primitives. In practice my and possibly parts of 7; may have to
be estimated (e.g. see Section 5.2). For the purpose of identification they can be treated as known.
The primitives in this setting are (3,6). They belong to B x © where B = [0,1) and © = RP. We
are interested in the data generating discount factor and payoft parameters, which we denote by j,
and 6y respectively.

We begin by defining the parametric choice-specific value function (cf. equation (3)):

CL x5 Bv ZﬁtE ata'rh )+6t (at)|a0 = a,Xo :I'] (4)

Then we denote the differences in these value functions when action a is chosen relative to action
0 by Av(a,z;8,0) = v(a,z;5,0) — v (0,z;5,60). It is important to emphasize that the stochastic

process {a;, x4, 5t}fi o that defines the right hand side of equation (4) follows an optimal controlled



process consistent with (3, 0p), whose distribution is identified by the observed probabilities from the
data. Therefore Av (a,x; 3,0) is identified for all (a,z) € A x X and (5,0) € B x ©. Furthermore,
Av (a,z; By, 00) is also identified by Hotz-Miller’s inversion. We shall use the mapping (3,6) —
{Av (a, z; B, 9)}(a7x)€AxX as a basis of our identification study.

More formally, we take each pair (/3,60) to be a structure of our empirical model and its implied
choice-specific values, denoted by Vzp = {Av (a, z; 5, 0)}(&%)E Axxs to be its corresponding reduced
form. We then define identification using the notion of observational equivalence in terms of the

differences in expected payoffs.

DEFINITION 11 (OBSERVATIONAL EQUIVALENCE): Any distinct (3,60) and (3',6") in B x © are

observationally equivalent if and only if Vg g = Vg 4.

DEFINITION 12 (POINT IDENTIFICATION): An element in B x O, say (f3, 6), is point identified if
and only if (5',6') and (3,6) are not observationally equivalent for all (3',6") # (3,0) in B x ©.

For our identification study we define our statistical model to be the collection of all reduced forms,
namely: {Vso} ;0 cpvo- All statements made on identification in Section 3 are in the context of this
statistical model unless explicitly stated otherwise. Alternatively we can also define a statistical
model based on probability distributions as in the traditional econometrics studies on identification.

Specifically, the model implied choice probabilities for each (3, 6) are:
Pso = {Pr[Av(a,z;5,0) — Av(d,z;8,0) > e(a’) — e (a) for all a’ # a]}(a,x)eAxX .

It is known there is a one-to-one relation between {Vgﬁ}(ﬂﬂ)egx@ and {Pﬁ,e}(ﬁﬂ)el;x@; see Matzkin
(1991), Hotz and Miller (1993), and Norets and Takahashi (2013). Therefore identification for our
decision problem can be equivalently established with either {Vs4} (8.0)eBx6 OF {Pso} (5.0)cBxe- Note
that one can interpret elements in Pgy as the implied choice probabilities for an economic agent
who solves a pseudo-decision problem where the expected payoff for taking each action is given by

equation (4).



3.2 Some Representation Lemmas

Under Assumptions M and P, it shall be useful to separate out the contributions of the expected

discounted payoffs in (4) as follows:

v(a,z;6,0) = mo(a,x)+ ﬂZBtE (70 (ag, 1) |ag = a, x9 = 2]

t=0

+0 Z B'E e (at) |ao = a,z¢ = ]
t=0

+0" (71 (a,z) + B ZBtE (71 (ag, 2¢) |ag = a, o = x]).

=0
Subsequently, by defining A, (a,z) = 7 (a,z) — 7 (0,2) for [ = 0,1, we have:

oo

Av(a,x;8,0) = Amg(a,x)+ BZBt (E [mo (ar, z¢) |ao = a,x9 = x] — E [mq (ay, ¢) |ag = 0,29 = z])

=0
—I—ﬁZBt e (ay) |ap = a,xg = x] — E [ey (ar) |ag = 0,9 = x])

+9T(A7Tl (a,z) + 526 (71 (as, ) lag = a, w9 = ] — B [m1 (ar, 2¢) |ag = 0, 10 = 7])).
=0

The decomposition of Av helps us distinguish how /5 and/or 6 affect different parts of the per-period

payoffs. Lemma 1 summarizes this in a matrix form.

LEMMA 1: Under Assumptions M and P, for all a > 0, Av(a,x;3,0) can be collected in the
following vector form for all (5,0) € B x O:

Ave(3,0) = ARS+BAH” (Ix — SL) ' Ry (5)
+BAH® (Ic — L)
+ (AR{ + BAH" (Ix — BL) ' Ry) 0,

where the elements in the above display are collected and explained in Tables A and B.

Matrix Dimension Representing

AR} K xp Amy (a,-)
R, K xp ™ (a,-)
L Kx K Bl (ze41) |20 = ]

H* K x K E[ (xi41) |20 = -, ap = a
AH* KxK ElW (z441) |ve = -y as = a] — E[¢ (v451) |24 = -, ap = 0]




Table A. The matrices consist of (differences in) expected payoffs and probabilities. The latter

represent conditional expectations for any function v of ;1.

Vector Representing

€ E [€t (at)| Ty = ]
ARS AT&'O ( )

Ry [7T0 (au ﬂft) ‘l"t ]

AH* (Ix — 5L)_1 Ry Y2 OB (E 7o (at, z¢) lag = a,x9 = x] — E [mq (ar, ¢) |ao = 0,29 = 7))
AH* (Ix — BL)_1 R, Y2 05 (E 71 (ag, z¢) |ag = a, z9 = x] — E[m1 (g, ¢) |ag = 0,29 = z])
AH (Ix — L) e Y72, B (E]

e (ar) lag = a,x9 = 2] — Elgy (a4) |ag = 0,29 = z])

Table B. The K x 1 vectors represent (differences in) expected payoffs.

Proor: This is a special case of Lemma R in Sanches et al. (2016).1

All vectors and matrices in Tables A and B are either known or estimable from the choice and
transitional probabilities. The tables will serve as a useful reference for constructing the necessary
components we use for defining the criterion function in Section 3.3.

Given that we can identify Av® (5, 0y) for all a > 0, to identify (5, 0o), it is sufficient to show
that for all (5,6) # (By,00), Av®(5,0) # Av®(5,,0y) for some a. Our next lemma provides a

characterization as to how changing 3 and 6 can affect Av“.
LEMMA 2: Under Assumptions M and P, for any a > 0 and (3,0),(5,0") € B x ©:

AV (8,0) — Av® (8,0)) = (AR{+ BAH" (Ix — L) 'Ra) (0 —¢'), (6)
AV (3,0 — Av* (8,0) = (B—pB)AH"(Ix — BL) " (Ix — SL) " (Ro + Rl +€). (7

And (3,0) is identifiable if and only if there is no other (3',0') such that for all a > 0:

Av® (B,0") — Av® (B,0") = Av* (B,0) — Av* (B,0').

PrOOF: Follows from some algebra based on equation (5).H

Lemma 2 illustrates the nature of the identification problem we have at hand. We highlight the
following particulars:

(1) If the discount rate is assumed to be known, from (6), a sufficient condition for Av® (5, 0) #
AV (B,,0') when 0 # 6’ is that AR? + SAH® (Ix — SL)"' R, has full column rank for some a > 0.
Also see Theorem 3 in Srisuma (2015).
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(i) If the payoff function is assumed to be known, from (7), a sufficient condition for Av® (5',6,) #
Av®(B,00) when 8 # 3 is that (Ro + R16' + €) # 0 and AH* is invertible some a > 0.

(iif) Suppose p is large relative to K. Then for any a > 0 such that AR? + SAH® (Ix — fL) ' R,
has rank K, and for any ', 3 # 3’ that Av®(5',0") # Av®(3,0'), by equating (6) and (7), we can
always find @ such that Av® (3',0') = Av®(8,0).

Point (i) shows that sufficient conditions for identification of the payoff parameters when the
discount rate is assumed known can be easily stated and verified. More generally the sufficient
condition for the identification of the payoff parameter can be stated in terms of the full column rank
of the matrix that stacks together AR? + BAH® (Ix — SL)"" Ry over a. In the case we are able to
identify the payoff function outside of the dynamic model, (ii) shows that the discount factor can
also be identified and provide one type of sufficient conditions that can be readily checked. Point (iii)
shares the intuition along the line of Manski (1993) that when the parameterization on the payoff
function is too rich, (3, 6) may not identifiable in B x O.

From Lemma 2, it is also apparent that we should be able to identify (/3,,6p) jointly when the
change in the vector of expected payoffs from altering the discount factor moves in a different direction

to the change caused by altering the payoff parameters.

3.3 Sum of Squares Criterion Function

The study of identification involving the discount factor is complicated due to the fact that Vs, is
nonlinear in (3,6). However, for a given 3, we can see from (5) that Vs is linear in §. We use
profiling to exploit the conditional linearity to simplify the identification problem for a nonlinear
model with p + 1 parameters to a one-dimensional problem.

Let m“ (3,0) = Av® (5, 00) — Av®(3,60). Then we can write, using (5):

m* (5,0) = a*(§)—B"(9)90,
“(B) = Av*(By,00) — ARE — BAH® (Ix — SL) ' (Rg + €)
B) = AR?+ BAH® (Ix — L)' R,.

(
a” (
B (
It is clear that m® (3, 6) is linear in 6 for any given 3. We can stack together the system of equations

above across a. In doing so we obtain the following vector value function, m : B x © — R%7 :

m (f3,0) = a(f) —B(H)9, (8)

where a () is a KJ x 1 vector and B () is a K'J X p matrix.
Let M (5,0) = |m(8,0)|],1i.e. M (f,0) is the Euclidean norm of m (/3,0). Then by construction,

M(8,0) =0 if (5,0) = (5o, bo)
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and any other (/3,6) such that M (3,0) = 0 is observationally equivalent to (53, 0,) by the property
of the norm. Therefore M has the necessary property to serve as a criterion for identification.
Next we profile out 6 in order to reduce the dimensionality on M by exploiting its least squares

structure. For each 3, run a regression of a () on B (), we can define:

0" (3) = (B(B) B(B)B(B) a(B). (9)

So that 6" (3) is a least squares solution to mingeg M (5, 6). Then we define:

M*(B) = M (5,607 (P)) - (10)

By construction it also holds that
M (B) =0 if §=f,.

In this way we have reduced the parameter space in the identification problem to a one-dimensional
one. Furthermore the domain of the parameter space is on a small interval: [0,1). The reasoning is
analogous to profiling in an estimation routine. Particularly we can ignore any 6 that does not lie in

arg mingeg M (3, 0) since necessarily,
M (B,0) > M (5,6 (B)) = 0.

Therefore (f3,,6p) is identified when M* (/) has a unique minimum and mingeg M (5, 6) has a

unique solution.

~

THEOREM 1: Under Assumptions M and P, (B, 0o) is identifiable in {Vso} 5 g cnro if

M*(B) =0 if and only if 5= j,,

and B (8,) has full column rank.

PROOF: Suppose (8,,0) is identifiable. If there is 3 # [, such that M*(8) = 0, then
Av® (Bg,00) = Ave (5,0 (8")) for all a by the property of the norm. Since © is a closed set,
by the projection theorem, 6* (') exists and is the unique element in ©. This leads to a contradic-
tion since (3,,60) and (5,0 (38')) are observationally equivalent. Next, suppose that B (3,) does
not have full column rank. Let 6’ be another element in arg mingeg M (3, 0) that differs from 6.
Since M (3y,6) > 0 for all # € © and M (8, 00) = 0, M (B,,60) = 0. Thus (3,,0,) and (3,,0') are

observationally equivalent, also a contradiction.ll

COMMENTS ON THEOREM 1:
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(i) High Level Assumptions. Conditions in Theorem 1 are high level as we do not relate them
to the underlying primitives of the model. However, they are statements made on objects that
are observed or can be consistently estimated nonparametrically. In the Appendix we give a more
detailed conditions for M* to have a unique minimum; see Theorem 4.

(ii) Feasible Check and Estimation. Since we have reduced the identification problem to a single-
parameter that can reside only in a narrow range, there is no need to refer to complicated results
for the identification of a general nonlinear model. We can use the sample parts of components in
Tables A and B to consistently estimate M* () for all 5. So one can plot the sample counterpart
of M* over B for an exhaustive analysis of the problem. Once the minimum of M* is found, the
corresponding rank matrix can then be checked. This suggests one natural way to estimate the
discount factor, namely by grid search. In practice we can detect an identification problem if the
sample counterpart of M* contains a flat region at the minimum, or when the sample counterpart
of B (5,) does not have full column rank.

(#i) Identification in the empirical model. Tt is clear that positive identification of (f,,6p) in
our empirical model is sufficient for identifying (3,,6y) in the full-solution model. Therefore our
identification results in this paper can be used to establish identification in the full-solution model.
However, we the implication may not be necessary, and we do not make any other claim on the
identification of the full-solution model. The identification study in the full-solution model is much
more complicated since it is less tractable analytically; for a further discussion we refer the reader to
Srisuma (2015).

By inspecting the proof of Theorem 1 it is clear there are some separation between the identifi-
ability of 3, and 6y. In particular we have defined 6" () using a generalized inverse of the matrix
B (8)" B (3). Therefore 3, can be identified even if 6, is not.

The full column rank condition on B (/3,), however, is not an innocuous assumption when we view
Assumption P as a representation of a nonparametric function. In practice this is often delivered by
exclusion assumptions or more generally by normalization of payoff parameters. Next section we will
focus on payoff parameters that we call switching costs. We will revisit the question of identifiability

of the discount factor under different normalization choice in Section 4.3.

4 Nonparametric Identification of Switching Costs

In this section we consider payoff functions under nonparametric restrictions that allow us to obtain
closed-form expressions for the switching costs parameters. In Section 4.1 we define a switching cost

function and explain the assumptions required for our identification result. Section 4.2 gives the
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identification result. Section 4.3 relates the identification of the discount factor under Assumption P

to models with switching costs.

4.1 Switching Costs

The payoff function cannot be nonparametrically identified without any restrictions. Economic theory
can help guide how to impose structures on the payoff function. A main consideration in making
a dynamic discrete decision is how a change in one’s action from the previous period immediately
affect today’s payoffs. Actions from the past are therefore often important components of the state
variables. We will consider restrictions focusing on switching costs.

In order to highlight the role of switching costs we distinguish past actions from other state
variables. At time t we denote actions from the previous period by wy, so that w; = a;_1. We denote
the switching cost from changing action from w to a by SC"~?. Subsequently, in this section we
shall maintain an updated version of Assumption M where x; is replaced with (w;, z;) everywhere.

In addition we impose the following assumptions.

ASSUMPTION N
(i) (Decomposition of Profits): For all a,w,x:

7r<a7w7$) Z,u(a,:c)—i—¢(a—w,w,m),

such that ¢ (0,w,x) = 0.
(ii) (Conditional Independence): The distribution of x,y1 conditional on a; and x; is independent

of wy.

The decomposition of 7 in N(i) may appear peculiar at first, but it is typical in many empirical 10
applications. We will give an interpretation of its components within the context of an IO application.
The defining feature of p is that it excludes past actions. y can represent the firm’s operational profit
in the current period, such as variable profits and operational costs, which does not depend on actions
from the past. ¢ is the switching cost function that takes non-zero values only when a change of

action occurs. Note that, by construction, we have:
¢(a—w,w,z)=SC"""(z) - 1|w #d], (11)

where 1 [-] denotes the indicator function.
Assumption N(ii) imposes that knowing actions from the past does not help predict future state
variables when the present action and other observable state variables are known. Note that N(ii) is

not implied by M(ii). In many applications {x;} is simply assumed to be a strictly exogenous first
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order Markov process. Specifically this implies x;,; is independent of a; conditional on z; in addition
to N(ii). In any case, unlike M(ii), N(ii) is a restriction made on the observables so it can be tested
directly from the data. Later on we shall show how z; can be modified to contain past actions so
N(ii) can be weakened to allow for dependence of other state variables with past actions.

Even under Assumption N(i) identification issue persists (e.g. see the discussion in Aguirregabiria
and Suzuki (2014)). SC*~ cannot be identified for all w # a without any further restrictions. Some
of their differences, however, can be identified. For example, identification is possible if we normalize
some baseline switching costs to be known. We will look at different restrictions that can be used
to identify individual or combination of the switching costs. Before giving the formal result we
provide an intuition as to why Assumption N is helpful for identifying the switching costs. It will

also illustrate the key steps of our identification strategy.

EXCLUSION AND INDEPENDENCE RESTRICTIONS
Consider a two-period entry/exit decision problem. Let A = {0,1}, where 0 denotes exit and
1 denotes entry. Then SC°~! and SC'~? respectively have interpretations of entry cost and scrap

value. In this case we can write
¢(a—w,w,r)=SC"""(z)-a(l—w)+SC"7 ) (1-a)w. (12)
The choice-specific value function (cf. (3)) in this model is:
v(a,w,z) =7 (a,w,z) + BE [T (a411, Wt1, Tey1) |ar = a, wy = w, zy = ]

Let Av(w,z) = v(L,w,z) — v (0,w,z). At time ¢, a firm will enter if and only if Av (w,z) >
1 (0) — & (1). We can identify Av from the observed choice probabilities.

The role of our assumptions is to isolate today’s switching costs from the remaining components
in the choice-specific value function. Specifically, we apply N(i) to decompose the profit function in
the current period and use N(ii) to simplify the expected future profits. We can then re-write the

equation above as

via,w,x) = Ma,z)+ ¢(a—w,w,z), where

Aa,x) = pla,x)+ BE (a1, a,x41) |ar = a,x = ]

Crucially note that the conditional expectation on future profits in A no longer depends on w; under
N(ii) due to the law of iterated expectation. We treat A as a nuisance parameter. It is a nonparametric
object that depends on all primitives in the model. Let AX (z) = A (1,2) — A (0, z). Using equation
(12) we have,

Av (w,z) = A (z) + SC*7! (z) - (1 —w) — SC*° (z) - w. (13)
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It is now clear we can identify a combination of the switching costs by differencing out A\ in the
equation above:
Av (1,2) — Av (0,7) = —SC°* (2) — SC*° (2) . (14)

In an entry/exit game the quantity —SC%~! — SC1~9 represents the sunk entry cost that a firm
cannot recover back once it decides to leave the market after entering. Equation (14) shows the sunk
entry cost can be identified independently of 5 and p. On the other hand, it is well known that entry
cost and scrap value cannot be nonparametrically identified separately in this particular model. In
an empirical work an unidentified object gets normalized. It is clear from equation (14) that either
the entry cost or scrap value can be identified if one of them is assumed to be known. For example,
a common assumption is to normalize the scrap value to be zero, the entry cost can be estimated
conditionally on this value along with the other parameters.

The identification strategy above can be generalized substantially. Results for a more general
single agent decision model under M and N can be obtained with little modification. But extending
our single agent’s results to dynamic games is more complex. It requires additional notations and
a more general notion of a difference, characterized by a projection matrix, is used. We defer the

details for dynamic games to the Appendix.

4.2 Closed-Form Identification

We start by providing an expression for the differences in choice-specific valuations that generalizes
equation (13). For any a > 0, let Av (a,w,z) = v (a,w,x) —v (0,w,x), AX(a,x) = X (a,z) — X (0, x),

and A¢ (a,w,z) = ¢ (a —w,w,r) — ¢ (—w,w, ). Lemma 3 generalizes equation (13).

LEMMA 3: Under Assumptions M and N, we have for all i,a >0 and w,x:

Av (a,w,z) = AX(a,x) + A¢ (a,w, x), (15)
where
AX(a,z) = pla,z) = p(0,2) + 3 (m(a,z) —m (0, z)),
m(a,x) = E[m(a, 1) |as =a,xy =],
m(w,x) = E[V(s)we =w,z =x].

ProOF: Using the law of iterated expectation, the value function as defined in equation (2) satis-

fies: E[V (s¢41) |ag, we, 2] = E[m (wig1, Tes1) |ag, wy, ¢ under M(ii). E [m (wig1, Te1) |ag, we, 4] can

17



be simplified further to E [m (a;, z;) |at, 2] after another application of the law of iterated expecta-
tion and imposing N(ii). The remainder of the proof then follows from the definitions of the terms
defined within the main text.ll

The components of Av consist of A\ and A¢. We treat A\ as a nuisance parameter. A¢ contains

the switching costs of interest, for any a, w, x:
A¢ (a,w,z) = SC" 7 (z) - 1[w # a] — SC*° (x) -1 [w # 0]. (16)

As seen previously we can identify the differences in A¢ by eliminating AX. This can be done by

looking at the differences of Av (a,w, x) across different w while holding (a, x) fixed.
THEOREM 2: Under Assumptions M and N, we have for all a > 0 and x,w,w':
A¢ (a,w,z) — Ad (a,w',2) = Av (a,w, z) — Av (a,w', x) . (17)

Theorem 2 follows immediately from Lemma 3. Equation (17) tells us that we can always identify
some combinations of the switching costs nonparametrically. Importantly the identified objects do

not depend on [ or pu.

COMMENTS ON THEOREM 2.

(i) Certain differences in A¢ in equation (17) are economically meaningful. We have already
introduced the sunk entry cost in the entry/exit model as an example. The notion of sunk costs
naturally generalizes to other irreversible investment costs with a varying degree of commitment.
More specifically consider an investment or capacity game where it costs a firm to choose a; > a;_;
and, conversely, a firm can divest to recover some of these costs by choosing a; < a;_;. In this
case —SC¥ =% — SC*~% with a > o represents a sunk investment cost for a firm that increases its
investment level from o’ to a then divests back to a’. Using equations (16) and (17), Corollaries 1

and 2 give closed-form expressions for identifying the sunk investment costs.
COROLLARY 1. For all a > 0, z:
—SC" (z) — SC*7° () = Av (a,a,z) — Av (a,0,7).
COROLLARY 2. For all a,a’ > 0, z:
—SCT (2) — SO (x) = Av (a,a,2) + Av (d,d,x) — Av(a,d,x) — Av (d,a, ).

(ii)) We would prefer to identify the switching costs individually. However, without further in-
formation, they are not identified nonparametrically for this type of models; for example see Aguir-

regabiria and Suzuki (2014) for a thorough discussion. But identification can be achieved if we are
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willing to impose some constraints on the switching costs. One example is by assuming symmetry of
switching costs between any two actions, which would be reasonable in applications with logistical
or physical adjustment costs such as the traditional menu costs (e.g. see Slade (1998)). Corollary 3
shows that individual switching costs under symmetry are identified. Its proof follows immediately

from Corollaries 1 and 2.

COROLLARY 3. For all a, d’, x, suppose that SC* % (x) = SC*~% (z), then for any a,a’ > 0:
SC' () = —(Av(a,a,7) — Av(a,0,7)) /2,
SCY (2) = —(Av(a,a,z)+Av(d,d,z) — Av(a,d,z) — Av(d,a,z))/2.

(iii) It is frequent in many applications that some components of the switching costs are taken
to be known. Typically this is done by way of a normalization assumption. The most commonly
used normalization assumes that taking action 0 yields zero payoff. For example, for an entry or
investment game with entry, such assumption means a firm has no recovery value of assets upon
leaving the market. In other cases some institutional or other external knowledge outside of the
dynamic model are used. For example, Kalouptsidi (2014) uses data on resale value of second hand
ships to identify the scrap values and entry costs directly. In another example, in a study of promotion
pricing decisions, Mys$liwski, Sanches, Silva and Srisuma (2017) rely on anecdotal evidence to assume
a cost is incurred to producers when a sale promotion is on while there is no costs for switching back
to the regular price. In these cases we can identify individual switching costs directly as Corollary 4

shows.

COROLLARY 4. For all ¢/, suppose SC* % (z) = ¢, (w, x) then for any a,d’, z:
SCY™ (2) = Av (a,d', z) — Av (a,a,z) + ¢y (d', ) — ¢ (a, ) . (18)

It is important to highlight that assigning incorrect values to ¢, generally leads to incorrect values
of SC"~% On the other hand, it is easy to verify that certain combinations of switching costs,
including those in Corollaries 1 and 2, are robust against any choice of ¢,.

(iv) Generally Corollaries 1 and 2 can be informative on the validity of a particular normalization
choice since they have been derived without any normalization. For example, let us go back to
the discussion on investment game at the end of our first comment where there is a divestment
opportunity. In this context it would be natural to assume that —SC% % — SC*~% = ¢, for some
positive ¢y when a > a’. Then, given both —SC%~% and SC®~% are positive, it must be the case
that —SC%~? is bounded below by cq.

(v) When A = {0,1} our Theorem 1 implies the sunk entry cost can be identified without any
normalization. Proposition 2 in Aguirregabiria and Suzuki (2014) has established the same result

using a different argument.
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The results of Theorem 2 and Corollaries 1 to 4 are constructive. We can replace the unknown Awv
using the empirical choice probabilities. The sample analog estimators can be computed without any
optimization. Given the empirical literature is concerned with the computational cost our closed-
form identification result can substantially reduce the number of parameters to be estimated in a
model. Such estimators will be consistent and asymptotically normal as long as the initial choice

probabilities have these properties.

4.3 Identification and Normalization

We have emphasized that normalizations of switching costs are necessary in many situations. The
validity of the identification of payoff parameters is not robust against incorrect normalization choice.
We now ask: to what extent the identification of the discount factor depends on the specific normal-
ization choice on the payoff parameters?

In the empirical literature the discount factor is customarily assumed to be known while the focus
on identification falls on which payoff parameters can (or cannot) be identified. A particular nor-
malization choice is made, for example, by assigning a value to an unknown parameter as previously
explained. Such normalization assumption is always made independent to the choice of the discount
factor. The identification problem on the payoff parameters considered in practice therefore mathe-
matically translates to the matrix B (/) in equation (8) being rank deficient for all 8. In particular
it is also implicitly assumed that the linear dependence relation between the column vectors of B (/3)
are the same for all .

Recall that B (f) is a KJ x p matrix. For the remainder of this subsection we shall assume
p(B(B)) =r < p for all 3, such that:

B () = [B1(53) : B2(B)],

where Bj () is a matrix consisting of the first 7 columns of B (5) with CS (B (8)) = CS (B (p)),
and By (f) is a matrix containing the last (p — r) columns of B (). It will now be convenient to
re-introduce here M (5,0) = ||a(8) — B (8) 0| from Section 3.3, along with equations (9) and (10)

respectively:

0 (8) = B(B) B(PB)BB) a(d),
M (B) = M(B,0°(B)).

When we present our Theorem 1, we stated that “(53,,0,) is identified when M* (/) has a unique
minimum and mingee M (5, #) has a unique solution”. The issue associated with normalizing payoff

parameters only concerns the latter, as we know M (3, 0) has a unique minimum at 6, if and only
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if B(f) has full column rank. Since B () is rank deficient, M (,,0) has a linear subspace of
minimizers. Normalization is a way to select an element from this subspace. This is a separate issue
to whether M* (f) has a unique minimum or not. One way to clearly illustrate this is the following.

Since C'S (B3 (B8)) € CS(B1(f)), there exists an r X (p —r) matrix I' such that By () =
B; (8) I'.> Making a normalization on the payoff parameters corresponds to fixing a value of 6,. For
any (f3,6s) we can define 07 (3,02) to be the minimizer of ||a () — B; (5) #; — By (8) I'0s, so that:

0 (5,62) = (B1(8) By (8))'B1(8)" a(p) — 0.

We can then profile out 0, and define:

M*(B8,02) = [la(B) — By (B) 07 (8,02) — By (B) T (B) 02| -

Substituting 07 (3, 02) into the right hand side of the display above, we get

M (8,62) = [a(8) = By (8) (B1 (8) B1 (8)'B1 (5) a ().

We see that M* (3, 02) is simply the norm of the residual one gets from an orthogonal projection of
a(f) onto C'S (By ()). Importantly, M* (/3,603) does not depend on 6. From the projection theory
in linear algebra, M* () and M™* (3, 0s) are necessarily equal. This residual will also be identical
if we project a () on the linear span of any other r linear combinations of the columns in B (/)
as long as it equals C'S (B (f3)). Therefore our argument holds without any loss of generality on
how we select By (). In practice, a researcher has to perform this selection when she decides upon
her normalization choice. Subsequently, the discount factor can be identified regardless of how we

normalize the payoff parameters. We state this result as a proposition.

PROPOSITION 1: If the discount factor can be identified, it can be identified for all normalization

choices on the payoff parameters.

Our discussion here also leads to another empirical fact that may not be obvious a priori. Sup-
pose a researcher specifies a payoff function in practice that satisfies both P and N. Then there
are two different ways to estimate the switching costs based on our parametric and nonparametric
identification approaches. We have shown in Section 4 that some combinations of the switching costs
can be identified without any normalization using the nonparametric approach. We are interested
to know whether the parametric approach taken in Section 3, which relies on a possibly incorrect
normalization choice, can consistently estimate these combinations.

The answer is positive. Consider any combination of the switching costs, which can be written

explicitly in terms of the differences in choice-specific valuations (e.g. sunk costs, and more generally

°For instance, this is a consequence of Theorem 6.2.4 in Mirsky (1955).
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Corollaries 1 and 2). A vector of such combinations can be represented by 3a, for some matrix
3. Then for any 6 such that (8,,6) is observationally equivalent to (83,,6y) we also have Sa, =
B (3,) 6y = B (8,) 0. Le. the combinations of switching costs described by B (f,) identify the

same objects.

5 Numerical Illustration

We now illustrate the use of our identification strategies and implement the suggested estimators in
the previous sections. Section 5.1 gives results from a Monte Carlo study taken from Pesendorfer
and Schmidt-Dengler (2008). Section 5.2 estimates a discrete investment game using the data from
Ryan (2012).

5.1 Monte Carlo Study

The simulation design is the two-firm dynamic entry game taken from Section 7 in Pesendorfer and
Schmidt-Dengler (2008). In period t each firm i has two possible choices, a; € {0,1}; with a; = 1
denoting entry. The only observed state variables are previous period’s actions, w; = (a1, ag1)-

Using their notation, firm 1’s period payoffs are described as follows:
1 (@, G, 743 0) = ang (g + poaze) + ay (1 — ay—1) F + (1 — ay) ay W, (19)

where i1, 115, F' and W are respectively the monopoly profit, duopoly profit, entry cost and scrap
value. The latter two components are switching costs. Each firm also receives additive private shocks
that are i.i.d. N'(0,1). The game is symmetric and Firm’s 2 payoffs are defined analogously. The data
generating parameters are set as: (fiyq, flog, Fo, Wo) = (1.2, —-1.2,—0.2,0.1) and 3, = 0.9. Pesendorfer
and Schmidt-Dengler (2008) show there are three distinct equilibria for this game.

It is easy to verify the model satisfies both Assumptions MN and MP in the Appendix, which are
the dynamic game’s generalization of Assumptions N and P. Therefore we can estimate the model in
at least two different ways. We consider the following two estimation methods. Method A profiles
out all the payoff parameters using the OLS expression and use grid search to estimate the discount
factor. Method B first estimates the entry cost in closed-form independently before profiling out
the other payoff parameters and use grid search to estimate the discount factor. We will also be
interested to see how sensitive our estimates are with respect to the normalization choice.

For each equilibrium we perform 10000 simulations with sample sizes N = 100, 1000, 10000. Since
the entry cost and scrap value cannot be jointly identified we estimate the model under different

normalized values for W. We report the bias and standard deviation (in italics) for (E,ﬂl,ﬂ% F )
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and the sunk entry cost (Sm) We use the bold font to highlight the statistics that correspond
to the correctly assumed choice of W. We estimate the sunk entry cost for Methods A and B by first
estimating the entry cost and combine it with the assumed scrap value. In addition we also estimate
the sunk entry cost without normalizing the scrap value according to Example 1 in the Appendix (also
see Corollary 1). We label the columns of statistics for the sunk entry estimator with no normalization
by N-N. Tables 1-3 below provides results that correspond to the data generated according to the
three equilibria as enumerated in Pesendorfer and Schmidt-Dengler (2008) respectively.

The findings are in line with the theory part of the paper. First it shows the discount factor can
be consistently estimated. The consistency property is robust against the normalization choice of the
scrap value. The sunk entry cost can also be consistently estimated independently of the scrap value
used. When the model is correctly specified in the sense we correctly assume W = W all estimators
are consistent. While misspecifying the scrap value cause biases to all estimators of the individual
payoff parameters. The estimation results from Methods A and B, as well as N-N for the sunk entry,
are qualitatively the same across all equilibria. The performances between estimation methods
seem to depend on the equilibrium and sample size. Method A performs better in Equilibrium 1,
and generally in smaller samples. We may be able to attribute the difference in smaller samples
performance to the fact that Method A fully exploits the correctly specified parametric form of the
payoff function while the others use nonparametric estimators. At larger sample sizes there appear

to be no dominating estimation methods for Equilibria 2 and 3.
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Method A Method B N-N

N w 0 0.1 0.2 0 0.1 0.2 -
100 B -0.0809 -0.0806 -0.0799 -0.0752 -0.0768 -0.0738 -
0.2697 0.2691 0.2686 0.2619 0.2640 0.2596
iy -0.0418 -0.0253 -0.0071 -0.0631 -0.0450 -0.0291 -
0.2974 0.3050 0.3150 0.3693 0.3774 0.3858
iy 0.0627 0.0815 0.0988 0.0963 0.1141 0.1313 -
0.2970 0.2991 0.3029 0.4779 0.4801 0.4831
F  0.0446 -0.0554 -0.1552 -0.0019 -0.1017 -0.2021 -
0.2836 0.2835 0.2839 0.5692 0.5699 0.5702
SUNK 0.0554 0.0554 0.0552 0.1019 0.1017 0.1021 0.0477
0.28536 0.2835 0.2839 0.5692 0.5699 0.5702 0.5935
1000 B -0.0356 -0.0372 -0.0380 -0.0328 -0.0339 -0.0343 -
0.1741 0.1790 0.1801 0.1677 0.1695 0.1715
i, -0.0051 0.0090 0.0229 -0.0028 0.0110 0.0244 -
0.1032 0.1129 0.1251 0.1066 0.1152 0.1265
iy -0.0046 0.0091 0.0231 -0.0084 0.0050 0.0185 -
0.0934 0.0946 0.0992 0.1190 0.1204 0.1246
F  0.0958 -0.0042 -0.1042 0.1000 0.0000 -0.1000 -
0.0901  0.0901 0.0902 0.1480 0.1480 0.1480
SUNK 0.0042 0.0042 0.0042 0.0001 0.0001 0.0001 -0.0132
0.0901 0.0901 0.0902 0.1480 0.1480 0.1480 0.1573
10000 B -0.0005 -0.0003 -0.0005 -0.0005 -0.0007 -0.0005 -
0.0204 0.0158 0.0204 0.0204 0.0238 0.0205
i, -0.0104 -0.0004 0.0097 -0.0101 0.0000 0.0100 -
0.0298 0.0299 0.0309 0.0302 0.0310 0.0312
iy -0.0093 0.0007 0.0108 -0.0098 0.0003 0.0103 -
0.0297 0.0298 0.0300 0.03556 0.0356 0.0358
0.0992 -0.0008 -0.1008 0.0998 -0.0002 -0.1002 -
0.0282 0.0282 0.0282 0.0437 0.0437 0.0437
SUNK 0.0008 0.0008 0.0008 0.0002 0.0002 0.0002 -0.0011
0.0282 0.0282 0.0282 0.0437 0.0437 0.0437 0.0454

1)

Table 1: Data generated from equilibrium 1 in Pesendorfer and Schmidt-Dengler (2008).
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Method A Method B N-N

N W 0 0.1 0.2 0 0.1 0.2 -
100 B3 -0.0675 -0.0691 -0.0704 -0.0667 -0.0660 -0.0684 -
0.2501 0.2528 0.25/2 0.2/93 0.2477 0.2513
i, -0.2087 -0.1899 -0.1726 -0.1185 -0.1027 -0.0835 -
0.3978 0.4135 0.4286 0.4495 0.4572 0.4718
I, 03264 0.3447 0.3623 0.1847 0.2025 0.2196 -
0.5/30 0.5454 0.5500 0.6563 0.6605 0.66/1
F -0.0630 -0.1632 -0.2632 0.0942 -0.0058 -0.1058 -
0.4166 0.4161 0.4159 0.5515 0.5515 0.5515
SUNK 0.1630 0.1632 0.1632 0.0058 0.0058 0.0058 -0.0455
0.4166 0.4161 0.4159 0.5515 0.5515 0.5515 0.5991
1000 B3 -0.0296 -0.0302 -0.0314 -0.0318 -0.0306 -0.0304 -
0.158) 0.1600 0.1625 0.1637 0.1603 0.159/
i, -0.0275 -0.0139 0.0003 -0.0096 0.0028 0.0158 -
0.1631 0.1739 0.1872 0.1596 0.1691 0.1807
i, 0.0494 0.0626 0.0763 0.0267 0.0394 0.0523 -
0.2108 0.2159 0.223) 0.2047 0.2097 0.2162
F 0.0767 -0.0233 -0.1233 0.1006 0.0006 -0.0994 -
0.1526 0.1526 0.1526 0.1495 0.1495 0.1/95
SUNK 0.0233 0.0233 0.0233 -0.0006 -0.0006 -0.0006 -0.0052
0.1526 0.1526 0.1526 0.1495 0.1495 0.1/95 0.1638
10000 B3 -0.0001 -0.0002 -0.0004 -0.0002 -0.0004 -0.0002 -
0.0095 0.0127 0.0183 0.0130 0.0183 0.0128
i, -0.0147 -0.0046 0.0056 -0.0127 -0.0025 0.0073 -
0.0399 0.0405 0.0425 0.0381 0.0398 0.0387
i, -0.0036 0.0064 0.0166 -0.0063 0.0039 00138 -
0.0639 0.0642 0.06/9 0.0608 0.0613 0.0610
0.0968 -0.0032 -0.1032 0.0995 -0.0005 -0.1005 -
0.0487 0.0487 0.0487 0.046/ 0.0464 0.046/
SUNK 0.0032 0.0032 0.0032 0.0005 0.0005 0.0005 -0.0002
0.0487 0.0487 0.0487 0.0464 0.0464 0.0464 0.0508

1)

Table 2: Data generated from equilibrium 2 in Pesendorfer and Schmidt-Dengler (2008).
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Method A

Method B

N-N

0

0.1

0.2

0

0.1

0.2

100

1)

—

SUNK

-0.0649
0.2459
-0.2070
0.3991
0.3263
0.5/60
-0.0677
0.4224
0.1677
0.422

-0.0641
0.2427
-0.1907
0.4108
0.3420
0.548/
-0.1676
0.4227
0.1676
0.4227

-0.0658
0.2472
-0.1725
0.4261
0.3588
0.5551
-0.2672
0.4230
0.1672
0.4230

-0.0695
0.2526
-0.1116
0.4724

0.1801
0.7092
0.0897
0.5987
0.0103
0.5987

-0.0649
0.2450
-0.0986
0.480/
0.1961
0.7109
-0.0103
0.5988
0.0103
0.5988

-0.0663
0.2471
-0.0807
0.4920
0.2130
0.7158
-0.1103
0.5988
0.0103
0.5988

-0.0370
0.6455

1000 3

-0.0320
0.163
-0.0237
0.1677
0.0500
0.2130
0.0766
0.15/9
0.0234
0.15/9

-0.0322
0.1643
-0.0104
0.1796
0.0633
0.2188
-0.0234
0.1550
0.0234
0.1550

-0.0333
0.1666
0.0041
0.1932
0.0771
0.226/

-0.1234
0.1550
0.0234
0.1550

-0.0326
0.167
~0.0060
0.1678
0.0251
0.217)
0.1014
0.160/
-0.0014
0.160/

-0.0324
0.1648
0.0071
0.1790
0.0383
0.2235
0.0014
0.1604
-0.0014
0.160/

-0.0319
0.1638

0.0199
0.1900

0.0511
0.2505
-0.0986
0.160/
-0.0014
0.160/

-0.0061
0.1785

10000 3

1)

SUNK

-0.0003
0.0159
-0.0146
0.0410
-0.0033
0.0648
0.0965
0.0496
0.0035
0.0496

-0.0003
0.0158
-0.0046
0.0414
0.0067
0.0649
-0.0035
0.0496
0.0035
0.0496

-0.0003
0.0156
0.0054
0.0420
0.0167
0.0650
-0.1035
0.0496
0.0035
0.0496

-0.0001
0.0093
-0.0128
0.0399
-0.0062
0.0646
0.0992
0.0497
0.0008
0.0497

-0.0004
0.0163
-0.0026
0.0415
0.0039
0.0650
-0.0008
0.0497
0.0008
0.0497

-0.0002
0.0128
0.0073
0.0410
0.0138
0.0650
-0.1008
0.0497

0.0008  0.0002
0.0497 0.0553

Table 3: Data generated from equilibrium 3 in Pesendorfer and Schmidt-Dengler (2008).
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5.2 Empirical Illustration

We next estimate a simplified version of an entry-investment game based on the model studied in
Ryan (2012); using the same dataset as him. In what follows we provide a brief description of the
data, highlight the main differences between our empirical model and that of Ryan (2012). Then we

present and discuss our estimates of the model primitives.
DATaA

We download Ryan’s data from the Econometrica webpage.5 There are two sets of data. One
contains aggregate prices and quantities for all the US regional markets from the US Geological
Survey’s Mineral Yearbook. The other contains the capacities of plants and plant-level information
that Ryan has collected for the Portland cement industry in the United States from 1980 to 1998.
Data on plants includes the name of the firm that owns the plant, the location of the plant, the
number of kilns in the plant and kiln characteristics. Following Ryan we assume that the plant
capacity equals the sum of the capacity of all kilns in the plant and that different plants are owned
by different firms. We observe that plants’ names and ownerships change frequently. This can be
due to either mergers and acquisitions or to simple changes in the company name. We do not treat
these changes as entry/exit movements. We check each observation in the sample using the kiln
information (fuel type, process type, year of installation and plant location) installed in the plant. If
a plant changes its name but keeps the same kiln characteristics, we assume that the name change
is not associated to any entry/exit movement. This way of preparing the data enables us to match
most of the summary statistics of plant-level data in Table 2 of Ryan. Any discrepancies most likely
can be attributed to the way we treat the change in plants’ names, which may differ to Ryan in a

very small number of cases.
DynaMIC GAME

Ryan models a dynamic game played between firms that own cement plants in order to measure
the welfare costs of the 1990 Clean Air Act Amendments (1990 CAAA) on the US Portland cement
industry. The decision for each firm is first whether to enter (or remain in) the market or exit, and if
it is active in the market then how much to invest or divest. Firm’s investment decisions is governed
by its capacity level. The firm’s profit is determined by variable payoffs from the competition in the
product market with other firms, as well as switching costs from the entry and investment /divestment

decisions. There are two action variables in Ryan’s model. One is a binary choice used to model

Chttps://www.econometricsociety.org/content /supplement-costs-environmental-regulation-concentrated-industry-
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entry. The other is a continuous variable used to model the level of investment. Past actions are the
only observed endogenous state variables in the game. The aggregate data that are used to construct
variable profits, through a static Cournot game with capacity constraints between firms, are treated
as exogenous.

We consider a discrete game that extends the single agent model in the paper as described in
the Appendix. The main departure from Ryan (2012) is that we combine the entry decision along
with the capacity level into a single discrete variable. We set the action space to be an ordinal
set {0,1,2,3,4,5}, where 0 represents exit/inactive, and the positive integers are ordered to denote
entry/active with different capacity levels. The payoff for each firm has two additive separable
components. One depends on the observables while the other is an unobserved shock. The observable
component can be broken down into variable profits, operating cost and switching costs. We assume
the variable profit is determined by the players competing in a capacity constrained Cournot game.
The operating cost is a fixed profit that incurs whenever a;; > 0. The switching costs capture the
essence of firms’ entry and investment decisions. Lastly each firm receives unobserved profit shocks

for each action with a standard i.i.d. type-1 extreme value distribution.
ESTIMATION

The period expected payoff for each firm as a function of the observables consists of variable
profits, operating costs and switching costs. The variable profit is derived from a capacity constrained
Cournot game constructed from the same demand and cost functions estimated as in Ryan’s paper.
The operating and switching costs parameters enter the payoff function additively and are parameters
to be estimated using the dynamic model. These operating cost is non-zero whenever a;; > 0. For
the switching costs we normalize the payoff for choosing action 0 to be zero. There are a total of 25
switching cost parameters to be estimated.”

The payoff function used in our empirical model satisfies Assumptions MN and MP in the Ap-
pendix. So we estimate the model using Methods A and B as described in Section 5.1. We also test
if the two estimates of the switching costs statistically differ. Instead of using nonparametric estima-
tor, similar to Ryan, we use a multinomial logit to estimate the choice and transition probabilities
in the first stage. More specifically, method A profiles out the 26 linear coefficients and uses grid
search to estimate the discount factor. Method B first estimates the 25 switching cost parameters
in closed-form using the closed-form expression in Section 4, treat them as known, before profiling

and performing the grid search. We also estimate the sunk entry and investment values based on the

"Ryan (2012) models the switching costs differently. The fixed operating cost is normalized to be zero. Non-zero
investment and divestment costs are drawn from two distinct independent normal distributions, whose means and

variances are estimated using the methodology described in Bajari, Benkard and Levin (2007).
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estimates from Methods A and B, as well as nonparametrically without normalization (cf. Corollaries
1 and 2, and see the discussion in the Appendix).

We estimate the standard errors, as well as computing the p-value of the Wald statistics to test
if the switching costs estimators from methods A and B differ by bootstrapping. Our bootstrap
sample is generated using the multinomial logit choice and transition probabilities for each player in
each market in the same manner as a parametric bootstrap; cf. Kasahara and Shimotsu (2008) and
Pakes, Ostrovsky, and Berry (2007). We use 500 bootstrap samples and report the standard errors

in italics.
REsuLTS

We estimate the model twice. Once using the data from before the implementation of the 1990
CAAA and another after. We allow the equilibria over the two time periods to differ. But, for
illustrational purposes, we assume the data are generated from the same equilibrium in all markets
within each time period and there is no other source of unobserved heterogeneity.®

Table 4 and 5 compile the results from estimating switching costs using the data from the years
1980 to 1990 and 1991 to 1998 respectively. Tables 6 and 7 give the estimates for the discount
factor and fixed operating cost using the data from the corresponding periods. Table 8 compares the
estimates of the sunk entry costs and sunk investment costs.

The signs and relative magnitudes of individually estimated switching costs almost uniformly
make sensible economic sense. E.g., by reading down the columns in Tables 4 and 5, we see that
entering at higher capacity level generally implies higher cost (negative payoff), and increasing the
capacity level should be costly while divestment can return revenue for firms. This is quite an
impressive finding in particular for Method B, which shows that the observed probabilities alone can
generate switching costs estimates that capture well some key features of a complicated structural
model. The switching cost estimates from both Methods A and B are similar. The Wald statistics do
not find the two switching costs estimators to be statistically different.” Therefore we do not reject the

capacity constrained Cournot game specification based on comparing the switching costs estimates.

8Recently Otsu, Pesendorfer and Takahashi (2015) propose several tests to detect differences in the probability
distribution of data across markets. If a test rejects then there is evidence data across markets should not be pooled
together, which can point to possible violation of single equilibrium assumption and/or misspecification in terms of
omitting other unobserved heterogeneity. They actually suggest Ryan’s data in general should not be pooled together
across markets. In particular there is a strong evidence against pooling data between 1980 and 1990, while the data

from 1991 to 1998 did not get rejected by some of their poolability tests.
90ur test statistic takes a standard quadratic form of the difference between the switching costs estimates from

methods A and B. Its asymptotic distribution under the null hypothesis (of no difference) is a Chi-squared random

variable with 25 degree of freedoms.
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Comparing Tables 4 and 5 shows the entry and switching costs increase after the implementation of
1990 CAAA. Higher entry costs is a key finding in Ryan’s paper as new entrants face more stringent
regulations than incumbents. An increase in switching costs can be partly attributed to the new
plants using newer (or better maintained) equipment that require more certification and testing than
previously.

We find the discount factor estimates to be around the range that are usually assumed in empirical
work (between 0.9 and 0.95) apart from the estimate using Method B before the 1990 CAAA that
appears close to the boundary.!? Although our estimates suggest firms face a lower borrowing rate
than in Ryan, we do not reject the hypothesis that 5 = 0.9 as assumed in his paper. We also find a
small increase in the fixed operating costs after the implementation of 1990 CAAA.

Finally Table 8 reports sunk costs using different estimation methods. The estimates from Meth-
ods A and B can be found by computing —SC* ~%—SC*~% using individual switching costs in Tables
4 and 5. The N-N approach estimates the same object without the assumption that the payoff is
zero upon choosing action 0. The signs and magnitudes of the sunk cost estimates are plausible. We
find the sunk investment costs between any two capacity levels increase as the gap between levels
grow, while we find the costs to be of similar magnitude when compared within the same capacity

difference bands. We also find the sunk costs to have increased after the implementation of 1990

CAAA.

10The infinite time expected discounted payoffs with respect to each action is unbounded with 8 = 1. However, the
differences between diverge very slowly when we approximate them with a Neumann sum, and the objective function

appears to be well-defined numerically even as (3 is very close to 1.
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Method A

-1 =0 a1 =1 ap1=2 ap1=3 ay-1=4 ayp_1=>5

ay =1 -3.300 - 2.265 5.080 7.956 10.770
0.985 - 0.680 0.707 0.766 0.929
ayp = 2 -10.502  -5.243 - 5.528 10.609 15.810
0.937 0.719 - 0.887 0.998 1.117
iy =3 -23.266  -15.439  -7.624 - 7.996 16.050
1.405 1.010 0.683 - 0.923 1.237
ay =4 -41.023  -30.620  -20.196  -9.808 - 11.648
2.003 1.850 1.430 1.094 - 1.442
@it = D -52.879  -50.648  -39.027  -25.756  -11.949 -

2.281 2.585 2.041 1.8395 1.537 -

Method B
aig1=0 ag1=1 ay1=2 ay1=3 ayg1=4 ay-1=25
a; =1 -2.776 - 2.540 5.333 8.014 11.696
0.269 - 0.333 0.567 0.967 1.113
i = 2 -10.483 -5.197 - 5.243 10.466 15.893
0.689 0.365 - 0.368 0.718 1.110
a; =3 -23.279 -15.427 -7.769 - 7.732 16.134
1.339 0.920 0.474 - 0.640 1.006
a; =4 -41.422 -31.007 -20.797 -10.416 - 10.852
1.808 1.594 1.078 0.682 - 0.864
a; =95 -54.378 -52.892 -41.874 -28.792 -16.091 -

1.911 2,992 1.84/ 1.659 1.835 -

Specification Test

Statistic 14.069
p-value 0.961

Table 4: Results from estimating switching costs using data from the years 1980 to 1990.
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Method A

-1 =0 a1 =1 ap1=2 ap1=3 ay-1=4 ayp_1=>5

ay =1 6.962 - 4.449 9.881 15125  20.264
1.580 - 1.514 1.501 1.689 1.634
ay = 2 17.038  -8.291 - 9.872 18.531  26.722
1.723 1.964 - 1.71 1.860 1.527
ay =3 -35.480  -23.412  -11.411 - 12.961  24.283
2.444 1.866 1.8711 - 1.955 1.61
a; = 4 51544  -50.043  -33.220  -16.363 - 16.524
3.061 3.419 3.278 2.825 - 3.561
ai =5 64.018  -63.994  -61.481  -48.514  -24.374

4.514 4.52 4.502 3.685  2.056

Method B
aig1=0 ag1=1 ay1=2 ay1=3 ayg1=4 ay-1=25
a; =1 -5.653 - 5.294 10.730 16.264 21.567
0.726 - 0.704 1.109 1.703 1.378
i = 2 -17.746 -9.278 - 8.774 17.461 25.754
1.879 0.780 - 0.857 1.864 1.218
a; =3 -36.098 -24.537 -11.950 - 11.862 23.489
2.282 1.767 1.128 - 1.221 1.401
a; =4 -51.840 -50.425 -33.468 -16.760 - 16.753
2.202 2.649 2.397 1.904 - 2.025
a; =95 -64.236 -64.355 -61.706 -48.272 -24.093

6.712 6.771 6.713 5.695 3.389

Specification Test

Statistic 13.196
p-value 0.975

Table 5: Results from estimating switching costs using data from the years 1991 to 1998.
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Method A

Discount Factor
0.956
0.084

Operating Cost
-1.679
0.489

Method B

Discount Factor
0.999
0.075

Operating Cost
-1.523
0.649

Table 6: Results from estimating the discount factor and fixed operating cost using data from the

years 1980 to 1990.

Method A

Discount Factor
0.938
0.162

Operating Cost
-2.079
1.10

Method B

Discount Factor
0.946
0.160

Operating Cost
-1.893
0.948

Table 7: Results from estimating the discount factor and fixed operating cost using data from the
years 1991 to 1998.
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Before After

ai¢  aip—1 Method A Method B N-N Method A Method B N-N

1 0 3.30 2.78 2.78 6.96 5.65 5.66
0.36 0.27 0.27 1.53 0.73 0.70
2 0 10.50 10.48 1048  17.04 17.75  17.74
0.94 0.69 0.69 1.72 1.38 1.49
30 23.27 23.28 2328  35.49 36.10  36.10
1.41 1.34 1.34 2.44 2.28 2.18
4 0 41.02 4142 4142 5154 51.84  51.83
2.00 1.81 1.80 3.06 2.20 1.61
5 0 52.88 54.38  54.25  64.02 64.24  64.22
2.28 1.91 2.00 4.51 6.71 6.34
2 1 2.98 2.66 2.44 3.84 3.98 3.30
1.22 2.5/ 0.25 0.31 0.61 0.36
32 2.10 2.53 2.56 1.54 3.18 3.22
1.18 2.30 0.26 0.30 0.73 0.33
4 3 1.81 2.68 2.58 3.40 4.90 4.81
1.52 4.8 0.28 0.42 2.45 0.50
5 4 0.30 5.24 2.87 7.85 7.34 7.30
2.50 4.75 0.33 1.7 4.58 2.1/
31 10.36 10.09  10.01  13.53 1381  13.05
1.22 2.12 0.75 0.79 1.24 0.98
4 2 9.59 10.33  10.20  14.69 16.01  16.07
1.5/ 3.31 0.77 0.81 2.13 1.25
5 3 9.71 12.66 1091  24.23 24.78  24.21
1.45 4.83 0.91 1.37 6.09 5.22
4 1 22.66 22.09 2276 34.92 3416 34.02
1.78 3.29 1.37 1.45 1.93 1.42
5 2 23.22 25.98  24.05  34.76 35.95  34.79
1.83 4.64 1.79 1.59 6.89 6.3/
5 1 39.88 4120 4021  43.73 42.79 4167
2.40 4.68 2.60 2.08 6.82 6.40

Table 8: Results from estimating the sunk entry and investment costs.
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6 Concluding Remarks

We show the discount factor can be identified jointly with the payoff function under the linear-in-
parameter specification. The key property we exploit is the conditional linearity of the choice-specific
value functions for a given value of the discount factor. The discount factor can in fact be identified
even if the payoff parameters cannot be identified. This has an important implication since many
empirical problems have to normalize parts of the payoff parameters. Our result shows the discount
factor can be identified independently of these normalization choices.

We also contribute to a recent interest in the robust identification of combinations of switching
costs without any normalization as studied in Aguirregabiria and Suzuki (2014); also see Kaloupt-
sidi, Scott, and Souza-Rodrigues (2016a, 2016b). We provide closed-form identification results on
switching costs that do not depend on the knowledge of the discount factor and other parts of the
payoff function. We show some costs, such as sunk entry and investment costs, can be identified
in this way. We show the same combinations of switching costs can be identified for linear models
in two steps. In the first step some normalization is made in order to identify each switching cost
individually. Even when an incorrect normalization is used, thus the implied switching costs are
incorrect individually, we show certain combinations of these costs can still be correctly identified.

Our parametric and nonparametric identification approaches deliver substantially different flavors
of results. But there are overlapping implications when the payoff function satisfies both Assumptions
N and P, as we then have two different ways to identify the switching costs. However, there are notable
distinctions where our nonparametric results remain valid but the analysis under Assumption P is
no longer appropriate. First, a researcher may want to use a nonlinear parametric specification on
parts of the payoffs outside of the switching costs. One example of this is to impose positivity on
the variable profits. Our nonparametric identification results do not depend on the specification of
the variable profit function. Second, our nonparametric identification strategy holds pointwise for
each observed state. Therefore it is immediately applicable for models with continuous states; e.g.
see Srisuma and Linton (2012).

Finally our main message is that one should generally attempt to identify and estimate the
discount factor in dynamic decision problems and games. Clearly we do not expect the linear spec-
ification to be necessary for identification. But analyzing models with nonlinear parametric pay-
off functions will be substantially more difficult. Similarly, outside of discrete choice models, e.g.
for games with supermodular payoff functions (see Bajari, Benkard and Levin (2007) and Srisuma
(2013)), joint identification and estimation of the discount factor and payoff parameters should also
be possible. However, in this case even the practical implementation can be burdensome when the

payoff functions take a linear-in-parameter structure.
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Appendix

The Appendix contains two parts. A.l extends the results on identification of switching costs to
dynamic games. A.2 provides a sufficient condition for the identification of the discount factor. Since
the single agent decision problem is a special case of a game, we also present the results in A.2 in

the context of a game.

A.1 Identification of the Switching Costs in Dynamic Games

We shall keep our description of the basic elements of the game very brief. The notation we use
directly extends what we describe in Sections 2 and 3. Consider a game with [ players, indexed
by i € Z = {1,...,I}. The random variables in the game are the actions: a; = (a;,a_y) € A,
A =1{0,1,...,J}; past actions w; = (wy, w_y) € Al sy = (wy, x4,6) € Al x X x R/ where
X={1,...,K},and gy = (¢ (0), ..., & (J)) € R7L; and we let s; = (wy, w4, €1ty - - -, E1¢)-

In an equilibrium a; = «; (s;) for all 4, such that

07 (81) = maX{E[Uz' (Git, Q_gt, 31’) |5it = 8, At = ai] + pE [V; (Sit+1) ‘Sit = S8, At = ai]}a (20)

a;EA

where u; and V; are player i’s payoff and value function respectively; in particular
Vi (Sz) = ZﬁtE [Uz (aita A—it, Sz‘t) ‘SiO = Si} .
t=0
Assumption MN updates Assumptions M and N for games.

AssumMPTION MN:
(i) (Additive Separability) For all a;,a_;,w,x,&;:

w; (ai, a_i, w,x,6;) = m; (a5, a;, w, x) + & (a;) .

(ii) (Conditional Independence I) The transition distribution of the states has the following fac-
torization for all x',&', x, ¢, a:

I
P (2 € |x,e,w,a) = H Qi (&) G (2'|z,w,a),
i=1
where Q; s the cumulative distribution function of €; and G denotes the transition law of ;41
conditioning on x;,a;. Furthermore, €, has finite first moments, and a positive, continuous and
bounded density on R/*1,

(iii) (Finite Observed State) X ={1,..., K}.
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(iv) (Decomposition of Profits): For all a,w,x:
T (a’i> a—;, W, T, E) = K (a'iv a—j, l‘) + ¢z (ai — Wy, W, I) )

such that ¢, (0,w_;,x) = 0.
(v) (Conditional Independence II): The distribution of x.y1 conditional on a; and x; is indepen-

dent of wy.

Beside from explicitly separating out past actions from other observed state variables, MN(i) to
MN(iii) are standard in the dynamic discrete choice game literature; e.g. see Aguirregabiria and
Mira (2007), Bajari et al. (2007), Pakes and Berry (2007), and Pesendorfer and Schmidt-Dengler
(2008). MN(iv) extends N(i). It assumes that strategic interactions can affect payoffs in y; directly
but not ¢,, while past actions enter ¢, but not p;. The exclusion restrictions we impose are quite
natural for components of y,; such as per-period variable profits and operation costs, while switching
costs that occur for each player are determined by her own actions. It will be useful to sometimes

represent the switching cost using a more intuitive notation (cf. equation (11)):
¢; (a; — wij, w_y,x) = SCI " (w_y, ) .

MN(v) is a direct extension of N(ii).
As with the single agent case, our identification study will be based on the choice-specific value

function:
v; (ai, w,x) = B (a;, a_i, wy, ) Jwy = w,xy = x] + BE[V; (S441) |wy = w, z¢ = x, 0, = a,
which can be recover from:
Prla; = a;|wy = w, 2y = x] = Pr[Av; (a;, w,x) — Av; (a}, w, ) > ey (a)) — ey (a;) for all o, # a;],

where Av; (a;, w, x) = v; (a;, w, ) —v; (0, w, x). Let also, AX; (a;,a_;,x) = N (a,a_;, )=\ (0,a_;, x)

and Ag; (a;, w,x) = ¢; (a; — wi, w_;, ) — ¢; (—w;, w_;, z). Lemma 4 is a generalization of Lemma 1.
LEMMA 4: Under Assumption MN, we have for all i,a; > 0 and w,z:
Av; (a;, w,z) = E[AN (ai,a_y, ©) lwy = w, 2y = x| + Ad; (a;, w, x),
where,

AN (am a—;, x) = T (az', a—g, x) — T (0, a_j, x) + 3 (ﬁlz (ai; a_j, $) —m; (07 a_;, f)) )

mi(a,a_i,x) = Em; (Wi, Teg1) |G = a4y ai = a_y, v = 1],

m; (w, x) EV; (sit) lwy = w,zy = x].
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PrOOF: Follows immediately from applying the law of iterated expectations (cf. the proof of
Lemma 1).H

Since we have finite actions and states, we can collect Av; (a;, w,z) across w for each (i,a;, x)

into a vector of size (J + 1), Using a matrix form, we have:
Av; (a;,z) =Z; (x) AN (a;, ) + Qi (a;, ) ¢, (a;, x) , (21)

where Av; (a;, ) = (Av; (a;, w, T)) AN (a;,z) = (AN (ai, a4, 7)), . car-1, Zi (T) represents the
matrix of conditional probabilities for computing a conditional expectation of a_;; given (w; = w, x; = x),
Q; (aia 55') o, (aia £L’) represents (A(bz (aia w, x))aeAI with ¢, (ai7 l’) = (¢z (ai — W;, Wy, x))wieA,w,ieAI—l

and Q; (a;, ) is a matrix of indicators (consisting of 0’s and 1’s) that pick up switching costs as

weAl»

appropriate.
Theorem 3 generalizes the closed-form identification of switching costs in Theorem 1 for dynamic

games.

THEOREM 3: Assume that Assumption MN holds. Let D be an {1 x (J+1)" matriz with
p(D) = ¢y such that (J+1)"" < ¢, < (J+1)". Denote DZ; (x) by Z and p(Z) by l5. Suppose
also DQ), (a;, ) ¢; = (NQQYJ + @, for some {3—dimensional vectors c7§ and ¢, that consist of elements,
possibly combinations, of ¢@,; such that (3 < {1 — {5, and Q is an {1 X {3 matriz with p(@) =/l3. If
p([Z: Q]) = lo+ L5 then,

¢ = (Q'PQ)'Q'P (DAV; (4;,z) — ¢) . (22)
where P =1, — Z(Z Z)'Z".

Before presenting the proof to Theorem 3 some explanations on the notations will be useful.
The crucial interpretation of our result rests on the relation: DQ; (a;, z) ¢; = Qo + ¢o. The goal
of Theorem 3 is to identify components, or combinations, of (¢, (a;, w,)),,4r using choice-specific
value functions in equation (21) for a given (i, a;, ). We denote the object of interest by $ We use
¢, to account for components of switching costs that can be identified outside the dynamic model
from the data or by normalization. Therefore (D, Q) are user-chosen matrices and are completely
known. For identification, we can also treat Z; as known since Z; (x) is a matrix of observed choice

probabilities.

PROOF OF THEOREM 3.
Note that ¢5 > 1 since ¢y < min{ly, p(Z; (z))} and p(Z; (z)) < (J+1)""". Multiply equation
(21) by D yields,
DAV, (a;,7) = ZAX; (a;, ) + Qo + ¢,.
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By assumption, PQ has full column rank. The result then follows from projecting Av; (a;, x) or-

thogonally onto the null space of Z and solve out for g?bi.l

One systematic approach to apply Theorem 3 in practice is to first write out the matrix equation
(21). Then choose D so that DQ; (a;, x) ¢, contains the switching costs of interest, and define
Q(Nﬁ + ¢, appropriately. We now illustrate this identifying strategy with a two-player binary choice
game for different types of switching costs.

For notational compactness we will suppress z; and assume that SC*~* (w_;) is the same for
all w_;. We use Av; (w;,w_;) = v; (1, w;, w_;) — v; (0, w;, w_;), p—; (w) = Prla_; = 1|lw, = w|, and
AN (a—;) = AN (1,a_;). Then equation (21) represents:

Aw; (0,0) 1—p_;(0,0) p_;(0,0) 10
Awv; (1,0) 1—p_;(1,0) p_;(1,0) AN (1) 0 1 —-SCl—0
Awv; (1,1) 1—p(1,1) p_;(1,1) 0 1
In particular we have
10
10 St
(2 a’i?'r 7 =
Qo= | || gl
0 1

We consider three examples of potential objects of interest.

EXAMPLE 1: SUNK ENTRY COST
Suppose we want to identify —SC?~! — SC!~0 that represents the sunk entry cost in the context
of an entry game. We can subtract Av; (0,0) from the first equation in (23) off the remaining three

equations. This yields

Av; (0,1) p=i(0,0) =p-s (0. 1) p-i(0.1) =p-: (0.0) 4 1\
Av; (1,0) | = | p-i(0,0) =p—;(1,0) p—;(1,0) —p—; (0,0) AAZ-(1)]
Av; (1,1) pi(0,0) —p_i (1,1) p_i(1,1) = p_ (0, Z
0
+| 1] [-sC = sei]
1

39



In particular, in this case,

N p-i(0,0) —p-;(0,1) p—;(0,1) —p_;(0,0)

Z = | pi(0,0)—p(1,0) p(1,0)—p_; (0, ,
_p—i<070) P—i 171) p—i(lvl)_p—i )
[ 110 0 0

D= |-1010[,Q=|1],¢p=-5C"""=5C° and ¢, = 0.
~10 0 1 1

The sunk entry cost can then be identified by the expression in equation (22).

EXAMPLE 2: MENU COST UNDER SYMMETRY
Suppose we want to identify SC?~! under the assumption that SC?~! = SC!~° Then equation
(23) becomes

AU,‘ (07 0) 1- P—i (Oa O) P—i (07 0) 1
Av; (0,1 1—p_; (0,1 (0,1 Ai (0
Avi (1,1) 1 — P— (].,1) P—i (1,1) -1
In this case
1- P—i (07 0) P—i (07 0) 1
~ 1—p_,;(0,1 _ (0,1 ~ 1 ~
7 — A N I L@ = SC*!, and ¢, = 0.
1 —P—i (170) D—i (170) -
I—p (171) P—i (171) —1
EXAMPLE 3: SWITCHING COSTS WITH NORMALIZATIONS
Suppose we want to identify SC?~! under the assumption that SC?~! = ¢,. For example, we

may be interested in identifying the entry cost under the assumption that the scrap value is ¢g. Then

equation (23) becomes

Av; (0,0) 1—p_;(0,0) p_;(0,0) 1 0
Av; (0,1 1—p_i(0,1) p_;(0,1 AN (0 1 0
Avi (1,0) 1 — P—; (1,0) DP—i (1,0) A)\z (1 0 —Cp
AU,L' (1,1) 1 — P—; (1,1) P—i (1,1) 0 —Cp
In this case
- 1—p_i(0,1) p_;(0,1 - 1 0
7— | Lo OL O g G2 se0, and ¢
1 — P—; (1,0) P—i (1,0) 0 —Cp
1 — P—; (1,1) P—i (1,1) 0 —Cp
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In order to obtain the sunk costs when the number of actions is larger than two one has to combine
identifiable objects across actions, e.g. see Corollary 2. Identification of objects for each action can
be obtained as the examples above have shown. We use Theorem 3 to estimate the games such as

those in our simulation study and the empirical model of capacity game in Section 5 of our paper.

A.2 A Sufficient Condition for Identification of the Discount Factor

In this part of the appendix we give a more analytical approach that ensures identification of the
discount factor and payoff parameters in a dynamic game context. We first introduce some additional
notations.

For any = = (z1, ... ,acp)T € RP and y = (y1,. .. ,prrl)T € RPFHL et 2], = maxi—i.,|z;| and
1yll,, = maxi=1,__p |yi] + [yps1]- Then for a class of p + 1 by p real matrices, we denote the matrix
norms induced by (||, . [|ll.,) by [ 0y .0 We comment that these are not standard induced matrix

norms, however they have simple explicit bounds. In particular it is easy to verify that, for any matrix

(p+1) xp, C = (ci),

p p
1C ]y 0 < max Y e+ lepanyl -
i=1,...,p
=1 =1

We also need the parameter space to be compact. Let © = {6 € O :max;—1, ,0;| < E} and B =
[O,B] for some positive k and b € (0,1).
Next we generalize the setup of Section 4 to dynamic games. The following is a straightforward

extension of Assumptions M and P.

AssumpPTION MP:
(i) (Additive Separability) For all a;,a_;,x,¢€;:

u; (@i, ai, v, 55 0) = mi (i, a4, 50) + € (a;) -

(i1) (Conditional Independence I) The transition distribution of the states has the following fac-
torization for all x' &' x, e, a:

I

P (2 ez, e,w,a) = H Qi (g) G (2'|z,w,a),
i=1
where Q; is the cumulative distribution function of €; and G denotes the transition law of ;41
conditioning on xy,a;. Furthermore, €5 has finite first moments, and a positive, continuous and
bounded density on R/*1.

(iii) (Finite Observed State) X = {1,..., K}.
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() (Linear-in-Parameters): For all a;,a_;,x,&;:
i (@i a—iy 230) = 0 (a5, a4, ) + 0 7 (ai, ai, ),

where ;o 18 a known real value function, w1 is a known p—dimensional vector value function and 6
belongs to RP.

Our analysis will be based on the parameterized choice-specific value function:

Vj (ahm;ﬁae) =FK [7Ti (aiaa—itax; 0) |$t = l'} + BE [‘/z (St—l—l;ﬁae) |‘/L‘t =T, 0y = ai] ) where

o0

Vi(si;8,0) = ZﬁtE [wi (@it ait, sit3 0) |sio = si] -

t=0
Let Av; (a;,z;3,0) = v; (a;, x; 3,0) — v; (0,2; 8,0). We can use Av; from all players to define an
empirical model and the corresponding notion of identification, and observationally equivalence, as
in Section 4. We will omit this discussion to avoid repetition.

Our starting point will be the following lemma that generalizes Lemma 2.

LEMMA 5: Under Assumption MP, we have for all i,a; > 0, Av{' (3,0) = (Av; (a;,x;5,0)) e x
can collected in the following vector form for all (3,0) € B x O:

AvP (,6) = AR% + BAH% (Ix — BL) ' Ry (24)
+ (ARY + BAHY (Ix — SL) ' Ry) 6
+BAHY (I — L) €,

where the elements in the above display are collected and explained in Tables C' and D.

Matrix Dimension Representing

ARji K xp Elmi (ai, azir, ©) — i1 (0, ae, ) |2 = ]
R, K xp Ema (ag, @) |2, = -]
L Kx K E[l/J (Sl?t+1) |=Tt = ]

H K x K E[) (xi41) |20 = -, ai = ay)
AH!" KxK B (2i41) |7 = -, a5 = a;] — B[ (v441) |74 = -, a3 = 0]

Table C. The matrices consist of (differences in) expected payoffs and probabilities. The latter

represent conditional expectations for any function v of ;1.
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Vector Representing

€; E [51'15 (az’t>’ Ty = ]

AR E[mio (@i, a—it, 7)) — 7io (0, a—it, T¢) |70 = -]

Rio E [7Tz‘0 (Gt, $t) |33t = }

(IK - 51L)_1 RHij Z;ﬁo ﬁtE[Wij (at, SUt) |$0 = ]

AHY (I — BL) ' RIL; 520 8 (Elmy (ar, 21) [aio = ai, w0 = | — Elmyy (0, 20) |asg = 0,20 = )

AH{ (Ix — ;L) " € Doico B (E [ (ar)] aio = i, 20 = -] = E [ ()] aip = 0,29 = ])

Table D. The K x 1 vectors represent (differences in) expected payoffs.

Our strategy to show identification is to re-write Lemma 5 in order to set up a mapping that has

the data generating parameters its fixed-point. One desired relation is the following.

LEMMA 6: Under Assumption MP, (3,0) is observationally equivalent to (5, 00) if and only if
(B,0) satisfies

c?—D?@W—Emsz?(Z) (25)

for all i,a; > 0, where

ci' = Av (B, 0h) — ARj,
DY () = BAHY (Ix — SL) ' Ry,
E () = B*AHYL(Ix — ALY " (R +€),

F,?i = [AR?{ : AH;M (Rzo—i‘ﬁz)] .

PrROOF: Equation (25) is obtained by re-arranging equation (24), after applying the identity
that (Ix — SL)"" = Ix + BL (Ix — AL)~" and replace Av® (3,6) by Av® (5,,6y). Therefore, by
construction, (3,0) satisfies (24) if and only if it is observationally equivalent to (3, 6,).H

The following result provides one condition that is sufficient for the identification of (5, 6y).

THEOREM 4: Assume that K > p+ 1 and Assumption MP holds. Suppose there exists i,a; such
that: (i) the rank of F{* is p + 1; (ii) there exists a p + 1 by K matric Ay such that AoFy" is

non-singular; and (iii) max {g;, g2} < 1, where

Y

g = rélez%( [(AgFS) ™ AgAHY B (Ix — BL) ' Ry|

1,02
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g2 = max _
3,8/ €B,0€6

-1 1y —1
(AoF{")~H AgAHY ( (Ix — BL)" (Ix — A'L)" Ruf >

+L (Ix — BL) (B + 8) Ik — BA'L) (Ix — B'L) " (Roi + €,)

1,02

Then (5, 00) is identifiable.
PROOF: First define QF : [0,1] x O — RPT! as follows:

Q" (B,0) = (AoF{") ™" Agc — (AoF{") ™" AoD{ (B) 0 — (AgF{) ™ AgE; (3) .

By construction, from (25), it is easy to see that (3, fy) is a fixed-point of Q. Take any (3,0), (3,0') €
B x ©, then

Qi (B,0) — QI (B,0') = — (AgFy) ™ Ay (D (8) 0 — DY (8) 0 + E; (B) — E; (),

where
D} (3)0 =D} (8¢ = AH} (ﬁ (Ix — BL) 'R — 8/ (Ix — BL) Ru@')
N ( (8= 8) (Ix = BL)"' (I — BL) " Rurt )
- i / | / )
+6 (Ix = L) "R (6 —0)
and

Bi(8)~Ei () = AHIL (5 (L = AL) ' = 8° (L = A1) ') (Rio +€,)
— AHPL((8 - 8) (e = BL) ™ (B + 8) Tk = BFL) (e — A1) ) (Rao + ).
which can be shown by making use of the following identities:
Bk —pL)" — 5 Ik = L) = (B-4) Ak~ pL) " (Ix - L),
B2 (I —PL) ' = 5% (Ix = L) = (8- 8)(x — L) (8 +5) Lk — BH'L) (Ix — L) .
It then follows that

Q7 (8,0) — Q (B.0)] < gullf =0, + 8208 -5

(5)-(%)

Le. Q' is a contraction, hence it has a unique fixed point. Now suppose (3, o) is not identifiable.

IA

max {g1, 82}

a2

Then there exists some (3,60) # (5,,00) that is observationally equivalent to (3,,60). By an impli-
cation of Lemma 6 (3,0) must also be a fixed point of Qf, which is a contradiction. Thus (53, 6o)
is identifiable.ll

COMMENTS ON THEOREM 4:
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(i) Compact Domain. B cannot include 1 as the expected discounted returns would then be
unbounded. Compactness is useful for showing existence of a fixed point. There is also a trade-off in
the choice of b and k in the definitions of B and © respectively. For example, smaller b and k means
smaller max {g;, g2} but this is a restriction on the parameter space.

(ii) Choice of Ay. The need to select Ay can be eliminated altogether by removing some rows
in (25) so that we have exactly p + 1 equations. In fact it is not necessary to take equations that
only correspond to the states from a particular player ¢ and a;. Since the parametric structure in
(25) is the same for all states we can select any p + 1 equations from any ¢ and a; and compute the
corresponding matrix norms for g; and g,. This gives us different combinations of equations we can
use, and we only need the analog of max {g;,gs} to be less than 1 for one of them to ensure (f3,, 6)
is identifiable.

(#ii) Rank Deficiency. We have emphasized in Section 4 that sometimes not all components
of the payoff functions can be identified and normalizations are necessary. For example in the
entry/exit game generally the entry cost and scrap value cannot be jointly identified. Then one
may consider normalizing, say, the scrap value in order to estimate all the other parameters in
the model. Furthermore, we discussed in Section 4.3 that the discount factor can be identified
even if an incorrect normalization is used. Relatedly, we can also relax condition (i) in Theorem
4 in this direction and allow F{’ to be rank deficient. In particular, recall from (25) that F}" =
[ARY; : AH" (Rio+e€;)], we can allow ARJ] to be rank deficient. In such case there exists a full rank

- ~ 6
matrix W such that ARYW = [AR]] : 0] where AR} has full column rank. Then F" ( 5 ) in (25)

~ W10
becomes |[ARY : 0: AH}" (Rio—i—ei)] ( 8 ) Therefore, by inspection, the proof of Theorem 4

can be readily adapted by reparameterizing 6 to show the identification of the discount factor is

possible.
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