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Dynamic contracting: An irrelevance theorem

Péter Eső
Department of Economics, Oxford University

Balázs Szentes
Department of Economics, London School of Economics

This paper generalizes a conceptual insight in dynamic contracting with quasilin-
ear payoffs: the principal does not need to pay any information rents for extract-
ing the agent’s “new” private information obtained after signing the contract. This
is shown in a general model in which the agent’s type stochastically evolves over
time, and her payoff (which is linear in transfers) depends on the entire history of
private and any contractible information, contractible decisions, and her hidden
actions. The contract is offered by the principal in the presence of initial informa-
tional asymmetry. The model can be transformed into an equivalent one where
the agent’s subsequent information is independent in each period (type orthog-
onalization). We show that for any fixed decision–action rule implemented by a
mechanism, the agent’s rents (as well as the principal’s maximal revenue) are the
same as if the principal could observe and contract on the agent’s orthogonalized
types after the initial period. We also show that any monotonic decision–action
rule can be implemented in a Markovian environment satisfying certain regularity
conditions, and we provide a simple “recipe” for solving such dynamic contracting
problems.

Keywords. Asymmetric information, dynamic contracting, mechanism design.

JEL classification. D82, D83, D86.

1. Introduction

Two of the fundamental questions in contract theory and mechanism design are (i) what
determines an agent’s rents (or the uninformed principal’s agency costs) in a given, im-
plementable allocation rule or in the optimal policy, and, a related matter, (ii) what are
the optimal contracts given the principal-designer’s objective. In this paper we provide
answers to both types of questions in a general dynamic contracting environment with
quasilinear payoffs. Our multiperiod principal–agent model involves a stochastically
evolving hidden type as well as hidden actions on the agent’s part. The contractible
per-period decisions and monetary transfers are governed by a contract signed after the
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agent has learned her initial type. The agent’s final payoff can depend, quite generally,
on the histories of her private and (any contractible) public information, her hidden ac-
tions, and the contractible decisions, and it is linear in transfers between the parties.
A wide range of applications of such models is discussed below.

Our main result is to show that the agent’s rents (as well as the principal’s maximal
payoff, if it is also quasilinear) in a given, implementable allocation rule are the same
as if the principal could observe and contract on any “new” (orthogonal) information
observed by the agent after the contract is signed. In the hypothetical benchmark case
where the agent’s future, orthogonalized types are observable and contractible, the prin-
cipal does not need the agent to report any new information beyond the initial period.
Therefore, as far as the expected transfers implementing the allocation rule are con-
cerned, it is inconsequential that in the original problem there is dynamic interaction
between the parties. We term this result a dynamic irrelevance theorem. It holds in a
rich environment, with very little assumed about the agent’s utility function (no single-
crossing or monotonicity assumptions are made), the information structure, and so on.

The dynamic irrelevance (or payment-characterization) result suggests a simple
“recipe” for solving dynamic contracting problems in which the principal’s payoff is
quasilinear in payments. First, solve the benchmark case (where the agent’s only private
information is her initial type and all her orthogonalized future types are observable by
the principal), which is essentially a static problem, hence standard solution methods
are applicable. Second, check whether the solution to the benchmark (a decision–action
rule) is implementable in the original model where the agent’s type history is privately
known. If it is, then the solution has been found. Note that the irrelevance result, which
applies to a given, implementable decision–action rule, has no bearing on whether the
benchmark solution is implementable in the original problem. Indeed, the two prob-
lems are not equivalent : the set of implementable decision–action rules is generally
larger in the benchmark. To address the issue, our final set of results provides sufficient
conditions for a decision–action rule to be implementable in the original problem.

The implementation results are derived in an environment where the agent’s type
follows a Markov process: her payoff is time-separable and it satisfies additional regu-
larity (e.g., single-crossing) conditions. If in each period the principal observes a con-
tractible signal that is informative (however imperfectly) about a summary statistic of
the agent’s type and action (e.g., the principal’s profit that depends on the agent’s qual-
ity and effort), and its distribution is generic, then any monotonic decision rule coupled
with any monotonic action rule is approximately implementable.1 If there are no such
signals, then any monotonic decision rule coupled with agent-optimal actions is imple-
mentable. Therefore, after having solved the benchmark problem in a Markovian, regu-
lar environment, we only need to check if the solution satisfies the appropriate mono-
tonicity condition; if it does, then the original problem is solved. In Section 5 we present
applications in which this approach can be used successfully.2

1The genericity condition and the notion of implementability will be defined precisely in Section 4.
2Little is known about conditions on the model’s primitives under which implementability is the same

in the original and benchmark problems. Battaglini and Lamba (2014) point out that the conditions for
monotonicity of the “pointwise-optimal” decision rule can be quite strong.
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One of the specific applications that we discuss is a dynamic model of investment
advice. The principal is an investor (e.g., wealthy institution) and the agent is an advisor
(e.g., private banker). The contractible variable is the amount of money that the princi-
pal invests with the agent in each period. The return on the investment is determined
by the agent’s type (evolving according to a first-order autoregressive process) and her
costly, hidden effort in each period.3 The investor can observe and contract on a noisy
public signal of the per-period return (e.g., a perceived return that may be affected by
transitory, random events). The contract is offered by the investor after the advisor’s
initial type is realized. In this model we show that the advisor’s rent (the investor’s cost
of agency) in a given, implementable decision–action rule only depends on her initial
type realization (dynamic irrelevance). Any monotonic decision–action rule is approx-
imately implementable. We derive the optimal contract, which is indeed monotonic
and such that distortions dissipate over the long run. Besides this novel application we
solve another two that are more familiar. The first one is a canonical dynamic monopoly
problem in which the buyer’s valuation for the good (her type) stochastically evolves
over time. The second application differs from this as it allows the buyer to invest in her
valuation by taking a private, costly action. We derive the optimal dynamic screening
contract in the absence of any signal about the buyer’s type and action. All distortions
are due to the buyer’s initial private information, again illustrating our dynamic irrele-
vance result.

Models in the class of dynamic contracting problems that we analyze have already
been applied to a wide range of economic problems.4 The roots of this literature reach
back to Baron and Besanko (1984) who used a multiperiod screening model to address
the issue of regulating a monopoly over time. Courty and Li (2000) studied optimal ad-
vance ticket sales, Eső and Szentes (2007a) studied the optimal disclosure of private in-
formation in auctions, and Eső and Szentes (2007b) studied the sale of advice as an ex-
perience good. Farhi and Werning (2013), Golosov et al. (2011), and Kapička (2013) apply
a similar approach to optimal taxation and fiscal policy design, respectively. Pavan et al.
(2014) apply their (to date, most general) results on the multiperiod pure adverse selec-
tion problem to the auction of experience goods (bandit auctions). Garrett and Pavan
(2012) use a dynamic contracting model with both adverse selection and moral haz-
ard to study optimal CEO (chief operating officer) compensation. Such mixed, hidden-
action–hidden-information models could also be applied in insurance problems.

Compared to the received literature (e.g., see the recent work of Pavan et al. 2014),
we not only generalize the model to accommodate hidden actions and contractible sig-
nals, but we also state the main result as one of irrelevance: In these dynamic problems
it is inconsequential whether the agent has access to dynamic deviation strategies. This
result is obtained using an orthogonalized representation of the agent’s private infor-
mation: the agent’s type in each period is constructed to be independent conditional
on the history of types, actions, and decisions (a transformation proposed in Eső and

3The “return” may be more broadly interpreted as a composite score of the investment’s monetary and
nonmonetary (e.g., ethical) gains, differentially affected by the agent’s type and effort.

4Our review of applications is deliberately incomplete; for a more in-depth survey of this literature, see
Krähmer and Strausz (2015a) or Pavan et al. (2014).
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Szentes (2007a) for an independent private value (IPV) auction environment). We show
that in the original problem, where the agent’s orthogonalized future types and actions
are not observable, in any incentive compatible mechanism, the agent’s expected payoff
conditional on her initial type is fully determined by her on-path (in the future, truth-
ful) behavior. The validity of this envelope theorem-type argument rests on the condi-
tional independence of future information. Therefore, the agent’s expected payoff (and
payments) coincide with those in the benchmark case, where the orthogonalized future
types are publicly observable.

The results on the implementability of monotonic decision–action rules in regular,
Markovian environments are first established without hidden actions. Formally, this
special case (unlike the general result) follows from results in Pavan et al. (2014); the
proof relies on showing that if the agent is untruthful in a given period in an incentive
compatible mechanism, she immediately undoes her lie in the following period to make
the principal’s inferences in all future periods correct, and this pins down all continua-
tion payoffs and allows induction on the number of periods. The new results for models
with both hidden information and hidden action are obtained by appropriately reducing
the general model to ones with only adverse selection.5 When there is no contractible
signal about the agent’s type and action, we show that the agent’s per-period utility given
her type and an agent-optimal action satisfies the conditions that apply in the model
with pure adverse selection; hence any monotonic decision rule coupled with an agent-
optimal action is implementable. When there is an imperfect contractible signal about
a summary statistic of the agent’s type and action, we consider a felicity function de-
fined by the agent’s per-period utility as if the summary statistic were contractible and
the agent could be compelled to generate the contracted summary statistic consistent
with her type report. We show that this felicity function satisfies the sufficient condi-
tions applicable under pure adverse selection; hence any decision rule coupled with an
action rule such that both are monotonic in the type (which is implied by monotonic
decision–action rules) is implementable. Finally, we show that with only an imperfect
signal about the summary statistic, any monotonic decision–action rule may be imple-
mented in approximation.

The technical contributions notwithstanding, we believe the most important mes-
sage of the paper is the dynamic irrelevance result. The insight that the principal need
not pay his agent rents for post-contractual hidden information in dynamic adverse se-
lection has been expressed in previous work going back to Baron and Besanko (1984).
Our paper highlights both the depth and the limitations of this insight: Indeed the prin-
cipal who contracts the agent prior to her discovery of new information can limit the
agent’s rents as if he could observe the agent’s orthogonalized future types; however, the
two problems are not equivalent.

The paper is organized as follows. In Section 2 we introduce the model and describe
the orthogonal transformation of the agent’s information. In Section 3 we derive nec-
essary conditions of the implementability of a decision rule and our main, dynamic ir-
relevance result. Section 4 presents sufficient conditions for implementation in Markov

5This technique is familiar from Laffont and Tirole (1986) and has also been used in a dynamic setting
by Garrett and Pavan (2012).
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environments. Section 5 presents the applications; Section 6 concludes. Omitted proofs
are given in Appendices A and B. (Appendix B is available in a supplementary file on the
journal website, http://econtheory.org/supp/2127/supplement.pdf.)

2. Model

Environment

There is a single principal (he) and a single agent (she). Time is discrete, indexed by
t = 0�1� � � � �T <∞. The agent’s private information in period t is θt ∈ �t , where �t =
[θt� θt] ⊂ R. In period t the agent takes action at ∈ At , which is not observed by the
principal. The set At is an open interval of R.6 Then a contractible signal is drawn,
st ∈ St ⊂ R, that is observed by the principal. After st is realized in period t, a contractible
decision is made, denoted by xt ∈ Xt ⊂ R

n. Since xt is contractible, it does not matter
whether it is taken by the agent or by the principal. The contract between the principal
and the agent is signed at t = 0, right after the agent has learned her initial type, θ0.

We denote the history of a variable through period t by superscript t; for example,
xt = (x0� � � � � xt) and x−1 = {∅}. The random variable θt is distributed according to a cu-
mulative distribution function (c.d.f.) Gt(·|θt−1� at−1�xt−1) supported on �t . The func-
tion Gt is continuously differentiable in all of its argument, and the density is denoted
by gt(·|θt−1� at−1�xt−1).

Signal st is distributed according to a continuous c.d.f. Ht (·|θt�at). We assume that
when generating this signal, the agent is able to compensate her type by her action lo-
cally. Formally, there is a δ > 0 such that for all θ̂t , θt , and at , if |θ̂t − θt |< δ, then there
is an ât such that Ht (·|θt�at) = Ht (·|θ̂t � ât). This assumption ensures that the principal
cannot resolve the adverse selection problem by requiring the agent to take a certain
action and using signal st to detect the agent’s type. A consequence of this assumption
is that there exists a function ft : �t ×At → R such that the distribution of st depends
only on ft(θt� at), that is, Ht (·|θt�at)=Ht(·|ft(θt� at)) for some conditional c.d.f.Ht .7 We
assume that ft is continuously differentiable. We may interpret st as an imperfect public
summary signal about the agent’s current type and action; for example, in Application 3
in Section 5 it will be st = θt + at + ξt , where ξt is noise with a known distribution.

The agent’s total payoff is quasilinear in money and is defined by

ũ(θT �aT � sT �xT )−p�

where p ∈R denotes the agent’s payment to the principal, and ũ :�T ×AT ×ST ×XT →
R is continuously differentiable in θt and at for all t = 0� � � � �T . We do not specify the
principal’s payoff. In some applications (e.g., where the principal is a monopoly and the
agent is its customer) it could be the payment itself; in others (e.g., where the principal

6The setAt is assumed to be one-dimensional for convenience; its openness is posited to exclude corner
solutions for reasons explained in footnote 7.

7Openness of At is assumed to ensure that for all θ̂t , θt , and at , there exists ât such that ft(θt � at) =
ft(θ̂t � ât ). If At were compact then there would be a pair, (θ′

t � a
′
t ), that maximizes ft . Therefore, if θ̂t /∈

arg maxθt [maxat ft (θt � at)], then ft(θt � at)= ft(θ̂t � ât ) would not hold for any ât .

http://econtheory.org/supp/2127/supplement.pdf
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is a social planner and the agent the representative consumer) it could be the agent’s
expected payoff; in yet other applications it could be something different.

We denote partial derivatives with a subscript referring to the variable of differenti-
ation, e.g., ũθt ≡ ∂ũ/∂θt , ftθt ≡ ∂ft/∂θt , etc.

Orthogonalization of information

The model can be transformed into an equivalent one where the agent’s private infor-
mation is represented by serially independent random variables. Suppose that at each
t = 0� � � � �T , the agent observes εt =Gt(θt |θt−1� at−1�xt−1) instead of θt . Clearly, εt can
be inferred from (θt� at−1�xt−1). Conversely, θt can be computed from (εt� at−1�xt−1),
that is, for all t = 0� � � � �T , there is ψt : [0�1]t ×At−1 ×Xt−1 →�t such that

εt =Gt(ψt(εt� at−1�xt−1)|ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)�

where ψt(εt� at−1�xt−1) denotes (ψ0(ε0)� � � � �ψt(ε
t� at−1�xt−1)). In other words, if the

agent observes (εt� at−1�xt−1) at time t in the orthogonalized model, she can infer the
type history ψt(εt� at−1�xt−1) in the original model.

Of course, a model where the agent observes εt for all t is strategically equivalent to
the one where she observes θt for all t (provided that in both cases she observes xt−1

and recalls at−1 at t). By definition, εt is uniformly distributed on the unit interval for
all t and all realizations of θt−1, at−1, and xt−1; hence the random variables {εt}T0 are
independent across time.8 There are many other orthogonalized information structures
(e.g., those obtained by strictly monotonic transformations). In what follows, to simplify
notation, we fix the orthogonalized information structure as that where εt is uniform on
Et = [0�1].

The agent’s gross payoff (i.e., utility before payments are subtracted) in the orthogo-
nalized model, u : ET ×AT × ST ×XT → R, becomes

u(εT �aT � sT �xT )= ũ(ψT (εT �aT−1�xT−1)�aT � sT �xT )�

Revelation principle

A deterministic mechanism is a four-tuple (ZT �xT �aT �p), where Zt is the agent’s mes-
sage space at time t, xt : Zt × St → Xt is the contractible decision rule at time t, at :
Zt × St−1 →At is a recommended action at t, and p :ZT × ST → R is the payment rule.
The agent’s reporting strategy at t is a mapping from previous reports and information
to a message.

We refer to a strategy that maximizes the agent’s payoff as an equilibrium strategy
and the payoff generated by such a strategy as equilibrium payoff. The standard reve-
lation principle applies in this setting, so it is without loss of generality to assume that

8To see that each εt is uniform on [0�1] conditional on the history of types, actions, and decisions up
to t, note that since εt =Gt(θt |θt−1� at−1�xt−1), the probability of εt ≤ ε̄ is Pr(Gt(θt |θt−1� at−1�xt−1)≤ ε̄)=
Pr(θt ≤G−1

t (ε̄|θt−1� at−1�xt−1))=Gt(G−1
t (ε̄|θt−1� at−1�xt−1)|θt−1� at−1�xt−1)= ε̄.
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Zt = Et for all t, and to restrict attention to mechanisms where telling the truth and tak-
ing the recommended action (obedience) is an equilibrium strategy. A direct mecha-
nism is defined by a triple (xT �aT �p), where xt : E t × St →Xt , at : E t × St−1 →At , and
p : ET × ST → R. Direct mechanisms in which telling the truth and obeying the princi-
pal’s recommendation is an equilibrium strategy are called incentive compatible mech-
anisms.

We call a decision–action rule (xT �aT ) implementable if there exists a payment rule,
p : ET → R such that the direct mechanism (xT �aT �p) is incentive compatible.

Technical assumptions

We make three technical assumptions to ensure that the equilibrium payoff function of
the agent is Lipschitz-continuous in the orthogonalized model.

Assumption 0. (i) There exists a K ∈ N such that for all t = 1� � � � �T and for all θT , aT ,
sT , xT ,

ũθt (θ
T �aT � sT �xT )� ũat (θ

T �aT � sT �xT ) <K�

(ii) There exists aK ∈N such that for all t = 1� � � � �T , τ < t, and for all θt , at−1, xt−1,

Gtθt (θt |θt−1� at−1�xt−1)� |Gtθτ(θt |θt−1� at−1�xt−1)|<K�

(iii) There exists a K ∈ N such that for all t = 1� � � � �T and for all θt , at , ftat (θt� at) 	= 0
and ∣∣∣∣ftθt (θt� at)ftat (θt� at)

∣∣∣∣<K�
3. The main result

We refer to the model in which the principal never observes the agent’s types as the orig-
inal model, whereas we call the model where ε1� � � � � εT are observed by the principal
the benchmark case. The contracting problem in the benchmark is static in the sense
that the principal only needs the agent to report her information at t = 0. Our irrele-
vance result is that in any mechanism that implements a given decision–action rule in
the original model, the principal pays the agent the same rent (i.e., he can achieve the
same expected revenue) as in the benchmark case.

Specifically, what we show below is that the expected transfer payment of an agent
with a given initial type when the principal implements decision–action rule (xT �aT ) in
the original problem is the same (up to a type-invariant constant) as it would be in the
benchmark. This implies that the principal can obtain the same expected revenue (or
payoff, if it is linear in the expected revenue) when implementing a decision–action rule
in the original problem as he could in the benchmark. This does not imply, however,
that the two problems are equivalent: sufficient conditions of implementability (of a
decision rule) are stronger in the original problem than they are in the benchmark. We
will turn to the question of implementability in Section 4.
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In the next subsection we consider a decision–action rule (xT �aT ) and derive a nec-
essary condition for the payment rule p such that (xT �aT �p) is incentive compatible.
This condition turns out to be the same in the benchmark case and in the original model.
We then use this condition to prove our main, irrelevance result.

3.1 Payment rules

We fix an incentive compatible mechanism (xT �aT �p) and analyze the consequences of
time-0 incentive compatibility on the payment rule, p, in both the original model and
the benchmark.

We consider a particular set of deviation strategies and explore the consequence
of the nonprofitability of these deviations in each case. To this end, let us define this
set as follows: If the agent with initial type ε0 reports ε̂0, then (i) she must report
ε1� � � � � εT truthfully and (ii) for all t = 0� � � � �T , after history (εt� st−1), she must take
action ât (εt� ε̂0� s

t−1) such that the distribution of st is the same as if the history were
(̂ε0� ε

t
−0� s

t−1) and action at (̂ε0� ε
t
−0� s

t−1)were taken, where εt−0 = (ε1� � � � � εt). Since the
distribution of st only depends on ft(θt� at), the action ât (εt� ε̂0� s

t−1) is defined by

ft(θ̂t �at (̂ε0� ε
t
−0� s

t−1))= ft(θt� ât (εt� ε̂0� s
t−1))� (1)

where

θ̂t = ψt(̂ε0� ε
t
−0�at−1(̂ε0� ε

t−1
−0 � s

t−2)�xt−1(̂ε0� ε
t−1
−0 � s

t−1))

θt = ψt(ε
t� ât−1(εt−1� ε̂0� s

t−2)�xt−1(̂ε0� ε
t−1
−0 � s

t−1))�

In other words, the deviation strategies we consider require the agent (i) to be truthful in
the future about her orthogonalized types and (ii) to take actions that “mask” her earlier
lie so that the principal could not detect her initial deviation based on the contractible
signals, even in a statistical sense.9 Note that in the benchmark case we only need to
impose restriction (ii) since the principal observes ε1� � � � � εT by assumption. Also note
that the strategies satisfying restrictions (i) and (ii) include the equilibrium strategy in
the original model because if ε0 = ε̂0, the two restrictions imply truth-telling and obedi-
ence (adherence to the action rule).

We emphasize that we do not claim by any means that after reporting ε̂0 it is optimal
for the agent to follow a continuation strategy defined by restrictions (i) and (ii). Never-
theless, since the mechanism (xT �aT �p) is incentive compatible, none of these devia-
tions is profitable for the agent. We show that this observation enables us to characterize
the expected payment of the agent conditional on ε0 up to a type-invariant constant.

Let �0(ε0) denote the agent’s expected equilibrium payoff conditional on her initial
type ε0 in the incentive compatible mechanism (xT �aT �p); that is,

�0(ε0)=E[
u(εT �aT (εT � sT−1)� sT �xT (εT � sT ))− p(εT )|ε0

]
� (2)

where E denotes expectation over εT and sT .

9Similar ideas are used by Pavan et al. (2014) in a dynamic contracting model without hidden action and
by Garrett and Pavan (2012) in a more restrictive environment with hidden action.
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Proposition 1. If the mechanism (xT �aT �p) is incentive compatible either in the origi-
nal model or in the benchmark case, then, for all ε0 ∈ E0,

�0(ε0)=�0(0)+E
[∫ ε0

0
uε0(y�ε

T
−0�aT (y�εT−0� s

T−1)� sT �xT (y�εT−0� s
T ))dy

∣∣∣ε0

]

+E
[∫ ε0

0

T∑
t=0

uat (y�ε
T
−0�aT (y�εT−0� s

T−1)� sT �xT (y�εT−0� s
T )) (3)

× âtε0(y�ε
t
−0� y� s

t−1)dy
∣∣∣ε0

]
�

where (y�εt−0)= (y�ε1� � � � � εt).

Proposition 1 establishes that in an incentive compatible mechanism that imple-
ments a particular decision–action rule the expected payoff of the agent with a given
(initial) type does not depend on the transfers. Analogous to the necessity part of the
Spence–Mirrlees lemma in static mechanism design (or Myerson’s revenue equivalence
theorem), necessary conditions similar to (3) have been derived in dynamic environ-
ments by Baron and Besanko (1984), Courty and Li (2000), Eső and Szentes (2007a),
Pavan et al. (2014), Garrett and Pavan (2012), and others. In our environment, which
is not only dynamic but incorporates both hidden information and hidden action as
well, the real significance of the result is that the same formula applies in the original
problem and in the benchmark case.10

It may be instructive to consider the special case where the principal has no access
to contractible signals or, equivalently, the distribution of st is independent of (θt� at).
Since the choice of at has no impact on xT and pT , the agent chooses at to maximize
her utility. A necessary condition of this maximization is E[uat (εT �aT (εT � sT−1)� sT �

xT (εT � sT ))|εt� st−1] = 0 for all t. As a consequence the last term of�0(ε0), i.e., the second
line of (3), vanishes.

Proof of Proposition 1. First we express the agent’s reporting problem at t = 0 in
the benchmark case as well as in the original problem subject to restrictions (i) and (ii)
discussed at the beginning of this subsection.

To do this define

U(ε0� ε̂0)=E[u(εT � âT (εT � ε̂0� s
T−1)� sT �xT (̂ε0� ε

T
−0� s

T ))|ε0]
and

P(̂ε0)=E[p(̂ε0� ε
T
−0� s

T )|ε0� a
T = âT (εT � ε̂0� s

T−1)�xT = xT (̂ε0� ε
T
−0� s

T )]� (4)

where â is defined by (1). Recall that the action ât (εt� ε̂0� s
t−1) generates the same dis-

tribution of st as if the agent’s true type history was (̂ε0� ε
t
−0) and the agent had taken

10The derivation relies on the connectedness of the support of the type distributions. In a simpler envi-
ronment, Krähmer and Strausz (2015b) show that the irrelevance result fails with discrete types.
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at (̂ε0� ε
t
−0� s

t−1). The significance of this is that

E[p(̂ε0� ε
T
−0� s

T )|ε0� a
T = âT (εT � ε̂0� s

T−1)�xT = xT (̂ε0� ε
T
−0� s

T )]
=E[p(̂ε0� ε

T
−0� s

T )|̂ε0� a
T = aT (̂ε0� ε

T
−0� s

T−1)�xT = xT (̂ε0� ε
T
−0� s

T )]�

so the right-hand side of (4) is indeed only a function of ε̂0 but not that of ε0.
In the benchmark case, the payoff of the agent with ε0 who reports ε̂0 and takes

action ât (εt� ε̂0� s
t−1) at every t is W (ε0� ε̂0) = U(ε0� ε̂0)− P(̂ε0). Note that W (ε0� ε̂0) is

also the payoff of the agent in the original model if her type is ε0 at t = 0, she reports
ε̂0, and her continuation strategy is defined by restrictions (i) and (ii) above, that is, she
reports truthfully afterward and takes action ât (εt� ε̂0� s

t−1) after the history (εt� st−1).
Incentive compatibility of (xT �aT �p) implies that ε0 ∈ arg max̂ε0∈E0 W (ε0� ε̂0) both

in the benchmark case and in the original model. In addition, �0(ε0)=W (ε0� ε0) and,
by Lemma 3 stated and proved in Appendix A, �0 is Lipschitz-continuous. Therefore,
Theorem 1 in Milgrom and Segal (2002) implies that

d�0(ε0)

dε0
= ∂U(ε0� ε̂0)

∂ε0

⌋
ε̂0=ε0

almost everywhere. (Differentiability of ât in ε0 is also established in the proof of
Lemma 3.) Note that

∂U(ε0� ε̂0)

∂ε0

⌋
ε̂0=ε0

=E[uε0(ε
T �aT (εT � sT−1)� sT �xT (εT � sT ))|ε0]

+E
[
T∑
t=0

uat (ε
T �aT (εT � sT−1)� sT �xT (εT � sT ))̂atε0(ε

t� ε̂0� s
t−1)
̂ε0=ε0

∣∣∣ε0

]
�

Since �0 is Lipschitz-continuous, it can be recovered from its derivative, so the state-
ment of the proposition follows. �

Note that the validity of the proof of Proposition 1 rests on the fact that the distri-
bution of the agent’s future, orthogonalized types (ε1� � � � � εT ) does not depend on the
realization of ε0; otherwise there would be additional terms involving the derivatives
(with respect to ε0) of the conditional densities of future types in the expression for
∂U(ε0� ε̂0)/∂ε0.

By Proposition 1, for a given decision–action rule, incentive compatibility con-
straints pin down the expected payments conditional on ε0 uniquely up to a constant
in both the benchmark case and the original model. To see this, note that from (2) and
(3) the expected payment conditional on ε0 can be expressed as

E[p(εT � sT )|ε0�aT �xT ]
=E[u(εT �aT (εT � sT−1)� sT �xT (εT ))|ε0] −�0(0)
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−E
[∫ ε0

0
uε0(y�ε

T
−0�aT (y�εT−0� s

T−1)� sT �xT (y�εT−0� s
T ))dy

∣∣∣ε0

]

−E
[∫ ε0

0

T∑
t=0

uat (y�ε
T
−0�aT (y�εT−0� s

T−1)� sT �xT (y�εT−0� s
T ))

× âtε0(y�ε
t
−0� y� s

t−1)
∣∣∣ε0

]
�

An immediate consequence of this observation and Proposition 1 is the following
remark.

Remark 1. Suppose that (xT �aT �p) and (xT �aT �p) are incentive compatible mecha-
nisms in the original and in the benchmark case, respectively. Then there exists c ∈ R

such that

E[p(εT � sT )|ε0�aT �xT ] −E[p(εT � sT )|ε0�aT �xT ] = c�

3.2 Dynamic irrelevance

Now we show that the principal can achieve the same expected revenue implement-
ing a decision rule as if he were able to observe the orthogonalized types of the agent
after t = 0; that is, whenever a decision rule is implementable, the agent only receives
information rents for her initial private information. This is our irrelevance result.

To state this result formally, suppose that the agent has an outside option, which we
normalize to be zero. This means that any mechanism must satisfy

�0(ε0)≥ 0� for all ε0 ∈ E0� (5)

We call the maximum (supremum) of the expectation of payment p implement-
ing (xT �aT ) and satisfying (5) the principal’s maximal revenue from implementing
(xT �aT ).11

Theorem 1. Suppose that decision rule (xT �aT ) is implementable in the original model.
If payment rule p implements (xT �aT ) in the benchmark case subject to (5), then there
exists payment rule p that implements (xT �aT ) subject to (5) in the original model such
that

E[p(εT � sT )|ε0�aT �xT ] =E[p(εT � sT )|ε0�aT �xT ]� (6)

In addition, the principal’s maximal revenue from implementing (xT �aT ) in the original
model is the same as in the benchmark case.

11Requiring (5) for all ε0 implies that we restrict attention to mechanisms where the agent participates
irrespective of her type. This is without the loss of generality in many applications where there is a decision
that generates a utility of zero for both the principal and the agent. Alternatively, we could have stated our
theorem for problems where the participating types in the optimal contract of the benchmark case are an
interval.
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Proof. Suppose that the direct mechanism (xT �aT � p̂) is incentive compatible in the
original model. Then, by Remark 1,

E[̂p(εT � sT )|ε0�aT �xT ] = E[p(εT � sT )|ε0�aT �xT ] + c (7)

for some c ∈ R. Define p(εT � sT ) to be p̂(εT � sT ) − c. Since adding a constant has no
effect on incentives, the mechanism (xT �aT �p) is incentive compatible. In addition, the
participation constraint of the agent, (5), is also satisfied because the agent’s expected
payoff conditional on her initial type, ε0, is the same as that in the benchmark case.
Finally, notice that (7) implies (6), that is, the principal’s revenue is the same as in the
benchmark case.

It remains to argue that the principal’s maximal revenue from implementing (xT �aT )
in the original model is the same as in the benchmark case. Note that the principal’s
expected revenue in the benchmark case is an upper bound on the same in the original
model. We have just shown that if p implements (xT �aT ) in the benchmark case, the
principal can achieve E[p(εT � sT )|aT �xT ] when implementing (xT �aT ) even if he does
not observe ε1� � � � � εT . �

The statement of Theorem 1 is about the revenue of the principal. Note that if the
payoff of the principal is also quasilinear (affine in the payment), then the decision rule
and the expected payment fully determine his payoff. Hence, a consequence of Theo-
rem 1 is the following remark.

Remark 2. Suppose that the decision–action rule (xT �aT ) is implementable in the orig-
inal model and the principal’s payoff is affine in the payment. Then the principal’s max-
imum (supremum) payoff from implementing (xT �aT ) is the same as in the benchmark
case.

It is important to point out that our dynamic irrelevance result does not imply that
the original problem (unobservable ε1� � � � � εT ) and the benchmark case (observable
ε1� � � � � εT ) are equivalent. Theorem 1 only states that if an decision–action rule is imple-
mentable in the original model, then it can be done so without revenue loss as compared
to the benchmark case. This result was obtained under very mild conditions regarding
the stochastic process governing the agent’s type, her payoff function, and the structure
of signals. The obvious, next question is what type of decision–action rules can be im-
plemented (under what conditions) in the original problem. In the next section we show
that monotonicity of the decision–action rule is sufficient for implementation in certain
environments. This result is used to solve applications in Section 5.

4. Implementation

This section establishes results regarding the implementability of certain decision
rules.12 We restrict attention to a Markov environment with time-separable, regular

12Throughout this section we require a type-invariant participation constraint for the agent with her
outside option normalized to zero payoff, that is, we require (5) to hold.
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(monotonic and single-crossing) payoff functions, formally stated in Assumptions 1 and
2 below.

First, we show that in the pure adverse selection model (where there are neither
unobservable actions nor contractible signals) any monotonic decision rule is imple-
mentable. Then we turn our attention to the general model with moral hazard. There
the set of implementable decision rules depends on the information content of the con-
tractible signal. If the contractible signal has no informational content, that is, the dis-
tribution of st is independent of ft(θt� at), then naturally the agent cannot be given in-
centives to choose any action other than the one that maximizes her flow utility in each
period. In this case, we show that any decision–action rule can be implemented if xT is
monotonic and aT is determined by the agent’s per-period maximization problem.

The most interesting (and permissive) implementation result is obtained in the gen-
eral model with adverse selection and moral hazard in case the signal is informative and
its distribution satisfies a genericity condition due to McAfee and Reny (1992). This con-
dition requires that the distribution of st conditional on any given yt = ft(θt� at) is not
the average of signal distributions conditional on other ŷt 	= yt ’s such that ŷt = ft(θ̂t � ât).
In this case, we show that any monotonic decision–action rule (xT �aT ) can be approxi-
mately implemented (to be formally defined below).13 The result is based on arguments
similar to the full surplus extraction theorem of McAfee and Reny (1992) and exploits the
property of the model that ft is approximately contractible and the agent is risk neutral
with respect to monetary transfers. The main result of this section is that in our general
model, in a regular Markovian environment with transferable utility and generic signals,
the principal is able to implement any monotonic decision–action rule while not incur-
ring any agency cost apart from the information rent due to the agent’s initial private
information.

So as to state the regularity assumptions made throughout the section, we return
to the model without orthogonalization. Throughout this section, we assume that the
contractible signal does not affect the agent’s payoff directly and we remove sT from
the arguments of ũ, that is, ũ : �T ×AT ×XT → R. We make two sets of assumptions
regarding the environment. The first set concerns the type distribution; the second set
concerns the agent’s payoff function.

Assumption 1 (Type distribution). (i) For all t ∈ {0� � � � �T }, the random variable θt is
distributed according to a continuous c.d.f. Gt(·|θt−1) supported on an interval
�t = [θt� θt].

(ii) For all t ∈ {1� � � � �T },Gt(·|θt−1)≥Gt(·|θ̂t−1) whenever θt−1 ≤ θ̂t−1.

Part (i) of Assumption 1 states that the agent’s type follows a Markov process, that
is, the type distribution at time t only depends on the type at (t − 1) and not on prior
actions or decisions. In addition, the support of θt only depends on t, so any type on �t
can be realized irrespective of θt−1. Part (ii) states that the type distributions at time t

13The approximation can be dispensed with if the contractible signal is the summary statistic ft(θt � at)
itself.
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are ordered according to first-order stochastic dominance. The larger is the agent’s type
at time t − 1, the more likely it is to be large at time t.

Assumption 2 (Payoff function). (i) There exist {ũt}Tt=0, ũt :�t ×At ×Xt → R continu-
ously differentiable, such that

ũ(θT �aT �xT )=
T∑
t=0

ũt(θt� at� x
t)�

(ii) For all t ∈ {0� � � � �T }, ũt is strictly increasing in θt .

(iii) For all t ∈ {0� � � � �T }, θt ∈ �t , at ∈ At : ũtθt (θt� at� xt) ≥ ũtθt (θt� at� x̂
t) whenever

xt ≥ x̂t .

Part (i) of Assumption 2 says that the agent’s utility is additively separable over time,
such that her flow utility at time t only depends on θt and at (and not on any prior in-
formation and action) besides all decisions taken at or before t. Part (ii) requires the
flow utility to be monotonic in the agent’s type. Part (iii) is the standard single-crossing
property for the agent’s type and the contractible decision.

We refer to the model as the one with pure adverse selection if ũtat ≡ 0 for all t and
the distribution of st is independent of ft . Next we state our implementation result for
this case (Proposition 2). Then in Sections 4.1 and 4.2 we return to the general model
with moral hazard. In both scenarios regarding the informational content of signal st
discussed above we reduce the problem of implementation to that in an appropriately
defined pure adverse selection problem.

Proposition 2. Suppose that Assumptions 0, 1, and 2 hold in a pure adverse selection
model. Then a decision rule, x̃T , x̃t :�t →Xt , is implementable if x̃t is increasing for all t.

By Corollary 2 of Pavan et al. (2014), Assumptions 1 and 2 imply their integral
monotonicity condition; slight differences between their and our technical assumptions
notwithstanding, our Proposition 2 appears to be an implication of their Theorem 2.
For completeness, a proof using techniques of Eső and Szentes (2007a) is provided in
Appendix B.14

4.1 Uninformative signals

Suppose that the contractible signal is uninformative (i.e., st is independent of ft ). We
maintain the assumption that the payoff function of the agent is time-separable and
satisfies Assumption 2, but now the flow utility at time t is allowed to vary with at .

Recall that the action space of the agent at time t, At , was assumed to be an open
interval of R in Section 2. This assumption ensured that the agent could mask earlier
lies (about her type) with her later hidden actions without being given away by signal st .
Since there is no role for signal st in the case considered here, we can relax the require-

14At the end of this proof we also show that the principal can implement more allocations in the bench-
mark case than in the original model.
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ment that At is open. In fact, so as to discuss the implementability of allocation rules
that may involve boundary actions, we assume that At = [at�at] is a compact interval
throughout this subsection.

Assumption 3. For all t ∈ {0� � � � �T }, for all θt ∈�t , at� ât ∈At , and xt� x̂t ∈Xt ,

(i) ũta2
t
(θt� at� x

t)≤ 0

(ii) ũtθt (θt� at� x
t)≥ ũtθt (θt� ât � x̂t)whenever at ≥ ât

(iii) ũtat (θt� at� x
t)≥ ũtat (θt� at� x̂t) whenever xt ≥ x̂t .

Part (i) of the assumption states that the agent’s payoff is a concave function of her
action. This is satisfied in applications where the action of the agent is interpreted as an
effort, and the cost of exerting effort is a convex function of the effort. Part (ii) states that
the single-crossing assumption is also satisfied for the action. In the previous applica-
tion, this means that the marginal cost of effort is decreasing in the agent’s type. Part (iii)
requires the single-crossing property to hold with respect to actions and decisions.

In what follows, we turn the problem of implementation in this environment with
adverse selection and moral hazard into one of pure adverse selection. Since there is
no contractible information about the agent’s action, her action maximizes her payoff
in each period and after each history; that is, if the agent has type θt and the history of
decisions is xt , then she takes an action that maximizes ũt(θt� at� xt). Motivated by this
observation, let us define the agent’s new flow utility function at time t, vt :�t ×Xt →R,
to be

vt(θt�x
t)= max

at
ũt(θt� at� x

t)�

We will apply our implementation result for the pure adverse selection case (Proposi-
tion 2) to the setting where the flow utilities of the agent are {vt}Tt=0 while keeping in
mind that the action of the agent in each period t maximizes ũt .

To this end, let at (θt� xt) denote the generically unique arg maxat ũt(θt� at� x
t) for all

θt ∈�t and xt ∈Xt . By part (i) of Assumption 3, if at (θt� xt) is interior, it is defined by the
first-order condition

ũtat (θt�at (θt� xt)�xt)= 0� (8)

The next lemma states that the flow utilities, {vt}T0 , satisfy the hypothesis of Proposi-
tion 2.

Lemma 1. Suppose that the functions {ũt}Tt=0 satisfy Assumptions 2 and 3. Then the func-
tions {vt}Tt=0 satisfy Assumption 2.

Suppose that the decision–action rule (xT �aT ) is implementable. Then, since the
agent’s action maximizes her payoff in each period, at (θt) = at (θt�xt (θt)). In addition,
the decision rule xT must be implementable in the pure adverse selection model, where
the agent’s flow utility functions are {vt}Tt=1. Hence, the following result is a consequence
of Proposition 2 and Lemma 1.
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Proposition 3. Suppose that Assumptions 0–3 hold. Then a decision rule, (̃xT � ãT ), x̃t :
�t →Xt and ãt :�t →At , is implementable if x̃t is increasing and ãt (θt)= at (θt� x̃t (θt))
for all t ∈ {0� � � � �T }.

Of course, the statement of this proposition is valid even if the contractible signal is
informative (st depends on ft ) but the principal ignores it and designs a mechanism that
does not condition on sT . However, if st is informative about ft(θt� at) the principal can
implement more decision rules, which is the subject of the next subsection.

4.2 Informative signals

We turn our attention to the case where the contractible signal is informative. The next
condition is due to McAfee and Reny (1992); it requires that the distribution of the con-
tractible signal conditional of any given value of y0 = ft(θt� at) is not the average of the
distribution of st conditional on other values of ft . This condition is generic.

Assumption 4. Suppose that for all θt ∈ �t and at ∈At , ft(θt� at) ∈ Yt = [y
t
� yt]. Then,

for all μ ∈ 
[y
t
� yt] and y0 ∈ [y

t
� yt], μ({y0}) 	= 1 implies h(·|y0) 	= ∫ yt

y
t
h(·|y)μ(dy).

Next, we make further assumptions on the agent’s flow utility, ũt , and on the shape
of the function ft .

Assumption 5. For all t ∈ {0� � � � �T }, for all θt ∈�t , at ∈At , xt ∈Xt ,

(i) ũtat (θt� at� x
t) < 0

(ii) there exists aK ∈N such that ftat (θt� at)� ftθt (θt� at) > 1/K

(iii) fta2
t
(θt� at)ftθt (θt� at)≤ ftat (θt� at)ftatθt (θt� at)

(iv) ũtθtxτ (θt� at� x
t)ftat (θt� at)≥ ũtatxτ (θt� at� xt)ftθt (θt� at).

Part (i) requires the agent’s flow utility to be decreasing in her action. This is satis-
fied in applications where, for example, the agent’s unobservable action is a costly effort
from which she does not benefit directly. Part (ii) says that the function ft is increas-
ing in both the agent’s action and type. In many applications, the distribution of the
contractible signal can be ordered according to first-order stochastic dominance. In
these applications, part (ii) implies that an increase in either the action or the type im-
proves the distribution of st in the sense of first-order stochastic dominance. Part (iii)
is a substitution assumption regarding the agent’s type and hidden action in the value
of ft . It means that an increase in at , holding the value of ft constant, weakly de-
creases the marginal impact of at on ft .15 This assumption is satisfied, for example,
if ft(θt� at)= θt + at , but it is clearly more general. As will be explained later, part (iv) is

15To see this interpretation, note that the total differential of ftat (the change in the marginal impact of at )
is fta2

t
dat + ftatθt dθt . Keeping ft constant (moving along an “isovalue” curve) means dθt = (−ftat /ftθt ) dat .

Substituting this into the total differential of ftat yields (fta2
t
− ftatθt ftat /ftθt ) dat . This expression is nonpos-

itive for dat > 0 if part (iii) is satisfied.
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a strengthening of the single-crossing property posited in part (iii) of Assumption 2. It
requires the marginal utility in type to be increasing in the contractible decision while
holding the value of ft fixed. This assumption is satisfied, for example, if the effort cost
of the agent is additively separable in her flow utility.

The key observation is that due to Assumption 4, the value of ft becomes an approx-
imately contractible object in the following sense. For each value of ft , yt , the principal
can design a transfer scheme depending only on sT that punishes the agent for taking
an action that results in a value of ft that is different from yt . Perhaps more importantly,
the punishment can be arbitrarily large as a function of the distance between yt and the
realized value of ft . We use this observation to establish our implementation result in
two steps. First, we treat ft (for all t) as a contractible object, that is, we add another di-
mension to the contractible decisions in each period. Since, conditional on θt , the value
of ft is determined by at , we can express the agent’s flow utility as a function of ft instead
of at . These new flow utilities depend only on types and decisions, so we have a pure ad-
verse selection model. We then show that the new flow utilities satisfy the requirements
of Proposition 2 and hence, every monotonic rule is implementable. The second step is
to construct the punishment transfers mentioned above and show that even if ft is not
contractible, any monotonic decision rule can be approximately implementable.

For each yt ∈ {ft(θt� at) : θt ∈�t�at ∈At} and θt ∈�t , let at (θt� yt) denote the solution
to ft(θt� at)= yt in at . For each t = 0� � � � �T , we define the agent’s flow utility as a function
of yt as

wt(θt� yt� x
t)= ũt(θt�at (θt� yt)�x

t)�

Next, we show that the functions {wt}Tt=0 satisfy the hypothesis of Proposition 2.

Lemma 2. Suppose that Assumptions 2–5 are satisfied. Then the functions {wt}Tt=0 satisfy
Assumption 2.

By this lemma and Proposition 2, if the value of ft was contractible for all t, any in-
creasing decision rule was implementable. However, ft is not contractible; nevertheless
we can still implement increasing decisions rules approximately in the sense that by fol-
lowing the principal’s recommendation the agent’s expected utility is arbitrarily close to
her equilibrium payoff. The following definition gives this concept formally.

Definition 1. The decision rule (̃xT � ãT ) is approximately implementable if for all δ > 0
there exists a payment rule p̃ : �T × ST →R such that for all θ0 ∈�0,

EsT

[
T∑
t=0

ũt(θt� ãt (θt)� x̃t (θt))− p̃(θT � sT )
∣∣∣θ0

]
≥�0(θ0)− δ� (9)

where �0(θ0) denotes the agent’s equilibrium payoff with initial type θ0.

We are ready to state the implementation result of this subsection.

Proposition 4. Suppose that Assumptions 0–5 are satisfied. Then a decision rule,
(̃xT � ãT ), x̃t :�t →Xt and ãt :�t →At , is approximately implementable if x̃t and ãt are
increasing for all t ∈ {0� � � � �T }.
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In the proof of this proposition, we decomposed the gain from any deviation strat-
egy into two parts. The first part is the difference between the payoff from truth-telling
and deviating in the hypothetical model where yt is contractible. The second part is the
difference between the payoff from the misreporting strategy and taking actions corre-
sponding to the misreports and the payoff from misreporting and taking actions opti-
mally. Then we use Proposition 2 to construct payments so that the first part is neg-
ative and use the payment construction of McAfee and Reny (1992) to guarantee that
the second part is small. If we were able to show that the loss due to a misreporting in
the hypothetical model where yt is contractible is large if the deviation results in a de-
cision rule that is far away from the intended decision rule, then we can prove that any
profitable deviation results in a decision rule that is nearby the intended one. Since the
optimal strategy in any mechanism is implementable, it would imply that there is an
implementable decision rule nearby any increasing decision rule. So as to get a bound
on deviation payoffs, just like in static mechanism design, we need to require the pay-
off function wt to satisfies the strict single-crossing property. It turns out that the strict
single-crossing property is satisfied if part (iii) Assumption 2 and part (iv) of Assump-
tion 5 hold with strict inequalities.

Proposition 5. Suppose that Assumptions 0–5 are satisfied and the inequalities of
part (iii) of Assumption 2 and part (iv) of Assumption 5 are strict. If the decision rule,
(̃xT � ãT ), x̃t : �t →Xt and ãt : �t →At , is continuous and increasing, then for all δ > 0
there is an allocation rule, (xT �aT ), such that (xT �aT ) is implementable and

EθT

T∑
t=0

∥∥(̃yt (θt)� x̃t (θt))− (yt (θt)�xt (θt))
∥∥2
< δ�

where ỹt (θt)= ft(θt� ãt (θt)) and yt (θ
t)= ft(θt�at (θt)).

See Appendix B for the proof.
The implementation results of this section allow us to use a simple (and familiar)

method for solving the contracting problem of a principal whose payoff is linear in the
expected transfer. This method will be further explained in Section 5 in the context of
applications; here we give a brief summary for contracting problems satisfying the con-
ditions (Markovian types, regular, time-separable utilities, and imperfect st signals) of
Proposition 4. First, suppose that yt (the summary statistic about the agent’s period-
t type and action) is contractible. Theorem 1 applies in this case; hence the maximal
transfer in any contract is the same as it would be in the benchmark (where the principal
observes the agent’s orthogonalized types for all t > 0). Solve the benchmark problem
with felicity functions {wt}, as if y were contractible. If the resulting decision–action rule
is monotonic in the agent’s type profile, then by Proposition 4 the same can be imple-
mented approximately (with approximate incentive compatibility) even when the prin-
cipal does not observe (ε1� � � � � εT ) and only observes an imperfect signal st about each
yt . Moreover, as the proof of Proposition 4 shows, the expected transfer from the approx-
imate implementation is still the same as it would be with contractible {yt}. (This is so
because the expected value of the additional transfers is zero.) Hence the solution to the
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benchmark case with felicities {wt} and observable {yt} is indeed the optimal mechanism
in the original problem, provided the optimal decision–action rule is monotonic.

5. Applications

We present three applications to illustrate how our techniques and results can be ap-
plied in substantive economic problems. In each application we first solve the bench-
mark case, where the principal can observe the agent’s orthogonalized future types. (In
the absence of a contractible summary signal about the agent’s type and hidden action,
the action rule is taken to be the agent-optimal one; in the presence of such a signal the
action rule is also optimized.) Then we verify the appropriate monotonicity condition
regarding the decision–action rule and conclude that the solution is implementable,
hence optimal, in the original problem as well.

In all three applications we assume that the agent’s type follows the (autoregressive)
AR(1) process

θt = λθt−1 + (1 − λ)εt ∀t = 0� � � � �T�

where θ−1 = 0 and ε0� � � � � εT are independent and identically distributed (iid) uniform
on [0�1]. The exact specification is adopted for the sake of obtaining a simple orthogonal
transformation of the information structure:

θt = (1 − λ)λt
t∑

k=0

λ−kεk ∀t = 0� � � � �T� (10)

The type process is Markovian. Assumption 1 is satisfied except that the support of θt
depends on the realization of θt−1. However, it is easy to make the support of θt the unit
interval for all t by mixing the distribution of θt in (10) with the uniform distribution
on [0�1]; our specification obtains in the limit as the weight on the uniform distribution
vanishes.

In all three examples the agent’s utility is time-separable, and the flow utility,
ũt(θt� at� xt), only depends on the agent’s type, hidden action, and the contractible de-
cision.16 Denote the flow utility in the orthogonally transformed model by ut(εt� at� xt).
By Proposition 1, in any incentive compatible mechanism (xT �aT �p) the agent’s equi-
librium payoff can be written as

�0(ε0)=�0(0)+E
[∫ ε0

0

T∑
t=0

utε0(y�ε
t
−0� at(y�ε

t
−0� s

t−1)�xt(y�ε
t
−0� s

t))dy
∣∣∣ε0

]

+E
[∫ ε0

0

T∑
t=0

utat (y� ε
t
−0� at(y�ε

t
−0� s

t−1)�xt(y�ε
t
−0� s

t)) (11)

× âtε0(y�ε
t
−0� y� s

t−1)dy
∣∣∣ε0

]
�

16Assumption 0 is also satisfied due to the boundedness of all relevant domains and the continuous
differentiability of all involved functions.
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where ât(εt� ε̂0� s
t−1), defined by (1), is the period-t action of the agent that “masks” her

initial misreport of ε̂0 conditional on the history of types and contractible signals.
Next, we describe Applications 1–3, ordered according to increasing complexity of

the agent’s payoff function. The first application is a pure adverse selection model; the
second one is a variant that includes a hidden action as well, but no contractible sig-
nal about the agent’s type and action. The third application has both hidden type and
hidden action; the agent’s type and action generate a noisy but contractible summary
signal.

Application 1. The principal is the seller of an indivisible good; the agent is a buyer
with valuation θt in period t. The contractible action, xt ∈ [0�1], is the probability
that the buyer receives the good. The buyer has no hidden action; her flow utility
is simply ũt(θt� xt) = θtxt or, equivalently in the orthogonalized model, ut(εt�xt) =
(1 − λ)λt(∑t

k=0λ
−kεk)xt . Note that Assumption 2 holds and utε0 = (1 − λ)λtxt .

Since the agent has no hidden action the second line in (11) is zero, and so

�0(ε0)=�0(0)+E
[∫ ε0

0

T∑
t=0

(1 − λ)λtxt(y�εt−0)dy
∣∣∣ε0

]
� (12)

Suppose the buyer’s participation is guaranteed if she gets a nonnegative payoff; by (12)
this is equivalent to �0(0)≥ 0.

So as to compute E[�0(ε0)], we note that by Fubini’s theorem,∫ 1

0

∫ ε0

0
xt(y�ε

t
−0)dy dε0 =

∫ 1

0

∫ 1

y
xt(y�ε

t
−0)dε0 dy =

∫ 1

0
(1 − ε0)xt(ε

t)dε0;

therefore

E[�0(ε0)] =�0(0)+E
[
T∑
t=0

(1 − λ)λt(1 − ε0)xt(ε
t)

]
� (13)

Assume the seller (principal) maximizes his expected revenue; there is no cost of
production. The expected revenue equals the expected social surplus generated by the
mechanism less the buyer’s expected payoff,

T∑
t=0

E[θtxt(εt)− (1 − λ)λt(1 − ε0)xt(ε
t)] −�0(0)�

where θt is given by (10). Solve the seller’s problem by setting �0(0) = 0 and pointwise
maximizing the objective in xt(εt): the solution is found by setting x∗

t (ε
t)= 1 if and only

if θt ≥ (1 − λ)λt(1 − ε0) and x∗
t (ε

t) = 0 otherwise. Equivalently, in the notation of the
original model,

x̃∗(θt)= 1θt+λtθ0≥(1−λ)λt �

where 1 is the indicator function. This decision rule is monotone in θt ; therefore, by
Proposition 2, it is implementable in the original problem as well as in the benchmark
case. Hence it is the optimal solution in both.
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In this multiperiod trading (single-buyer auction) problem the first-best outcome
would be to trade the good whenever θt ≥ 0. In contrast, in the revenue-maximizing
mechanism the good is sold whenever θt ≥ λt(1 − λ− θ0). As in the one-period prob-
lem, this decision rule corresponds to setting a reservation price in each period. The
reservation price is always nonnegative because θ0 ≤ 1 − λ by (10). Interestingly, the
reservation prices and the distortion that they induce only depend on the buyer’s ini-
tial information (confirming our dynamic irrelevance result) and disappear over time as
t → ∞.

Application 2. In this application, as in the previous one, the principal is a seller and
the agent is a buyer with period-t valuation θt . Assume the good is divisible, so xt ∈ [0�1]
is interpreted as the amount bought by the buyer, and the seller has production cost
x2
t /2.

The important difference in this application (as compared to the previous one) is
that we assume the buyer takes a costly, hidden action interpreted as investment in every
period, which increases her valuation.17 The buyer’s flow utility is ũt(θt� at� xt) = (θt +
at)xt − ca2

t /2 or, equivalently in the orthogonalized model,

ut(ε
t� at�xt)=

[
(1 − λ)λt

t∑
k=0

λ−kεk + at
]
xt − 1

2ca
2
t �

Note that Assumptions 0–3 hold, and utε0 = (1 − λ)λtxt (same as in Application 1).
Assume that the seller cannot observe any signal about the buyer’s valuation and

investment. Hence the second line in (11) is zero, and so �0(ε0) is given by (12) and
E[�0(ε0)] is given by (13). The seller’s (principal’s) expected profit is the expected social
surplus generated by the mechanism less the buyer’s (agent’s) expected payoff:

T∑
t=0

E
[
(θt + at(εt))xt(εt)− 1

2cat(ε
t)2 − 1

2xt(ε
t)2 − (1 − λ)λt(1 − ε0)xt(ε

t)
]
−�0(0)�

Since the seller can make no inference about at and, moreover, the buyer’s future valu-
ations are not affected by her current investment either, at is set by the buyer to maxi-
mize her current flow utility: at(εt)≡ xt(εt)/c. Substituting this into the seller’s expected
payoff, the first-order condition of pointwise maximization of the seller’s objective in
xt(ε

t) is

θt + xt(ε
t)

c
− xt(εt)− (1 − λ)λt(1 − ε0)= 0� (14)

Assuming that the buyer participates with nonnegative payoff, it is optimal to set
�0(0)= 0. Using (10) in rearranging (14) yields, in terms of the original model,

x̃∗
t (θ

t)= c

c− 1
[θt + λtθ0 − (1 − λ)λt]�

17Interpreting at as a costly action taken right before θt is realized and shifting the distribution of θt , this
application can be thought of as a multiperiod generalization (of a specific example) of Bergemann and
Välimäki (2002). Our focus is on the revenue-maximizing sales mechanism instead of the efficient one.
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Assume c > 1. Then x̃∗
t (θ

t) is strictly increasing; by Proposition 3 it is implementable
both in the original problem and the benchmark when coupled with investments
ã∗(θt) = x̃∗

t (θ
t)/c. Therefore this allocation rule is the optimal second-best solution in

both problems.
In this application, in the first-best case (contractible θt , at ), the relationship be-

tween the buyer’s investment level and her anticipated purchase (trade) would be the
same, aFB

t ≡ xFB
t /c. However, the first-best level of trade would be xFB

t (θt)= cθt/(c − 1).
The distortion, which materializes in the decision rule in the form of less trade and in
the action rule as less investment in comparison to the efficient levels, is again due to
the buyer’s (agent’s) initial private information and it disappears over time.

Application 3. The principal is an investor (a wealthy individual or institution) and the
agent is an investment advisor (private banker); the contractible action xt is the amount
invested, according to the agent’s advice, on behalf of the principal. The agent’s type
θt represents her ability to achieve a greater expected return. Her costly effort (hidden
action at ) is directed at finding assets that fit the principal’s other (e.g., ethical) invest-
ment goals; it generates a payoff proportional to the invested amount for the principal
but imposes an up-front cost on the agent.

Let ũt = −ca2
t /2 be the agent’s payoff and let vt = (θt + at + ξt)xt − rx2

t /2 be the prin-
cipal’s payoff; in the latter rx2

t /2 represents the principal’s (convex) cost of raising funds
for investment, and ξt is a noise term (e.g., uncertainty in how the advisor’s effort affects
the investor’s nonpecuniary return on investment). Assume that vt (but not θt or at ) is
contractible, and define st = θt + at + ξt as the contractible signal. The parties’ payoffs
are transferable, i.e., they may contract on monetary transfers as well. It is easy to check
that in this application Assumptions 0–5 are all satisfied.18 This is a parametric example
of the model discussed in Section 4.2. Garrett and Pavan (2012) solve a related problem
where, using the notation of this example, we have r = 0 and the decision xt ∈ {0�1} cor-
responds to whether the principal employs the agent instead of a continuous investment
decision (which is more meaningful in our application).

In the orthogonalized model ut(εt� at�xt)= −ca2
t /2; hence utε0 = 0 and utat = −cat .

The period-t action of the agent that masks her initial misreport of ε̂0 conditional on the
history of types and signals is ât(εt� ε̂0� s

t−1), formally defined by

θ̂t + at (̂ε0� ε
t
−0� s

t−1)≡ θt + ât(εt� ε̂0� s
t−1)�

where θ̂t = (1 − λ)λtε̂0 + (1 − λ)∑t
k=1 λ

t−kεk; hence

ât(ε
t� ε̂0� s

t−1)= at (̂ε0� ε
t
−0� s

t−1)+ (1 − λ)λt (̂ε0 − ε0)�

Note that âtε0(ε
t� ε̂0� s

t−1)= −(1 − λ)λt .
By (11), the agent’s expected payoff with initial type ε0 is

�0(ε0)=�0(0)+E
[∫ ε0

0

T∑
t=0

(1 − λ)λtcat(y�εt−0� s
t−1)dy

∣∣∣ε0

]
�

18Assumption 2(ii) holds weakly, but the approximate implementation result holds. The model could
easily be generalized in a way that the agent’s flow utility directly, positively depended on θt .
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Continue to use�0(0)≥ 0 as the participation constraint. Again, using Fubini’s theorem
as in the previous applications we get

E[�0(ε0)] =�0(0)+E
[
T∑
t=0

(1 − λ)λt(1 − ε0)cat(ε
t� st−1)

]
�

The principal’s ex ante expected payoff is the difference between the expected social
surplus generated by the mechanism and the agent’s expected payoff,

T∑
t=0

E
[
(θt + at + ξt)xt − 1

2 rx
2
t − 1

2ca
2
t − (1 − λ)λt(1 − ε0)cat

]
−�0(0)� (15)

where the arguments of at(θt� st−1) and xt(θt� st) are suppressed for brevity.
If signal st contained no noise term (i.e., in case ξt ≡ 0), then the principal could

infer at from the agent’s type report and the realized signal, and indirectly enforce any
action. In this case, the first-order condition of (pointwise) maximization of (15) in at is
xt − cat − (1 − λ)λt(1 − ε0)c = 0, whereas the same with respect to xt is θt + at − rxt = 0.
Combine the two equations and write θ0/(1 − λ) for ε0 to get

x̃∗
t (θ

t)= θt + λtθ0 − (1 − λ)λt
rc− 1

�

Assuming rc > 1 the resulting x̃∗
t is strictly increasing in θt , and hence so is the corre-

sponding optimal ã∗
t , which is its positive affine transformation. Therefore, by Proposi-

tion 4, this decision–action rule is approximately implementable in the original model as
well as in the benchmark. It is easy to see that in the first-best case, xFB

t (θ
t)= θt/(rc−1).

Again, the distortion in x̃∗(θt) is purely due to the agent’s initial private information,
illustrating our dynamic irrelevance theorem.

6. Conclusions

In this paper we considered a dynamic principal–agent model with adverse selection
and moral hazard, and proved a dynamic irrelevance theorem: In any fixed, imple-
mentable decision–action rule the principal’s expected revenue and the agent’s payoff
are the same as if the principal could observe the agent’s future, orthogonalized types.
This result comes with (at least) two caveats: (i) the set of rules that can be implemented
with or without observing the agent’s future, orthogonalized types is different; (ii) the
result pins down the expected payments at the time of contracting, but not their distri-
bution over time. We also provided results on the implementability of monotonic de-
cision rules in regular, Markovian environments. The implementation results imply a
straightforward method of solving a large class of dynamic principal–agent problems
with meaningful economic applications.

The model considered in this paper could be extended in two directions without
much difficulty, at the expense of additional notation and technical assumptions. First,
it would be possible to accommodate multiple agents in the principal–agent model by
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replacing the agent’s incentive constraints with an appropriate (Bayesian) equilibrium.
Second, the model could be extended to have an infinite time horizon. In this case our
main theorem still holds assuming time-separable utility, discounting, and uniformly
bounded felicity functions.

Appendix A

Lemma 3. If the mechanism (xT �aT �p) is incentive compatible, the equilibrium payoff
function of the agent, �0, is Lipschitz continuous.

Proof. Throughout the proof, let K denote an integer such that the inequalities in As-
sumption 0 are satisfied and, in addition, for all t = 1� � � � �T , τ < t, and for all θt , at , xt ,∣∣∣∣Gtθτ(θt |θt−1� at−1�xt−1)

gt(θt |θt−1� at−1�xt−1)

∣∣∣∣<K�
First, we show that there exists a K ∈ N such that |ψtε0(ε

t� at−1�xt−1)|<K. For t = 0,
ψ0ε0(ε0) = G−1

0ε0
(ε0) = 1/g0(G

−1
0 (ε0)) < K by part (ii) of Assumption 0. We proceed by

induction and assume that ψτε0(ε
τ�aτ−1�xτ−1) < K(τ) for τ = 0� � � � � t − 1. Then

|ψtε0(ε
t� at−1�xt−1)|

= |G−1
tε0
(εt |ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)|

=
∣∣∣∣ 1
gt(ψt(εt� at−1�xt−1)|ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)

∣∣∣∣
+

∣∣∣∣∣
τ−1∑
τ=0

G−1
tψτ
(εt |ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)ψτε0(ε

τ�aτ−1�xτ−1)

∣∣∣∣∣
≤K + max

τ≤t K(τ)
∣∣∣∣∣
τ−1∑
τ=0

G−1
tψτ
(εt |ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)

∣∣∣∣∣�
where the inequality follows from the inductive hypothesis and part (ii) of Assumption 0.
However,

K + max
τ≤t K(τ)

∣∣∣∣∣
τ−1∑
τ=0

G−1
tψτ
(εt |ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)

∣∣∣∣∣
=K + max

τ≤t K(τ)
∣∣∣∣∣
τ−1∑
τ=0

Gtψτ(ψt(ε
t� at−1�xt−1)|ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)

∣∣∣∣∣
× 1
gt(ψt(εt� at−1�xt−1)|ψt−1(εt−1� at−2�xt−2)�at−1�xt−1)

≤K + max
τ≤t K(τ)K

2�

by Assumption 2. So we can conclude that |ψtε0(ε
t� at−1�xt−1)|<K + maxτ≤t K(τ)K2.
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We are ready to prove that�0 is Lipschitz-continuous. Suppose that�0(ε0)≥�0(̂ε0).
Let π0(̂ε0� ε0) denote the payoff of an agent whose initial type is ε̂0, reports ε0, then
reports truthfully afterward, and takes action ât (εt� ε̂0� s

t−1) after history (εt� st−1). Since
the mechanism (xT �aT �p) is incentive compatible, π0(̂ε0� ε0) < �(̂ε0) and hence,

�0(ε0)−�0(̂ε0) < �0(ε0)−π0(̂ε0� ε0)�

So it is enough to prove that

|�0(ε0)−π0(̂ε0� ε0)|<K|ε0 − ε̂0|� (18)

In addition,

�0(ε0)−π0(̂ε0� ε0)=E[u(εT �aT (εT � sT−1)� sT �xT (εT ))|ε0]
−E[u(εT � âT (εT � ε̂0� s

T−1)� sT �xT (̂ε0� ε
T
−0� s

T ))|ε0]�

To establish (18) it is sufficient to show that the absolute value of the difference between
the terms whose expectations are taken on the right-hand side of the previous equation
is smaller thanK|ε0 − ε̂0|. Note that

u(εT �aT (εT � sT−1)� sT �xT )− u(̂ε0� ε
T
−0�aT (̂ε0� ε

T
−0� s

T−1)� sT �xT )

=
∫ ε0

ε̂0

uε0(y�ε
T
−0�aT (y�εT−0� s

T−1)� sT �xT )

+
T∑
t=0

uat (y�ε
T
−0�aT (y�εT−0� s

T−1)� sT �xT )̂atε̂0(ε
t� y� st−1)dy�

We will show that both terms on the right-hand side of the previous equation are
bounded by a constant times |ε0 − ε̂0|. Note that∫ ε0

ε̂0

uε0(y�ε
T
−0� a

T � sT �xT )dy

=
∫ ε0

ε̂0

T∑
t=0

ũθt (ψ
T (y�εT−0� a

T−1�xT−1)�aT � sT �xT )ψtε0(y�ε
T
−0� a

T−1�xT−1)dy

≤ TKK|ε0 − ε|

by part (i) of Assumption 0 and since ψtε0�(ε
t) < K, as shown above. In addition,

∫ ε0

ε̂0

T∑
t=0

uat (y�ε
T
−0�aT (y�εT−0� s

T−1)� sT �xT )̂atε̂0(ε
t� y� st−1)dy

=
∫ ε0

ε̂0

T∑
t=0

ũat (ψ
T (y�εT−0� ·)�aT (y�εT−0� s

T−1)� sT �xT )̂atε̂0(ε
t� y� st−1)dy�

(19)
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By the implicit function theorem,

âtε̂0(ε
t� y� st−1) = −ftθt (ψ

t(y�εt−0� ·)� ât (εt� y� st−1))

ftat (ψ
t(y�εt−0� ·)� ât (εt� y� st−1))

ψtε̂0(ε
T
−0� y�a

T−1�xT−1)�

which does not exceed KK by part (iii) of Assumption 0 and the argument above show-
ing that |ψtε0 |<K. Hence, (19) is smaller than

KK

∫ ε0

ε̂0

T∑
t=0

ũat (ψ
T (y�εT−0� ·)�aT (y�εT−0� s

T−1)� sT �xT )dy ≤ TK2K|ε0 − ε|

by part (i) of Assumption 0. �

Proof of Lemma 1. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that if at (θt� xt) is interior, then

vtθt (θt� xt)= ũtθt (θt�at (θt� xt)�xt)+ ũtat (θt�at (θt� xt)�xt)
∂at (θt� xt)

∂θt

= ũtθt (θt�at (θt� xt)�xt) > 0�

(20)

where the second equality follows from (8), and the inequality follows from part (ii) of
Assumption 2. If at (θt� xt) is not interior then, generically,

vtθt (θt� xt)= ũtθt (θt�at (θt� xt)�xt) > 0� (21)

where the inequality again follows from part (ii) of Assumption 2.
It remains to prove that vt satisfies part (iii) of Assumption 2. To simplify notation,

we only prove this claim for the case when the contractible decision is unidimensional
in each period, that is, Xt ⊂ R for all t = 0� � � � �T . Suppose first that at (θt� xt) is interior.
Note that for all τ ≤ t,

vtθtxτ (θt�xt) = ũtθtxτ (θt�at (θt� xt)�xt)+ ũtθtat (θt�at (θt� xt)�xt)
∂at (θt� xt)

∂xτ

= ũtθtxτ (θt�at (θt� xt)�xt)− ũtθtat (θt�at (θt� xt)�xt)
ũtatxt (θt�at (θt� xt)�xt)
ũta2

t
(θt�at (θt� xt)�xt)

�

where the first equality follows from (20) and the second one follows from (8) and the im-
plicit function theorem. Note that ũtθtxτ , ũtθtat , and ũtatxt are all nonnegative by part (iii)
of Assumption 2 and parts (ii) and (iii) of Assumption 3. In addition, ũta2

t
is negative by

part (i) of Assumption 3. Therefore, vtθtxτ (θt�xt) ≥ 0. Suppose now that at (θt� xt) is not
interior. Then, for all τ ≤ t, generically,

vtθtxτ (θt�xt)= ũtθtxτ (θt�at (θt� xt)�xt)≥ 0�

where the equality follows from (21) and the inequality follows from Assumption 3(ii). �
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Proof of Lemma 2. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that

wtθt (θt� yt� x
t)= ũtθt (θt�at (θt� yt)�x

t)+ ũtat (θt�at (θt� yt)�x
t)
∂at (θt� yt)

∂θt
� (22)

We apply the implicit function theorem for the identity ft(θt�at (θt� yt))≡ yt to get

∂at (θt� yt)
∂θt

= −ftθt (θt�at (θt� yt))
ftat (θt�at (θt� yt))

�

which is negative by part (ii) of Assumption 5. Since ũtθt > 0 by part (ii) of Assumption 2
and ũtat < 0 by part (i) of Assumption 5, we conclude that wt is strictly increasing in θt .

Next, we prove that wt satisfies part (iii) of Assumption 2. First, we establish the
single-crossing property with respect to θt and yt . By (22),

wtθtyt (θt� yt� x
t)= ũtθtat (θt�at (θt� yt)�x

t)
∂at (θt� yt)

∂yt

+ ũta2
t
(θt�at (θt� yt)�x

t)
∂at (θt� yt)

∂yt

∂at (θt� yt)
∂θt

+ ũtat (θt�at (θt� yt)�x
t)
∂2at (θt� yt)
∂θt ∂yt

�

To sign ∂at/∂yt and ∂2at/∂θt ∂yt , we appeal to the implicit function theorem once again:

∂at (θt� yt)
∂yt

= 1
ftat (θt�at (θt� yt))

∂2at (θt� yt)
∂θt ∂yt

=
fta2

t
(θt�at (θt� yt))

ftθt (θt �at (θt �yt ))
ftat (θt �at (θt �yt ))

− ftatθt (θt�at (θt� yt))

f 2
tat (θt�at (θt� yt))

�

Therefore, wtθtyt (θt� yt� x
t) can be rewritten as

ũtθt (θt�at (θt� yt)�x
t)

ftat (θt�at (θt� yt))
+ ũta2

t
(θt�at (θt� yt)�x

t)
−ftθt (θt�at (θt� yt))

f 2
tat (θt�at (θt� yt))

+ ũtat (θt�at (θt� yt)�x
t)
fta2

t
(θt�at (θt� yt))

ftθt (θt �at (θt �yt ))
ftat (θt �at (θt �yt ))

− ftatθt (θt�at (θt� yt))

f 2
tat (θt�at (θt� yt))

�

The first term is positive by part (ii) of Assumption 2 and part (ii) of Assumption 5. The
second term is positive by part (i) of Assumption 3 and part (ii) of Assumption 5. The
third term is positive by parts (i) and (iii) of Assumption 5. Therefore, we conclude that
wtθtyt ≥ 0.

It remains to show that the single-crossing property in part (iii) of Assumption 2 also
holds with respect to θt and xτ for all τ ≤ t. To simplify notation, we only prove this
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claim for the case when the contractible decision is unidimensional in each period, that
is,Xt ⊂R for all t = 0� � � � �T . By (22),

wtθtxτ (θt� yt� x
t) = ũtθtxτ (θt�at (θt� yt)�x

t)+ ũtatxτ (θt�at (θt� yt)�x
t)
∂at (θt� yt)

∂θt

= ũtθtxτ (θt�at (θt� yt)�x
t)− ũtatxτ (θt�at (θt� yt)�x

t)
ftθt (θt�at (θt� yt))
ftat (θt�at (θt� yt))

�

which is positive by part (iv) of Assumption 5. �

Proof of Proposition 4. Fix an increasing decision rule (̃xT � ãT ) and a δ > 0. Below,
we construct a transfer rule, p̃, such that (̃xT � ãT � p̃) satisfies (9). To this end, define the
function ỹT :�T → YT such that ỹt (θt)= ft(θt� ãt (θt)) for all t and θt . Since ãt is increas-
ing in θt and ft is strictly increasing in both θt and at (see part (ii) of Assumption 5), the
function ỹt is also increasing in θt . Therefore, by Lemma 2 and Proposition 2, the deci-
sion rule (̃xT � ỹT ) is implementable in a pure adverse selection model where the agent
flow utilities are {wt}Tt=0. Let p :�T → R denote a transfer rule that implements (̃xT � ỹT ).

Fix a K ∈ N such that |̃utat | < K and ftat > 1/K. By part (i) of Assumption 0 and
part (ii) of Assumption 5, such a K exists. By Theorem 2 of McAfee and Reny (1992),
for each t = 0� � � � �T , there exists a function pt : St × Yt → R such that Est (pt(st� yt)|
f (θt� at)= yt)= 0 and

Est (pt(st� yt)|f (θt� at)= y ′
t )≥K2|yt − y ′

t | −
δ

T + 1
� (23)

Let us now define p̃ :�T × ST →R by

p̃(θT � sT )= p(θT )+
T∑
t=0

pt(st� ỹt (θt))� (24)

Next, we show that the agent cannot generate an excess payoff of δ by deviating from
truth-telling and obedience in the mechanism (̃xT � ãT � p̃). First, note that the agent can-
not benefit from making her strategy at time t contingent on the history of contractible
signals, st−1, because her continuation payoff does not depend on these variables in the
mechanism (̃xT � ãT � p̃). Therefore, we restrict attention to strategies that do not depend
on past realizations of the contractible signal. Any such strategy induces a mapping
from type profile to reports and actions in each period. Let ρt(θt) and αt(θt) denote the
agent’s report and action at time t, respectively, conditional on her type history θt . Let
α̃t(θ

t) denote the solution of

ft(θt� at)= ft(ρt(θt)� ãt (ρt(θt))) [= ỹt (ρt(θt))] (25)

in at . In other words, α̃t(θt) is the agent’s action that generates the same value of ft
conditional on θt as if the agent’s true type was ρt(θt) and she took action ãt (ρt(θt)).
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Then the expected payoff generated by (ρT �αT ), conditional on θ0, is

EθT �sT

[
T∑
t=0

ũt(θt�αt(θ
t)� x̃t (ρt(θt)))− p̃(ρT (θT )� sT )

∣∣∣θ0

]

=EθT
[
T∑
t=0

ũt(θt� α̃t(θ
t)� x̃t (ρt(θt)))− p(ρT (θT ))

∣∣∣θ0

]
(26)

+
T∑
t=0

EθT �sT
[
ũt(θt�αt(θ

t)� x̃t (ρt(θt)))− ũt(θt� α̃t(θt)� x̃t (ρt(θt)))

−pt(st� ỹt (θt))|θ0
]
�

where the equality follows from (24).

We first consider the first term on the right-hand side of the previous equality. Note

that

EθT

[
T∑
t=0

ũt(θt� α̃t(θ
t)� x̃t (ρt(θt)))− p(ρT (θT ))

∣∣∣θ0

]

=EθT
[
T∑
t=0

wt(θt�yt (ρt(θt))� x̃t (ρt(θt)))− p(ρT (θT ))
∣∣∣θ0

]
(27)

≤EθT
[
T∑
t=0

wt(θt�yt (θt)� x̃t (θt))− p(θT )
∣∣∣θ0

]

=EθT
[
T∑
t=0

ũt(θt� ãt (θt)� x̃t (θt))− p(θT )
∣∣∣θ0

]
�

where the inequality follows from the assumption that the transfer rule p implements

(̃xT � ỹT ) if the flow utilities are {wt}Tt=0. Also note that

ũt(θt�αt(θ
t)� x̃t (ρt(θt)))− ũt(θt� α̃t(θt)� x̃t (ρt(θt)))−EsT [pt(st� ỹt (ρt(θT )))|θt�αt(θt)]

≤K |̃αt(θt)− αt(θt)| −EsT [pt(st� ỹt (ρt(θT )))|θt�αt(θt)]
≤K2∣∣ft(θt� α̃t(θt))− ft(θt�αt(θt))

∣∣ −EsT [pt(st� ỹt (ρt(θT )))|θt�αt(θt)]
=K2∣∣̃yt (ρt(θT ))− ft(ρt(θt)�αt(θt))

∣∣ −EsT [pt(st� ỹt (ρt(θT )))|θt�αt(θt)]

≤ δ

T + 1
�
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where the first and second inequalities follow from |ũtat |<K and ftat > 1/K, the equality
follows from (25), and the last inequality follows from (23). Summing up these inequali-
ties for t = 0� � � � �T and taking expectation with respect to θT yields

T∑
t=0

EθT �sT
[
ũt(θt�αt(θ

t)� x̃t (ρt(θt)))− ũt(θt� ãt (ρt(θt))� x̃t (ρt(θt)))

−pt(st� ỹt (θt))|θ0
] ≤ δ�

(28)

Therefore, plugging (27) and (28) into (26) we get that

EθT �sT

[
T∑
t=0

ũt(θt�αt(θ
t)� x̃t (ρt(θt)))− p̃(ρT (θT )� sT )

∣∣∣θ0

]

≤EθT
[
T∑
t=0

ũt(θt� ãt (θt)� x̃t (θt))− p(θT )
∣∣∣θ0

]
+ δ

=EθT �sT
[
T∑
t=0

ũt(θt� ãt (θt)� x̃t (θt))− p̃(ρT (θT )� sT )
∣∣∣θ0

]
+ δ�

where the equality follows from Est [pt(st� yt)|f (θt� at) = yt] = 0. This implies that the
agent cannot gain more than δ by deviating from truth-telling and obedience in the
mechanism (̃xT � ãT � p̃). �
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