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Abstract

In 1996 Kouider and Lonc proved the following natural generalization of Dirac’s
Theorem: for any integer k > 2, if G is an n-vertex graph with minimum degree at
least n/k, then there are k — 1 cycles in G that together cover all the vertices.

This is tight in the sense that there are n-vertex graphs that have minimum
degree n/k — 1 and that do not contain k& — 1 cycles with this property. A concrete
example is given by I, , = K, \ K| (k—1)n/k+1 (an edge-maximal graph on n vertices
with an independent set of size (k — 1)n/k + 1). This graph has minimum degree
n/k — 1 and cannot be covered with fewer than k cycles. More generally, given
positive integers ki, . .., k, summing to k, the disjoint union Iy, y, kg, + -+ Tpyn/
is an n-vertex graph with the same properties.

In this paper, we show that there are no extremal examples that differ substantially
from the ones given by this construction. More precisely, we obtain the following
stability result: if a graph G has n vertices and minimum degree nearly n/k, then it
either contains k£ — 1 cycles covering all vertices, or else it must be close (in ‘edit
distance’) to a subgraph of Iy, /kk, + -+ + gk k., for some sequence ki, ..., k; of
positive integers that sum to k.

Our proof uses Szemerédi’s Regularity Lemma and the related machinery.

*Research is partially supported by Simons Fellowship, NSF CAREER Grant DMS-0745185, Marie
Curie FP7-PEOPLE-2012-IIF 327763.
TSupported by grant no. 6910960 of the Fonds National de la Recherche, Luxembourg.
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1 Introduction

The theorem of Dirac [10] saying that any graph G on n > 3 vertices with minimum degree
at least n/2 contains a Hamilton cycle is one of the classical results of graph theory. There
is a rich collection of extensions of this theorem in various directions. One possibility
to replace the Hamilton cycle with another spanning subgraph and ask what minimum
degree guarantees its existence.

For example, Bollobés [0] conjectured that for ¢ > 1/2 and A > 0, every sufficiently
large n-vertex graph G with minimum degree at least c¢n contains every spanning tree of
maximum degree at most A. The proof of this conjecture was given by Komlés, Sarkozy
and Szemerédi [20], using the regularity method. Another example is the famous Hajnal-
Szemerédi theorem [18], saying that every graph on kn vertices with minimum degree
(k — 1)n contains n vertex-disjoint copies of Kj. Yet another well-known example is the
conjecture of Pésa [I5] and Seymour [32] that any n-vertex graph with minimum degree
at least kn/(k + 1) contains the k-th power of a Hamilton cycle. If true, this would imply
both Dirac’s theorem and the Hajnal-Szemerédi theorem. The Pésa-Seymour conjecture
was proved for large n by Komlés, Sarkézy, and Szemerédi [22], [23]. Later, Levitt, Sarkozy,
Szemerédi [28] and Chau, DeBiasio, and Kierstead [9] proved the same result with different
methods, for smaller values of n. When we consider the square of a Hamilton path instead
of the square of a Hamilton cycle, Fan and Kierstead [16] proved that (2n — 1)/3 is the
optimal minimum degree for every n.

All of these results are about graphs with minimum degree larger than n/2. Indeed,
as soon as the minimum degree can be below n/2, one loses a lot of global structure:
for example, the graph may no longer be connected. Here we will explore the direction
where the minimum degree can be smaller than n/2. Already Dirac observed that every
2-connected graph G contains a cycle of length at least min {v(G),20(G)} [10]. The
connectivity assumption in this result might seem artificial, and indeed several researchers
have looked at the case without this assumption. Alon [2] proved that any n-vertex graph
G with minimum degree at least n/k must contain a cycle of length at least [n/(k —1)].
Later Bollobés and Héggkvist [7] proved that such a graph must in fact contain a cycle
of length [n/(k — 1)], which is optimal. An Ore-type condition for the same problem is
considered in [12]. More recently, Nikiforov and Schelp [30] and Allen [I] have considered
the problem of finding cycles of a specified length in graphs of minimum degree at least

In 1987 Enomoto, Kaneko and Tuza [14] conjectured that any graph G on n vertices
with 6(G) = n/k contains a collection of at most k£ — 1 cycles that cover all vertices of G.
Note that in the case k = 2 this reduces to Dirac’s theorem. Moreover, since at least one
of these cycles would need to have length at least [n/(k — 1)], the conjecture implies the
result of Bollobas and Haggkvist mentioned above. The case k = 3 was already shown by
Enomoto, Kaneko and Tuza [I4]. For the case of 2-connected graphs G, the conjecture
was shown by Kouider in [25]. An Ore-type condition for k£ = 3 was given in [I3]. Finally,
Kouider and Lonc solved the conjecture (even in the stronger Ore-version) in [26]. Thus:

Theorem 1 (Kouider and Lonc [26]). Let k > 2 be an integer and let G be an n-vertex
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graph with minimum degree §(G) = n/k. Then the vertex set of G can be covered with
k—1 cycled]

This leaves open the problem of determining the structure of the extremal examples.
The minimum degree condition in Theorem (1| is tight by a family of examples of graphs
with n vertices and minimum degree n/k — 1 that cannot be covered with & — 1 cycles.

First, we can consider the disjoint union of k copies of K, ;. This graph has n vertices
and minimum degree n/k — 1 and yet clearly cannot be covered with k — 1 cycles, because
every cycle must be confined to a single copy of K, ;. On the other extreme, we can
imagine a graph on n vertices with minimum degree n/k — 1 that contains an independent
set of size (k—1)n/k+1. A concrete example is given by the graph I, i, := Ky, \ K(x—1)n/k+1,
although there are also sparser examples that still have minimum degree n/k — 1. Note
that every cycle in such a graph can cover at most n/k — 1 vertices of the independent set,
so at least k cycles are needed to cover all vertices. Finally, the we can interpolate between
these two types of examples as follows. For any sequence k1, ..., k. of positive integers such
that ky + -+ = k. = k, we may consider the disjoint union G'= Iy n/kk, + *** + Tpon/k k-
Then G is an n-vertex graph with minimum degree n/k — 1 that cannot be covered with
k —1 cycles. Note here that I,/ = Ky, so this construction includes the disjoint union
of cliques.

It is natural to ask whether there are families of examples that are substantially
different. The main result of this paper is that this is not the case: if the minimum degree
is close to n/k then either the graph can be covered by k — 1 cycles, or it is close to a
subgraph of Iy n/kk, + - + Lgn/kk,. for a sequence £y, ..., k, of positive integers summing
to k. To make this precise, we need the following definitions:

Definition 1 (separable partition). A partition of the vertices of a graph G into sets
Xi,..., X, is separable if for all ¢ # j there exists a single-vertex X;-Xj;-cut in G.

Definition 2 ((kK’, k, 3)-stable). Let G be a graph of order n. Given a positive integer
k and real numbers k' € [1,k] and 8 € (0,1), we say that a subset X C V(G) is
(K', k, B)-stable if there exists a subset I C X such that:

(S1) | X| =k'n/k+ pn and |I| = (K" — 1)n/k £ Pn;

(S2) we have 6(G[X]) > n/k* — Bn and all but at most Sn vertices in X have degree at
least n/k — pn in G[X];

(S3) e(G[I]) < pn*.
With these definitions, our main result reads as follows:

Theorem 2. Given an integer k > 2 and 3 > 0, there is a > 0 such that the following
holds for sufficiently large n. Assume that G is a graph with n vertices and minimum
degree at least (1 — a)n/k whose vertices cannot be covered by k — 1 cycles. Then there is
a separable partition X, ..., X, of the vertices of G and positive integers ky, ..., k, such
that

'Edges and vertices count as cycles.
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o cach X; is (k;, k, B)-stable in G, and
[ ] ]{51++l€r:k’

Note that if X; is (k;, k, §)-stable, then G[X;] is ‘B-close’ to a subgraph of Iy, ik,
with minimum degree n/k, with the set I in Definition [2| playing the role of the (nearly)
independent set. Note also that if X;,..., X, is a separable partition, then G can only
contain very few (say, at most n) edges going between different parts X; and X;. Thus
every graph G as in the theorem can be turned into a subgraph of Iy, k ke, + -+ Lgon/kk,
by changing at most C3n? edges, for a constant C' > 0 independent of j3.

Results of this type are usually referred to as stability theorems, the most famous
example being the Erdés-Simonovits stability theorem for the Turdn problem [33]. It would
also be interesting to find the characterization of extremal families when k& = k(n) — oo
as n — 0o.

For the proof of Theorem [2 we use the method of connected matchings, invented by
Luczak [29], which is based on an application of Szemerédi’s Regularity Lemma [34]. This
method seems to be widely applicable; for more applications (especially in Ramsey theory)
see [3, 4, B, 17, BT, 7.

2 Preliminaries

The following lemma states several useful properties of stable sets. The proof of the lemma
is not very interesting but quite technical, so we postpone it to Section 4| at the end of
this paper.

Lemma 3 (Properties of stable sets). For every integer k > 2, there is some 3 > 0 such
that the following holds for all sufficiently large n. Let G be a graph of order n and assume
that X is an (K, k, 5)-stable subset of V(G), for some k' € [1,k]|. Then

(a) the vertices of G[X] can be covered with [k'] cycles;

(b) given any two vertices x,y € X, the vertices of G[X] can be covered by [k'] — 1 cycles
and a single path with endpoints x and y;

(c) if, additionally, all but at most n/k* vertices x € X satisfy d(z, X) = |X|/K', then the
vertices of G| X] can be covered with [k'| — 1 cycles.

We will also have occasion to use Szemerédi’s Regularity Lemma [34] and some related
results. Given ¢ € (0,1), we say that a pair (A, B) of disjoint sets of vertices of a graph G
is e-regular if, for all subsets X C A and Y C B such that | X| > ¢|A| and |Y| > €| B|, we
have

|da(X,Y) —da(A,B)| < e

A pair (A, B) is called (g, 0)-super-regular if it is e-regular and

dg(a,B) = §|B| for all a € A and dg(b, A) > 0|A| for all b € B.
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Theorem 4 (Degree form of the Regularity Lemma [24]). For every e > 0 and every
positive integer to, there is an M = M (g, ty) such that the following holds for every graph
G = (V,E) of order n = M and every real number d € [0,1]. There ezists an integer
t € [to, M], a partition (V;)!_, of the vertex set V into t + 1 sets (called clusters), and a
subgraph G' C G with the following properties:

(R1) Vo < eV,

(R2) all clusters V; are of the same size m € ((1 —e)n/t,n/t),
(R3) der(v) > da(v) — (d+¢€)n for allv e V \ 1,

(R4) e(G'[Vi]) =0 for all 1 <i<t,

(R5) for all 1 <i < j <t, the pair (Vi,V;) is e-regular, with a density either O or greater
than d.

A partition as in Theorem [ is usually called an e-regular partition with exceptional
set Vp. Given a partition (V;)i_, of the vertex set V' and a subgraph G’ C G satisfying
conditions (R1)—(R5), we define the (g, 0)-reduced graph as the graph R with vertex set [t]
and edges corresponding to those pairs ij for which (V;,V;) is e-regular and with density
at least 9.

We shall also use the following special case of the famous Blow-up Lemma of Komléds,
Sarkozy, and Szemerédi [21] (see also Lemma 24 and the first remark after Lemma 25
in [19]).

Lemma 5 (Blow-up Lemma). For every § > 0 there exists an € > 0 such that the following
holds. Assume that a graph G contains an (g,0)-super-reqular pair (A, B) with |A| = |B|
and let x € A,y € B. Then G[A, B| contains a Hamilton path with endpoints x and y.

We will also need the Chernoff bounds for binomial and hypergeometric random
variables. Recall that a random variable X is binomially distributed if it is a sum of a fixed
number of i.i.d. {0, 1}-valued random variables, while it is hypergeometrically distributed
with parameters N, K, n if it counts the number of successes in a subset of size n drawn
uniformly at random from a population of N elements that contains K successes.

Lemma 6 (Chernoff bounds [I1, Theorem 1.17]). Assume that X is either binomially or
hypergeometrically distributed. Then for all € € (0, 1)

Pr|X — E[X]| > eE[X]] < 2exp(—’E[X]/3).

3 Proof of Theorem [2

Let k > 2 be a fixed integer. Without loss of generality, we may assume that the given
B > 0 is sufficiently small. Let us choose constants ¢,d, a € (0,1) and ty € N such that

1
—<a<e=<d=<p,
to
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where by a < b we mean that a is chosen to be sufficiently smaller than b.

Let G be a graph of order n with 6(G) > (1 — a)n/k, where n is sufficiently large.
Let é := ¢/(4k) and d := d + (k 4+ 1)2. We apply the Regularity Lemma (Theorem [4)
to G with parameters £, ty, and d to obtain a partition (V;)!_, and a subgraph G’ C G
satisfying (R1-5), for some integer to < ¢ < M and with &, d instead of &, 6. We denote by
R the (&, cf)—reduced graph corresponding to this partition.

Structure of the reduced graph.
The reduced graph R is has t vertices and it satisfies

(1—2dk)t ¢
. 1
PR (1)

6(R) =

To see this, simply observe that the vertices of every cluster in R with degree less than
(1 —2dk)t/k would have degree at most (1 — 2dk)(t/k)- (n/t)+én < (1—a)n/k — (d+&)n
in G, contradicting property (R3) of Theorem

Let us denote by r the number of components of R and by Ry, ..., R, the components
themselves. Since each component has size at least 6(R) > t/(k + 1), there can be at most
k components altogether, i.e., r < k.

For each component R;, define a real number

S; = m € (1,k + 1), (2)

where the given bounds follow from §(R;) < v(R;) < t and (I)). Note that by combining

and we have

Finally, since v(Ry) + ...+ v(R,) = t, we have

<
- < (1+3dk)k, (4)

S; =

]~

=1

a fact that will be important later.

The components where s; < 2 + 4dk? have such a large minimum degree that we can
treat them by a special argument. For the others, we have the following structural lemma,
whose proof we postpone to a later point.

Lemma 7. Leti € [r] and assume that s; > 2+4dk?. Let m; = |s; —4dk*| and t; = v(R;).
Then at least one of the following is the case:

(i) the graph R; contains a subset I C V(R;) of size (s; —1)t;/s; — 6dk?s;t; that is almost
independent in the sense that e(I) < 4dk*s;t?, or

(ii) the graph R; contains matchings M, ..., My, and disjoint subsets of vertices Dy, Dy
with the following properties:
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(a) Dy NV (M) =0, and for j > 1, Dy NV (M;) = 0;
(b) each vertex of R; has at least dt;/(3s;) neighbours in each set Dy, Dy;
(c) the matchings My, ..., M, cover the vertex set of R;.

We apply Lemma m to each component R; where s; > 2 + 4dk?. From all such
components that are in case (ii) of the lemma, we obtain a collection M of matchings in
R. Since each component R; contributes at most m; matchings, and using , we see that
M contains at most k& matchings.

The significance of the matchings and the sets D; and D, will become clear at a later
point. Essentially, we will see that for each matching M € M, we can cover the vertices
in the subgraph of G induced by the clusters participating in the matching using a single
cycle (covering also a certain number of exceptional vertices in Vj that are ‘assigned’ to
the matching M). This will be an application of the Blow-up Lemma. Here the sets D;
and D, are used on the one hand to balance the sizes of the clusters in M and also to
absorb the exceptional vertices assigned to the matching. However, to be able to apply the
Blow-up Lemma, we need to modify the regular partition a little, which we will do next.

Modifying the regular partition.

We need to modify the initial regular partition Vj,...,V; in such a way that each edge in
each matching in M corresponds not just to an é-regular pair of density at least ci, but
in fact to an (e, d)-super-reqular pair (this is the reason why we applied the Regularity
Lemma with the slightly stronger parameters &, d instead of ¢, d). For this, we proceed as
follows. For each edge (V;,V;) of a given matching M € M, we observe that by regularity,
at most £|V;| vertices of V; have fewer then d|V;| — &|V;| = d|V;| + k£|V;| neighbours in V;
and vice-versa. We move all vertices in these sets to the exceptional set. Since M contains
at most k matchings, we remove at most ké|V;| vertices from each cluster V;. By removing
some additional vertices, we can make sure that after this, all clusters are still of the
same size. Then one can check that the properties (R1-5) of Theorem 4| hold for the new
partition with e, d instead of &, d (and with the same G’ and t). Moreover, we have gained
the property that the edges of the matchings in M correspond to (e, d)-super-regular pairs
in G.

Partitioning into stable sets.

For each i € [r], let us define G; as the subgraph of G induced by the vertices in clusters
in R;. Note that

U V(G:) = V(G) \ Vp.

Using (R2), we have
(1 —e)nv(R;) nv(R;)
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so by plugging in the definition of s;, we get

(1 —¢)(1 — 2dk)ns;

(1 — 2dk)ns;
P :

<o(Gy < = ©)

Using the inequalities
(14+dk)(1 —2dk) =1 —dk —2d*k* <1 —a — (d+¢e)k
and §(G) = (1 — a)n/k and properties (R3)—(R5), we obtain that

(Ao > (1+dk)”(si>. (6)

1—a)n

6(Gy) = (

Since 1 < r < k and since |V(G1)U---UV(G,)| = n —en, it is clear that for every
vertex v € V(G), there exists at least one ¢ € [r] such that the degree of v into V(G;) is at
least (0(G) — en)/k. Thus, we can partition the exceptional set V4 into sets Uy, ..., U,,
where U; contains only vertices with at least

(1—a—ken/k* > n/k

neighbours in V(G;). The sets Y; := V(G;) U U; form a partition of the vertex set of G.
This is almost the partition X,..., X, that Theorem [2| asks for; as we will see, the sets
Y; for which s; € [2,2 + 4dk?) might have to be partitioned further.

To complete the proof of Theorem [, we need to distinguish three cases. Each case is
handled by one of the following lemmas.

Lemma 8. If 1 < s; < 2, then G[Y;] is Hamiltonian. Moreover, if s; < 1+ 4dk?, then Y;
is actually (1, k, 8)-stable in G.

Lemma 9. If2 < s; < 2+ 4dk?, then at least one of the following holds:
(1) GYi] is Hamiltonian,

(11) Y is (2, k, B)-stable in G, or

(11i) there is a partition of Y; into two (1, k, B)-stable sets in G.

Lemma 10. If 2 + 4dk* < s;, then either Y; can be covered with |s; — 4dk*| cycles in
GlY;], orY; is (|si], k, B)-stable in G.

The proofs of the first two lemmas are elementary. However, for the last lemma, we
will need to use the structure given by Lemma (7| and the Blow-up Lemma (Lemma [5)).
Given these three lemmas, we can complete the proof of Theorem

Proof of Theorem[J By combining Lemmas , , |§| and , we see that each graph G[Y]]
can be covered with at most [s;] cycles. By (4)), we have [s1] + -+ + [s,] < k. Since we
assume that G cannot be covered with k — 1 cycles, this inequality is really an equality,
ie., |s1]+---+|s-] =k
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This implies that for every i € [r], we have |s;] < s; < [s;] + 4dk?, as otherwise (4]
yields the contradiction

Z J_Zgl Z@ 1si]) < (1 + 3dk)k — 4dk* < k.

=1

But then, using again that we cannot cover the vertices of G with k—1 cycles, Lemmasg]
[ and 10l tell us that the situation is as follows:

o if 1 <s; <2, then Y] is (1, k, B)-stable;

o if 2 < s; < 2+ 4dk?, then Y] is either (2, k, 3)-stable or the union of two disjoint
(1, k, B)-stable sets;

o if 5; > 2+ 4dk?, then Y; is (| s;], k, B)-stable.

By splitting some of the sets Y; into two stable sets (if they are in the second case and not
stable already), we obtain a partition of the vertices into ' > r sets X3, ..., X,» such that
each X is (k;, k, B)-stable for some integer k;, where moreover ky + -+ + kv = k.

To complete the proof, we show that Xi,..., X,/ is a separable partition. For this,
let ¢ # j and assume for a contradiction that there is no single-vertex X;-X,-cut in G.
Then by Menger’s theorem there are two vertex-disjoint X;-X;-paths in G, and so using
Lemma |3 (b) it is possible to cover X; U X; by a k; + k; — 1 cycles in G. Moreover, by
Lemma 3| (a) it is possible to cover all other sets X, by ky cycles. Hence, there is a cover of
the vertices of G by k1 +-- -+ k. —1 = k —1 cycles, which we assumed is not the case. [

It remains to give the proofs of Lemmas [7], [§] [9, and [10]

Proof of Lemma[7. Since by (1)), we have v(R;) > t/(k+1) > to/(k + 1), we can assume
that t; = v(R;) is very large compared to 1/d. The only other property of R; that we will
need is that 6(R;) > v(R;)/si, by ().

First, we show that 1t is possible to choose disjoint subsets Dy, Dy C V(R;), each of size
at most 2dt;, in such a way that every vertex in V(R;) has at least dt;/(3s;) neighbours
in D;, for j € {1,2}. For this, let D be a random subset of V(R;) in which every cluster
is included independently with probability d. Then let Dy U Dy = D be a partition of
D into two sets chosen uniformly at random. The expected size of D; and D is dt;/2.
Thus, by Markov’s inequality, with probability at least 1/2, we have |D|, |Ds| < 2dt;. Fix
some vertex v € V(R;). The expected number of neighbours of v that are in D; is at least

do(R;)/2 = dt;/(2s;). Using the Chernoff bounds, the probability that the neighborhood
of v does not contain at least dt;/(3s;) elements of D; is smaller than 1/(4¢;), provided
that ¢; is large enough. Similarly, the probability that the neighborhood of v does not
contain at least t;/(3s;) elements of D is smaller than 1/(4¢;). The union bound shows
that there exists a good choice for D; and D,. From now on, fix such a choice.

Let m; := | s; — 4dk?] and observe that by assumption, we have m; > 2. We want to
cover the set V(R;) by m; matchings M, ..., M,,,, so that M; is disjoint from D; and
My, ..., M, are disjoint from D,. To do this, we first let M; be a maximal matching in
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R; that covers D, and is disjoint from D;. Note that there certainly exists such a matching
because of the minimum degree condition and because D and D, are very small. Now,
to choose the matchings M; for j > 2, we partition the set V(R;) \ V(M;) equitably into
sets Ag, ..., Ap,. Then we let M; be a matching that is disjoint from D, and that covers
the maximum number of vertices of A; (among all matchings that are disjoint from Ds);
moreover, we assume that M; has maximum size among all such matchings. There are
now two cases.

Non-extremal case.

If |My| > t;/s; + 2dk?s;t;, then we claim that we are in case (ii) of the lemma. The only
thing to check is whether the matchings cover R;. The set V(R;) \ V(M;) has size

S; S

Si Si

so for each 2 < 7 < m;, we have

< [tifsi — 2dt;] < 0(R;) — | Do

1A < [%—‘
71

Thus, there exists a matching disjoint from Dy that covers A; completely, and since M,
was chosen to cover the most vertices of A; among all matchings disjoint from Dy, the
matchings cover every vertex of R;.

Extremal case.

If |M,| < t;/s; + 2dk?s;t;, then we will see that the graph must have a special structure.

We will first show that |M;| > t;/s; — 2dt;. Write U for the set V(R;) \ (D1 UV (My))
of uncovered vertices that are not in D;. Note that U is an independent set in R; (or the
matching M; would not be maximal). If |U| < 1, then, since s; > 2+4dk* > 2/(1-2d—1/t;)
and |Dq| < 2dt;, we have

and we are done. Otherwise, there are at least two vertices u,v € U. Since M; is maximal,
we know that every neighbor of u is either in D; or is covered by an edge of M, and
similarly for v. Moreover, there are no edges of M; between a neighbor of u and a neighbor
of v. Therefore

which implies that
|Mi| > ti/si — |Di| > ti/si — 2dt;. (7)

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(3) (2017), #P3.56 10



Now, since | M| < t;/s; + 2dk?s;t;, we have

To complete the proof of the lemma, we will show that there exists a set of size
|U| 4+ |M;| which contains very few edges. For this, observe that by the maximality of Mj,
for every edge zy € M; at least one of the vertices x,y has at most one neighbor in U.
Thus, we may split V' (M;) into two disjoint sets A and B of size |M;| by placing, for each
edge of My, an endpoint with at most one neighbor in U into A, and the other endpoint
into B. Then we have e(U, A) < |A[; the ‘nearly independent set’ that we are looking for
will be U U A.

To show that U U A contains few edges, we will first show that most vertices in B
have at least two neighbours in U. Indeed, let X := {v € B | d(v,U) < 2}. Since U is an
independent set and since V(R;) = AU BUU U D,, we have

X+ UI(IB| = [X]) = e(B,U) > [U|6(R:) — e(U, V(R:) \ B)
> |U|0(R;) — e(U, A) — e(U, D)) = |U[6(R:) — [B] = [U]| Dzl

Rearranging this inequality, and using that |B| — §(R;) < 2dk?s;t; and |Do| < 2dt;, as well
as the fact that |U| = Q(¢;) is sufficiently large, we get

| B+ [U[|B| = [U]6(1:) + |U]| Dy

RIS

Let us now estimate the number of edges inside of U U A. We know that e(U) = 0
and e(U, A) < |A|. To bound e(A), consider some edge zy € F(A) and denote by z’ and
y' the vertices matched to x and y in My, respectively. Then, by the maximality of M,
we can see that at least one of 2’ and 3’ has at most one neighbor in U. It follows that
e(A) < |A||X|. Thus, using e(U, A) < |A], | X| < 3dk?s;t;, |A] < t; and the fact that U is
an independent set, we get

e(UUA) < e(A) +e(U, A) < |A||X] +|A| < 4dk>s;t>

and, using and ,
|U U A| = |U| + |M1| 2 (Si — 1)tz/51 — 6dl€28iti.
So we are in case (i) of the lemma. O

Proof of Lemma[8. We start with the first part. Recall that Y; = V(G;) U U;, where U; is
a set of at most en vertices that have degree at least n/k? into V(G;). Also recall that by
(6), we have 6(G;) = (1 + dk)v(G;)/si = (1 + dk)v(G;)/2. In particular, any two vertices
u,v € V(G;) are connected by at least dkv(G;) > 3|U;| disjoint paths of length two. Then
we can greedily construct a path P of length 4|U;| — 2 in G[Y;] such that P starts and ends
in vertices of GG; and contains all vertices of U;. More precisely, for each vertex u € U;,
we can find two neighbours in V(G;) such that all neighbours are distinct; then we can
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connect these into a path by using the fact that any two neighbours have more than 3|U;|
common neighbours in Gj.

The graph G; — V(P) still satisfies Dirac’s condition. Let C' be a Hamilton cycle
in G; — V(P) and let u,v € G; be the endpoints of P. Then, by the minimum degree
condition, there are vertices u/,v" that are adjacent on C' and such that uu’, vv" € E(G;).
By opening the cycle C' on the edge u/v" and connecting u’ to u and v’ to v, we obtain a
Hamilton cycle in G[Y;].

To see the second statement of the lemma, just let X = Y; and I = (). Since d is
very small compared to (3, the conditions of Definition [2| are easily verified. Specifically,
(S1) follows from ([5), (S2) follows from (6] and the definition of U;, and (S3) is trivially
true. [

Proof of Lemma[9 Assume that 2 < s; < 2+ 4dk*. By @ we have
5(Gy) = (14 dk)v(Gy)/si = (1 = 3dk*)v(G,) /2.

Moreover, recall that Y; = V(G;) U U;, where U, is a set of at most en vertices that each
have at least n/k® neighbours in V(G;).
We will show that at least one of the following holds:

(i) G[Y;] is Hamiltonian,
(ii) G[Y;] contains an independent set of size at least (1 — 10dk?)|Y;|/2, or
(iii) Y; contains two disjoint sets A, B of size at least (1—5dk?)|Y;|/2 such that e(A, B) = 0.

It is straightforward to verify that if we are in case (ii), then Y; is (2, k, §)-stable (let I be
the independent set of size (1 — 10dk?)|Y;|/2 and let X :=Y;\ I). Similarly, if we are in
case (iii), then one easily checks that ¥; = AU B is a partition into two (1, k, 3)-stable
sets.

Thus, from now on, we shall assume that neither (ii) nor (iii) holds. Then for any two
vertices u,v € V(G;) and every subset A C V(G;) of size at least v(G;) — dn, the graph
G[AU {u,v}] contains a path of length at most three that goes from u to v. To see this,
observe that both u and v have at least

(1 —3dk*)v(Gy)/2 —dn — 1 > (1 — 5dk*)v(G;) /2

neigbors in A. If they have a common neighbor in A, or if there is an edge from a neighbor
of u in A to a neighbor of v in A, then we are done. Otherwise, the neighborhoods of u
and v are disjoint subsets of size at least (1 — 5dk?)v(G;)/2 with no edges between them,
and we are in case (iii).

From this observation, it is now easy to see that G[Y;] must contain a path P of length
5|U;| — 3 that contains all vertices of U; and whose endpoints are in Y;. The construction
is the same as in the proof of Lemma [8} for each vertex of U; we find two neighbours in
V(G;) such that all neighbours are distinct, and then we connect these neighbours using
the observation to build the path P. Let us write ap and bp for the endpoints of P.
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Let G} be the subgraph of G; induced by {ap,bp} UV (G; — P). Note that v(G}) >
v(G;) — 5en, and that, consequently, G} has minimum degree at least (1 — 4dk?)|Y;|/2.
We may also assume that G, — {ap,bp} is at least two-connected, since otherwise, by the
minimum degree of G, the graph would contain two sets X, Y of size at least

§(GY) —2 > (1 —4dk*)|Yi|/2 — 2

that intersect only in an articulation point. But then, we would be in case (iii), contradicting
our assumption.

We will show that G contains a Hamilton path joining ap to bp. Clearly, this path will
combine with P to yield a Hamilton cycle in G[Y;]. Our strategy is the following. First, we
will prove that G} — {ap,bp} must contain a nearly spanning cycle. Then, we will connect
ap and bp with this cycle to form a nearly spanning path from ap to bp in G. Finally, we
will absorb the few remaining vertices of GG} into the path to get a Hamilton path.

To obtain the first part, we use the well-known fact (also due to Dirac [10]) that every
two-connected graph with minimum degree d contains a cycle of length at least 20. In our
case, this means that G — {ap,bp} contains a cycle C' of length

C| = 26(G; — {ap,bp}) = (1 — 5dk*)|Y;|.

For the second step, as both ap and bp have degree larger than |C|/3 into C, there
must be a neighbor of ap on C that is within distance at most two to a neighbor of bp on
C, the distance being measured along the cycle C' (and making sure that the neighbours
are distinct). Therefore, if we are generous, there is a path P’ in G} with endpoints ap
and bp that has length at least (1 — 6dk?)|Y;|.

To complete the proof, we show how to handle the at most 6dk?|Y;| vertices of G
that do not belong to P’. Consider any such vertex v € V(G}) and let X be the set of
all neighbours of v on P’ that are not within distance less than two of either ap or bp
(again, the distance being measured on P’). There must be at least (1 — 10dk?)|Y;|/2 such
vertices. If any two neighbours u and w of v are neighbours on P’, then we can absorb v
to P’ by following P’ from ap to u, using uv and vw, and following P’ from w to bp. So,
assume this is not the case.

Orient P’ from ap to bp, and let Y be the set of the immediate successors of vertices
in X on the path. Since this is a set of size at least (1 — 10dk?)|Y;|/2, it must contain at
least one edge uw, or else we would be in case (ii). However, using this edge, one can
rotate the path P’ to obtain a path going from ap to bp that contains all vertices of P’, as
well as the additional vertex v. Indeed: let v’ € X be the predecessor of u and w’' € X be
the predecessor of w on P’. We absorb v to P’ by following P’ from ap to ', using u'v
and vw’, following P’ from w’ to u, using uw, and following P’ from w to bp.

In this way, it is possible to absorb all left-over vertices until the path spans the whole
of G. O

Proof of Lemma[I0. If s; > 2 + 4dk?, then by Lemma [7] we know that the corresponding
component R; of the reduced graph has a certain structure: either
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(i) there is a subset I C V(R;) of size (s; — 1)/s; — 6dk?s;t; with the property that
e(I) < 4dk?s;t?, or

(ii) R; contains matchings My, ..., M,,,, where m; = |s; — 4dk?], and subsets Dy, Dy C
V(R;) such that

(a) DyNV (M) =0, and for j > 1, Do NV (M;) = 0;
(b) each vertex of R; has at least dt;/(3s;) neighbours in each set Dy, Dy;
(c) the matchings My, ..., M, cover the vertex set of R;.

Recall that U; is a set of at most en vertices that have degree at least n/k% into V(G;).
If (i) is the case, then it follows easily from @ and the properties of regularity that
Y, =V(G;)UU; is a (s;, k, B)-stable set in G (note that €, d are tiny compared to (). Since
by (6), all but |U;| < en vertices of Y; have degree at least |Y;|/s; in G[Y], it follows from
Lemma 3| (¢) that G[Y;] can be covered with [s;] —1 cycles. Therefore, either we can cover
G|Y;] with |s; — 4dk?] cycles, or |s; — 4dk?] < [s;] —1 < s; and so s; < |s;] + 4dk?. In
the former case, we are done, and in the latter case, it is again easy to verify that Y; must
actually be (|s;], k, 3)-stable (again, the extra 4dk?* gets lost in the much larger 3). Thus
if we are in case (i), then the lemma holds.

From now on, assume that we are in case (ii). Recall that each edge of each matching
M; is (e, d)-super-regular. We may assume that ¢ is so small that Lemma |5 applies with
0 = d. The general idea is to use Lemma [5| to cover the preimage of each matching
(meaning: the vertices of G participating in clusters of the matching) by a single cycle in
GY;], and to do this in such a way that all the vertices in U; are absorbed. Of course, if
we manage to do so, then we are done. We start by assigning the exceptional vertices of
U; to clusters C' into which they have large degree.

Assigning the exceptional vertices.

For each matching Mj, let us write Vi, C V/(G;) for the union of all clusters in M;. As
the matchings M; cover the vertices of R;, we have |Ji“, V/(M;) = V(G;). Since each

vertex of U; has degree at least n/k® into V(G;), and since m; < k, we see that for every
u € U; there exists a j, € [m] such that u has n/k* neighbours in Vjy, . Let us write
Ui(j) :={u € U, | j, = j} for the exceptional vertices assigned to the matching M; in this
way.

Since |V (M;)| < |[V(R)| < t and since each cluster has size at most 2n/t, it follows
that for each vertex u € Ui(j ) there are at least t/(4k*) clusters C € V' (M;) such that
d(u,C) = n/(2k*). Indeed, if this were not true, then the degree of u into V(M) would

be strictly below
;. " n t 2n _ n
2kt Akt ot kY
a contradiction with the definition of Ui(j ),
We now assign the vertices of Ui(J ) to clusters in V(M;) in such a way that
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(i) if u is assigned to the cluster C, then d(u,C) > n/(2k*t), and
(i) at most 4k*en/t vertices are assigned to each cluster.

Since |Ul-(j )| < en and since each vertex has t/(4k?) candidates, such an assignment exists.
Take any such assignment and write Ug for the exceptional vertices assigned to the cluster
C e V(M;).

Covering the matchings.

From the above, it is clear that the sets

Vi, U Ui(l), Vi, U Ui(2)’ oV . U Ui(mi)

m

cover the set Y;. In the following, we will cover each set Vj;, U Ui(j ) by a single cycle in H;

(however, this cycle might use vertices outside of Vi, U Ui(j )).

Fix some j € [m;], and assume ¢ € {1,2} is such that D, is disjoint from the matching
M;. The embedding proceeds in two steps: first, for each cluster C' € V (M), we connect
the vertices of Ugx by a short path using only vertices from Dy, C', and U (and making
sure that the paths for different C' are vertex-disjoint); second, we use Lemma [5|to connect
these short paths into a cycle spanning the whole of Vj,, U Ui(j ),

In the first step, it is important to make sure that each path uses exactly the right
number of vertices in the cluster C, as otherwise the second step might fail. Because we
do not want to make this completely precise at this point, we assign to each cluster C' an
integer

(o € [8k*en/t, 100k en /1],

and we will make sure that after creating the short path for C', the number of vertices of
C' not used by the path is exactly |C| — ¢. The bounds of /¢ allow us enough control
over the number of remaining vertices per cluster, without hurting the super-regularity of
the pairs corresponding to edges of M; in a significant way.

Step 1: creating the small paths.

First, we assign each C' € V(M) to a neighbor D¢ of C in D, in such a way that we
assign at most 3s;/d clusters of V(M;) to each cluster in D,. This is possible because each
vertex of R; has at least dt;/(3s;) > dt;/(3s;) neighbours in D, and because there are at
most ¢; clusters in V().

During the construction of the paths, for every D € D, and C € V(M;), we maintain
sets A(D) C D and A(C) C C of available clusters; initially A(D) = D and A(C') = C for
all D and C| i.e., all clusters are available. The sets A(D) and A(C') will shrink during the
construction of the paths; however, it will be true throughout that for each C' € V(M;) and
D € Dy, we have |A(C)| > |C| — Ke|C|/d and |A(D)| > |D| — Ke|D|/d, where K = K (k)
is a sufficiently large constant depending only on &, but not on € or d. Since ¢ is very small
compared to d, this means that almost all clusters are available throughout the process.
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For each cluster C' € V(M;), we shall first build a path P/, covering the vertices of Uc.
The path will have the form

/
P = miuyy 22 TaUala 23 T3U3Y3 *** 2|Us| TUc| WU YU

where z,,y, € C, u, € Uc and z, € D¢. After doing this, we will extend this path to a
path Pg that uses exactly ¢ vertices of C, completing the first step in the outline given
above.

We now describe how to construct P. Recall that every vertex u € Ug has n/(2k*t) >
2Ke|C|/d neighbours in C'. Order the vertices of U arbitrarily. For the first vertex u; € Ug,
let 21 be an arbitrary neighbor of u; in A(C), and let y; be a vertex in A(C) \ {z;} that
has at least dn/(3t) neighbours in A(D¢). Assuming that |A(C)| > |C| — Ke|C|/d and
|A(D¢)| =2 |De| — Ke|De|/d, such neighbours exist by the fact that the pair (C, D¢) is
e-regular with density at least d. Remove xq,y; from A(C).

At every subsequent step, consider the current u, € Uc. Provided that |A(C)| >
|C| — Ke|C|/d, there is a neighbor x, of u, in A(C) that has a neighbor z, in the
neighborhood of y,_; in A(D¢), which we may assume (by induction) to be of size at
least dn/(3t) > €|D¢/|. Similarly, there is a neighbor y, € A(C) that has at least dn/(3t)
neighbours in A(D¢) \ {2,}, again provided that A(C') and A(D¢) are large. Remove z,
from A(D¢) and remove z,, y, from A(C).

We can continue in this way as long as A(C) and A(D¢) are sufficiently large. For
every vertex in Ugs we remove at most one vertex from A(D¢) and two from A(C). Since
(for large enough K) we have |Uc| < 4k*en/t < Ke|C|/(6s;), and as only at most 3s;/d
clusters have chosen D¢, it follows that both A(C') and A(D) lose at most Ke|C'|/d vertices
throughout this process. In other words, the process can be carried out until all vertices
of Up are covered.

Note that the path P/ uses exactly 2|Uq| < 8k*en/t vertices from C. However, we
would like to have a path that uses exactly ¢ € [8k?en/t, 100k*en/t] vertices of C'. For
this reason, we will extend the path in the following way.

By construction, ¥y, has dn/(3t) > |D¢| neighbours in A(D¢). The typical vertex
in A(C') has a neighbor in this neighborhood, as well as dn/(3t) additional neighbours in
A(D¢). Thus we may take such a vertex xy,|+1 and a common neighbor 2y, |11 € A(D¢)
of zy.1+1 and Y|, and create a longer path P} 2py.j+1 Zjue+1. Then, we remove
2ugl+1 from A(D¢) and @)y, 41 from A(C). As before, this process will not fail while
|A(C)| = |C| — Ke|C|/d and |A(D¢)| = |De| — Ke|De|/d hold for all C' € V(M;). If K
is large enough, then this means that we can continue for at least 100(k + 1)k3en/t steps,
and we do so until the path contains exactly ¢ vertices of C.

Call the resulting path Po. Observe that for different C, C" € V (M), the paths Po and
Per are vertex-disjoint. Moreover, each path Pg has its endpoints in C, uses ¢ vertices of
C' (and no vertices of other clusters in V' (M;)), and visits all vertices in Ue.

Step 2: finishing the embedding.

Let T; be a minimal tree in R; containing the matching M; as a subgraph (such a tree
exists because R; is connected), and let m = |Tj| — 1 be the number of edges of Tj. For
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each C' € V(M;), choose {c € [8(k + 1)k*en/t,100(k + 1)k3en/t] such that
|C| = lc = [n/t] — [20k*en/t] + dr,(C).

This is possible since n/t > [C] > (1 — ¢)n/t and since dr,(C) < t is bounded by a
constant.

By doubling the edges of T; and considering an Euler tour in the resulting graph, one
can see that there exists a surjective homomorphism 7: Cy,, — T} that covers each edge
of T} exactly twice, i.e., for each edge e € Tj, there are exactly two edges ey, ea € E(Cay,)
such that 7(e;) = m(e2) = e. For each edge e € M;, we (arbitrarily) color the edge e; red.
Let us, for the moment, remove all red edges from Cy,,, resulting in the graph C%, . which
is just a system of disjoint paths. We now choose any embedding

v Ch — G

/

with the property that every x € V(C9, ) is mapped to a vertex in the cluster 7(x), and
whose image is disjoint from the vertices of the paths Po. Such an embedding exists by
regularity: for every path zy,...,2, in C} , we may first embed z; to a vertex in m(z;)
that has at least d|m(x2)|/2 neighbours in 7(xg). Of these neighbours, at least half will
have at least d|m(x3)|/2 neighbours in 7(x3), so we may embed x5 to any such neighbor.
Continuing in this way, we can completely embed z1,...,x, in G in the desired way, and
we can do this for every path in C . Note that some vertices might be embedded into
the same cluster of R;; however, as m < t is a constant and as each cluster has linear size,
this does not pose any difficulty.

At this point, we have merely embedded some disjoint paths into GG. For each red
edge zy € E(Cyy,), we will now embed into G a path with endpoints ¢(x) and ¢(y) that
contains the paths Pr(,) and Pr(,), and that, moreover, contains all vertices of m(z) Un(y)
that are not in the image of . Thus, we will extend ¢ to an embedding of a subdivision
of Uy, into G whose image contains the set Vi, U UZ-(] ), as required. Since for each red
edge zy, the pair (7(z),7(y)) is (¢,d/2)-super-regular, this is relatively easy to achieve:
first, we connect an endpoint of Py, to ¢(x) by a path of length four (such a path exists
by regularity); similarly, we connect an endpoint of Py, to ¢(y) by a path of length four;
finally, we use the Lemma [5 to connect the other endpoint of Py, to the other endpoint
of Py, by a Hamilton path in the bipartite subgraph of G[n(x),7(y)] induced by the
remaining vertices. The only thing to check is that this subgraph is balanced. However,
this follows from our choice of /- and the fact that the image of ¢ intersects each cluster
C in exactly dr,(C) vertices. O

4 Proof of Lemma [3

It remains to prove Lemma |3| In this section, we will use the notations G — e and G + e
to denote the graph obtained from G by adding or removing a given edge e. We also
use the notation G+ H to denote the union of the graphs G and H, i.e., the graph
(V(G)UV(H),E(G)U E(H)) (note that before, the same notation was used for the
disjoint union). In the proof, we will use the following auxiliary results:
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Lemma 11 (Berge [, Chapter 10.5, Theorem 13]). Let G = (V, E) be a graph with n > 3
vertices such that for each 2 < j < (n+1)/2, fewer than j — 1 vertices have degree at most
7 i G. Then for any two vertices u # v, there is a Hamilton path with endpoints u and v
(and in particular, G is Hamiltonian).

Lemma 12 (Berge [5, Chapter 10.5, Theorem 15]). Let G = (A, B, E) be a bipartite graph
with |A| = |B| = n > 2 such that for each 2 < j < (n+1)/2, fewer than j —1 vertices have
degree at most j in G. Then for any two vertices a € A and b € B, there is a Hamilton
path with endpoints a and b.

Lemma 13. Let G = (A, B, E) be a bipartite graph. Let s,t be positive integers. Suppose
that G contains a cycle C' and a collection of paths Py, ..., P, such that |V(Py)U---U
V(P)| < s and such that the following hold:

e cach P; has one endpoint in a; € A and one endpoint in b; € B;

e these endpoints satisfy d(b;, A) > (|A| + s)/2 and d(a;, B) > (|B| + s)/2, for every
e [t;

o C . P,..., P are vertex-disjoint and cover all vertices of G.
Then G is Hamiltonian.

Proof. We can define a sequence Cy, (1, ..., C; of cycles in G such that C; covers exactly
the vertices in V(C) UV (P) U---UV(P). For this, let Cy = C. Suppose that we have
defined C;_;. Using the condition on the degrees of a; and b;, the pigeonhole principle
implies that C;_; contains some edge uv such that a;u and b;v are edges of G. Then we
can define C; := C;_1 — uv + a;u + b;v + P;. Finally, C; is a Hamilton cycle in G. O

To keep the proof of Lemma (3| as short as possible, we define the following notion:

Definition 3 (Good pair). Let G be a graph of order n and let an integer r > 1 and real
numbers 7,0 € (0,1) be given. A pair (A, B) of disjoint subsets of V(G) is said to be
(7, 9,7)-good if the following hold:

(P1) yn <A< [B| <7 [Af;

(P2) d(b, A) > |A| — on for all but at most dn vertices b € B;
(P3) d(a

(P4)

(a,
P4) for all a € A and b € B, we have d(b, A) > yn and d(a, B) > yn.

P3 B) > |B| — on for all but at most én vertices a € A;

Lemma 14. For every integer k > 1 and every v > 0, there is an integer ng and a real
number § € (0,1) such that the following holds for every n = ng. Let G be a graph on n
vertices and let (A, B) be a (v, 0,7)-good pair in G, for some integer r € [k]. Then G[A, B]
can be covered by at most r cycles.
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Proof. Let k and v be given and let G be a graph n > ny vertices, where ng = ng(k, )
is a sufficiently large constant. Suppose further that § = §(k,~) is sufficiently small. For
r € [k] let us define 7, := v - (2k)"*. We will show by induction on r that (v,,d, r)-good
pair (A, B) in G can be covered by at most r cycles, for all 1 < r < k. Then the lemma
follows by noting that v, < v for all r € [k].

The base case r = 1 follows easily from Lemma applied to G[A, B]. Indeed,
suppose (A, B) is (71,9d,7)-good in G. Then by (P1) we have |A| = |B| > 2, and for
mn < j < (JA]+1)/2, the number of vertices with degree at most j is at most dn < j — 1,
while for j < v1n, the number of vertices of degree at most j is zero. Hence, G[A, B] is
Hamiltonian.

For the induction step, suppose that 7 > 2 and recall that ~, = 7 - (4k)""*. Let (A, B)
be a (v, 9d,7)-good pair in G. We claim that there exist subsets By, B, C B such that
B = B; U By and such that (A, By) is (7,9, 1)-good and (A, By) is (7,—1,0,7 — 1)-good.
If such a partition exists, then the claim follows by applying the induction hypothesis on
the pairs (A, By) and (A, By).

To find the sets By and B,, we use the probabilistic method. Let B; be a subset of
B chosen uniformly at random among all subsets of size |A| (such a set exists because
|B| > |A|). Let B := B\ By and let B] be a subset of B; chosen uniformly at random
among all subsets of size max {0, |A| — |Bj|}. Finally, let By := B} U BJ. Note that
|Bs| = max {|A|, |B| — |A|}. Clearly By and By cover B, and it is enough to show that
with positive probability, (A, By) is (7,9, 1)-good and (A, Bs) is (y,—1, d,r — 1)-good.

We first show that (A, By) is (7,-1,0,7 — 1)-good with probability at least 0.6. Since
(A, B) is (v, d,7)-good we have v,n < |A| < |B| < r|A|. Thus also

Yroan < Yn < A] < [By| = max {[A] [B] — [A]} < (r —1)|A],

verifying (P1) for the pair (A, Bs). It is easy to see that (P2) and (P3) hold for (A, By)
automatically, using the assumption that (A, B) satisfies (P2) and (P3). As far as
(P4) is concerned, it follows from the goodness of (A, B) that for all b € By we have
d(b,A) > vn = v,_1n. It remains to show that with probability at least 0.6 we also
have d(a, By) = v,_1n for all a € A. Fix some a € A. The degree d(a, By) is distributed
hypergeometrically with mean
| Ba|
Eld(a, B2)| = d(a, B) - B > yen/r = 2y, qn,

where we used |By| > |A| > |B|/r and the definition of v,. By the Chernoff bounds, we

obtain
Pld(a, By) < yr_1n] < e 112 < 0.6/n,

if n is sufficiently large given v and k. By the union bound, with probability 0.6, every
a € Asatisfies d(a, By) = 7,—1, and so (P4) holds with probability at least 0.6. Analogously,
one shows that (A, By) is (7, 9, 7)-good with probability at least 0.6, so there exists a choice
of By and By such that (A, By) is (7,0, 1)-good and (A, Bs) is (y,—1,9,7 — 1)-good. [
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Before continuing, we show that for certain stable sets X (namely, those where £’ is
not too small) we can find a partition X = AU B that is ‘almost good’. For this, we have
the following claim. Note that (P2’), (P3’) and (P4’) in the claim correspond exactly to
(P2), (P3) and (P4) in the definition of a good pair (with v = 1/(7k*)). Condition (P5’)
tells us something about the structure of G[B] in the case where |B| > ([k'] — 1)|A].

Lemma 15. For every 6 > 0 and k € N, there is § > 0 such that the following holds for
all sufficiently large n. Let G be a graph of order n and suppose that X is (kK', k, B)-stable
in G where 2 — 4kp < k' < k. Then there exists a partition X = AU B with the following
properties:

(P1°) |Al =n/k £ 6én and |B| = (' — 1)n/k £+ dn and |B| > |A|;

(P2’) d(b, A) = |A| — dn for all but at most én vertices b € B;

(P3’°) d(a, B) > |B| — dn for all but at most on vertices a € A;

(P4’) for alla € A and b € B, we have d(b, A) > n/(7Tk*) and d(a, B) > n/(7k*).
(P5°) we have A(G[B]) < n/(6k*) or |B| < ([K'] —1)|A].

Proof. 1t is enough to show the required properties with 189 instead of . Assume that
is sufficiently smaller than 6. Let I C X be a nearly independent set as in Definition [2]
As a first approximation, we may choose A” := X \ I and B” := I. Then we have (say)
|A"| = n/k £ én and |B"| = (K’ — 1)n/k £ on, using (S1). Moreover, one can use the
properties (S1-3) and an averaging argument to show that d(b, A”) > |A"| — dn holds for
all but at most on vertices b € B” and d(a, B"”) > |B”| — dn holds for all but at most dn
vertices a € A”. Thus we already have (P2’) and (P3’) and also very nearly (P1’) (but not
quite, because it could be that |B| < |A|).

We now modify (A”, B”) to make sure that (P4’) holds. Let S C X be the set of
at most 20n vertices with a deficient degree, i.e., the set of vertices x € A” for which
d(xz, A") < |A"| — én and of vertices © € B” for which d(z, B”) < |B"”| — dn. Since by (S2)
we have §(G[X]) = n/k* — Bn, we can partition S into disjoint sets S, U Sp such that
the vertices of S4 have at least k~%n/3 neighbours in B” and the vertices of Sp have at
least k~%n/3 neighbours in A”. Then we let A’ := A” US4\ Sp and B’ := B"U Sp \ Sa.
Since we only moved around at most 20n vertices, we still have |A’| = n/k £ 30n and
|B'| = (K’ —1)n/k £+ 36n, and we have d(a, B') > |B’| —3dn for all but at most 3dn vertices
a € A’, and similarly for the vertices in B’. However, we have gained the property that
every vertex in A has degree at least k~%n/4 in B, and vice-versa.

Next, we make sure that (P1’) holds. The only issue is that it might be that |B’| < |A’|.
If so, then

(k' — D)n/k —3dn < |B'| < |A'| < n/k+ 3on

implies k' < 2+ 6kon. Since we further assumed that k' > 2 —4k8 > 2 — 6kdn, we see that
in fact, we have |A'| = (k' — 1)n/k £ 90n and |B’| = n/k + 9n, and so by switching A’
with B” we obtain (P1’). Note that this swtiching cannot invalidate any of the symmetric
properties (P2’), (P3), or (P4’).
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Finally, to obtain (P5’), we further modify these sets A" and B’ as follows: as long
as both A(G[B']) > k™*n/6 and |B'| > ([k'] — 1)|4’|, we move a vertex b € B’ with
d(b, B') > k™*n/6 from B’ to A’. Since we have |B'| < (k' — 1)| 4’| + 9dn, we do no move
more than 99n vertices during this process. Call the sets resulting from these modifications
A and B. Then it is easy to verify that (P1-P5’) hold with 180 instead of 6 — note in
particular that it is still the case that |A| < |B| since we stop the process the latest when
Bl = (TK] - DIA] > |A]. 0

The next lemma will take care of the stable sets where &' < 2 — 4k0.

Lemma 16. Let k € N and 5 > 0, where § > 0 s sufficiently small. Let G be a graph
of order n > 3 and let X be (K, k, 3)-stable in G where 1 < k' < 2 — 4kf. Then for any
two distinct vertices x,y € X, there exists a Hamilton path in G[X| whose endpoints are x
and y.

Proof. This follows easily from Lemma[l1] Indeed, by (S1) the graph G[X] has at most
| X| < K'n/k+Bn < (2—4kB)n/k+ pn < 2n/k — 36n

vertices. By (S2), every vertex in G[X] has degree at least n/k* — fn > n/(2k*) and all but
fn vertices have degree at least n/k—Bn > (| X|+1)/2. Thus, for n/(2k*) < j < (| X]+1)/2,
there are at most Bn < j — 1 vertices with degree at most j, while for j < n/(2k*), there
are no vertices with degree at most j. ]

Proof of Lemmal[3. Let G be a graph on n vertices and assume that X is (¥, k, 3)-stable
in G for some real number k' € [1, k], i.e., X satisfies properties (S1), (S2) and (S3) from
Definition 2] Throughout the proof, we will assume that 6 > 0 and 3 > 0 are sufficiently
small constants, where ( is assumed to be much smaller than 9, and that n is sufficiently
large.

The case k' < 2 — 4k of the lemma follows immediately from Lemma |16, Therefore,
we will from now on assume that k' > 2 — 4kf3. In particular there is a partition (A, B) of
X satisfying the properties (P1-P5’) of Lemma . We now prove the different parts of
Lemma, [3

Proof of (a).

Note that if § is sufficiently small, which we assume, then the pair (A, B) is automatically
(k=1/7,6, [k'])-good. Thus by Lemma , the graph G[A, B] can be covered by [k'] cycles,
which immediately yields statement (a) of Lemma [3]

Proof of (b).

To see that (b) holds, fix two vertices z,y € X. By (P2’), (P3’) and (P4’), it is straight-
forward to find vertices a € A and b € B such that z,y,a,b are all distinct, such that
d(a,B) > |B| — én and d(b, A) > |A| — dn, and such that there exist two vertex-disjoint
paths of length at most two from z to a and from y to b, respectively. Let P, and P,
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be these paths and let A" := A\ (V(P) UV (R,)) and B := B\ (V(P,) UV (P,)). Since
k' > 2 — 4kfn, one can check that one of the pairs (A’, B') and (B, A") is (k=1/8, 26, [k"])-
good (note that (A’, B') can fail to be good if |B’| < |A’|). By Lemma [14] this allows us
to cover G[A’ U B’] with at most [k] cycles. At least one of these cycles, call it C', has
length at least |A’|/k > n/k3. Then, since d(b, A) > |A| — én and d(a, B) > |B| — dn, the
pigeonhole principle implies that we can find an edge uv in C' such that au, bv are edges of
G that are not used by any of the cycles used for covering A’ U B’. Then we can replace
C' by the z-y-path P, + P, + au + bv + (C' — uv).

Proof of (c).

Here we assume that all but at most n/k® vertices z € X satisfy d(z, X) > | X|/K, and we
need to show that G[X] can be covered with [k"| — 1 cycles. If we have |B| < ([£"] — 1)|A|
then (A, B) isa (k=*/7,0, [K'] —1)-good pair and using Lemma[l4] we are done immediately.
So assume that |B| > ([k'] — 1)|A|]. Then by property (P5’), we have A(G[B]) < n/(6k*).

We first claim that G[B] contains a matching of size |B| — ([k"] — 1)|A|. To see this,
observe that if a vertex x € B satisfies d(x, X) > | X|/k’ then

|B] = (K = D[]
K ’

using | X | = |A| 4 |B] for the last equality. Since there are at least |B| — n/k® > n/(2k)
vertices x € B such that d(x, X) > | X|/k, this implies

d(z, B) = d(z, X) — d(z, A) > | X|/K — |A| =

(" = D[A]
A2 - n.

e(cB) = 2=

Since the maximum degree of G[B] is at most n/(6k*), Vizing’s theorem implies that the
edges of G[B] can be properly edge-colored with n/(5k%) colors. This in turn means that
G[B] contains a matching of size at least

e(G[B])

Yok |B| — (k' — 1)|A| > |B| — ([K'] = 1)|A],

as claimed.

Denote by M any matching of size |B| — ([k"] — 1)|A| in G[B]. Note that by (P1’) we
have |[M| < |B|— (k' —1)|A| < kdn. By (P4’) each vertex in B has at least n/(7k®) > 5| M|
neighbours in A. Similarly, each vertex of A has at least n/(7k3) — dn > 5| M| neighbours
in B. Using these properties, we can now greedily find a system of |M| vertex-disjoint
paths P, ..., Py of length four with the following properties: each P; contains one edge
of M and visits exactly three vertices in B and two vertices in A; moreover, the endpoints
of P; are vertices a; € A and b; € B such that d(a;, B) > |B| — én and d(b;, A) > |A| — on.

Let S :=V(P)U---UV(Pay). We will use a probabilistic argument to show that
there exists a partition of B into disjoint sets By and By such that the pairs (A, B;) and
(A\ S, By )\ S) are (k7°/30,4, [k'] — 2)-good and (k~°/30, 4, 1)-good, respectively. If we
manage to do so, it will be easy to complete the proof. Indeed, by Lemma [14] we will be
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able to cover G[A, B;] with [k'] — 2 cycles and cover G[A \ S, By \ S] by a single cycle
C. Then it follows from Lemma (13| applied to C, Py, ..., Py that we can in fact cover
G[A, By] by a single cycle, meaning that we can cover G[A, B] with [k'] — 1 cycles, as
required.

It remains for us to show how to obtain By and By. Let B; C B\ S be a subset of B\ S
chosen uniformly at random among all subsets of size ([k'] — 2)|A| and let By :== B\ B;.
Note that since |M| = |B| — ([k"] — 1)|A|, we have

|Ba| = |B] = ([K'] = 2)|A] = [M] +|A].

We claim that with positive probability, the pairs (A, B;) and (A \ S,By \ S) are
(k=2/30,6, [k'] — 2)-good and (k~°/30, 4, 1)-good, respectively. First of all, both pairs
satisfy (P1). For (A, By) this is clear since |By| = ([k'] — 2)|A|. For (A\ S, B2\ S), we
have

B2\ S| = |Ba| = 3[M| = |A] = 2[M| = |A\ 5],

since every path P; uses three vertices of B, and two vertices of A. Properties (P2) and
(P3) hold because of (P2’) and (P3’). Finally, using Chernoff bounds we may show that
(P4) holds for both pairs with positive probability. For example, for the pair (A\ S, B2\ S),
we proceed as follows: for a € A, the degree d(a, By \ 9) is distributed hypergeometrically
with mean Bo\ |
n 2 n
E[d(a, By \ S)] > (B 2 55’
using | B2\ S| = |A| —|S| = n/(2k). Then the required bound on the probability that some
a € A satisfies d(a, By) < n/(30k?) follows from the Chernoff and union bounds. On the
other hand, we have d(b, A\ S) > n/(7Tk*) —|S| > n/(8k*) for all b € By deterministically.
The argument for (A, By) is similar. O
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