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Abstract

Most empirical and theoretical econometric studies of dynamic discrete choice models as-

sume the discount factor to be known. We show the knowledge of the discount factor is not

necessary to identify parts, or even all, of the payoff function. We show the discount factor can

be generically identified jointly with the payoff parameters. On the other hand it is known the

payoff function cannot be nonparametrically identified without any a priori restrictions. Our

identification of the discount factor is robust to any normalization choice on the payoff para-

meters. In IO applications normalizations are usually made on switching costs, such as entry

costs and scrap values. We also show that switching costs can be nonparametrically identified,

in closed-form, independently of the discount factor and other parts of the payoff function. Our

identification strategies are constructive. They lead to easy to compute estimands that are

global solutions. We illustrate with a Monte Carlo study and the dataset used in Ryan (2012).
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1 Introduction

The stationary dynamic discrete decision model surveyed in Rust (1994) has been a subject of much

research in econometric theory and empirical studies. The primitives of the model consist of the

period payoff function, Markov transition law, and discount factor. A well-known characteristic of

a dynamic decision model is that it is not identified. For example, Manski (1993) points out in

general that the discount factor and payoff function cannot be jointly identified nonparametrically.

Most positive identification results in the literature until recently focus on identifying payoff para-

meters while assuming other primitives to be known; e.g. see Magnac and Thesmar (2002), and also

Pesendorfer and Schmidt-Dengler (2008) and Bajari, Chernozhukov, Hong and Nekipelov (2009).

Meanwhile empirical studies typically parameterize the payoff function, parameterize at least part of

the distribution of the variables, and assume the discount factor to be known.

In this paper we are interested in identifying the discount factor jointly with the payoff function

under the linear-in-parameter specification. This parametric model is the most commonly used

specification in practice. When there are finite states the linear specification can represent any

nonparametric function. Most empirical studies assume the value of the discount factor to be known

without any formal justification in this setting. To the best of our knowledge we are not aware of any

prior identification study involving the discount factor in a general parametric model. We provide

conditions under which both the discount factor and payoffparameters can be identified, and propose

an easy to compute estimator for them. Other positive identification results on the discount factor in

the literature use a nonparametric approach. They use exclusion restrictions in the form of variables

affecting future utilities but not current utilities to identify the discount factor; e.g. see Dubé, Hitsch,

and Jindal (2014), Wang (2014), Fang and Wang (2015), and Ching and Osborne (2017). We do not

rely on these assumptions.

A nonparametric payoff function without any restriction cannot be identified even if the discount

factor is known. The fundamental identification characteristic in a discrete choice model can be

traced to the static random utility model of McFadden (1974), where utility is ordinal and its level

cannot be identified. Some form of normalization has to be made. Aguirregabiria and Suzuki (2014,

AS hereafter) recently highlight the undesirable effects that an arbitrary normalization have on

un-normalized parameters and counterfactual studies, and emphasize the importance of identifiable

objects without any normalization; also see Kalouptsidi, Scott, and Souza-Rodrigues (2016a, 2016b).

An important question then is whether our identification result is robust against misspecifying the

normalization choice.

We verify that our identification of the discount factor is robust against any normalization choice.

On the other hand the payoff parameters are generally not individually robust. But some of their
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meaningful combinations are. To this end we also contribute to the literature by providing a non-

parametric framework to identify the payoff parameters that arise from changing in the actions of

players between time periods. We call these switching costs1. For example, in an entry/exit model,

they are entry cost and scrap value. Individually the entry cost and scrap value cannot be separately

identified but their difference, namely the sunk entry cost, can be identified. We show that switching

costs can be written explicitly in terms of the observed choice probabilities, independently of the

discount factor as well as other (non switching costs) components of the payoff function. AS has

already shown the sunk entry costs in several IO models can be identified in this fashion. We extend

these results to sunk investment costs that can arise from firm investing and divesting, as well as

individual switching costs themselves under other a priori restrictions.

A general discussion on the non-identification of the dynamic model we consider can be found in

Rust (1994). Positive identification is possible when more structures are imposed on the primitives.

Magnac and Thesmar (2002) have shown the problem of identifying the payoff parameters nonpara-

metrically when all other primitives of the model are assumed to be known can be reduced to a

study of solutions to a linear system; also see Pesendorfer and Schmidt-Dengler (2008) and Bajari et

al. (2009). We are interested in the payoff parameters as well as the discount factor. The discount

factor enters the decision problem recursively and thereby introduces nonlinearity in the model.

Magnac and Thesmar (2002, Section 4.2) suggest that exclusion or parametric restrictions can be

used to identify the discount factor. For the former, their Proposition 4 illustrates in a simple two-

period model the discount factor is in fact typically overidentified. The identifying restriction they

use is that: for some states, utilities in the first period are the same but differ in the second period.

This idea has been elaborated and applied in different empirical contexts by Dubé et al. (2014),

Wang (2014), Fang and Wang (2015), and Ching and Osborne (2017) amongst others. On the other

hand, while it may be plausible to assume identification is possible in a parametric model we are not

aware of any theoretical result that has verified this to be true. In particular establishing parametric

identification in a general nonlinear model is a non-trivial task; see Komunjer (2012) for a recent

illustration. We prove identification using an empirical model that is linear in the payoff parameters

conditioning on the discount factor. We construct a one-dimensional criterion function to be used

for identification. It exploits the conditional linear structure to profile out the payoff parameters

and reduce the nonlinear nature of the problem to just one dimension. The criterion function we

construct to establish identification has a sample counterpart that can be used for estimation.

In many IO applications, switching costs are often the essence of a dynamic decision problem and

1We use the term switching costs that shares the same spirit as generic adjustment costs and other inertia. Examples

of usages in various fields of economics and marketing include the cost to change in health insurance plan, changing

of credit and other utility providers, and retailer’s decisions on promotions.
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can even be the central object of the dynamic model itself (e.g. see Slade (1998), and also the general

discussions in Ackerberg, Benkard, Berry and Pakes (2007) and Pesendorfer (2010)). Our study on

the switching costs takes a nonparametric approach. We identify combinations of the switching costs

by exploiting empirically motivated exclusion and testable independence assumptions. A key step

involves eliminating common future expected discounted payoffs that arise from different states. Our

result does not depend on the discount factor and some other components of the payoff function.

The robust identification result of this nature has precedence in the literature but has not been

highlighted.2 For example, an inspection of Proposition 2 in Aguirregabiria and Suzuki (2014) will

reveal that the same implication of our Theorem 2 has already been obtained for a binary action

game of entry/exit3. We provide closed-form expressions for switching costs and their combinations in

terms of only the observed choice probabilities. They can therefore be trivially estimated. They also

suggest overidentification tests can be constructed by comparing against other estimates of switching

costs obtained under additional assumptions on the model primitives.

Throughout the paper our identification results are obtained using an empirical model under the

assumption that the choice and transition probabilities are nonparametrically identified. These same

probabilities are used to compute expected payoffs in a pseudo-decision problem for all values of the

model parameters as opposed to the actual (or full-solution) model where equilibrium probabilities

are used. The choice probabilities implied by our empirical model can be used to construct pseudo-

likelihood functions as done in Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu

(2008). This empirical model is used because it is tractable. It forms the basis for any two-step esti-

mation procedures, following Hotz and Miller (1993), which are preferred on computational grounds

over a full-solution approach such as the nested fixed-point algorithm of Rust (1987). The estimator

we propose in this paper will be based on the two-step approach of Sanches, Silva, and Srisuma

(2016) with computational simplicity in mind. It is worth noting that, although consistent, a simple

two-step estimator like ours tend to have larger finite sample bias and is less effi cient than estima-

tors that enforce the equilibrium restriction of the model. Equilibrium constraints can be imposed

during estimation with additional computational cost, also without the need to solve out a dynamic

optimization problem (cf. Rust (1987)). E.g. Aguirregabiria and Mira (2002, 2007) and Egesdal,

Lai, and Su (2015) have shown the fully effi cient maximum likelihood estimator can be obtained in

this way.

When the data come from a single time series, or when they are pooled across short panels of

2In one instance, for a slightly different model with a mixed continuous-discrete decision variable, Hong and Shum

(2010) rely on a deterministic state transition rule to define a pairwise-difference estimator that matches on (and

thereby avoid computing) future expected discounted payoffs from different states.
3We thank an anonymous referee for pointing this out to us.
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multiple homogeneous markets, the choice and transition probabilities are nonparametrically iden-

tified under weak conditions. In practice many datasets are short panels, where it would be more

reasonable to assume some form of unobserved heterogeneity exists across markets. A flexible yet

tractable way to model unobserved heterogeneity in this literature is to use a finite mixture model.

For example Aguirregabiria and Mira (2007) suggest economic agents’payoffs have time-invariant

unobserved market specific component that is unobserved to the econometrician, therefore markets

of different types have different equilibrium distributions on the observables. Kasahara and Shimotsu

(2009) and Arcidiacono and Miller (2011) have given conditions so that the probabilities for each

mixture type can be nonparametrically identified under different frameworks, thereby extending the

scope of applying two-step estimation methods to models with unobserved heterogeneity. All iden-

tification results in our paper are valid in such setting as long as we can identify the type specific

probabilities to be able to set up the corresponding pseudo-decision problem. Specifically the degree

of overidentification on the model primitives increases proportionally to the number of mixture types.

The class of decision problems we consider is a special case of dynamic games described in

Aguirregabiria and Nevo (2010) and Bajari, Hong, and Nekipelov (2010). All of our intuition and

results are applicable to these games. The most parts of this paper focus on the single agent model

for notational simplicity and clarity of idea, and to abstract ourselves away from game specific issues

(such as multiple equilibria). For the same reasoning given for models with unobserved heterogeneity,

the portability of our results to dynamic games is immediate as long as the choice and transition

probabilities can be consistently estimated nonparametrically. The numerical studies of our proposed

estimators are in fact performed in a dynamic game setting. The details on extending our single

agent’s results to games can be found in the Appendix.

We perform a Monte Carlo study of our proposed estimators using the simulation design in

Pesendorfer and Schmidt-Dengler (2008). We then use the same dataset as used in Ryan (2012)

to estimate a dynamic game played between firms in the US Portland cement industry. In our

version of the game, firms choose whether to enter the market as well as decide on the capacity

level of operation (five different levels). We assume firms compete in a capacity constrained Cournot

game, so the period variable profit can be estimated directly from the data as done in Ryan. The

dynamic parameters we estimate are the discount factor, fixed operating cost, and 25 switching cost

parameters. We estimate the model twice. Once using the data from before 1990 and once after

1990. The separation date coincides with implementation of the 1990 Clean Air Act Amendments

(1990 CAAA). Our estimates on switching costs generally appear sensible, having correct signs and

relative magnitudes. They show that firms entering the market with a higher capacity level incur

larger costs, and suggest that increasing capacity level is generally costly while a reduction can return

some revenue. We find that operating and entry costs are generally higher after the 1990 CAAA,
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which supports Ryan’s key finding. We are also able to estimate the discount factor to be within the

commonly assumed range with a reasonable precision.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical model and

the basic modeling assumptions. Section 3 gives a joint identification result on the discount factor and

the payoff parameters under the linear-in-parameter specification. Section 4 studies nonparametric

identification of the switching costs. Section 5 illustrates the performance and use of our estimator

with simulated and real data. Section 6 concludes. The Appendix contains details for extending our

identification results to dynamic games and further results on identifying the discount factor.

Notations. We use ρ (A) , CS (A) ,A>,A−1 and A† to respectively denote the rank, column

space, transpose, inverse and Moore-Penrose inverse of matrix A. For any positive integers p, q, we

let Ip and 0p×q respectively denote the identity matrix of size p and a p× q matrix of zeros.

2 Basic Modelling Framework

We begin by describing an infinite time horizon dynamic discrete choice model as in Rust (1987,

1994).4 Given our empirical examples and application below, we shall sometimes refer to our rep-

resentative economic agent as a firm and her payoffs as profits. Let t ∈ {1, 2, . . . ,∞} denote time.
The random variables in our model are the action and state variables, which we denote by at and

st respectively. at takes values from a finite set of alternatives A = {0, 1, . . . , J}. st contains two
components, st ≡ (xt, εt) ∈ X × RJ+1 with X ⊆ R. xt is public information to both the firm and

the econometrician, while εt ≡ (εt (0) , . . . , εt (J)) ∈ RJ+1 is private information only observed by the

firm. Future states are uncertain. Today’s action and states affect outcomes for states in the future.

The evolution of the states is summarized by a Markov transition law P (st+1|st, at). The firm’s
period payoff function is u (at, st) ∈ R. Future period’s payoffs are discounted at the rate β ∈ [0, 1).

At time t the firm observes st and chooses an action optimally. Specifically, we assume at = α (st)

so that:

α (s) = arg max
a∈A
{u (a, s) + βE [V (st+1) |st = s, at = a]}, (1)

where V (s) = max
a∈A
{u (a, s) + βE [V (st+1) |st = s, at = a]} .

Using the optimal decision rule we can remove the max operator and write the value function as,

V (s) = E

[ ∞∑
t=0

βtu (at, st) |s0 = s

]
. (2)

4The notations for an infinite time stationary model is much simpler relative to a finite time horizon one. Our

identification strategy is valid for finite time horizon models, and with or without absorbing states.
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The expectation operators in the displays above integrate out variables with respect to the probability

distribution induced by the equilibrium choice probabilities and Markov transition law. As standard

in the literature we assume the following assumptions.

Assumption M:

(i) (Additive Separability) For all a, x, ε:

u (a, x, ε) = π (a, x) + ε (a) .

(ii) (Conditional Independence) The transition distribution of the states has the following factor-

ization for all x′, ε′, x, ε, a:

P (x′, ε′|x, ε, a) = Q (ε′)G (x′|x, a) ,

where Q is the cumulative distribution function of εt and G denotes the transition law of xt+1

conditioning on xt, at. Furthermore, εt has finite first moments, and a positive, continuous and

bounded density on RJ+1.

(iii) (Finite Observed State) X = {1, . . . , K}.

The primitives of the model under this setting consist of (π, β,Q,G). Throughout the paper

we shall assume (G,Q) to be known. G can be identified from the data when (at, xt, xt+1) are

observed. Consistent estimation of the joint distribution of (at, xt, xt+1) holds under weak conditions

with a single time series, as well as repeated observations from short panels when there is no other

unobserved heterogeneity. Q is typically assumed known in most empirical applications. Conditions

for the identification of Q exist when xt is a continuous variable using a large support type argument,

e.g. see Aguirregabiria and Suzuki (2014, Proposition 1), Buchholz, Shum, and Xu (2016, Lemma 4)

and Chen (2014, Theorem 4). Our results do not depend on any continuity assumption to achieve

identification as we take xt to be a discrete random variable.

Our subsequent analysis use the fact that we can identify the choice probability from data as

the starting point, which in turn is informative about (π, β). More specifically, for any a > 0, let

∆v (a, x) ≡ v (a, x)− v (0, x), where v (a, x) denotes the choice-specific value function that serves as

the mean utility in a discrete choice modelling:

v (a, x) = π (a, x) + βE [V (st+1) |xt = x, at = a] , (3)

Pr [at = a|xt = x] = Pr [∆v (a, x)−∆v (a′, x) > εt (a′)− εt (a) for all a′ 6= a] .

By inverting the choice probabilities (Hotz and Miller (1993)) we can recover∆v (a, x) for all a > 0, x.
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3 Identifying the Discount Factor with Linear-in-Parameter

Payoffs

In this section we assume the payoff function takes on a linear-in-parameter specification. Section

3.1 defines the identification concept for the discount factor and payoff parameters. Section 3.2

provides some representation lemmas that will be useful for defining a criterion function to study

identification. Section 3.3 gives the identification result.

3.1 Definition of Parametric Identification

We will assume Assumption M and the following assumption throughout this section.

Assumption P (Linear-in-Parameter): For all a, x:

π (a, x; θ) = π0 (a, x) + θ>π1 (a, x) ,

where π0 is a known real value function, π1 is a known p−dimensional vector value function and θ
belongs to Rp.

Assumption P can be interpreted as nonparametric. For example it can represent an unrestricted

nonparametric function of π by assigning a parameter for each possible pair of a and x. However,

such function is too rich and cannot be identified. We will maintain the parametric appearance for π

as we will not be exploiting any nonparametric restriction in our identification study of the discount

factor.

The role of π0 is to represent the payoff components that are identifiable without the knowledge

of the discount factor or other model primitives. In practice π0 and possibly parts of π1 may have to

be estimated (e.g. see Section 5.2). For the purpose of identification they can be treated as known.

The primitives in this setting are (β, θ). They belong to B × Θ where B = [0, 1) and Θ = Rp. We
are interested in the data generating discount factor and payoff parameters, which we denote by β0

and θ0 respectively.

We begin by defining the parametric choice-specific value function (cf. equation (3)):

v (a, x; β, θ) ≡
∞∑
t=0

βtE [π (at, xt; θ) + εt (at) |a0 = a, x0 = x] . (4)

Then we denote the differences in these value functions when action a is chosen relative to action

0 by ∆v (a, x; β, θ) ≡ v (a, x; β, θ) − v (0, x; β, θ). It is important to emphasize that the stochastic

process {at, xt, εt}∞t=0 that defines the right hand side of equation (4) follows an optimal controlled
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process consistent with (β0, θ0), whose distribution is identified by the observed probabilities from the

data. Therefore ∆v (a, x; β, θ) is identified for all (a, x) ∈ A ×X and (β, θ) ∈ B × Θ. Furthermore,

∆v (a, x; β0, θ0) is also identified by Hotz-Miller’s inversion. We shall use the mapping (β, θ) 7−→
{∆v (a, x; β, θ)}(a,x)∈A×X as a basis of our identification study.

More formally, we take each pair (β, θ) to be a structure of our empirical model and its implied

choice-specific values, denoted by Vβ,θ ≡ {∆v (a, x; β, θ)}(a,x)∈A×X , to be its corresponding reduced

form. We then define identification using the notion of observational equivalence in terms of the

differences in expected payoffs.

Definition I1 (Observational Equivalence): Any distinct (β, θ) and (β′, θ′) in B ×Θ are

observationally equivalent if and only if Vβ,θ = Vβ′,θ′ .

Definition I2 (Point Identification): An element in B×Θ, say (β, θ), is point identified if

and only if (β′, θ′) and (β, θ) are not observationally equivalent for all (β′, θ′) 6= (β, θ) in B ×Θ.

For our identification study we define our statistical model to be the collection of all reduced forms,

namely: {Vβ,θ}(β,θ)∈B×Θ. All statements made on identification in Section 3 are in the context of this

statistical model unless explicitly stated otherwise. Alternatively we can also define a statistical

model based on probability distributions as in the traditional econometrics studies on identification.

Specifically, the model implied choice probabilities for each (β, θ) are:

Pβ,θ ≡ {Pr [∆v (a, x; β, θ)−∆v (a′, x; β, θ) > ε (a′)− ε (a) for all a′ 6= a]}(a,x)∈A×X .

It is known there is a one-to-one relation between {Vβ,θ}(β,θ)∈B×Θ and {Pβ,θ}(β,θ)∈B×Θ; see Matzkin

(1991), Hotz and Miller (1993), and Norets and Takahashi (2013). Therefore identification for our

decision problem can be equivalently established with either {Vβ,θ}(β,θ)∈B×Θ or {Pβ,θ}(β,θ)∈B×Θ. Note

that one can interpret elements in Pβ,θ as the implied choice probabilities for an economic agent
who solves a pseudo-decision problem where the expected payoff for taking each action is given by

equation (4).
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3.2 Some Representation Lemmas

Under Assumptions M and P, it shall be useful to separate out the contributions of the expected

discounted payoffs in (4) as follows:

v (a, x; β, θ) = π0 (a, x) + β

∞∑
t=0

βtE [π0 (at, xt) |a0 = a, x0 = x]

+β
∞∑
t=0

βtE [εt (at) |a0 = a, x0 = x]

+θ>(π1 (a, x) + β

∞∑
t=0

βtE [π1 (at, xt) |a0 = a, x0 = x]).

Subsequently, by defining ∆πl (a, x) ≡ πl (a, x)− πl (0, x) for l = 0, 1, we have:

∆v (a, x; β, θ) = ∆π0 (a, x) + β
∞∑
t=0

βt (E [π0 (at, xt) |a0 = a, x0 = x]− E [π0 (at, xt) |a0 = 0, x0 = x])

+β
∞∑
t=0

βt (E [εt (at) |a0 = a, x0 = x]− E [εt (at) |a0 = 0, x0 = x])

+θ>(∆π1 (a, x) + β
∞∑
t=0

βt (E [π1 (at, xt) |a0 = a, x0 = x]− E [π1 (at, xt) |a0 = 0, x0 = x])).

The decomposition of ∆v helps us distinguish how β and/or θ affect different parts of the per-period

payoffs. Lemma 1 summarizes this in a matrix form.

Lemma 1: Under Assumptions M and P, for all a > 0, ∆v (a, x; β, θ) can be collected in the

following vector form for all (β, θ) ∈ B ×Θ:

∆va (β, θ) = ∆Ra
0 + β∆Ha (IK − βL)−1 R0 (5)

+β∆Ha (IK − βL)−1 ε

+
(
∆Ra

1 + β∆Ha (IK − βL)−1 R1

)
θ,

where the elements in the above display are collected and explained in Tables A and B.

Matrix Dimension Representing

∆Ra
1 K × p ∆π1 (a, ·)

R1 K × p π1 (a, ·)
L K ×K E[ψ (xt+1) |xt = ·]
Ha K ×K E[ψ (xt+1) |xt = ·, at = a]

∆Ha K ×K E[ψ (xt+1) |xt = ·, at = a]− E[ψ (xt+1) |xt = ·, at = 0]
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Table A. The matrices consist of (differences in) expected payoffs and probabilities. The latter

represent conditional expectations for any function ψ of xt+1.

Vector Representing

ε E [εt (at)|xt = ·]
∆Ra

0 ∆π0 (a, ·)
R0 E [π0 (at, xt) |xt = ·]
∆Ha (IK − βL)−1 R0

∑∞
t=0 β

t (E [π0 (at, xt) |a0 = a, x0 = x]− E [π0 (at, xt) |a0 = 0, x0 = x])

∆Ha (IK − βL)−1 R1

∑∞
t=0 β

t (E [π1 (at, xt) |a0 = a, x0 = x]− E [π1 (at, xt) |a0 = 0, x0 = x])

∆Ha (IK − βL)−1 ε
∑∞

t=0 β
t (E [εt (at) |a0 = a, x0 = x]− E [εt (at) |a0 = 0, x0 = x])

Table B. The K × 1 vectors represent (differences in) expected payoffs.

Proof: This is a special case of Lemma R in Sanches et al. (2016).�

All vectors and matrices in Tables A and B are either known or estimable from the choice and

transitional probabilities. The tables will serve as a useful reference for constructing the necessary

components we use for defining the criterion function in Section 3.3.

Given that we can identify ∆va (β0, θ0) for all a > 0, to identify (β0, θ0), it is suffi cient to show

that for all (β, θ) 6= (β0, θ0), ∆va (β, θ) 6= ∆va (β0, θ0) for some a. Our next lemma provides a

characterization as to how changing β and θ can affect ∆va.

Lemma 2: Under Assumptions M and P, for any a > 0 and (β, θ) , (β′, θ′) ∈ B ×Θ:

∆va (β, θ)−∆va (β, θ′) =
(
∆Ra

1 + β∆Ha (IK − βL)−1 R1

)
(θ − θ′) , (6)

∆va (β′, θ′)−∆va (β, θ′) = (β − β′) ∆Ha (IK − β′L)
−1

(IK − βL)−1 (R0 + R1θ
′ + ε) . (7)

And (β, θ) is identifiable if and only if there is no other (β′, θ′) such that for all a > 0:

∆va (β′, θ′)−∆va (β, θ′) = ∆va (β, θ)−∆va (β, θ′) .

Proof: Follows from some algebra based on equation (5).�

Lemma 2 illustrates the nature of the identification problem we have at hand. We highlight the

following particulars:

(i) If the discount rate is assumed to be known, from (6), a suffi cient condition for ∆va (β0, θ) 6=
∆va (β0, θ

′) when θ 6= θ′ is that ∆Ra
1 + β∆Ha (IK − βL)−1 R1 has full column rank for some a > 0.

Also see Theorem 3 in Srisuma (2015).
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(ii) If the payoff function is assumed to be known, from (7), a suffi cient condition for∆va (β′, θ0) 6=
∆va (β, θ0) when β 6= β′ is that (R0 + R1θ

′ + ε) 6= 0 and ∆Ha is invertible some a > 0.

(iii) Suppose p is large relative to K. Then for any a > 0 such that ∆Ra
1 +β∆Ha (IK − βL)−1 R1

has rank K, and for any θ′, β 6= β′ that ∆va (β′, θ′) 6= ∆va (β, θ′), by equating (6) and (7), we can

always find θ such that ∆va (β′, θ′) = ∆va (β, θ).

Point (i) shows that suffi cient conditions for identification of the payoff parameters when the

discount rate is assumed known can be easily stated and verified. More generally the suffi cient

condition for the identification of the payoffparameter can be stated in terms of the full column rank

of the matrix that stacks together ∆Ra
1 + β∆Ha (IK − βL)−1 R1 over a. In the case we are able to

identify the payoff function outside of the dynamic model, (ii) shows that the discount factor can

also be identified and provide one type of suffi cient conditions that can be readily checked. Point (iii)

shares the intuition along the line of Manski (1993) that when the parameterization on the payoff

function is too rich, (β, θ) may not identifiable in B ×Θ.

From Lemma 2, it is also apparent that we should be able to identify (β0, θ0) jointly when the

change in the vector of expected payoffs from altering the discount factor moves in a different direction

to the change caused by altering the payoff parameters.

3.3 Sum of Squares Criterion Function

The study of identification involving the discount factor is complicated due to the fact that Vβ,θ is
nonlinear in (β, θ). However, for a given β, we can see from (5) that Vβ,θ is linear in θ. We use
profiling to exploit the conditional linearity to simplify the identification problem for a nonlinear

model with p+ 1 parameters to a one-dimensional problem.

Let ma (β, θ) ≡ ∆va (β0, θ0)−∆va (β, θ). Then we can write, using (5):

ma (β, θ) = aa (β)−Ba (β) θ,

aa (β) ≡ ∆va (β0, θ0)−∆Ra
0 − β∆Ha (IK − βL)−1 (R0 + ε) ,

Ba (β) ≡ ∆Ra
1 + β∆Ha (IK − βL)−1 R1.

It is clear that ma (β, θ) is linear in θ for any given β. We can stack together the system of equations

above across a. In doing so we obtain the following vector value function, m : B ×Θ→ RKJ :

m (β, θ) = a (β)−B (β) θ, (8)

where a (β) is a KJ × 1 vector and B (β) is a KJ × p matrix.
LetM (β, θ) ≡ ‖m (β, θ)‖, i.e. M (β, θ) is the Euclidean norm ofm (β, θ). Then by construction,

M (β, θ) = 0 if (β, θ) = (β0, θ0) ,
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and any other (β, θ) such thatM (β, θ) = 0 is observationally equivalent to (β0, θ0) by the property

of the norm. ThereforeM has the necessary property to serve as a criterion for identification.

Next we profile out θ in order to reduce the dimensionality onM by exploiting its least squares

structure. For each β, run a regression of a (β) on B (β), we can define:

θ∗ (β) ≡ (B (β)>B (β))†B (β)> a (β) . (9)

So that θ∗ (β) is a least squares solution to minθ∈ΘM (β, θ). Then we define:

M∗ (β) ≡M (β, θ∗ (β)) . (10)

By construction it also holds that

M∗ (β) = 0 if β = β0.

In this way we have reduced the parameter space in the identification problem to a one-dimensional

one. Furthermore the domain of the parameter space is on a small interval: [0, 1). The reasoning is

analogous to profiling in an estimation routine. Particularly we can ignore any θ that does not lie in

arg minθ∈ΘM (β, θ) since necessarily,

M (β, θ) >M (β, θ∗ (β)) ≥ 0.

Therefore (β0, θ0) is identified when M∗ (β) has a unique minimum and minθ∈ΘM (β0, θ) has a

unique solution.

Theorem 1: Under Assumptions M and P, (β0, θ0) is identifiable in {Vβ,θ}(β,θ)∈B×Θ if

M∗ (β) = 0 if and only if β = β0,

and B (β0) has full column rank.

Proof: Suppose (β0, θ0) is identifiable. If there is β′ 6= β0 such that M∗ (β′) = 0, then

∆va (β0, θ0) = ∆va (β′, θ∗ (β′)) for all a by the property of the norm. Since Θ is a closed set,

by the projection theorem, θ∗ (β′) exists and is the unique element in Θ. This leads to a contradic-

tion since (β0, θ0) and (β′, θ∗ (β′)) are observationally equivalent. Next, suppose that B (β0) does

not have full column rank. Let θ′ be another element in arg minθ∈ΘM (β0, θ) that differs from θ0.

SinceM (β0, θ) ≥ 0 for all θ ∈ Θ andM (β0, θ0) = 0,M (β0, θ
′) = 0. Thus (β0, θ0) and (β0, θ

′) are

observationally equivalent, also a contradiction.�

Comments on Theorem 1:
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(i) High Level Assumptions. Conditions in Theorem 1 are high level as we do not relate them

to the underlying primitives of the model. However, they are statements made on objects that

are observed or can be consistently estimated nonparametrically. In the Appendix we give a more

detailed conditions forM∗ to have a unique minimum; see Theorem 4.

(ii) Feasible Check and Estimation. Since we have reduced the identification problem to a single-

parameter that can reside only in a narrow range, there is no need to refer to complicated results

for the identification of a general nonlinear model. We can use the sample parts of components in

Tables A and B to consistently estimateM∗ (β) for all β. So one can plot the sample counterpart

of M∗ over B for an exhaustive analysis of the problem. Once the minimum of M∗ is found, the

corresponding rank matrix can then be checked. This suggests one natural way to estimate the

discount factor, namely by grid search. In practice we can detect an identification problem if the

sample counterpart ofM∗ contains a flat region at the minimum, or when the sample counterpart

of B (β0) does not have full column rank.

(iii) Identification in the empirical model. It is clear that positive identification of (β0, θ0) in

our empirical model is suffi cient for identifying (β0, θ0) in the full-solution model. Therefore our

identification results in this paper can be used to establish identification in the full-solution model.

However, we the implication may not be necessary, and we do not make any other claim on the

identification of the full-solution model. The identification study in the full-solution model is much

more complicated since it is less tractable analytically; for a further discussion we refer the reader to

Srisuma (2015).

By inspecting the proof of Theorem 1 it is clear there are some separation between the identifi-

ability of β0 and θ0. In particular we have defined θ
∗ (β) using a generalized inverse of the matrix

B (β)>B (β). Therefore β0 can be identified even if θ0 is not.

The full column rank condition on B (β0), however, is not an innocuous assumption when we view

Assumption P as a representation of a nonparametric function. In practice this is often delivered by

exclusion assumptions or more generally by normalization of payoff parameters. Next section we will

focus on payoff parameters that we call switching costs. We will revisit the question of identifiability

of the discount factor under different normalization choice in Section 4.3.

4 Nonparametric Identification of Switching Costs

In this section we consider payoff functions under nonparametric restrictions that allow us to obtain

closed-form expressions for the switching costs parameters. In Section 4.1 we define a switching cost

function and explain the assumptions required for our identification result. Section 4.2 gives the
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identification result. Section 4.3 relates the identification of the discount factor under Assumption P

to models with switching costs.

4.1 Switching Costs

The payofffunction cannot be nonparametrically identified without any restrictions. Economic theory

can help guide how to impose structures on the payoff function. A main consideration in making

a dynamic discrete decision is how a change in one’s action from the previous period immediately

affect today’s payoffs. Actions from the past are therefore often important components of the state

variables. We will consider restrictions focusing on switching costs.

In order to highlight the role of switching costs we distinguish past actions from other state

variables. At time t we denote actions from the previous period by wt, so that wt ≡ at−1. We denote

the switching cost from changing action from w to a by SCw→a. Subsequently, in this section we

shall maintain an updated version of Assumption M where xt is replaced with (wt, xt) everywhere.

In addition we impose the following assumptions.

Assumption N

(i) (Decomposition of Profits): For all a, w, x:

π (a, w, x) = µ (a, x) + φ (a− w,w, x) ,

such that φ (0, w, x) = 0.

(ii) (Conditional Independence): The distribution of xt+1 conditional on at and xt is independent

of wt.

The decomposition of π in N(i) may appear peculiar at first, but it is typical in many empirical IO

applications. We will give an interpretation of its components within the context of an IO application.

The defining feature of µ is that it excludes past actions. µ can represent the firm’s operational profit

in the current period, such as variable profits and operational costs, which does not depend on actions

from the past. φ is the switching cost function that takes non-zero values only when a change of

action occurs. Note that, by construction, we have:

φ (a− w,w, x) = SCw→a (x) · 1 [w 6= a] , (11)

where 1 [·] denotes the indicator function.
Assumption N(ii) imposes that knowing actions from the past does not help predict future state

variables when the present action and other observable state variables are known. Note that N(ii) is

not implied by M(ii). In many applications {xt} is simply assumed to be a strictly exogenous first
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order Markov process. Specifically this implies xt+1 is independent of at conditional on xt in addition

to N(ii). In any case, unlike M(ii), N(ii) is a restriction made on the observables so it can be tested

directly from the data. Later on we shall show how xt can be modified to contain past actions so

N(ii) can be weakened to allow for dependence of other state variables with past actions.

Even under Assumption N(i) identification issue persists (e.g. see the discussion in Aguirregabiria

and Suzuki (2014)). SCw→a cannot be identified for all w 6= a without any further restrictions. Some

of their differences, however, can be identified. For example, identification is possible if we normalize

some baseline switching costs to be known. We will look at different restrictions that can be used

to identify individual or combination of the switching costs. Before giving the formal result we

provide an intuition as to why Assumption N is helpful for identifying the switching costs. It will

also illustrate the key steps of our identification strategy.

Exclusion and Independence Restrictions

Consider a two-period entry/exit decision problem. Let A = {0, 1}, where 0 denotes exit and

1 denotes entry. Then SC0→1 and SC1→0 respectively have interpretations of entry cost and scrap

value. In this case we can write

φ (a− w,w, x) = SC0→1 (x) · a (1− w) + SC1→0 (x) · (1− a)w. (12)

The choice-specific value function (cf. (3)) in this model is:

ν (a, w, x) = π (a, w, x) + βE [π (at+1, wt+1, xt+1) |at = a, wt = w, xt = x] .

Let ∆ν (w, x) ≡ ν (1, w, x) − ν (0, w, x). At time t, a firm will enter if and only if ∆ν (w, x) >

εt (0)− εt (1). We can identify ∆ν from the observed choice probabilities.

The role of our assumptions is to isolate today’s switching costs from the remaining components

in the choice-specific value function. Specifically, we apply N(i) to decompose the profit function in

the current period and use N(ii) to simplify the expected future profits. We can then re-write the

equation above as

ν (a, w, x) = λ (a, x) + φ (a− w,w, x) , where

λ (a, x) = µ (a, x) + βE [π (at+1, a, xt+1) |at = a, xt = x] .

Crucially note that the conditional expectation on future profits in λ no longer depends on wt under

N(ii) due to the law of iterated expectation. We treat λ as a nuisance parameter. It is a nonparametric

object that depends on all primitives in the model. Let ∆λ (x) ≡ λ (1, x)− λ (0, x). Using equation

(12) we have,

∆ν (w, x) = ∆λ (x) + SC0→1 (x) · (1− w)− SC1→0 (x) · w. (13)
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It is now clear we can identify a combination of the switching costs by differencing out ∆λ in the

equation above:

∆ν (1, x)−∆ν (0, x) = −SC0→1 (x)− SC1→0 (x) . (14)

In an entry/exit game the quantity −SC0→1 − SC1→0 represents the sunk entry cost that a firm

cannot recover back once it decides to leave the market after entering. Equation (14) shows the sunk

entry cost can be identified independently of β and µ. On the other hand, it is well known that entry

cost and scrap value cannot be nonparametrically identified separately in this particular model. In

an empirical work an unidentified object gets normalized. It is clear from equation (14) that either

the entry cost or scrap value can be identified if one of them is assumed to be known. For example,

a common assumption is to normalize the scrap value to be zero, the entry cost can be estimated

conditionally on this value along with the other parameters.

The identification strategy above can be generalized substantially. Results for a more general

single agent decision model under M and N can be obtained with little modification. But extending

our single agent’s results to dynamic games is more complex. It requires additional notations and

a more general notion of a difference, characterized by a projection matrix, is used. We defer the

details for dynamic games to the Appendix.

4.2 Closed-Form Identification

We start by providing an expression for the differences in choice-specific valuations that generalizes

equation (13). For any a > 0, let ∆v (a, w, x) ≡ v (a, w, x)−v (0, w, x), ∆λ (a, x) ≡ λ (a, x)−λ (0, x),

and ∆φ (a, w, x) ≡ φ (a− w,w, x)− φ (−w,w, x). Lemma 3 generalizes equation (13).

Lemma 3: Under Assumptions M and N, we have for all i, a > 0 and w, x:

∆v (a, w, x) = ∆λ (a, x) + ∆φ (a, w, x) , (15)

where

∆λ (a, x) ≡ µ (a, x)− µ (0, x) + β (m̃ (a, x)− m̃ (0, x)) ,

m̃ (a, x) ≡ E [m (a, xt+1) |at = a, xt = x] ,

m (w, x) ≡ E [V (st) |wt = w, xt = x] .

Proof: Using the law of iterated expectation, the value function as defined in equation (2) satis-

fies: E [V (st+1) |at, wt, xt] = E [m (wt+1, xt+1) |at, wt, xt] under M(ii). E [m (wt+1, xt+1) |at, wt, xt] can
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be simplified further to E [m̃ (at, xt) |at, xt] after another application of the law of iterated expecta-
tion and imposing N(ii). The remainder of the proof then follows from the definitions of the terms

defined within the main text.�

The components of ∆v consist of ∆λ and ∆φ. We treat ∆λ as a nuisance parameter. ∆φ contains

the switching costs of interest, for any a, w, x:

∆φ (a, w, x) = SCw→a (x) · 1 [w 6= a]− SCw→0 (x) · 1 [w 6= 0] . (16)

As seen previously we can identify the differences in ∆φ by eliminating ∆λ. This can be done by

looking at the differences of ∆v (a, w, x) across different w while holding (a, x) fixed.

Theorem 2: Under Assumptions M and N, we have for all a > 0 and x,w,w′:

∆φ (a, w, x)−∆φ (a, w′, x) = ∆v (a, w, x)−∆v (a, w′, x) . (17)

Theorem 2 follows immediately from Lemma 3. Equation (17) tells us that we can always identify

some combinations of the switching costs nonparametrically. Importantly the identified objects do

not depend on β or µ.

Comments on Theorem 2.

(i) Certain differences in ∆φ in equation (17) are economically meaningful. We have already

introduced the sunk entry cost in the entry/exit model as an example. The notion of sunk costs

naturally generalizes to other irreversible investment costs with a varying degree of commitment.

More specifically consider an investment or capacity game where it costs a firm to choose at > at−1

and, conversely, a firm can divest to recover some of these costs by choosing at < at−1. In this

case −SCa′→a − SCa→a′ with a > a′ represents a sunk investment cost for a firm that increases its

investment level from a′ to a then divests back to a′. Using equations (16) and (17), Corollaries 1

and 2 give closed-form expressions for identifying the sunk investment costs.

Corollary 1. For all a > 0, x:

−SC0→a (x)− SCa→0 (x) = ∆v (a, a, x)−∆v (a, 0, x) .

Corollary 2. For all a, a′ > 0, x:

−SCa′→a (x)− SCa→a′ (x) = ∆v (a, a, x) + ∆v (a′, a′, x)−∆v (a, a′, x)−∆v (a′, a, x) .

(ii) We would prefer to identify the switching costs individually. However, without further in-

formation, they are not identified nonparametrically for this type of models; for example see Aguir-

regabiria and Suzuki (2014) for a thorough discussion. But identification can be achieved if we are
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willing to impose some constraints on the switching costs. One example is by assuming symmetry of

switching costs between any two actions, which would be reasonable in applications with logistical

or physical adjustment costs such as the traditional menu costs (e.g. see Slade (1998)). Corollary 3

shows that individual switching costs under symmetry are identified. Its proof follows immediately

from Corollaries 1 and 2.

Corollary 3. For all a, a′, x, suppose that SCa′→a (x) = SCa→a′ (x), then for any a, a′ > 0:

SC0→a (x) = − (∆v (a, a, x)−∆v (a, 0, x)) /2,

SCa→a′ (x) = −(∆v (a, a, x) + ∆v (a′, a′, x)−∆v (a, a′, x)−∆v (a′, a, x))/2.

(iii) It is frequent in many applications that some components of the switching costs are taken

to be known. Typically this is done by way of a normalization assumption. The most commonly

used normalization assumes that taking action 0 yields zero payoff. For example, for an entry or

investment game with entry, such assumption means a firm has no recovery value of assets upon

leaving the market. In other cases some institutional or other external knowledge outside of the

dynamic model are used. For example, Kalouptsidi (2014) uses data on resale value of second hand

ships to identify the scrap values and entry costs directly. In another example, in a study of promotion

pricing decisions, Mýsliwski, Sanches, Silva and Srisuma (2017) rely on anecdotal evidence to assume

a cost is incurred to producers when a sale promotion is on while there is no costs for switching back

to the regular price. In these cases we can identify individual switching costs directly as Corollary 4

shows.

Corollary 4. For all a′, suppose SCa′→0 (x) = φ0 (w, x) then for any a, a′, x:

SCa′→a (x) = ∆v (a, a′, x)−∆v (a, a, x) + φ0 (a′, x)− φ0 (a, x) . (18)

It is important to highlight that assigning incorrect values to φ0 generally leads to incorrect values

of SCw→a. On the other hand, it is easy to verify that certain combinations of switching costs,

including those in Corollaries 1 and 2, are robust against any choice of φ0.

(iv) Generally Corollaries 1 and 2 can be informative on the validity of a particular normalization

choice since they have been derived without any normalization. For example, let us go back to

the discussion on investment game at the end of our first comment where there is a divestment

opportunity. In this context it would be natural to assume that −SCa′→a − SCa→a′ = c0 for some

positive c0 when a > a′. Then, given both −SCa′→a and SCa→a′ are positive, it must be the case

that −SCa′→a is bounded below by c0.

(v) When A = {0, 1} our Theorem 1 implies the sunk entry cost can be identified without any

normalization. Proposition 2 in Aguirregabiria and Suzuki (2014) has established the same result

using a different argument.
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The results of Theorem 2 and Corollaries 1 to 4 are constructive. We can replace the unknown ∆v

using the empirical choice probabilities. The sample analog estimators can be computed without any

optimization. Given the empirical literature is concerned with the computational cost our closed-

form identification result can substantially reduce the number of parameters to be estimated in a

model. Such estimators will be consistent and asymptotically normal as long as the initial choice

probabilities have these properties.

4.3 Identification and Normalization

We have emphasized that normalizations of switching costs are necessary in many situations. The

validity of the identification of payoffparameters is not robust against incorrect normalization choice.

We now ask: to what extent the identification of the discount factor depends on the specific normal-

ization choice on the payoff parameters?

In the empirical literature the discount factor is customarily assumed to be known while the focus

on identification falls on which payoff parameters can (or cannot) be identified. A particular nor-

malization choice is made, for example, by assigning a value to an unknown parameter as previously

explained. Such normalization assumption is always made independent to the choice of the discount

factor. The identification problem on the payoff parameters considered in practice therefore mathe-

matically translates to the matrix B (β) in equation (8) being rank deficient for all β. In particular

it is also implicitly assumed that the linear dependence relation between the column vectors of B (β)

are the same for all β.

Recall that B (β) is a KJ × p matrix. For the remainder of this subsection we shall assume

ρ (B (β)) = r < p for all β, such that:

B (β) = [B1 (β) : B2 (β)] ,

where B1 (β) is a matrix consisting of the first r columns of B (β) with CS (B1 (β)) = CS (B (β)),

and B2 (β) is a matrix containing the last (p− r) columns of B (β). It will now be convenient to

re-introduce hereM (β, θ) = ‖a (β)−B (β) θ‖ from Section 3.3, along with equations (9) and (10)

respectively:

θ∗ (β) ≡ (B (β)>B (β))†B (β)> a (β) ,

M∗ (β) ≡ M (β, θ∗ (β)) .

When we present our Theorem 1, we stated that “(β0, θ0) is identified when M∗ (β) has a unique

minimum and minθ∈ΘM (β0, θ) has a unique solution”. The issue associated with normalizing payoff

parameters only concerns the latter, as we knowM (β0, θ) has a unique minimum at θ0 if and only
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if B (β) has full column rank. Since B (β) is rank deficient, M (β0, θ) has a linear subspace of

minimizers. Normalization is a way to select an element from this subspace. This is a separate issue

to whetherM∗ (β) has a unique minimum or not. One way to clearly illustrate this is the following.

Since CS (B2 (β)) ⊂ CS (B1 (β)), there exists an r × (p− r) matrix Γ such that B2 (β) =

B1 (β) Γ.5 Making a normalization on the payoff parameters corresponds to fixing a value of θ2. For

any (β, θ2) we can define θ∗1 (β, θ2) to be the minimizer of ‖a (β)−B1 (β) θ1 −B1 (β) Γθ2‖, so that:

θ∗1 (β, θ2) = (B1 (β)>B1 (β))−1B1 (β)> a (β)− Γθ2.

We can then profile out θ1, and define:

M∗ (β, θ2) ≡ ‖a (β)−B1 (β) θ∗1 (β, θ2)−B1 (β) Γ (β) θ2‖ .

Substituting θ∗1 (β, θ2) into the right hand side of the display above, we get

M∗ (β, θ2) ≡
∥∥∥a (β)−B1 (β) (B1 (β)>B1 (β))−1B1 (β)> a (β)

∥∥∥ .
We see thatM∗ (β, θ2) is simply the norm of the residual one gets from an orthogonal projection of

a (β) onto CS (B1 (β)). Importantly,M∗ (β, θ2) does not depend on θ2. From the projection theory

in linear algebra, M∗ (β) and M∗ (β, θ2) are necessarily equal. This residual will also be identical

if we project a (β) on the linear span of any other r linear combinations of the columns in B (β)

as long as it equals CS (B (β)). Therefore our argument holds without any loss of generality on

how we select B1 (β). In practice, a researcher has to perform this selection when she decides upon

her normalization choice. Subsequently, the discount factor can be identified regardless of how we

normalize the payoff parameters. We state this result as a proposition.

Proposition 1: If the discount factor can be identified, it can be identified for all normalization

choices on the payoff parameters.

Our discussion here also leads to another empirical fact that may not be obvious a priori. Sup-

pose a researcher specifies a payoff function in practice that satisfies both P and N. Then there

are two different ways to estimate the switching costs based on our parametric and nonparametric

identification approaches. We have shown in Section 4 that some combinations of the switching costs

can be identified without any normalization using the nonparametric approach. We are interested

to know whether the parametric approach taken in Section 3, which relies on a possibly incorrect

normalization choice, can consistently estimate these combinations.

The answer is positive. Consider any combination of the switching costs, which can be written

explicitly in terms of the differences in choice-specific valuations (e.g. sunk costs, and more generally

5For instance, this is a consequence of Theorem 6.2.4 in Mirsky (1955).
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Corollaries 1 and 2). A vector of such combinations can be represented by Σa0 for some matrix

Σ. Then for any θ̃ such that (β0, θ̃) is observationally equivalent to (β0, θ0) we also have Σa0 =

ΣB (β0) θ0 = ΣB (β0) θ̃. I.e. the combinations of switching costs described by ΣB (β0) identify the

same objects.

5 Numerical Illustration

We now illustrate the use of our identification strategies and implement the suggested estimators in

the previous sections. Section 5.1 gives results from a Monte Carlo study taken from Pesendorfer

and Schmidt-Dengler (2008). Section 5.2 estimates a discrete investment game using the data from

Ryan (2012).

5.1 Monte Carlo Study

The simulation design is the two-firm dynamic entry game taken from Section 7 in Pesendorfer and

Schmidt-Dengler (2008). In period t each firm i has two possible choices, ait ∈ {0, 1}; with ait = 1

denoting entry. The only observed state variables are previous period’s actions, wt = (a1t−1, a2t−1).

Using their notation, firm 1′s period payoffs are described as follows:

π1 (a1t, a2t, xt; θ) = a1t (µ1 + µ2a2t) + a1t (1− a1t−1)F + (1− a1t) a1t−1W, (19)

where µ1, µ2, F and W are respectively the monopoly profit, duopoly profit, entry cost and scrap

value. The latter two components are switching costs. Each firm also receives additive private shocks

that are i.i.d. N (0, 1). The game is symmetric and Firm’s 2 payoffs are defined analogously. The data

generating parameters are set as: (µ10, µ20, F0,W0) = (1.2,−1.2,−0.2, 0.1) and β0 = 0.9. Pesendorfer

and Schmidt-Dengler (2008) show there are three distinct equilibria for this game.

It is easy to verify the model satisfies both Assumptions MN and MP in the Appendix, which are

the dynamic game’s generalization of Assumptions N and P. Therefore we can estimate the model in

at least two different ways. We consider the following two estimation methods. Method A profiles

out all the payoff parameters using the OLS expression and use grid search to estimate the discount

factor. Method B first estimates the entry cost in closed-form independently before profiling out

the other payoff parameters and use grid search to estimate the discount factor. We will also be

interested to see how sensitive our estimates are with respect to the normalization choice.

For each equilibrium we perform 10000 simulations with sample sizes N = 100, 1000, 10000. Since

the entry cost and scrap value cannot be jointly identified we estimate the model under different

normalized values for W . We report the bias and standard deviation (in italics) for (β̂, µ̂1, µ̂2, F̂ )
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and the sunk entry cost (ŜUNK). We use the bold font to highlight the statistics that correspond

to the correctly assumed choice of W . We estimate the sunk entry cost for Methods A and B by first

estimating the entry cost and combine it with the assumed scrap value. In addition we also estimate

the sunk entry cost without normalizing the scrap value according to Example 1 in the Appendix (also

see Corollary 1). We label the columns of statistics for the sunk entry estimator with no normalization

by N-N. Tables 1-3 below provides results that correspond to the data generated according to the

three equilibria as enumerated in Pesendorfer and Schmidt-Dengler (2008) respectively.

The findings are in line with the theory part of the paper. First it shows the discount factor can

be consistently estimated. The consistency property is robust against the normalization choice of the

scrap value. The sunk entry cost can also be consistently estimated independently of the scrap value

used. When the model is correctly specified in the sense we correctly assume W = W0 all estimators

are consistent. While misspecifying the scrap value cause biases to all estimators of the individual

payoff parameters. The estimation results from Methods A and B, as well as N-N for the sunk entry,

are qualitatively the same across all equilibria. The performances between estimation methods

seem to depend on the equilibrium and sample size. Method A performs better in Equilibrium 1,

and generally in smaller samples. We may be able to attribute the difference in smaller samples

performance to the fact that Method A fully exploits the correctly specified parametric form of the

payoff function while the others use nonparametric estimators. At larger sample sizes there appear

to be no dominating estimation methods for Equilibria 2 and 3.
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Method A Method B N-N

N W 0 0.1 0.2 0 0.1 0.2 -

100 β̂ -0.0809 -0.0806 -0.0799 -0.0752 -0.0768 -0.0738 -

0.2697 0.2691 0.2686 0.2619 0.2640 0.2596

µ̂1 -0.0418 -0.0253 -0.0071 -0.0631 -0.0450 -0.0291 -

0.2974 0.3050 0.3150 0.3693 0.3774 0.3858

µ̂2 0.0627 0.0815 0.0988 0.0963 0.1141 0.1313 -

0.2970 0.2991 0.3029 0.4779 0.4801 0.4831

F̂ 0.0446 -0.0554 -0.1552 -0.0019 -0.1017 -0.2021 -

0.2836 0.2835 0.2839 0.5692 0.5699 0.5702

ŜUNK 0.0554 0.0554 0.0552 0.1019 0.1017 0.1021 0.0477

0.2836 0.2835 0.2839 0.5692 0.5699 0.5702 0.5935

1000 β̂ -0.0356 -0.0372 -0.0380 -0.0328 -0.0339 -0.0343 -

0.1741 0.1790 0.1801 0.1677 0.1695 0.1715

µ̂1 -0.0051 0.0090 0.0229 -0.0028 0.0110 0.0244 -

0.1032 0.1129 0.1251 0.1066 0.1152 0.1265

µ̂2 -0.0046 0.0091 0.0231 -0.0084 0.0050 0.0185 -

0.0934 0.0946 0.0992 0.1190 0.1204 0.1246

F̂ 0.0958 -0.0042 -0.1042 0.1000 0.0000 -0.1000 -

0.0901 0.0901 0.0902 0.1480 0.1480 0.1480

ŜUNK 0.0042 0.0042 0.0042 0.0001 0.0001 0.0001 -0.0132

0.0901 0.0901 0.0902 0.1480 0.1480 0.1480 0.1573

10000 β̂ -0.0005 -0.0003 -0.0005 -0.0005 -0.0007 -0.0005 -

0.0204 0.0158 0.0204 0.0204 0.0238 0.0205

µ̂1 -0.0104 -0.0004 0.0097 -0.0101 0.0000 0.0100 -

0.0298 0.0299 0.0309 0.0302 0.0310 0.0312

µ̂2 -0.0093 0.0007 0.0108 -0.0098 0.0003 0.0103 -

0.0297 0.0298 0.0300 0.0355 0.0356 0.0358

F̂ 0.0992 -0.0008 -0.1008 0.0998 -0.0002 -0.1002 -

0.0282 0.0282 0.0282 0.0437 0.0437 0.0437

ŜUNK 0.0008 0.0008 0.0008 0.0002 0.0002 0.0002 -0.0011

0.0282 0.0282 0.0282 0.0437 0.0437 0.0437 0.0454

Table 1: Data generated from equilibrium 1 in Pesendorfer and Schmidt-Dengler (2008).
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Method A Method B N-N

N W 0 0.1 0.2 0 0.1 0.2 -

100 β̂ -0.0675 -0.0691 -0.0704 -0.0667 -0.0660 -0.0684 -

0.2501 0.2523 0.2542 0.2493 0.2477 0.2513

µ̂1 -0.2087 -0.1899 -0.1726 -0.1185 -0.1027 -0.0835 -

0.3978 0.4135 0.4286 0.4495 0.4572 0.4718

µ̂2 0.3264 0.3447 0.3623 0.1847 0.2025 0.2196 -

0.5430 0.5454 0.5500 0.6563 0.6605 0.6641

F̂ -0.0630 -0.1632 -0.2632 0.0942 -0.0058 -0.1058 -

0.4166 0.4161 0.4159 0.5515 0.5515 0.5515

ŜUNK 0.1630 0.1632 0.1632 0.0058 0.0058 0.0058 -0.0455

0.4166 0.4161 0.4159 0.5515 0.5515 0.5515 0.5991

1000 β̂ -0.0296 -0.0302 -0.0314 -0.0318 -0.0306 -0.0304 -

0.1584 0.1600 0.1625 0.1637 0.1603 0.1594

µ̂1 -0.0275 -0.0139 0.0003 -0.0096 0.0028 0.0158 -

0.1631 0.1739 0.1872 0.1596 0.1691 0.1807

µ̂2 0.0494 0.0626 0.0763 0.0267 0.0394 0.0523 -

0.2108 0.2159 0.2234 0.2047 0.2097 0.2162

F̂ 0.0767 -0.0233 -0.1233 0.1006 0.0006 -0.0994 -

0.1526 0.1526 0.1526 0.1495 0.1495 0.1495

ŜUNK 0.0233 0.0233 0.0233 -0.0006 -0.0006 -0.0006 -0.0052

0.1526 0.1526 0.1526 0.1495 0.1495 0.1495 0.1638

10000 β̂ -0.0001 -0.0002 -0.0004 -0.0002 -0.0004 -0.0002 -

0.0093 0.0127 0.0183 0.0130 0.0183 0.0128

µ̂1 -0.0147 -0.0046 0.0056 -0.0127 -0.0025 0.0073 -

0.0399 0.0405 0.0425 0.0381 0.0398 0.0387

µ̂2 -0.0036 0.0064 0.0166 -0.0063 0.0039 0.0138 -

0.0639 0.0642 0.0649 0.0608 0.0613 0.0610

F̂ 0.0968 -0.0032 -0.1032 0.0995 -0.0005 -0.1005 -

0.0487 0.0487 0.0487 0.0464 0.0464 0.0464

ŜUNK 0.0032 0.0032 0.0032 0.0005 0.0005 0.0005 -0.0002

0.0487 0.0487 0.0487 0.0464 0.0464 0.0464 0.0508

Table 2: Data generated from equilibrium 2 in Pesendorfer and Schmidt-Dengler (2008).
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Method A Method B N-N

N W 0 0.1 0.2 0 0.1 0.2 -

100 β̂ -0.0649 -0.0641 -0.0658 -0.0695 -0.0649 -0.0663 -

0.2459 0.2427 0.2472 0.2526 0.2450 0.2471

µ̂1 -0.2070 -0.1907 -0.1725 -0.1116 -0.0986 -0.0807 -

0.3991 0.4108 0.4261 0.4724 0.4804 0.4920

µ̂2 0.3263 0.3420 0.3588 0.1801 0.1961 0.2130 -

0.5460 0.5484 0.5551 0.7092 0.7109 0.7158

F̂ -0.0677 -0.1676 -0.2672 0.0897 -0.0103 -0.1103 -

0.4224 0.4227 0.4230 0.5987 0.5988 0.5988

ŜUNK 0.1677 0.1676 0.1672 0.0103 0.0103 0.0103 -0.0370

0.4224 0.4227 0.4230 0.5987 0.5988 0.5988 0.6455

1000 β̂ -0.0320 -0.0322 -0.0333 -0.0326 -0.0324 -0.0319 -

0.1634 0.1643 0.1666 0.1647 0.1648 0.1638

µ̂1 -0.0237 -0.0104 0.0041 -0.0060 0.0071 0.0199 -

0.1677 0.1796 0.1932 0.1678 0.1790 0.1900

µ̂2 0.0500 0.0633 0.0771 0.0251 0.0383 0.0511 -

0.2130 0.2188 0.2264 0.2174 0.2235 0.2305

F̂ 0.0766 -0.0234 -0.1234 0.1014 0.0014 -0.0986 -

0.1549 0.1550 0.1550 0.1604 0.1604 0.1604

ŜUNK 0.0234 0.0234 0.0234 -0.0014 -0.0014 -0.0014 -0.0061

0.1549 0.1550 0.1550 0.1604 0.1604 0.1604 0.1785

10000 β̂ -0.0003 -0.0003 -0.0003 -0.0001 -0.0004 -0.0002 -

0.0159 0.0158 0.0156 0.0093 0.0163 0.0128

µ̂1 -0.0146 -0.0046 0.0054 -0.0128 -0.0026 0.0073 -

0.0410 0.0414 0.0420 0.0399 0.0415 0.0410

µ̂2 -0.0033 0.0067 0.0167 -0.0062 0.0039 0.0138 -

0.0648 0.0649 0.0650 0.0646 0.0650 0.0650

F̂ 0.0965 -0.0035 -0.1035 0.0992 -0.0008 -0.1008 -

0.0496 0.0496 0.0496 0.0497 0.0497 0.0497

ŜUNK 0.0035 0.0035 0.0035 0.0008 0.0008 0.0008 0.0002

0.0496 0.0496 0.0496 0.0497 0.0497 0.0497 0.0553

Table 3: Data generated from equilibrium 3 in Pesendorfer and Schmidt-Dengler (2008).
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5.2 Empirical Illustration

We next estimate a simplified version of an entry-investment game based on the model studied in

Ryan (2012); using the same dataset as him. In what follows we provide a brief description of the

data, highlight the main differences between our empirical model and that of Ryan (2012). Then we

present and discuss our estimates of the model primitives.

Data

We download Ryan’s data from the Econometrica webpage.6 There are two sets of data. One

contains aggregate prices and quantities for all the US regional markets from the US Geological

Survey’s Mineral Yearbook. The other contains the capacities of plants and plant-level information

that Ryan has collected for the Portland cement industry in the United States from 1980 to 1998.

Data on plants includes the name of the firm that owns the plant, the location of the plant, the

number of kilns in the plant and kiln characteristics. Following Ryan we assume that the plant

capacity equals the sum of the capacity of all kilns in the plant and that different plants are owned

by different firms. We observe that plants’names and ownerships change frequently. This can be

due to either mergers and acquisitions or to simple changes in the company name. We do not treat

these changes as entry/exit movements. We check each observation in the sample using the kiln

information (fuel type, process type, year of installation and plant location) installed in the plant. If

a plant changes its name but keeps the same kiln characteristics, we assume that the name change

is not associated to any entry/exit movement. This way of preparing the data enables us to match

most of the summary statistics of plant-level data in Table 2 of Ryan. Any discrepancies most likely

can be attributed to the way we treat the change in plants’names, which may differ to Ryan in a

very small number of cases.

Dynamic Game

Ryan models a dynamic game played between firms that own cement plants in order to measure

the welfare costs of the 1990 Clean Air Act Amendments (1990 CAAA) on the US Portland cement

industry. The decision for each firm is first whether to enter (or remain in) the market or exit, and if

it is active in the market then how much to invest or divest. Firm’s investment decisions is governed

by its capacity level. The firm’s profit is determined by variable payoffs from the competition in the

product market with other firms, as well as switching costs from the entry and investment/divestment

decisions. There are two action variables in Ryan’s model. One is a binary choice used to model

6https://www.econometricsociety.org/content/supplement-costs-environmental-regulation-concentrated-industry-

0.
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entry. The other is a continuous variable used to model the level of investment. Past actions are the

only observed endogenous state variables in the game. The aggregate data that are used to construct

variable profits, through a static Cournot game with capacity constraints between firms, are treated

as exogenous.

We consider a discrete game that extends the single agent model in the paper as described in

the Appendix. The main departure from Ryan (2012) is that we combine the entry decision along

with the capacity level into a single discrete variable. We set the action space to be an ordinal

set {0, 1, 2, 3, 4, 5}, where 0 represents exit/inactive, and the positive integers are ordered to denote

entry/active with different capacity levels. The payoff for each firm has two additive separable

components. One depends on the observables while the other is an unobserved shock. The observable

component can be broken down into variable profits, operating cost and switching costs. We assume

the variable profit is determined by the players competing in a capacity constrained Cournot game.

The operating cost is a fixed profit that incurs whenever ait > 0. The switching costs capture the

essence of firms’entry and investment decisions. Lastly each firm receives unobserved profit shocks

for each action with a standard i.i.d. type-1 extreme value distribution.

Estimation

The period expected payoff for each firm as a function of the observables consists of variable

profits, operating costs and switching costs. The variable profit is derived from a capacity constrained

Cournot game constructed from the same demand and cost functions estimated as in Ryan’s paper.

The operating and switching costs parameters enter the payoff function additively and are parameters

to be estimated using the dynamic model. These operating cost is non-zero whenever ait > 0. For

the switching costs we normalize the payoff for choosing action 0 to be zero. There are a total of 25

switching cost parameters to be estimated.7

The payoff function used in our empirical model satisfies Assumptions MN and MP in the Ap-

pendix. So we estimate the model using Methods A and B as described in Section 5.1. We also test

if the two estimates of the switching costs statistically differ. Instead of using nonparametric estima-

tor, similar to Ryan, we use a multinomial logit to estimate the choice and transition probabilities

in the first stage. More specifically, method A profiles out the 26 linear coeffi cients and uses grid

search to estimate the discount factor. Method B first estimates the 25 switching cost parameters

in closed-form using the closed-form expression in Section 4, treat them as known, before profiling

and performing the grid search. We also estimate the sunk entry and investment values based on the

7Ryan (2012) models the switching costs differently. The fixed operating cost is normalized to be zero. Non-zero

investment and divestment costs are drawn from two distinct independent normal distributions, whose means and

variances are estimated using the methodology described in Bajari, Benkard and Levin (2007).
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estimates from Methods A and B, as well as nonparametrically without normalization (cf. Corollaries

1 and 2, and see the discussion in the Appendix).

We estimate the standard errors, as well as computing the p-value of the Wald statistics to test

if the switching costs estimators from methods A and B differ by bootstrapping. Our bootstrap

sample is generated using the multinomial logit choice and transition probabilities for each player in

each market in the same manner as a parametric bootstrap; cf. Kasahara and Shimotsu (2008) and

Pakes, Ostrovsky, and Berry (2007). We use 500 bootstrap samples and report the standard errors

in italics.

Results

We estimate the model twice. Once using the data from before the implementation of the 1990

CAAA and another after. We allow the equilibria over the two time periods to differ. But, for

illustrational purposes, we assume the data are generated from the same equilibrium in all markets

within each time period and there is no other source of unobserved heterogeneity.8

Table 4 and 5 compile the results from estimating switching costs using the data from the years

1980 to 1990 and 1991 to 1998 respectively. Tables 6 and 7 give the estimates for the discount

factor and fixed operating cost using the data from the corresponding periods. Table 8 compares the

estimates of the sunk entry costs and sunk investment costs.

The signs and relative magnitudes of individually estimated switching costs almost uniformly

make sensible economic sense. E.g., by reading down the columns in Tables 4 and 5, we see that

entering at higher capacity level generally implies higher cost (negative payoff), and increasing the

capacity level should be costly while divestment can return revenue for firms. This is quite an

impressive finding in particular for Method B, which shows that the observed probabilities alone can

generate switching costs estimates that capture well some key features of a complicated structural

model. The switching cost estimates from both Methods A and B are similar. The Wald statistics do

not find the two switching costs estimators to be statistically different.9 Therefore we do not reject the

capacity constrained Cournot game specification based on comparing the switching costs estimates.

8Recently Otsu, Pesendorfer and Takahashi (2015) propose several tests to detect differences in the probability

distribution of data across markets. If a test rejects then there is evidence data across markets should not be pooled

together, which can point to possible violation of single equilibrium assumption and/or misspecification in terms of

omitting other unobserved heterogeneity. They actually suggest Ryan’s data in general should not be pooled together

across markets. In particular there is a strong evidence against pooling data between 1980 and 1990, while the data

from 1991 to 1998 did not get rejected by some of their poolability tests.
9Our test statistic takes a standard quadratic form of the difference between the switching costs estimates from

methods A and B. Its asymptotic distribution under the null hypothesis (of no difference) is a Chi-squared random

variable with 25 degree of freedoms.
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Comparing Tables 4 and 5 shows the entry and switching costs increase after the implementation of

1990 CAAA. Higher entry costs is a key finding in Ryan’s paper as new entrants face more stringent

regulations than incumbents. An increase in switching costs can be partly attributed to the new

plants using newer (or better maintained) equipment that require more certification and testing than

previously.

We find the discount factor estimates to be around the range that are usually assumed in empirical

work (between 0.9 and 0.95) apart from the estimate using Method B before the 1990 CAAA that

appears close to the boundary.10 Although our estimates suggest firms face a lower borrowing rate

than in Ryan, we do not reject the hypothesis that β = 0.9 as assumed in his paper. We also find a

small increase in the fixed operating costs after the implementation of 1990 CAAA.

Finally Table 8 reports sunk costs using different estimation methods. The estimates from Meth-

ods A and B can be found by computing−SCa′→a−SCa→a′ using individual switching costs in Tables

4 and 5. The N-N approach estimates the same object without the assumption that the payoff is

zero upon choosing action 0. The signs and magnitudes of the sunk cost estimates are plausible. We

find the sunk investment costs between any two capacity levels increase as the gap between levels

grow, while we find the costs to be of similar magnitude when compared within the same capacity

difference bands. We also find the sunk costs to have increased after the implementation of 1990

CAAA.

10The infinite time expected discounted payoffs with respect to each action is unbounded with β = 1. However, the

differences between diverge very slowly when we approximate them with a Neumann sum, and the objective function

appears to be well-defined numerically even as β is very close to 1.

30



Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -3.300 - 2.265 5.080 7.956 10.770

0.985 - 0.680 0.707 0.766 0.929

ait = 2 -10.502 -5.243 - 5.528 10.609 15.810

0.937 0.719 - 0.887 0.998 1.117

ait = 3 -23.266 -15.439 -7.624 - 7.996 16.050

1.405 1.010 0.683 - 0.923 1.237

ait = 4 -41.023 -30.620 -20.196 -9.808 - 11.648

2.003 1.850 1.430 1.094 - 1.442

ait = 5 -52.879 -50.648 -39.027 -25.756 -11.949 -

2.281 2.585 2.041 1.395 1.537 -

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -2.776 - 2.540 5.333 8.014 11.696

0.269 - 0.333 0.567 0.967 1.113

ait = 2 -10.483 -5.197 - 5.243 10.466 15.893

0.689 0.365 - 0.368 0.718 1.110

ait = 3 -23.279 -15.427 -7.769 - 7.732 16.134

1.339 0.920 0.474 - 0.640 1.006

ait = 4 -41.422 -31.007 -20.797 -10.416 - 10.852

1.808 1.594 1.078 0.682 - 0.864

ait = 5 -54.378 -52.892 -41.874 -28.792 -16.091 -

1.911 2.232 1.844 1.659 1.835 -

Specification Test

Statistic 14.069

p-value 0.961

Table 4: Results from estimating switching costs using data from the years 1980 to 1990.
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Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -6.962 - 4.449 9.881 15.125 20.264

1.530 - 1.514 1.501 1.689 1.634

ait = 2 -17.038 -8.291 - 9.872 18.531 26.722

1.723 1.364 - 1.714 1.860 1.527

ait = 3 -35.489 -23.412 -11.411 - 12.961 24.283

2.444 1.866 1.371 - 1.955 1.614

ait = 4 -51.544 -50.043 -33.220 -16.363 - 16.524

3.061 3.419 3.278 2.825 - 3.561

ait = 5 -64.018 -63.994 -61.481 -48.514 -24.374

4.514 4.524 4.502 3.683 2.056

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -5.653 - 5.294 10.730 16.264 21.567

0.726 - 0.704 1.109 1.703 1.378

ait = 2 -17.746 -9.278 - 8.774 17.461 25.754

1.379 0.780 - 0.857 1.364 1.218

ait = 3 -36.098 -24.537 -11.950 - 11.862 23.489

2.282 1.767 1.128 - 1.221 1.401

ait = 4 -51.840 -50.425 -33.468 -16.760 - 16.753

2.202 2.649 2.397 1.904 - 2.025

ait = 5 -64.236 -64.355 -61.706 -48.272 -24.093

6.712 6.771 6.713 5.695 3.389

Specification Test

Statistic 13.196

p-value 0.975

Table 5: Results from estimating switching costs using data from the years 1991 to 1998.
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Method A

Discount Factor Operating Cost

0.956 -1.679

0.084 0.489

Method B

Discount Factor Operating Cost

0.999 -1.523

0.075 0.649

Table 6: Results from estimating the discount factor and fixed operating cost using data from the

years 1980 to 1990.

Method A

Discount Factor Operating Cost

0.938 -2.079

0.162 1.10

Method B

Discount Factor Operating Cost

0.946 -1.893

0.160 0.948

Table 7: Results from estimating the discount factor and fixed operating cost using data from the

years 1991 to 1998.
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Before After

ait ait−1 Method A Method B N-N Method A Method B N-N

1 0 3.30 2.78 2.78 6.96 5.65 5.66

0.36 0.27 0.27 1.53 0.73 0.70

2 0 10.50 10.48 10.48 17.04 17.75 17.74

0.94 0.69 0.69 1.72 1.38 1.49

3 0 23.27 23.28 23.28 35.49 36.10 36.10

1.41 1.34 1.34 2.44 2.28 2.18

4 0 41.02 41.42 41.42 51.54 51.84 51.83

2.00 1.81 1.80 3.06 2.20 1.61

5 0 52.88 54.38 54.25 64.02 64.24 64.22

2.28 1.91 2.00 4.51 6.71 6.34

2 1 2.98 2.66 2.44 3.84 3.98 3.30

1.22 2.54 0.25 0.31 0.61 0.36

3 2 2.10 2.53 2.56 1.54 3.18 3.22

1.18 2.30 0.26 0.30 0.73 0.33

4 3 1.81 2.68 2.58 3.40 4.90 4.81

1.52 4.33 0.28 0.42 2.45 0.50

5 4 0.30 5.24 2.87 7.85 7.34 7.30

2.50 4.75 0.33 1.74 4.58 2.14

3 1 10.36 10.09 10.01 13.53 13.81 13.05

1.22 2.12 0.75 0.79 1.24 0.98

4 2 9.59 10.33 10.29 14.69 16.01 16.07

1.54 3.31 0.77 0.81 2.13 1.25

5 3 9.71 12.66 10.91 24.23 24.78 24.21

1.45 4.83 0.91 1.37 6.09 5.22

4 1 22.66 22.99 22.76 34.92 34.16 34.02

1.78 3.29 1.37 1.45 1.93 1.42

5 2 23.22 25.98 24.05 34.76 35.95 34.79

1.83 4.64 1.79 1.59 6.89 6.34

5 1 39.88 41.20 40.21 43.73 42.79 41.67

2.40 4.68 2.60 2.08 6.82 6.40

Table 8: Results from estimating the sunk entry and investment costs.
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6 Concluding Remarks

We show the discount factor can be identified jointly with the payoff function under the linear-in-

parameter specification. The key property we exploit is the conditional linearity of the choice-specific

value functions for a given value of the discount factor. The discount factor can in fact be identified

even if the payoff parameters cannot be identified. This has an important implication since many

empirical problems have to normalize parts of the payoff parameters. Our result shows the discount

factor can be identified independently of these normalization choices.

We also contribute to a recent interest in the robust identification of combinations of switching

costs without any normalization as studied in Aguirregabiria and Suzuki (2014); also see Kaloupt-

sidi, Scott, and Souza-Rodrigues (2016a, 2016b). We provide closed-form identification results on

switching costs that do not depend on the knowledge of the discount factor and other parts of the

payoff function. We show some costs, such as sunk entry and investment costs, can be identified

in this way. We show the same combinations of switching costs can be identified for linear models

in two steps. In the first step some normalization is made in order to identify each switching cost

individually. Even when an incorrect normalization is used, thus the implied switching costs are

incorrect individually, we show certain combinations of these costs can still be correctly identified.

Our parametric and nonparametric identification approaches deliver substantially different flavors

of results. But there are overlapping implications when the payofffunction satisfies both Assumptions

N and P, as we then have two different ways to identify the switching costs. However, there are notable

distinctions where our nonparametric results remain valid but the analysis under Assumption P is

no longer appropriate. First, a researcher may want to use a nonlinear parametric specification on

parts of the payoffs outside of the switching costs. One example of this is to impose positivity on

the variable profits. Our nonparametric identification results do not depend on the specification of

the variable profit function. Second, our nonparametric identification strategy holds pointwise for

each observed state. Therefore it is immediately applicable for models with continuous states; e.g.

see Srisuma and Linton (2012).

Finally our main message is that one should generally attempt to identify and estimate the

discount factor in dynamic decision problems and games. Clearly we do not expect the linear spec-

ification to be necessary for identification. But analyzing models with nonlinear parametric pay-

off functions will be substantially more diffi cult. Similarly, outside of discrete choice models, e.g.

for games with supermodular payoff functions (see Bajari, Benkard and Levin (2007) and Srisuma

(2013)), joint identification and estimation of the discount factor and payoff parameters should also

be possible. However, in this case even the practical implementation can be burdensome when the

payoff functions take a linear-in-parameter structure.
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Appendix

The Appendix contains two parts. A.1 extends the results on identification of switching costs to

dynamic games. A.2 provides a suffi cient condition for the identification of the discount factor. Since

the single agent decision problem is a special case of a game, we also present the results in A.2 in

the context of a game.

A.1 Identification of the Switching Costs in Dynamic Games

We shall keep our description of the basic elements of the game very brief. The notation we use

directly extends what we describe in Sections 2 and 3. Consider a game with I players, indexed

by i ∈ I = {1, . . . , I}. The random variables in the game are the actions: at ≡ (ait, a−it) ∈ AI ,

A = {0, 1, . . . , J}; past actions wt ≡ (wit, w−it) ∈ AI ; sit ≡ (wt, xt, εit) ∈ AI × X × RJ+1, where

X = {1, . . . , K}, and εit ≡ (εit (0) , . . . , εit (J)) ∈ RJ+1; and we let st ≡ (wt, xt, ε1t, . . . , εIt).

In an equilibrium ait = αi (sit) for all i, such that

αi (si) = max
ai∈A
{E[ui (ait, a−it, si) |sit = si, ait = ai] + βE [Vi (sit+1) |sit = si, ait = ai]}, (20)

where ui and Vi are player i’s payoff and value function respectively; in particular

Vi (si) =
∞∑
t=0

βtE [ui (ait, a−it, sit) |si0 = si] .

Assumption MN updates Assumptions M and N for games.

Assumption MN:

(i) (Additive Separability) For all ai, a−i, w, x, εi:

ui (ai, a−i, w, x, εi) = πi (ai, a−i, w, x) + εi (ai) .

(ii) (Conditional Independence I) The transition distribution of the states has the following fac-

torization for all x′, ε′, x, ε, a:

P (x′, ε′|x, ε, w, a) =
I∏
i=1

Qi (ε
′
i)G (x′|x,w, a) ,

where Qi is the cumulative distribution function of εit and G denotes the transition law of xt+1

conditioning on xt, at. Furthermore, εit has finite first moments, and a positive, continuous and

bounded density on RJ+1.

(iii) (Finite Observed State) X = {1, . . . , K}.
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(iv) (Decomposition of Profits): For all a, w, x:

πi (ai, a−i, w, x, ε) = µi (ai, a−i, x) + φi (ai − wi, w−i, x) ,

such that φi (0, w−i, x) = 0.

(v) (Conditional Independence II): The distribution of xt+1 conditional on at and xt is indepen-

dent of wt.

Beside from explicitly separating out past actions from other observed state variables, MN(i) to

MN(iii) are standard in the dynamic discrete choice game literature; e.g. see Aguirregabiria and

Mira (2007), Bajari et al. (2007), Pakes and Berry (2007), and Pesendorfer and Schmidt-Dengler

(2008). MN(iv) extends N(i). It assumes that strategic interactions can affect payoffs in µi directly

but not φi, while past actions enter φi but not µi. The exclusion restrictions we impose are quite

natural for components of µi such as per-period variable profits and operation costs, while switching

costs that occur for each player are determined by her own actions. It will be useful to sometimes

represent the switching cost using a more intuitive notation (cf. equation (11)):

φi (ai − wi, w−i, x) = SCwi→ai
i (w−i, x) .

MN(v) is a direct extension of N(ii).

As with the single agent case, our identification study will be based on the choice-specific value

function:

vi (ai, w, x) = E [πi (ai, a−it, wt, x) |wt = w, xt = x] + βE [Vi (st+1) |wt = w, xt = x, at = a] ,

which can be recover from:

Pr [ait = ai|wt = w, xt = x] = Pr [∆vi (ai, w, x)−∆vi (a
′
i, w, x) > εit (a′i)− εit (ai) for all a′i 6= ai] ,

where∆vi (ai, w, x) ≡ vi (ai, w, x)−vi (0, w, x). Let also, ∆λi (ai, a−i, x) ≡ λi (ai, a−i, x)−λi (0, a−i, x)

and ∆φi (ai, w, x) ≡ φi (ai − wi, w−i, x)− φi (−wi, w−i, x). Lemma 4 is a generalization of Lemma 1.

Lemma 4: Under Assumption MN, we have for all i, ai > 0 and w, x:

∆vi (ai, w, x) = E [∆λi (ai, a−it, x) |wt = w, xt = x] + ∆φi (ai, w, x) ,

where,

∆λi (ai, a−i, x) ≡ πi (ai, a−i, x)− πi (0, a−i, x) + β (m̃i (ai, a−i, x)− m̃i (0, a−i, x)) ,

m̃i (ai, a−i, x) ≡ E [mi (wt+1, xt+1) |ait = ai, a−it = a−i, xt = x] ,

mi (w, x) ≡ E [Vi (sit) |wt = w, xt = x] .
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Proof: Follows immediately from applying the law of iterated expectations (cf. the proof of

Lemma 1).�

Since we have finite actions and states, we can collect ∆vi (ai, w, x) across w for each (i, ai, x)

into a vector of size (J + 1)I . Using a matrix form, we have:

∆vi (ai, x) = Zi (x) ∆λi (ai, x) + Qi (ai, x)φi (ai, x) , (21)

where∆vi (ai, x) = (∆vi (ai, w, x))w∈AI , ∆λi (ai, x) = (∆λi (ai, a−i, x))a−i∈AI−1 , Zi (x) represents the

matrix of conditional probabilities for computing a conditional expectation of a−it given (wt = w, xt = x),

Qi (ai, x)φi (ai, x) represents (∆φi (ai, w, x))a∈AI with φi (ai, x) = (φi (ai − wi, w−i, x))wi∈A,w−i∈AI−1

and Qi (ai, x) is a matrix of indicators (consisting of 0’s and 1’s) that pick up switching costs as

appropriate.

Theorem 3 generalizes the closed-form identification of switching costs in Theorem 1 for dynamic

games.

Theorem 3: Assume that Assumption MN holds. Let D be an `1 × (J + 1)I matrix with

ρ(D) = `1 such that (J + 1)I−1 < `1 ≤ (J + 1)I . Denote DZi (x) by Z̃ and ρ(Z̃) by `2. Suppose

also DQi (ai, x)φi = Q̃φ̃+φ0 for some `3−dimensional vectors φ̃ and φ0 that consist of elements,

possibly combinations, of φi such that `3 ≤ `1 − `2, and Q̃ is an `1 × `3 matrix with ρ(Q̃) = `3. If

ρ([Z̃ : Q̃]) = `2 + `3 then,

φ̃ = (Q̃>P̃Q̃)−1Q̃>P̃ (D∆vi (ai, x)− φ0) . (22)

where P̃ = I`1 − Z̃(Z̃>Z̃)†Z̃>.

Before presenting the proof to Theorem 3 some explanations on the notations will be useful.

The crucial interpretation of our result rests on the relation: DQi (ai, x)φi = Q̃φ̃ + φ0. The goal

of Theorem 3 is to identify components, or combinations, of (φi (ai, w, x))w∈AI using choice-specific

value functions in equation (21) for a given (i, ai, x). We denote the object of interest by φ̃. We use

φ0 to account for components of switching costs that can be identified outside the dynamic model

from the data or by normalization. Therefore (D, Q̃) are user-chosen matrices and are completely

known. For identification, we can also treat Z̃i as known since Zi (x) is a matrix of observed choice

probabilities.

Proof of Theorem 3.

Note that `3 ≥ 1 since `2 ≤ min{`1, ρ(Zi (x))} and ρ(Zi (x)) ≤ (J + 1)I−1. Multiply equation

(21) by D yields,

D∆vi (ai, x) = Z̃∆λi (ai, x) + Q̃φ̃+ φ0.
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By assumption, P̃Q̃ has full column rank. The result then follows from projecting ∆vi (ai, x) or-

thogonally onto the null space of Z̃ and solve out for φ̃i.�

One systematic approach to apply Theorem 3 in practice is to first write out the matrix equation

(21). Then choose D so that DQi (ai, x)φi contains the switching costs of interest, and define

Q̃φ̃ + φ0 appropriately. We now illustrate this identifying strategy with a two-player binary choice

game for different types of switching costs.

For notational compactness we will suppress xt and assume that SCw→a
i (w−i) is the same for

all w−i. We use ∆νi (wi, w−i) ≡ vi (1, wi, w−i) − vi (0, wi, w−i), p−i (w) ≡ Pr [a−it = 1|wt = w], and

∆λi (a−i) ≡ ∆λi (1, a−i). Then equation (21) represents:
∆vi (0, 0)

∆vi (0, 1)

∆vi (1, 0)

∆vi (1, 1)

 =


1− p−i (0, 0)

1− p−i (0, 1)

1− p−i (1, 0)

1− p−i (1, 1)

p−i (0, 0)

p−i (0, 1)

p−i (1, 0)

p−i (1, 1)


[

∆λi (0)

∆λi (1)

]
+


1

1

0

0

0

0

1

1


[

SC0→1
i

−SC1→0
i

]
. (23)

In particular we have

Qi (ai, x)φi =


1

1

0

0

0

0

1

1


[

SC0→1
i

−SC1→0
i

]
.

We consider three examples of potential objects of interest.

Example 1: Sunk entry cost

Suppose we want to identify −SC0→1
i −SC1→0

i that represents the sunk entry cost in the context

of an entry game. We can subtract ∆vi (0, 0) from the first equation in (23) off the remaining three

equations. This yields
∆vi (0, 1)

∆vi (1, 0)

∆vi (1, 1)

 =


p−i (0, 0)− p−i (0, 1)

p−i (0, 0)− p−i (1, 0)

p−i (0, 0)− p−i (1, 1)

p−i (0, 1)− p−i (0, 0)

p−i (1, 0)− p−i (0, 0)

p−i (1, 1)− p−i (0, 0)


[

∆λi (0)

∆λi (1)

]

+


0

1

1

 [−SC0→1
i − SC1→0

i

]
.
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In particular, in this case,

Z̃ =


p−i (0, 0)− p−i (0, 1)

p−i (0, 0)− p−i (1, 0)

p−i (0, 0)− p−i (1, 1)

p−i (0, 1)− p−i (0, 0)

p−i (1, 0)− p−i (0, 0)

p−i (1, 1)− p−i (0, 0)

 ,

D =


−1 1 0 0

−1 0 1 0

−1 0 0 1

 , Q̃ =


0

1

1

 , φ̃ = −SC0→1
i − SC1→0

i , and φ0 = 0.

The sunk entry cost can then be identified by the expression in equation (22).

Example 2: Menu cost under symmetry

Suppose we want to identify SC0→1
i under the assumption that SC0→1

i = SC1→0
i . Then equation

(23) becomes
∆vi (0, 0)

∆vi (0, 1)

∆vi (1, 0)

∆vi (1, 1)

 =


1− p−i (0, 0)

1− p−i (0, 1)

1− p−i (1, 0)

1− p−i (1, 1)

p−i (0, 0)

p−i (0, 1)

p−i (1, 0)

p−i (1, 1)


[

∆λi (0)

∆λi (1)

]
+


1

1

−1

−1

 [SC0→1
i

]
.

In this case

Z̃ =


1− p−i (0, 0)

1− p−i (0, 1)

1− p−i (1, 0)

1− p−i (1, 1)

p−i (0, 0)

p−i (0, 1)

p−i (1, 0)

p−i (1, 1)

 ,D = I4, Q̃ =


1

1

−1

−1

 , φ̃ = SC0→1
i , and φ0 = 0.

Example 3: Switching Costs with Normalizations

Suppose we want to identify SC0→1
i under the assumption that SC0→1

i = c0. For example, we

may be interested in identifying the entry cost under the assumption that the scrap value is c0. Then

equation (23) becomes
∆vi (0, 0)

∆vi (0, 1)

∆vi (1, 0)

∆vi (1, 1)

 =


1− p−i (0, 0)

1− p−i (0, 1)

1− p−i (1, 0)

1− p−i (1, 1)

p−i (0, 0)

p−i (0, 1)

p−i (1, 0)

p−i (1, 1)


[

∆λi (0)

∆λi (1)

]
+


1

1

0

0

 [SC0→1
i

]
+


0

0

−c0

−c0

 .
In this case

Z̃ =


1− p−i (0, 0)

1− p−i (0, 1)

1− p−i (1, 0)

1− p−i (1, 1)

p−i (0, 0)

p−i (0, 1)

p−i (1, 0)

p−i (1, 1)

 ,D = I4, Q̃ =


1

1

0

0

 , φ̃ = SC0→1
i , and φ0 =


0

0

−c0

−c0

 .
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In order to obtain the sunk costs when the number of actions is larger than two one has to combine

identifiable objects across actions, e.g. see Corollary 2. Identification of objects for each action can

be obtained as the examples above have shown. We use Theorem 3 to estimate the games such as

those in our simulation study and the empirical model of capacity game in Section 5 of our paper.

A.2 A Suffi cient Condition for Identification of the Discount Factor

In this part of the appendix we give a more analytical approach that ensures identification of the

discount factor and payoffparameters in a dynamic game context. We first introduce some additional

notations.

For any x = (x1, . . . , xp)
> ∈ Rp and y = (y1, . . . , yp+1)> ∈ Rp+1, let ‖x‖α1 = maxi=1,...,p |xi| and

‖y‖α2 = maxi=1,...,p |yi| + |yp+1|. Then for a class of p + 1 by p real matrices, we denote the matrix

norms induced by
(
‖·‖α1 , ‖·‖α2

)
by ‖·‖α1,α2 . We comment that these are not standard induced matrix

norms, however they have simple explicit bounds. In particular it is easy to verify that, for any matrix

(p+ 1)× p, C = (cij),

‖C‖α1,α2 ≤ max
i=1,...,p

p∑
j=1

|cij|+
p∑
j=1

|cp+1,j| .

We also need the parameter space to be compact. Let Θ ≡
{
θ ∈ Θ : maxi=1,...,p |θi| ≤ k

}
and B ≡[

0, b
]
for some positive k and b ∈ (0, 1).

Next we generalize the setup of Section 4 to dynamic games. The following is a straightforward

extension of Assumptions M and P.

Assumption MP:

(i) (Additive Separability) For all ai, a−i, x, εi:

ui (ai, a−i, x, εi; θ) = πi (ai, a−i, x; θ) + εi (ai) .

(ii) (Conditional Independence I) The transition distribution of the states has the following fac-

torization for all x′, ε′, x, ε, a:

P (x′, ε′|x, ε, w, a) =
I∏
i=1

Qi (ε
′
i)G (x′|x,w, a) ,

where Qi is the cumulative distribution function of εit and G denotes the transition law of xt+1

conditioning on xt, at. Furthermore, εit has finite first moments, and a positive, continuous and

bounded density on RJ+1.

(iii) (Finite Observed State) X = {1, . . . , K}.
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(iv) (Linear-in-Parameters): For all ai, a−i, x, εi:

πi (ai, a−i, x; θ) = πi0 (ai, a−i, x) + θ>πi1 (ai, a−i, x) ,

where πi0 is a known real value function, πi1 is a known p−dimensional vector value function and θ
belongs to Rp.

Our analysis will be based on the parameterized choice-specific value function:

vi (ai, x; β, θ) = E [πi (ai, a−it, x; θ) |xt = x] + βE [Vi (st+1; β, θ) |xt = x, ait = ai] , where

Vi (si; β, θ) =
∞∑
t=0

βtE [ui (ait, a−it, sit; θ) |si0 = si] .

Let ∆vi (ai, x; β, θ) ≡ vi (ai, x; β, θ) − vi (0, x; β, θ). We can use ∆vi from all players to define an

empirical model and the corresponding notion of identification, and observationally equivalence, as

in Section 4. We will omit this discussion to avoid repetition.

Our starting point will be the following lemma that generalizes Lemma 2.

Lemma 5: Under Assumption MP, we have for all i, ai > 0, ∆vaii (β, θ) ≡ (∆vi (ai, x; β, θ))x∈X

can collected in the following vector form for all (β, θ) ∈ B ×Θ:

∆vaii (β, θ) = ∆Rai
i0 + β∆Hai

i (IK − βL)−1 Ri0 (24)

+
(
∆Rai

i1 + β∆Hai
i (IK − βL)−1 Ri1

)
θ

+β∆Hai
i (IK − βL)−1 εi,

where the elements in the above display are collected and explained in Tables C and D.

Matrix Dimension Representing

∆Rai
i1 K × p E [πi1 (ai, a−it, xt)− πi1 (0, a−it, xt) |xt = ·]

R1 K × p E [πi1 (at, xt) |xt = ·]
L K ×K E[ψ (xt+1) |xt = ·]
Hai
i K ×K E[ψ (xt+1) |xt = ·, ait = ai]

∆Hai
i K ×K E[ψ (xt+1) |xt = ·, ait = ai]− E[ψ (xt+1) |xt = ·, ait = 0]

Table C. The matrices consist of (differences in) expected payoffs and probabilities. The latter

represent conditional expectations for any function ψ of xt+1.
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Vector Representing

εi E [εit (ait)|xt = ·]
∆Rai

i0 E [πi0 (ai, a−it, xt)− πi0 (0, a−it, xt) |xt = ·]
Ri0 E [πi0 (at, xt) |xt = ·]
(IK − βiL)−1 RΠij

∑∞
t=0 β

tE[πij (at, xt) |x0 = ·]
∆Hai

i (IK − βiL)−1 RΠij

∑∞
t=0 β

t (E[πij (at, xt) |ai0 = ai, x0 = ·]− E[πij (at, xt) |ai0 = 0, x0 = ·])
∆Hai

i (IK − βiL)−1 εi
∑∞

t=0 β
t (E [εt (at)| ai0 = ai, x0 = ·]− E [εt (at)| ai0 = 0, x0 = ·])

Table D. The K × 1 vectors represent (differences in) expected payoffs.

Our strategy to show identification is to re-write Lemma 5 in order to set up a mapping that has

the data generating parameters its fixed-point. One desired relation is the following.

Lemma 6: Under Assumption MP, (β, θ) is observationally equivalent to (β0, θ0) if and only if

(β, θ) satisfies

caii −Dai
i (β) θ − Ei (β) = Fai

i

(
θ

β

)
(25)

for all i, ai > 0, where

caii = ∆vaii (β0, θ0)−∆Rai
i0 ,

Dai
i (β) = β∆Hai

i (IK − βL)−1 Ri1,

Ei (β) = β2∆Hai
i L (IK − βL)−1 (Ri0 + εi) ,

Fai
i = [∆Rai

i1 : ∆Hai
i (Ri0+εi)] .

Proof: Equation (25) is obtained by re-arranging equation (24), after applying the identity

that (IK − βL)−1 = IK + βL (IK − βL)−1 and replace ∆vaii (β, θ) by ∆vaii (β0, θ0). Therefore, by

construction, (β, θ) satisfies (24) if and only if it is observationally equivalent to (β0, θ0).�

The following result provides one condition that is suffi cient for the identification of (β0, θ0).

Theorem 4: Assume that K ≥ p+ 1 and Assumption MP holds. Suppose there exists i, ai such

that: (i) the rank of Fai
i is p + 1; (ii) there exists a p + 1 by K matrix A0 such that A0F

ai
i is

non-singular; and (iii) max {g1,g2} < 1, where

g1 = max
β∈B

∥∥(A0F
ai
i )−1 A0∆Hai

i β (IK − βL)−1 R1i

∥∥
α1,α2

,
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g2 = max
β,β′∈B,θ∈Θ

∥∥∥∥∥(A0F
ai
i )−1 A0∆Hai

i

(
(IK − βL)−1 (IK − β′L)

−1
R1iθ

+L (IK − βL)−1 ((β + β′) IK − ββ′L) (IK − β′L)
−1

(R0i + εi)

)∥∥∥∥∥
α1,α2

.

Then (β0, θ0) is identifiable.

Proof: First define Qaii : [0, 1]×Θk → Rp+1 as follows:

Qaii (β, θ) = (A0F
ai
i )−1 A0c

ai
i − (A0F

ai
i )−1 A0D

ai
i (β) θ − (A0F

ai
i )−1 A0Ei (β) .

By construction, from (25), it is easy to see that (β0, θ0) is a fixed-point ofQ. Take any (β, θ) , (β′, θ′) ∈
B ×Θ, then

Qaii (β, θ)−Qaii (β′, θ′) = − (A0F
ai
i )−1 A0 (Dai

i (β) θ −Dai
i (β′) θ′ + Ei (β)− Ei (β

′)) ,

where

Dai
i (β) θ −Dai

i (β′) θ′ = ∆Hai
i

(
β (IK − βL)−1 Ri1θ − β′ (IK − β′L)

−1
Ri1θ

′
)

= ∆Hai
i

(
(β − β′) (IK − βL)−1 (IK − β′L)

−1
Ri1θ

+β′ (IK − β′L)
−1

Ri1 (θ − θ′)

)
,

and

Ei (β)− Ei (β
′) = ∆Hai

i L
(
β2 (IK − βL)−1 − β′2 (IK − β′L)

−1
)

(Ri0 + εi)

= ∆Hai
i L
(

(β − β′) (IK − βL)−1 ((β + β′) IK − ββ′L) (IK − β′L)
−1
)

(Ri0 + εi) ,

which can be shown by making use of the following identities:

β (IK − βL)−1 − β′ (IK − β′L)
−1

= (β − β′) (IK − βL)−1 (IK − β′L)
−1
,

β2 (IK − βL)−1 − β′2 (IK − β′L)
−1

= (β − β′) (IK − βL)−1 ((β + β′) IK − ββ′L) (IK − β′L)
−1
.

It then follows that

|Qaii (β, θ)−Qaii (β′, θ′)| ≤ g1 ‖θ − θ′‖α1 + g2 |β − β′|

≤ max {g1,g2}
∥∥∥∥∥
(
θ

β

)
−
(
θ′

β′

)∥∥∥∥∥
α2

.

I.e. Qaii is a contraction, hence it has a unique fixed point. Now suppose (β0, θ0) is not identifiable.

Then there exists some (β, θ) 6= (β0, θ0) that is observationally equivalent to (β0, θ0). By an impli-

cation of Lemma 6 (β, θ) must also be a fixed point of Qaii , which is a contradiction. Thus (β0, θ0)

is identifiable.�

Comments on Theorem 4:
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(i) Compact Domain. B cannot include 1 as the expected discounted returns would then be

unbounded. Compactness is useful for showing existence of a fixed point. There is also a trade-off in

the choice of b and k in the definitions of B and Θ respectively. For example, smaller b and k means

smaller max {g1,g2} but this is a restriction on the parameter space.
(ii) Choice of A0. The need to select A0 can be eliminated altogether by removing some rows

in (25) so that we have exactly p + 1 equations. In fact it is not necessary to take equations that

only correspond to the states from a particular player i and ai. Since the parametric structure in

(25) is the same for all states we can select any p+ 1 equations from any i and ai and compute the

corresponding matrix norms for g1 and g2. This gives us different combinations of equations we can

use, and we only need the analog of max {g1,g2} to be less than 1 for one of them to ensure (β0, θ0)

is identifiable.

(iii) Rank Deficiency. We have emphasized in Section 4 that sometimes not all components

of the payoff functions can be identified and normalizations are necessary. For example in the

entry/exit game generally the entry cost and scrap value cannot be jointly identified. Then one

may consider normalizing, say, the scrap value in order to estimate all the other parameters in

the model. Furthermore, we discussed in Section 4.3 that the discount factor can be identified

even if an incorrect normalization is used. Relatedly, we can also relax condition (i) in Theorem

4 in this direction and allow Fai
i to be rank deficient. In particular, recall from (25) that Fai

i =

[∆Rai
i1 : ∆Hai

i (Ri0+εi)], we can allow ∆Rai
i1 to be rank deficient. In such case there exists a full rank

matrixW such that∆Rai
i1W = [∆R̃ai

i1 : 0] where∆R̃ai
i1 has full column rank. Then Fai

i

(
θ

β

)
in (25)

becomes
[
∆R̃ai

i1 : 0 : ∆Hai
i (Ri0+εi)

]( W−1θ

β

)
. Therefore, by inspection, the proof of Theorem 4

can be readily adapted by reparameterizing θ to show the identification of the discount factor is

possible.
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