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Dynamic contracting: An irrelevance theorem

PETER Es6
Department of Economics, Oxford University

BALAZS SZENTES
Department of Economics, London School of Economics

This paper generalizes a conceptual insight in dynamic contracting with quasilin-
ear payoffs: the principal does not need to pay any information rents for extract-
ing the agent’s “new” private information obtained after signing the contract. This
is shown in a general model in which the agent’s type stochastically evolves over
time, and her payoff (which is linear in transfers) depends on the entire history of
private and any contractible information, contractible decisions, and her hidden
actions. The contract is offered by the principal in the presence of initial informa-
tional asymmetry. The model can be transformed into an equivalent one where
the agent’s subsequent information is independent in each period (type orthog-
onalization). We show that for any fixed decision-action rule implemented by a
mechanism, the agent’s rents (as well as the principal’s maximal revenue) are the
same as if the principal could observe and contract on the agent’s orthogonalized
types after the initial period. We also show that any monotonic decision-action
rule can be implemented in a Markovian environment satisfying certain regularity
conditions, and we provide a simple “recipe” for solving such dynamic contracting
problems.

KeywoRrDs. Asymmetric information, dynamic contracting, mechanism design.
JEL cLAssIFICATION. D82, D83, D86.

1. INTRODUCTION

Two of the fundamental questions in contract theory and mechanism design are (i) what
determines an agent’s rents (or the uninformed principal’s agency costs) in a given, im-
plementable allocation rule or in the optimal policy, and, a related matter, (ii) what are
the optimal contracts given the principal-designer’s objective. In this paper we provide
answers to both types of questions in a general dynamic contracting environment with
quasilinear payoffs. Our multiperiod principal-agent model involves a stochastically
evolving hidden type as well as hidden actions on the agent’s part. The contractible
per-period decisions and monetary transfers are governed by a contract signed after the
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agent has learned her initial type. The agent’s final payoff can depend, quite generally,
on the histories of her private and (any contractible) public information, her hidden ac-
tions, and the contractible decisions, and it is linear in transfers between the parties.
A wide range of applications of such models is discussed below.

Our main result is to show that the agent’s rents (as well as the principal’s maximal
payoff, if it is also quasilinear) in a given, implementable allocation rule are the same
as if the principal could observe and contract on any “new” (orthogonal) information
observed by the agent after the contract is signed. In the hypothetical benchmark case
where the agent’s future, orthogonalized types are observable and contractible, the prin-
cipal does not need the agent to report any new information beyond the initial period.
Therefore, as far as the expected transfers implementing the allocation rule are con-
cerned, it is inconsequential that in the original problem there is dynamic interaction
between the parties. We term this result a dynamic irrelevance theorem. It holds in a
rich environment, with very little assumed about the agent’s utility function (no single-
crossing or monotonicity assumptions are made), the information structure, and so on.

The dynamic irrelevance (or payment-characterization) result suggests a simple
“recipe” for solving dynamic contracting problems in which the principal’s payoff is
quasilinear in payments. First, solve the benchmark case (where the agent’s only private
information is her initial type and all her orthogonalized future types are observable by
the principal), which is essentially a static problem, hence standard solution methods
are applicable. Second, check whether the solution to the benchmark (a decision—action
rule) is implementable in the original model where the agent’s type history is privately
known. If it is, then the solution has been found. Note that the irrelevance result, which
applies to a given, implementable decision-action rule, has no bearing on whether the
benchmark solution is implementable in the original problem. Indeed, the two prob-
lems are not equivalent: the set of implementable decision-action rules is generally
larger in the benchmark. To address the issue, our final set of results provides sufficient
conditions for a decision—action rule to be implementable in the original problem.

The implementation results are derived in an environment where the agent’s type
follows a Markov process: her payoff is time-separable and it satisfies additional regu-
larity (e.g., single-crossing) conditions. If in each period the principal observes a con-
tractible signal that is informative (however imperfectly) about a summary statistic of
the agent’s type and action (e.g., the principal’s profit that depends on the agent’s qual-
ity and effort), and its distribution is generic, then any monotonic decision rule coupled
with any monotonic action rule is approximately implementable.! If there are no such
signals, then any monotonic decision rule coupled with agent-optimal actions is imple-
mentable. Therefore, after having solved the benchmark problem in a Markovian, regu-
lar environment, we only need to check if the solution satisfies the appropriate mono-
tonicity condition; if it does, then the original problem is solved. In Section 5 we present
applications in which this approach can be used successfully.?

I The genericity condition and the notion of implementability will be defined precisely in Section 4.

2Little is known about conditions on the model’s primitives under which implementability is the same
in the original and benchmark problems. Battaglini and Lamba (2014) point out that the conditions for
monotonicity of the “pointwise-optimal” decision rule can be quite strong.
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One of the specific applications that we discuss is a dynamic model of investment
advice. The principal is an investor (e.g., wealthy institution) and the agent is an advisor
(e.g., private banker). The contractible variable is the amount of money that the princi-
pal invests with the agent in each period. The return on the investment is determined
by the agent’s type (evolving according to a first-order autoregressive process) and her
costly, hidden effort in each period.? The investor can observe and contract on a noisy
public signal of the per-period return (e.g., a perceived return that may be affected by
transitory, random events). The contract is offered by the investor after the advisor’s
initial type is realized. In this model we show that the advisor’s rent (the investor’s cost
of agency) in a given, implementable decision—-action rule only depends on her initial
type realization (dynamic irrelevance). Any monotonic decision—-action rule is approx-
imately implementable. We derive the optimal contract, which is indeed monotonic
and such that distortions dissipate over the long run. Besides this novel application we
solve another two that are more familiar. The first one is a canonical dynamic monopoly
problem in which the buyer’s valuation for the good (her type) stochastically evolves
over time. The second application differs from this as it allows the buyer to invest in her
valuation by taking a private, costly action. We derive the optimal dynamic screening
contract in the absence of any signal about the buyer’s type and action. All distortions
are due to the buyer’s initial private information, again illustrating our dynamic irrele-
vance result.

Models in the class of dynamic contracting problems that we analyze have already
been applied to a wide range of economic problems.* The roots of this literature reach
back to Baron and Besanko (1984) who used a multiperiod screening model to address
the issue of regulating a monopoly over time. Courty and Li (2000) studied optimal ad-
vance ticket sales, Es6 and Szentes (2007a) studied the optimal disclosure of private in-
formation in auctions, and Es6 and Szentes (2007b) studied the sale of advice as an ex-
perience good. Farhi and Werning (2013), Golosov et al. (2011), and Kapicka (2013) apply
a similar approach to optimal taxation and fiscal policy design, respectively. Pavan et al.
(2014) apply their (to date, most general) results on the multiperiod pure adverse selec-
tion problem to the auction of experience goods (bandit auctions). Garrett and Pavan
(2012) use a dynamic contracting model with both adverse selection and moral haz-
ard to study optimal CEO (chief operating officer) compensation. Such mixed, hidden-
action-hidden-information models could also be applied in insurance problems.

Compared to the received literature (e.g., see the recent work of Pavan et al. 2014),
we not only generalize the model to accommodate hidden actions and contractible sig-
nals, but we also state the main result as one of irrelevance: In these dynamic problems
it is inconsequential whether the agent has access to dynamic deviation strategies. This
result is obtained using an orthogonalized representation of the agent’s private infor-
mation: the agent’s type in each period is constructed to be independent conditional
on the history of types, actions, and decisions (a transformation proposed in Es6 and

3The “return” may be more broadly interpreted as a composite score of the investment’s monetary and
nonmonetary (e.g., ethical) gains, differentially affected by the agent’s type and effort.

4Our review of applications is deliberately incomplete; for a more in-depth survey of this literature, see
Krahmer and Strausz (2015a) or Pavan et al. (2014).
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Szentes (2007a) for an independent private value (IPV) auction environment). We show
that in the original problem, where the agent’s orthogonalized future types and actions
are not observable, in any incentive compatible mechanism, the agent’s expected payoff
conditional on her initial type is fully determined by her on-path (in the future, truth-
ful) behavior. The validity of this envelope theorem-type argument rests on the condi-
tional independence of future information. Therefore, the agent’s expected payoff (and
payments) coincide with those in the benchmark case, where the orthogonalized future
types are publicly observable.

The results on the implementability of monotonic decision—-action rules in regular,
Markovian environments are first established without hidden actions. Formally, this
special case (unlike the general result) follows from results in Pavan et al. (2014); the
proof relies on showing that if the agent is untruthful in a given period in an incentive
compatible mechanism, she immediately undoes her lie in the following period to make
the principal’s inferences in all future periods correct, and this pins down all continua-
tion payoffs and allows induction on the number of periods. The new results for models
with both hidden information and hidden action are obtained by appropriately reducing
the general model to ones with only adverse selection.> When there is no contractible
signal about the agent’s type and action, we show that the agent’s per-period utility given
her type and an agent-optimal action satisfies the conditions that apply in the model
with pure adverse selection; hence any monotonic decision rule coupled with an agent-
optimal action is implementable. When there is an imperfect contractible signal about
a summary statistic of the agent’s type and action, we consider a felicity function de-
fined by the agent’s per-period utility as if the summary statistic were contractible and
the agent could be compelled to generate the contracted summary statistic consistent
with her type report. We show that this felicity function satisfies the sufficient condi-
tions applicable under pure adverse selection; hence any decision rule coupled with an
action rule such that both are monotonic in the type (which is implied by monotonic
decision—action rules) is implementable. Finally, we show that with only an imperfect
signal about the summary statistic, any monotonic decision—action rule may be imple-
mented in approximation.

The technical contributions notwithstanding, we believe the most important mes-
sage of the paper is the dynamic irrelevance result. The insight that the principal need
not pay his agent rents for post-contractual hidden information in dynamic adverse se-
lection has been expressed in previous work going back to Baron and Besanko (1984).
Our paper highlights both the depth and the limitations of this insight: Indeed the prin-
cipal who contracts the agent prior to her discovery of new information can limit the
agent’s rents as if he could observe the agent’s orthogonalized future types; however, the
two problems are not equivalent.

The paper is organized as follows. In Section 2 we introduce the model and describe
the orthogonal transformation of the agent’s information. In Section 3 we derive nec-
essary conditions of the implementability of a decision rule and our main, dynamic ir-
relevance result. Section 4 presents sufficient conditions for implementation in Markov

5This technique is familiar from Laffont and Tirole (1986) and has also been used in a dynamic setting
by Garrett and Pavan (2012).
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environments. Section 5 presents the applications; Section 6 concludes. Omitted proofs
are given in Appendices A and B. (Appendix B is available in a supplementary file on the
journal website, http://econtheory.org/supp/2127/supplement.pdf.)

2. MODEL
Environment

There is a single principal (he) and a single agent (she). Time is discrete, indexed by
t=0,1,...,T < oco. The agent’s private information in period ¢ is 6; € ®;, where ©; =
[9;, 6;] C R. In period ¢ the agent takes action a, € 4,, which is not observed by the
principal. The set A, is an open interval of R.® Then a contractible signal is drawn,
s; € S¢ C R, that is observed by the principal. After s; is realized in period ¢, a contractible
decision is made, denoted by x; € X; C R". Since x, is contractible, it does not matter
whether it is taken by the agent or by the principal. The contract between the principal
and the agent is signed at r = 0, right after the agent has learned her initial type, 6.

We denote the history of a variable through period ¢ by superscript ¢; for example,
x' = (xq,...,x,) and x~! = {@}. The random variable 6, is distributed according to a cu-
mulative distribution function (c.d.f.) G,(-|¢’"!, a’~!, x*~1) supported on ©,. The func-
tion G, is continuously differentiable in all of its argument, and the density is denoted
by g(-16'~1, a'=1, x'~1).

Signal s, is distributed according to a continuous c.d.f. #;(-|6;, a;). We assume that
when generating this signal, the agent is able to compensate her type by her action lo-
cally. Formally, there is a 6 > 0 such that for all ﬁt, 0;, and ay, if |§t — 0| < 6, then there
is an a; such that H,(-|0;, a;) = Ht(~|§t,ﬁ,). This assumption ensures that the principal
cannot resolve the adverse selection problem by requiring the agent to take a certain
action and using signal s; to detect the agent’s type. A consequence of this assumption
is that there exists a function f; : ®; x A; — R such that the distribution of s; depends
onlyon f,(6;, a,), thatis, H,(:|6;, a;) = H,(:|f:(6;, a;)) for some conditional c.d.f. H,.” We
assume that f; is continuously differentiable. We may interpret s; as an imperfect public
summary signal about the agent’s current type and action; for example, in Application 3
in Section 5 it will be s; = 6; + a; + &;, where &, is noise with a known distribution.

The agent’s total payoff is quasilinear in money and is defined by

~ T T T T
uld ,a’,s" ,x )—p,

where p € R denotes the agent’s payment to the principal, and i : ©7 x A7 x ST x X7 —
R is continuously differentiable in 6, and a, for all t =0, ..., T. We do not specify the
principal’s payoff. In some applications (e.g., where the principal is a monopoly and the
agent is its customer) it could be the payment itself; in others (e.g., where the principal

6The set A, is assumed to be one-dimensional for convenience; its openness is posited to exclude corner
solutions for reasons explained in footnote 7.

“Openness of A, is assumed to ensure that for all 6;, 6;, and a;, there exists @; such that f;(6;,a,) =
fi(6:,a;). If A; were compact then there W(il\lld be a pair, (0}, a;), that maximizes f;. Therefore, if 6; ¢
argmaxg, [maxg, f;(0;, a;)), then f;(6;, a;) = fi(6;,a,) would not hold for any @,.
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is a social planner and the agent the representative consumer) it could be the agent’s
expected payoff; in yet other applications it could be something different.

We denote partial derivatives with a subscript referring to the variable of differenti-
ation, e.g., itg, = it/ I0;, fre, = If;/30;, etc.

Orthogonalization of information

The model can be transformed into an equivalent one where the agent’s private infor-
mation is represented by serially independent random variables. Suppose that at each
t=0,...,T, the agent observes &, = G,(8,|6' !, a'~1, x'~1) instead of 6,. Clearly, &' can
be inferred from (#’, a’~', x'~1). Conversely, ' can be computed from (&’, a’~!, x'~1),
thatis, forall =0, ..., T, thereis s, : [0, 1]’ x A"~ x X*~1 — @, such that

t t—1 t—1 t—1, t—1 -2 _t-2 t—1 -1
8l‘=Gl(lrlfl(87a , X )l";[l (8 ,a > X )5a » X )7

where (&', a1, x'~1) denotes (Yq(&g), ..., ¥:(e',a’~1, x'~1)). In other words, if the
agent observes (&, a’~!, x!~1) at time ¢ in the orthogonalized model, she can infer the
type history ¢/ (&!, a’~!, x’~1) in the original model.

Of course, a model where the agent observes ¢, for all ¢ is strategically equivalent to
the one where she observes 6, for all ¢ (provided that in both cases she observes x/~!
and recalls a'~! at ¢). By definition, &, is uniformly distributed on the unit interval for
all r and all realizations of §'~!, a’~!, and x'~!; hence the random variables {e;}] are
independent across time.? There are many other orthogonalized information structures
(e.g., those obtained by strictly monotonic transformations). In what follows, to simplify
notation, we fix the orthogonalized information structure as that where ¢, is uniform on
& =10, 1].

The agent’s gross payoff (i.e., utility before payments are subtracted) in the orthogo-
nalized model, u: 7 x AT x ST x XT — R, becomes

T T T T\_~ T, T T-1 T-1\ T T T
u(8 7a ’s ’x )=u(l7l[ (8 ?a 7x )7a ’s ’x )'

Revelation principle

A deterministic mechanism is a four-tuple (Z7,x”, a”, p), where Z, is the agent’s mes-
sage space at time ¢, x, : Z! x §' — X, is the contractible decision rule at time ¢, a; :
Z' x §'=1 — A, is arecommended action at ¢, and p: Z” x ST — R is the payment rule.
The agent’s reporting strategy at ¢ is a mapping from previous reports and information
to a message.

We refer to a strategy that maximizes the agent’s payoff as an equilibrium strategy
and the payoff generated by such a strategy as equilibrium payoff. The standard reve-
lation principle applies in this setting, so it is without loss of generality to assume that

8To see that each & is uniform on [0, 1] conditional on the history of types, actions, and decisions up
to ¢, note that since &, = G,(8,|6'"!, a'~1, x'~1), the probability of &, < & is Pr(G,(6,]6" !, a1, x"" 1) < &) =
Pr(6; < G; (810" a7 X7 = GG @0 o hle e x ) = 6
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Z; =&, for all ¢, and to restrict attention to mechanisms where telling the truth and tak-
ing the recommended action (obedience) is an equilibrium strategy. A direct mecha-
nism is defined by a triple (x”, a’, p), where x, : £’ x §* - X, a,: &' x S~ - A4,, and
p:ET x ST — R. Direct mechanisms in which telling the truth and obeying the princi-
pal’s recommendation is an equilibrium strategy are called incentive compatible mech-
anisms.

We call a decision-action rule (x”, a’') implementable if there exists a payment rule,
p: T — R such that the direct mechanism (x”, a’, p) is incentive compatible.

Technical assumptions

We make three technical assumptions to ensure that the equilibrium payoff function of
the agent is Lipschitz-continuous in the orthogonalized model.

AssuMPTION 0. (i) There exists a K € N such that forallt=1,...,T and for all 6T, al,

s, xT,

ﬁgt(OT, al,sT, xT), ﬁat(HT, al,sT,xT) <K.
(ii) Thereexistsa K € N such that forallt=1,...,T, v < t, and for all 6*, a"~1, x'~1,
Gio, (0,101, a1, x'™1), |G, (8,10, 0" X H| < K.

(iii) There exists a K € N such that forallt =1, ..., T and for all ', a', fis,(6;,a;) #0
and
ft0,(9ta ar)

< K.
fra, (6, ar)

3. THE MAIN RESULT

We refer to the model in which the principal never observes the agent’s types as the orig-
inal model, whereas we call the model where ¢, ..., er are observed by the principal
the benchmark case. The contracting problem in the benchmark is static in the sense
that the principal only needs the agent to report her information at ¢ = 0. Our irrele-
vance result is that in any mechanism that implements a given decision—action rule in
the original model, the principal pays the agent the same rent (i.e., he can achieve the
same expected revenue) as in the benchmark case.

Specifically, what we show below is that the expected transfer payment of an agent
with a given initial type when the principal implements decision-action rule (x’, a’) in
the original problem is the same (up to a type-invariant constant) as it would be in the
benchmark. This implies that the principal can obtain the same expected revenue (or
payoff, if it is linear in the expected revenue) when implementing a decision—action rule
in the original problem as he could in the benchmark. This does not imply, however,
that the two problems are equivalent: sufficient conditions of implementability (of a
decision rule) are stronger in the original problem than they are in the benchmark. We
will turn to the question of implementability in Section 4.
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In the next subsection we consider a decision—action rule (x?, a’) and derive a nec-
essary condition for the payment rule p such that (x’, a’, p) is incentive compatible.
This condition turns out to be the same in the benchmark case and in the original model.
We then use this condition to prove our main, irrelevance result.

3.1 Payment rules

We fix an incentive compatible mechanism (x’, a’, p) and analyze the consequences of
time-0 incentive compatibility on the payment rule, p, in both the original model and
the benchmark.

We consider a particular set of deviation strategies and explore the consequence
of the nonprofitability of these deviations in each case. To this end, let us define this
set as follows: If the agent with initial type gy reports g, then (i) she must report
&1,...,er truthfully and (ii) for all t =0, ..., T, after history (&’, s*~!), she must take
action a,(&!, gy, s'~!) such that the distribution of s, is the same as if the history were
(20, &', s'1) and action a, (2, &, s'~!) were taken, where &’ , = (&1, ..., &). Since the
distribution of s, only depends on f;(6;, a;), the action a,(&’, g, s' 1) is defined by

fi(B, (8o, €', s"1)) = fu(0r, A (e, B, s 1)), 1)

where

n ~ .t t—1,~ =1 =2 t—1,~ =1 -1
0[:’7[][(807 8_()7a (80’ 8,0 S )7X (807 8,0 S ))

t ot—1,_t—-1 =~ t—2 t—1,~ t—1 -1
Ht:lpt(s ,a (‘9 » €0, )7X (80’ 8_0 > 8 ))

In other words, the deviation strategies we consider require the agent (i) to be truthful in
the future about her orthogonalized types and (ii) to take actions that “mask” her earlier
lie so that the principal could not detect her initial deviation based on the contractible
signals, even in a statistical sense.” Note that in the benchmark case we only need to
impose restriction (ii) since the principal observes ¢y, ..., er by assumption. Also note
that the strategies satisfying restrictions (i) and (ii) include the equilibrium strategy in
the original model because if ¢y =&, the two restrictions imply truth-telling and obedi-
ence (adherence to the action rule).

We emphasize that we do not claim by any means that after reporting &y it is optimal
for the agent to follow a continuation strategy defined by restrictions (i) and (ii). Never-
theless, since the mechanism (x’, a’, p) is incentive compatible, none of these devia-
tions is profitable for the agent. We show that this observation enables us to characterize
the expected payment of the agent conditional on & up to a type-invariant constant.

Let Iy (&) denote the agent’s expected equilibrium payoff conditional on her initial
type o in the incentive compatible mechanism (x”, a’, p); that is,

y(e0) = E[u(e",a’ (7,51, s, x" (7, sT)) — p(eDlso], 2)
where E denotes expectation over £/ and s7.

9Similar ideas are used by Pavan et al. (2014) in a dynamic contracting model without hidden action and
by Garrett and Pavan (2012) in a more restrictive environment with hidden action.
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PROPOSITION 1. Ifthe mechanism (x, a’, p) is incentive compatible either in the origi-
nal model or in the benchmark case, then, for all gy € &,

€0
H(](SO) = HO(O) + E|:/ uso (y7 8{(}7 aT(y7 8{(}7 ST_1)7 ST7 XT()G 8507 ST)) dy‘80i|
0

T

€0

+E|:/ Zua,()’a 8Z07aT(y7 8ZO9ST_1)9ST7XT(y1 8?07ST)) (3)
t=0

X até‘() (ya 81_0’ Y, st_l) dY‘80i| )

where (y, ")) = (y, €1, ..., &)

Proposition 1 establishes that in an incentive compatible mechanism that imple-
ments a particular decision-action rule the expected payoff of the agent with a given
(initial) type does not depend on the transfers. Analogous to the necessity part of the
Spence-Mirrlees lemma in static mechanism design (or Myerson’s revenue equivalence
theorem), necessary conditions similar to (3) have been derived in dynamic environ-
ments by Baron and Besanko (1984), Courty and Li (2000), Es6 and Szentes (2007a),
Pavan et al. (2014), Garrett and Pavan (2012), and others. In our environment, which
is not only dynamic but incorporates both hidden information and hidden action as
well, the real significance of the result is that the same formula applies in the original
problem and in the benchmark case.'?

It may be instructive to consider the special case where the principal has no access
to contractible signals or, equivalently, the distribution of s; is independent of (6, a;).
Since the choice of a, has no impact on x’ and p7’, the agent chooses a, to maximize
her utility. A necessary condition of this maximization is E[ug, (e, a” (e7,sT~1),s7,
xT (T, sT))|e', s'=11=0forall z. As a consequence the last term of I1y (&), i.e., the second
line of (3), vanishes.

ProoFr ofF ProprosITION 1. First we express the agent’s reporting problem at r = 0 in
the benchmark case as well as in the original problem subject to restrictions (i) and (ii)
discussed at the beginning of this subsection.

To do this define

- T 3T, T o JT-1 T T = T T
U(807€0):E[u(8 7a (8 7807S )7S ,X (8078_[)"9 ))'80]
and
~ ~ T T T _3T,.T o T-1 T T = T T
P(gp) =E[p(ep, e , 5 )leg,a” =a (&' ,&p,5 ), x =X (89,8 ,5 )], (4)

where 2 is defined by (1). Recall that the action a,(&, 3y, s'~!) generates the same dis-
tribution of s, as if the agent’s true type history was (2, ¢’ ;) and the agent had taken

10The derivation relies on the connectedness of the support of the type distributions. In a simpler envi-
ronment, Krdhmer and Strausz (2015b) show that the irrelevance result fails with discrete types.
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a,(2y, &', s'~1). The significance of this is that

T

-~ T T ol T - JT-1 T T = T T
E[p(SO, 8707‘5‘ )|805a =a (8 7809s )sx =X (805 8707*9 )]

=~ I Ty T T, T T-1 T T =, T T
=E[p(80"9_05s )|‘907a =a (80’8_078 )ax =X (‘9()’8_(]75 )]’

so the right-hand side of (4) is indeed only a function of gy but not that of &.

In the benchmark case, the payoff of the agent with ¢y who reports &, and takes
action a,(&', 2y, s'~!) at every ¢ is W (g9, 89) = U(g9, 89) — P(2y). Note that W (eg, g) is
also the payoff of the agent in the original model if her type is ¢y at # = 0, she reports
‘20, and her continuation strategy is defined by restrictions (i) and (ii) above, that is, she
reports truthfully afterward and takes action a,(&!, 8y, s'~!) after the history (¢!, s*~1).

Incentive compatibility of xT,a’, p) implies that gj € argmaxg,eg, W (0, €9) both
in the benchmark case and in the original model. In addition, Ily(gg) = W (&g, £¢) and,
by Lemma 3 stated and proved in Appendix A, Ilj is Lipschitz-continuous. Therefore,
Theorem 1 in Milgrom and Segal (2002) implies that

dly(eg)  dU(e, &)
dey N degy Bo=20

almost everywhere. (Differentiability of @, in &y is also established in the proof of
Lemma 3.) Note that

ﬁU(so,Eo)J
(980 30:80

= Elug, (T, al (7,571, sT xT (&1, 57)) &)

T
T T,.T T-1\ T T,.T T\ya (.t o -1
+E[Zua,(s cal (&5t T xT (67, sT))ase, (6, B0, 5D Jgy=eg 80}-
t=0

Since Iy is Lipschitz-continuous, it can be recovered from its derivative, so the state-
ment of the proposition follows. O

Note that the validity of the proof of Proposition 1 rests on the fact that the distri-
bution of the agent’s future, orthogonalized types (&1, ..., e7) does not depend on the
realization of &j; otherwise there would be additional terms involving the derivatives
(with respect to gp) of the conditional densities of future types in the expression for
dU (&y,ey)/dep.

By Proposition 1, for a given decision-action rule, incentive compatibility con-
straints pin down the expected payments conditional on gy uniquely up to a constant
in both the benchmark case and the original model. To see this, note that from (2) and
(3) the expected payment conditional on g can be expressed as

Elp(eT,sT)leg, al ,x"]

=E[u(el,al (e, sT71), 5T, xT (e1))|€9] — TTy(0)
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€0
- E[‘/(; uso(ya SZO7 aT(ya SZO7 ST_1)7 ST,XT(Y, 8Z0> ST))dy‘gojI

T
€0
- E[/@ Zuat()’a SZ()a aT(ya SZ()a ST_1)7 ST,XT()’, SZO: ST))
t=0

w t t—1
Xal&‘o(y78_0>y>s )’80]

An immediate consequence of this observation and Proposition 1 is the following
remark.

REMARK 1. Suppose that (x”,a’,p) and (x’,a’,p) are incentive compatible mecha-
nisms in the original and in the benchmark case, respectively. Then there exists ¢ € R
such that

E[p(8T7 ST)|80’ aT7 XT] - E[ﬁ(gTs ST)|80’ aT9 XT] =C.

3.2 Dynamic irrelevance

Now we show that the principal can achieve the same expected revenue implement-
ing a decision rule as if he were able to observe the orthogonalized types of the agent
after + = 0; that is, whenever a decision rule is implementable, the agent only receives
information rents for her initial private information. This is our irrelevance result.

To state this result formally, suppose that the agent has an outside option, which we
normalize to be zero. This means that any mechanism must satisfy

H0(80) >0, for all gy € &. (5)

We call the maximum (supremum) of the expectation of payment p implement-
ing (x’,a’) and satisfying (5) the principal’s maximal revenue from implementing
(XT, aT).ll

THEOREM 1. Suppose that decision rule (x”, al) is implementable in the original model.
If payment rule p implements (x,a’) in the benchmark case subject to (5), then there
exists payment rule p that implements (x”,a’) subject to (5) in the original model such
that

Elp(el, sT)|eg,al ,x'1= E[p(s”, sT)|eg, al, x]. (6)

In addition, the principal’s maximal revenue from implementing (x', al) in the original
model is the same as in the benchmark case.

11Requiring (5) for all &y implies that we restrict attention to mechanisms where the agent participates
irrespective of her type. This is without the loss of generality in many applications where there is a decision
that generates a utility of zero for both the principal and the agent. Alternatively, we could have stated our
theorem for problems where the participating types in the optimal contract of the benchmark case are an
interval.



120 Esd and Szentes Theoretical Economics 12 (2017)

PROOF. Suppose that the direct mechanism (x”, a’, p) is incentive compatible in the
original model. Then, by Remark 1,

Epe’,sT) ey, al ,x" 1= E[p(eT, sT)|eg,a’ ,x 1+ ¢ @)

for some ¢ € R. Define p(s”,sT) to be p(e’,s’) — c. Since adding a constant has no
effect on incentives, the mechanism (x’, a’, p) is incentive compatible. In addition, the
participation constraint of the agent, (5), is also satisfied because the agent’s expected
payoff conditional on her initial type, ¢g, is the same as that in the benchmark case.
Finally, notice that (7) implies (6), that is, the principal’s revenue is the same as in the
benchmark case.

It remains to argue that the principal’s maximal revenue from implementing (x’, a’)
in the original model is the same as in the benchmark case. Note that the principal’s
expected revenue in the benchmark case is an upper bound on the same in the original
model. We have just shown that if p implements (xT,a’) in the benchmark case, the
principal can achieve E[p(e’, s7)|a’,x’] when implementing (x, a’) even if he does
not observe 1, ..., er. O

The statement of Theorem 1 is about the revenue of the principal. Note that if the
payoff of the principal is also quasilinear (affine in the payment), then the decision rule
and the expected payment fully determine his payoff. Hence, a consequence of Theo-
rem 1 is the following remark.

REMARK 2. Suppose that the decision-action rule (x”, a’) is implementable in the orig-
inal model and the principal’s payoffis affine in the payment. Then the principal’s max-
imum (supremum) payoff from implementing (x”, a”) is the same as in the benchmark
case.

It is important to point out that our dynamic irrelevance result does not imply that
the original problem (unobservable &1, ..., e7) and the benchmark case (observable
€1, ..., er) are equivalent. Theorem 1 only states that if an decision—action rule is imple-
mentable in the original model, then it can be done so without revenue loss as compared
to the benchmark case. This result was obtained under very mild conditions regarding
the stochastic process governing the agent’s type, her payoff function, and the structure
of signals. The obvious, next question is what type of decision-action rules can be im-
plemented (under what conditions) in the original problem. In the next section we show
that monotonicity of the decision—-action rule is sufficient for implementation in certain
environments. This result is used to solve applications in Section 5.

4. IMPLEMENTATION

This section establishes results regarding the implementability of certain decision
rules.!2 We restrict attention to a Markov environment with time-separable, regular

12Throughout this section we require a type-invariant participation constraint for the agent with her
outside option normalized to zero payoff, that is, we require (5) to hold.
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(monotonic and single-crossing) payoff functions, formally stated in Assumptions 1 and
2 below.

First, we show that in the pure adverse selection model (where there are neither
unobservable actions nor contractible signals) any monotonic decision rule is imple-
mentable. Then we turn our attention to the general model with moral hazard. There
the set of implementable decision rules depends on the information content of the con-
tractible signal. If the contractible signal has no informational content, that is, the dis-
tribution of s; is independent of f;(6;, a;), then naturally the agent cannot be given in-
centives to choose any action other than the one that maximizes her flow utility in each
period. In this case, we show that any decision-action rule can be implemented if x” is
monotonic and a’ is determined by the agent’s per-period maximization problem.

The most interesting (and permissive) implementation result is obtained in the gen-
eral model with adverse selection and moral hazard in case the signal is informative and
its distribution satisfies a genericity condition due to McAfee and Reny (1992). This con-
dition requires that the distribution of s; conditional on any given y; = f;(6;, a;) is not
the average of signal distributions conditional on other 3; # y;’s such that y; = ft(@, ar).
In this case, we show that any monotonic decision-action rule (x”, a”) can be approxi-
mately implemented (to be formally defined below).!3 The result is based on arguments
similar to the full surplus extraction theorem of McAfee and Reny (1992) and exploits the
property of the model that f; is approximately contractible and the agent is risk neutral
with respect to monetary transfers. The main result of this section is that in our general
model, in a regular Markovian environment with transferable utility and generic signals,
the principal is able to implement any monotonic decision—action rule while not incur-
ring any agency cost apart from the information rent due to the agent’s initial private
information.

So as to state the regularity assumptions made throughout the section, we return
to the model without orthogonalization. Throughout this section, we assume that the
contractible signal does not affect the agent’s payoff directly and we remove s’ from
the arguments of %, that is, % : 7 x A7 x X7 — R. We make two sets of assumptions
regarding the environment. The first set concerns the type distribution; the second set
concerns the agent’s payoff function.

AssumpTiON 1 (Type distribution). (i) Forallt € {0, ..., T}, the random variable 6; is
distributed according to a continuous c.d.f. G:(-|0,_1) supported on an interval
0, =19,, 0/].

Gi) Forallte{1,..., T}, Gi(-16,—1) > G:(-|6,—1) whenever 6,_1 < 0,_1.

Part (i) of Assumption 1 states that the agent’s type follows a Markov process, that
is, the type distribution at time ¢ only depends on the type at (¢ — 1) and not on prior
actions or decisions. In addition, the support of 6, only depends on ¢, so any type on 6,
can be realized irrespective of 6,_1. Part (ii) states that the type distributions at time ¢

13The approximation can be dispensed with if the contractible signal is the summary statistic f;(6;, a,)
itself.
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are ordered according to first-order stochastic dominance. The larger is the agent’s type
at time ¢ — 1, the more likely it is to be large at time ¢.

T

—o U 1O x Ap x X’ — R continu-

AssumpTioN 2 (Payoff function). (i) There exist {u;}
ously differentiable, such that

T
a(0",a", x")y = U6, ar, x).

t=0
(ii) Forallt€{0,..., T}, u; is strictly increasing in 6;.
(iii) For all t € {0, ..., T}, 0, € O, a; € As: Usp,(0r, ar, x') > Uz, (6;, ar, x') whenever

xt >

Part (i) of Assumption 2 says that the agent’s utility is additively separable over time,
such that her flow utility at time ¢ only depends on 6, and a, (and not on any prior in-
formation and action) besides all decisions taken at or before . Part (ii) requires the
flow utility to be monotonic in the agent’s type. Part (iii) is the standard single-crossing
property for the agent’s type and the contractible decision.

We refer to the model as the one with pure adverse selection if u;,, = 0 for all + and
the distribution of s; is independent of f;. Next we state our implementation result for
this case (Proposition 2). Then in Sections 4.1 and 4.2 we return to the general model
with moral hazard. In both scenarios regarding the informational content of signal s,
discussed above we reduce the problem of implementation to that in an appropriately
defined pure adverse selection problem.

ProPOSITION 2. Suppose that Assumptions 0, 1, and 2 hold in a pure adverse selection
model. Then a decision rule, X', %, : ©' — X, is implementable ifX, is increasing for all t.

By Corollary 2 of Pavan et al. (2014), Assumptions 1 and 2 imply their integral
monotonicity condition; slight differences between their and our technical assumptions
notwithstanding, our Proposition 2 appears to be an implication of their Theorem 2.
For completeness, a proof using techniques of Esé and Szentes (2007a) is provided in
Appendix B.1*

4.1 Uninformative signals

Suppose that the contractible signal is uninformative (i.e., s; is independent of f;). We
maintain the assumption that the payoff function of the agent is time-separable and
satisfies Assumption 2, but now the flow utility at time ¢ is allowed to vary with a;.
Recall that the action space of the agent at time ¢, A,, was assumed to be an open
interval of R in Section 2. This assumption ensured that the agent could mask earlier
lies (about her type) with her later hidden actions without being given away by signal s;.
Since there is no role for signal s; in the case considered here, we can relax the require-

14At the end of this proof we also show that the principal can implement more allocations in the bench-
mark case than in the original model.
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ment that A, is open. In fact, so as to discuss the implementability of allocation rules
that may involve boundary actions, we assume that 4; = [a,, a;] is a compact interval
throughout this subsection.

AssuMPTION 3. Forallte{0,...,T}, forall 6; € Oy, a;,a; € A;, and x', X" € X',
() t,,2(0:,a;,x")<0
t
(ii) U, (0y, as, x") > U, (6, ds, X') whenever a, > a,

(ii0) Uia, (0, ar, ') > Usa, (01, ar, X') whenever x' > %',

Part (i) of the assumption states that the agent’s payoff is a concave function of her
action. This is satisfied in applications where the action of the agent is interpreted as an
effort, and the cost of exerting effort is a convex function of the effort. Part (ii) states that
the single-crossing assumption is also satisfied for the action. In the previous applica-
tion, this means that the marginal cost of effort is decreasing in the agent’s type. Part (iii)
requires the single-crossing property to hold with respect to actions and decisions.

In what follows, we turn the problem of implementation in this environment with
adverse selection and moral hazard into one of pure adverse selection. Since there is
no contractible information about the agent’s action, her action maximizes her payoff
in each period and after each history; that is, if the agent has type 6; and the history of
decisions is x’, then she takes an action that maximizes (0, a;, x'). Motivated by this
observation, let us define the agent’s new flow utility function at time ¢, v, : ©; x X' - R,
to be

t ~ t
v (0, x )=rr;axut(6t,az,x ).
t

We will apply our implementation result for the pure adverse selection case (Proposi-
tion 2) to the setting where the flow utilities of the agent are {vt}tho while keeping in
mind that the action of the agent in each period 1 maximizes u;.

To this end, let a,(6;, x") denote the generically unique argmax,, u,(6;, a;, x") for all
0; € O, and x’ € X'. By part (i) of Assumption 3, if a,(6,, x') is interior, it is defined by the
first-order condition

Ura,(0;,3:(6;, x1), x') =0. (8)

The next lemma states that the flow utilities, {v[}g , satisfy the hypothesis of Proposi-
tion 2.

LEMMA 1. Suppose that the functions {Et}fzo satisfy Assumptions 2 and 3. Then the func-
tions {v,}tT:0 satisfy Assumption 2.

Suppose that the decision-action rule (x’, a”) is implementable. Then, since the
agent’s action maximizes her payoff in each period, a,(6") = a,(6,,x'(6")). In addition,
the decision rule x’ must be implementable in the pure adverse selection model, where
the agent’s flow utility functions are { vt}thl. Hence, the following result is a consequence
of Proposition 2 and Lemma 1.
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PROPOSITION 3. Suppose that Assumptions 0-3 hold. Then a decision rule, (X ,al), X,
®' - X, anda, : ©' — Ay, is implementable if X, is increasing and a,(0") = a,(6;,X (Ht))
forallt{0,...,T}.

Of course, the statement of this proposition is valid even if the contractible signal is
informative (s; depends on f;) but the principal ignores it and designs a mechanism that
does not condition on s”. However, if s, is informative about f;(6;, a,) the principal can
implement more decision rules, which is the subject of the next subsection.

4.2 Informative signals

We turn our attention to the case where the contractible signal is informative. The next
condition is due to McAfee and Reny (1992); it requires that the distribution of the con-
tractible signal conditional of any given value of yy = f;(0;, a;) is not the average of the
distribution of s; conditional on other values of f;. This condition is generic.

AsSUMPTION 4. Suppose that for all 0, € O, and a; € Ay, fi(0s,a;) € Yy = [Xt,it]. Then,
forallpeAly,,y,Jandyo €ly,, ], n({yo}) # 1 implies h(-|y0) # fyy[’ h(:ly)u(dy).

Next, we make further assumptions on the agent’s flow utility, #;, and on the shape
of the function f;.

AssuMPTION 5. Forallt€{0,..., T}, forall 6, € ©, a; € A, x' € X',
(0) Tia,(0;,a:,x") <0
(ii) thereexists a K € N such that f4,(6;, a;), fi9,(6s, ar) > 1/K
(iii) f,ag(et, ar) fr0,(0s, ar) < fta, (01, ar) fra,0,(6:, ar)
(V) Ug,x, (s, ary X fra, (01, A1) > Usa,x, (01, ar, x°) fr0,(0, ar).

Part (i) requires the agent’s flow utility to be decreasing in her action. This is satis-
fied in applications where, for example, the agent’s unobservable action is a costly effort
from which she does not benefit directly. Part (ii) says that the function f; is increas-
ing in both the agent’s action and type. In many applications, the distribution of the
contractible signal can be ordered according to first-order stochastic dominance. In
these applications, part (ii) implies that an increase in either the action or the type im-
proves the distribution of s; in the sense of first-order stochastic dominance. Part (iii)
is a substitution assumption regarding the agent’s type and hidden action in the value
of f;. It means that an increase in a;, holding the value of f; constant, weakly de-
creases the marginal impact of a; on f;.> This assumption is satisfied, for example,
if f;(6;, a;) = 6, + a,, but it is clearly more general. As will be explained later, part (iv) is

1570 see this interpretation, note that the total differential of fta, (the change in the marginal impact of a,)
is fmz da; + fia,0, d0;. Keeping f; constant (moving along an “isovalue” curve) means d6; = (— fiq, /f10,) da;.
Substltutlng this into the total differential of fi,, yields (f, a2~ fta,0,fta,/fte,) da;. This expression is nonpos-
itive for da, > 0 if part (iii) is satisfied.
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a strengthening of the single-crossing property posited in part (iii) of Assumption 2. It
requires the marginal utility in type to be increasing in the contractible decision while
holding the value of f; fixed. This assumption is satisfied, for example, if the effort cost
of the agent is additively separable in her flow utility.

The key observation is that due to Assumption 4, the value of f; becomes an approx-
imately contractible object in the following sense. For each value of f;, y;, the principal
can design a transfer scheme depending only on s” that punishes the agent for taking
an action that results in a value of f; that is different from y;. Perhaps more importantly,
the punishment can be arbitrarily large as a function of the distance between y, and the
realized value of f;. We use this observation to establish our implementation result in
two steps. First, we treat f; (for all #) as a contractible object, that is, we add another di-
mension to the contractible decisions in each period. Since, conditional on 6;, the value
of f; is determined by a,, we can express the agent’s flow utility as a function of f; instead
of a;. These new flow utilities depend only on types and decisions, so we have a pure ad-
verse selection model. We then show that the new flow utilities satisfy the requirements
of Proposition 2 and hence, every monotonic rule is implementable. The second step is
to construct the punishment transfers mentioned above and show that even if f; is not
contractible, any monotonic decision rule can be approximately implementable.

Foreach y; € {fi(6;,a;:): 6; € O, a; € A;} and 0; € Oy, let a,(6;, y;) denote the solution
to fi (0, a;) =y ina,. Foreachr =0, ..., T, we define the agent’s flow utility as a function
of y; as

wt(6t7 yl‘a xt) = ﬁt(ata 21(017 yt)a x[)~
Next, we show that the functions {wt}tT:O satisfy the hypothesis of Proposition 2.
LemMA 2. Suppose that Assumptions 2-5 are satisfied. Then the functions {wt}thg satisfy
Assumption 2.

By this lemma and Proposition 2, if the value of f; was contractible for all ¢, any in-
creasing decision rule was implementable. However, f; is not contractible; nevertheless
we can still implement increasing decisions rules approximately in the sense that by fol-
lowing the principal’s recommendation the agent’s expected utility is arbitrarily close to
her equilibrium payoff. The following definition gives this concept formally.

DerINITION 1. The decisionrule (X7, a’) is approximately implementable if for all § > 0
there exists a payment rule p : ©7 x ST — R such that for all 6, € 0y,

T
Egr [Z (0,30, % (0")) —p(oT, ST)‘00:| > TIo(6y) — 6, )
=0

where I1y(6y) denotes the agent’s equilibrium payoff with initial type 6.
We are ready to state the implementation result of this subsection.

PRrROPOSITION 4. Suppose that Assumptions 0-5 are satisfied. Then a decision rule,
&T,al), %, :0' - X, and 3, : ©' — A,, is approximately implementable ifX, and a, are
increasing forallt € {0, ..., T}.
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In the proof of this proposition, we decomposed the gain from any deviation strat-
egy into two parts. The first part is the difference between the payoff from truth-telling
and deviating in the hypothetical model where y, is contractible. The second part is the
difference between the payoff from the misreporting strategy and taking actions corre-
sponding to the misreports and the payoff from misreporting and taking actions opti-
mally. Then we use Proposition 2 to construct payments so that the first part is neg-
ative and use the payment construction of McAfee and Reny (1992) to guarantee that
the second part is small. If we were able to show that the loss due to a misreporting in
the hypothetical model where y; is contractible is large if the deviation results in a de-
cision rule that is far away from the intended decision rule, then we can prove that any
profitable deviation results in a decision rule that is nearby the intended one. Since the
optimal strategy in any mechanism is implementable, it would imply that there is an
implementable decision rule nearby any increasing decision rule. So as to get a bound
on deviation payoffs, just like in static mechanism design, we need to require the pay-
off function wy to satisfies the strict single-crossing property. It turns out that the strict
single-crossing property is satisfied if part (iii) Assumption 2 and part (iv) of Assump-
tion 5 hold with strict inequalities.

ProprosITION 5. Suppose that Assumptions 0-5 are satisfied and the inequalities of
part (iii) of Assumption 2 and part (iv) of Assumption 5 are strict. If the decision rule,
&T,al), X, :0' - X, and a, : ®' — A,, is continuous and increasing, then for all 6 > 0
there is an allocation rule, (X", ET), such that (X", ET) is implementable and

T
Egr Y | G0, %(6") — 7,06, %:(6Y)| <,
t=0

wherey,(6") = fi(0:,3,(0")) andy,(6") = f,(6:, a, ().

See Appendix B for the proof.

The implementation results of this section allow us to use a simple (and familiar)
method for solving the contracting problem of a principal whose payoff is linear in the
expected transfer. This method will be further explained in Section 5 in the context of
applications; here we give a brief summary for contracting problems satisfying the con-
ditions (Markovian types, regular, time-separable utilities, and imperfect s; signals) of
Proposition 4. First, suppose that y; (the summary statistic about the agent’s period-
t type and action) is contractible. Theorem 1 applies in this case; hence the maximal
transfer in any contract is the same as it would be in the benchmark (where the principal
observes the agent’s orthogonalized types for all ¢ > 0). Solve the benchmark problem
with felicity functions {w;}, as if y were contractible. If the resulting decision—action rule
is monotonic in the agent’s type profile, then by Proposition 4 the same can be imple-
mented approximately (with approximate incentive compatibility) even when the prin-
cipal does not observe (&1, ..., e7) and only observes an imperfect signal s; about each
yt. Moreover, as the proof of Proposition 4 shows, the expected transfer from the approx-
imate implementation is still the same as it would be with contractible {y;}. (This is so
because the expected value of the additional transfers is zero.) Hence the solution to the
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benchmark case with felicities {w;} and observable {y;} is indeed the optimal mechanism
in the original problem, provided the optimal decision—action rule is monotonic.

5. APPLICATIONS

We present three applications to illustrate how our techniques and results can be ap-
plied in substantive economic problems. In each application we first solve the bench-
mark case, where the principal can observe the agent’s orthogonalized future types. (In
the absence of a contractible summary signal about the agent’s type and hidden action,
the action rule is taken to be the agent-optimal one; in the presence of such a signal the
action rule is also optimized.) Then we verify the appropriate monotonicity condition
regarding the decision-action rule and conclude that the solution is implementable,
hence optimal, in the original problem as well.

In all three applications we assume that the agent’s type follows the (autoregressive)
AR(1) process

0, =A0,_1+(1—MNe Vt=0,...,T,

where §_1 =0 and ¢y, ..., er are independent and identically distributed (iid) uniform
on [0, 1]. The exact specification is adopted for the sake of obtaining a simple orthogonal
transformation of the information structure:

t
0,=1—NY A* e vi=0,...,T. (10)
k=0

The type process is Markovian. Assumption 1 is satisfied except that the support of 6,
depends on the realization of 6,_;. However, it is easy to make the support of 6, the unit
interval for all ¢ by mixing the distribution of 6, in (10) with the uniform distribution
on [0, 1]; our specification obtains in the limit as the weight on the uniform distribution
vanishes.

In all three examples the agent’s utility is time-separable, and the flow utility,
¢ (0y, as, x¢), only depends on the agent’s type, hidden action, and the contractible de-
cision.!® Denote the flow utility in the orthogonally transformed model by u, (&', a;, x;).
By Proposition 1, in any incentive compatible mechanism (x’, a’, p) the agent’s equi-
librium payoff can be written as

g I
+E/ D g, (vl a(y, &', 8T xi(y, gL, s)) (D)
0
t=0

£0 T
Iy (&) = Ip(0) +E[ /0 D utiey(,Lgs an(y, Lo, s, xi(y, 81, 8N dy
t=0

X ZZ\l‘t'-,‘() ()’7 8t_0: y; st_l) dy‘30:| >

16 Assumption 0 is also satisfied due to the boundedness of all relevant domains and the continuous
differentiability of all involved functions.
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where @, (&', gy, s'!), defined by (1), is the period-t action of the agent that “masks” her
initial misreport of gy conditional on the history of types and contractible signals.

Next, we describe Applications 1-3, ordered according to increasing complexity of
the agent’s payoff function. The first application is a pure adverse selection model; the
second one is a variant that includes a hidden action as well, but no contractible sig-
nal about the agent’s type and action. The third application has both hidden type and
hidden action; the agent’s type and action generate a noisy but contractible summary
signal.

AppriricaTioN 1. The principal is the seller of an indivisible good; the agent is a buyer
with valuation 6, in period ¢. The contractible action, x; € [0, 1], is the probability
that the buyer receives the good. The buyer has no hidden action; her flow utility
is simply @,(6;, x;) = 6;x, or, equivalently in the orthogonalized model, u,(&’, x;) =
(1— /\))\‘(Zf(:o)\‘k ek )x;. Note that Assumption 2 holds and u., = (1 — M)A x;.

Since the agent has no hidden action the second line in (11) is zero, and so

g T
Iy (&0) =H0(0)+E|:/0 Y (=0 x(y, 8t_0)dy’80]- (12)
=0

Suppose the buyer’s participation is guaranteed if she gets a nonnegative payoff; by (12)
this is equivalent to I1y(0) > 0.
So as to compute E[IIy(gp)], we note that by Fubini’s theorem,

1 e 1,1 1
/ / xi(y, s’_o)dydso=/ / xi(y, st_o)dsody=f (1 — g0)x: (") dey;
0 Jo 0 Jy 0

therefore

T
Eflly(g9)] =11 (0) + E|:Z(1 — M)A(1 - 30)xt(8t)]- (13)
t=0

Assume the seller (principal) maximizes his expected revenue; there is no cost of
production. The expected revenue equals the expected social surplus generated by the
mechanism less the buyer’s expected payoff,

T

ZE[Ozxt(et) — (1= )AL = g9)x,(e")] = Ty(0),
=0

where 6, is given by (10). Solve the seller’s problem by setting I15(0) = 0 and pointwise
maximizing the objective in x;(&’): the solution is found by setting x?(&’) = 1 if and only
if 0, > (1 — M)A'(1 — &) and x}(&') = 0 otherwise. Equivalently, in the notation of the
original model,

X*(0") = Ly, 4 a100>(1-1)Als

where 1 is the indicator function. This decision rule is monotone in 6’; therefore, by
Proposition 2, it is implementable in the original problem as well as in the benchmark
case. Hence it is the optimal solution in both.
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In this multiperiod trading (single-buyer auction) problem the first-best outcome
would be to trade the good whenever 6, > 0. In contrast, in the revenue-maximizing
mechanism the good is sold whenever 6; > A’(1 — A — 6)). As in the one-period prob-
lem, this decision rule corresponds to setting a reservation price in each period. The
reservation price is always nonnegative because 6y < 1 — A by (10). Interestingly, the
reservation prices and the distortion that they induce only depend on the buyer’s ini-
tial information (confirming our dynamic irrelevance result) and disappear over time as
t — 0.

AppLicaTION 2. In this application, as in the previous one, the principal is a seller and
the agent is a buyer with period-¢ valuation ;. Assume the good is divisible, so x; € [0, 1]
is interpreted as the amount bought by the buyer, and the seller has production cost
x?/2.

The important difference in this application (as compared to the previous one) is
that we assume the buyer takes a costly, hidden action interpreted as investment in every
period, which increases her valuation.!” The buyer’s flow utility is ii,(6;, a;, x,;) = (6; +
a;)x, — ca?/2 or, equivalently in the orthogonalized model,

‘
us(e', ap, x;) = |:(1 - )\))LIZ)\_kgk + a,:|x, — %ca%.
k=0

Note that Assumptions 0-3 hold, and u;., = (1 — MA'x; (same as in Application 1).

Assume that the seller cannot observe any signal about the buyer’s valuation and
investment. Hence the second line in (11) is zero, and so Ily(&g) is given by (12) and
E[IIy(gp)] is given by (13). The seller’s (principal’s) expected profit is the expected social
surplus generated by the mechanism less the buyer’s (agent’s) expected payoff:

T
SOE[0r +aexi(eh) - heareh? = hxi(eh? = (1= DAL = g0)xi(") | = To(0).
t=0

Since the seller can make no inference about a,; and, moreover, the buyer’s future valu-
ations are not affected by her current investment either, a; is set by the buyer to maxi-
mize her current flow utility: a,(&") = x,(&') /c. Substituting this into the seller’s expected
payoff, the first-order condition of pointwise maximization of the seller’s objective in
x:(gh) is

Xt(é‘t)

0; + —x:(e") — (1= M)A (1 —gy) =0. (14)

Assuming that the buyer participates with nonnegative payoff, it is optimal to set
I1p(0) = 0. Using (10) in rearranging (14) yields, in terms of the original model,

- C
0 = :[et + A0 — (1 —A)AT.

7Interpreting a, as a costly action taken right before 6, is realized and shifting the distribution of 6,, this
application can be thought of as a multiperiod generalization (of a specific example) of Bergemann and
Vilimaki (2002). Our focus is on the revenue-maximizing sales mechanism instead of the efficient one.



130 Esd and Szentes Theoretical Economics 12 (2017)

Assume ¢ > 1. Then x}(9") is strictly increasing; by Proposition 3 it is implementable
both in the original problem and the benchmark when coupled with investments
a*(0"y = x¥(6")/c. Therefore this allocation rule is the optimal second-best solution in
both problems.

In this application, in the first-best case (contractible 6;, a;), the relationship be-
tween the buyer’s investment level and her anticipated purchase (trade) would be the
same, af® = xIB/c. However, the first-best level of trade would be xf8(6,) = c,/(c — 1).
The distortion, which materializes in the decision rule in the form of less trade and in
the action rule as less investment in comparison to the efficient levels, is again due to
the buyer’s (agent’s) initial private information and it disappears over time.

ArpLicAaTION 3. The principalis an investor (a wealthy individual or institution) and the
agent is an investment advisor (private banker); the contractible action x; is the amount
invested, according to the agent’s advice, on behalf of the principal. The agent’s type
0, represents her ability to achieve a greater expected return. Her costly effort (hidden
action a;) is directed at finding assets that fit the principal’s other (e.g., ethical) invest-
ment goals; it generates a payoff proportional to the invested amount for the principal
but imposes an up-front cost on the agent.

Let ii, = —ca?/2 be the agent’s payoff and let v; = (0, + a; + &;)x, — rx?/2 be the prin-
cipal’s payoff; in the latter rx?/2 represents the principal’s (convex) cost of raising funds
for investment, and &; is a noise term (e.g., uncertainty in how the advisor’s effort affects
the investor’s nonpecuniary return on investment). Assume that v; (but not 6, or ay) is
contractible, and define s; = 6; + a; + &; as the contractible signal. The parties’ payoffs
are transferable, i.e., they may contract on monetary transfers as well. It is easy to check
that in this application Assumptions 0-5 are all satisfied.'® This is a parametric example
of the model discussed in Section 4.2. Garrett and Pavan (2012) solve a related problem
where, using the notation of this example, we have r = 0 and the decision x, € {0, 1} cor-
responds to whether the principal employs the agent instead of a continuous investment
decision (which is more meaningful in our application).

In the orthogonalized model (&', a;, x;) = —ca%/Z; hence u;, =0 and u;,, = —cay.
The period-¢ action of the agent that masks her initial misreport of &, conditional on the
history of types and signals is @ (&', €, s' 1), formally defined by

al + at(§07 8t_05 St_l) = 01‘ +/a\l‘(£t7:§07 St_l))
where 6, = (1 — A)A"8p + (1 — ) Yk, A" F&;; hence
e, 20,5 ) = ai(Bo, ', s + (1= VA (B — &)

Note that @, (&', 89, s 1) = —(1 — M)A
By (11), the agent’s expected payoff with initial type ¢ is

&0 T 1
Iy (80) =Tg(0) + E f Z(l—A)A’ca[(y,af_o,sf—)dy]eo.
0 t=0

18 Assumption 2(ii) holds weakly, but the approximate implementation result holds. The model could
easily be generalized in a way that the agent’s flow utility directly, positively depended on 6;.
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Continue to use I1y(0) > 0 as the participation constraint. Again, using Fubini’s theorem
as in the previous applications we get

T
E[MIy(gp)] =T1y(0) + E|:Z(1 — VA1 = gp)cas (e, st_l):|,

t=0

The principal’s ex ante expected payoffis the difference between the expected social
surplus generated by the mechanism and the agent’s expected payoff,

T
ZE[(Ht +a+ E0x— dra? — Lea — (1= M)A (1 - sg)cat] —TIy(0), (15)
t=0

where the arguments of a,(6', s'~1) and x,(6’, s*) are suppressed for brevity.

If signal s; contained no noise term (i.e., in case &; = 0), then the principal could
infer a; from the agent’s type report and the realized signal, and indirectly enforce any
action. In this case, the first-order condition of (pointwise) maximization of (15) in a; is
x; —cay;— (1 —M)A(1 — g9)c =0, whereas the same with respect to x; is 6; + a; — rx; = 0.
Combine the two equations and write 6;/(1 — ) for g to get

0; + A0y — (1 — M)A!

it(ot)z rc—1

Assuming rc > 1 the resulting ¥} is strictly increasing in 6’, and hence so is the corre-
sponding optimal a}, which is its positive affine transformation. Therefore, by Proposi-
tion 4, this decision—action rule is approximately implementable in the original model as
well as in the benchmark. It is easy to see that in the first-best case, x8(6) = 6,/(rc — 1).
Again, the distortion in ¥*(6") is purely due to the agent’s initial private information,
illustrating our dynamic irrelevance theorem.

6. CONCLUSIONS

In this paper we considered a dynamic principal-agent model with adverse selection
and moral hazard, and proved a dynamic irrelevance theorem: In any fixed, imple-
mentable decision—action rule the principal’s expected revenue and the agent’s payoff
are the same as if the principal could observe the agent’s future, orthogonalized types.
This result comes with (at least) two caveats: (i) the set of rules that can be implemented
with or without observing the agent’s future, orthogonalized types is different; (ii) the
result pins down the expected payments at the time of contracting, but not their distri-
bution over time. We also provided results on the implementability of monotonic de-
cision rules in regular, Markovian environments. The implementation results imply a
straightforward method of solving a large class of dynamic principal-agent problems
with meaningful economic applications.

The model considered in this paper could be extended in two directions without
much difficulty, at the expense of additional notation and technical assumptions. First,
it would be possible to accommodate multiple agents in the principal-agent model by
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replacing the agent’s incentive constraints with an appropriate (Bayesian) equilibrium.
Second, the model could be extended to have an infinite time horizon. In this case our
main theorem still holds assuming time-separable utility, discounting, and uniformly
bounded felicity functions.

APPENDIX A

LEMMA 3. If the mechanism (x',a’, p) is incentive compatible, the equilibrium payoff
function of the agent, 11, is Lipschitz continuous.

Proor. Throughout the proof, let K denote an integer such that the inequalities in As-
sumption 0 are satisfied and, in addition, forallt=1,..., T, 7 < t, and for all ¢, a’, x’,

Gt07(0t|0t_1; (lt_l, xt—l)

< K.
gt(0t|0[_1, at_la xl_l)

First, we show that there exists a K € N such that |, (&', a’~!, x'~1)| < K. For t =0,
P0s,(£0) = Go_elo(g()) = 1/g0(G51(80)) < K by part (ii) of Assumption 0. We proceed by
induction and assume that ¢, (", a™ 1, x™ 1) <K(r)forr=0,...,t— 1. Then

[ ]
— |G;})(st|lpt71(s#1, at—z’ xt—z), at—l’ xt—1)|
1
‘gt(lﬁt(é‘t, at—l’ xt—l)wjt—l(gt—l’ at—Z’ xt—2)’ at—l’ xt—l)

T—1

-1 t—=1,t—=1 =2 _t-2 =1 t—1 -1 -1
D G Ca i ) WL e 1 Y A '
=0

+

7—1

-1 t—1,.t—-1 -2 _t-2 t—1 -1
ZGth(gl"lrb (8 ,a , X )7a , X )
=0

>

<K +maxK (1)
Tt

where the inequality follows from the inductive hypothesis and part (ii) of Assumption 0.
However,

7—1
V72 -1 t—=1,_t—-1 -2 _t-2 t—1 -1
K+%§mﬂ§:qwmwf(s,a X2y, a X
=0
o 7—1
= K + maXK(T) Z Gl‘lﬂf((pl(gt: at_17 xt_l)h!ft_l(gt_l’ at_27 xt_z)a at_la xt_l)
Tt
7=0
1
X
gt(lﬁt(st, at—l’ x[_1)|1ﬂt_1(8[_1, at—2’ xt—Z)’ at—l’ xt—l)
<K +maxK(7)K?,
Tt

by Assumption 2. So we can conclude that |, (&, a’~!, x'~1)| < K + max, <, K(1)K>.
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We are ready to prove that Iy is Lipschitz-continuous. Suppose that I1(gq) > Iy (zp).
Let my(&y, g9) denote the payoff of an agent whose initial type is &y, reports gy, then
reports truthfully afterward, and takes actiona,(s!, gy, s*~!) after history (&', s'~1). Since
the mechanism (x’, a’, p) is incentive compatible, 7((2y, £9) < I1(gy) and hence,

Iy(e0) — (o) < Ho(&0) — 70 (0, £0)-
So it is enough to prove that
[Ty (£9) — 70 (20, £0)| < Kleg —2ol- (18)
In addition,
Mo(0) — m0(20, 80) = Elu(e", a (7,571, 5T, x (e"))le0]
— Elu(s™,a’ (", 30,5771, sT,x" @0, 67, sT))le0l.

To establish (18) it is sufficient to show that the absolute value of the difference between
the terms whose expectations are taken on the right-hand side of the previous equation
is smaller than K|gy — &y|. Note that

T )T . T [T-1 T . T - T T = T T-1 T .T
u(g ,a (8 > S ),S s X )_u(g())g_():a (80,8_0,5 ),S > X )

€0
T T T T-1 T T
Z[\ uS()(y’g_O’a (Y,E_o,s ),S > X )
&

0
T

+ Z Ma,(% 8?09 aT(y7 8?09 ST_l): ST: xT)ang(gt’ y7 St_l) dy'
t=0

We will show that both terms on the right-hand side of the previous equation are
bounded by a constant times |&g — gg|. Note that

£
T T T T
/A Ugy(y, e_g,a ,8 ,x )dy
&

0
o d T T -1 T-1 T T T T -1 ,T-1
:[\ ZUG,‘(‘I/ (y"gf()aa B 7x - )7a 7S 7x )l//l‘a‘()(y78707a - >x B )dy
&

<TKK|gy — &

by part (i) of Assumption 0 and since ¢, (&) < K, as shown above. In addition,

/ Zua,@,s o-al (v, 88y, 8T, s, xDyag, (e, y, s dy
&0 4
(19)
g I
:/ Zﬁa,((pT(y, 8507')7aT(ya 8?07ST_1)7ST7xT)algo(stayast_l)dy'

0 =0
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By the implicit function theorem,

fro, (' (v, &', ), A&, y, s 1))

=1y _
)= fra (Y1 (y, €1, ), A (e, y, s'71))

T -1 T-1
l[’fgo(‘gf()ayaa 7x )5

~ t
afé?o(g ay> N

which does not exceed KK by part (iii) of Assumption 0 and the argument above show-
ing that [, < K. Hence, (19) is smaller than

T
__ [¢0 _
KR [ 3 i (07 (3,707 0 %5757 5T dy < TR ey — &

80 =0

by part (i) of Assumption 0. O

Proor or LEMMA 1. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that if a,(6,, x?) is interior, then

~ = Nt ~ = o 0a (0, x")
Vo, (01, X¢) = U, (0, @0(01, X°), X°) + Usa, (01, (0, X)), X' ) ————
0, (20)
= U1p,(0;,3,(0;, x"), x') > 0,

where the second equality follows from (8), and the inequality follows from part (ii) of
Assumption 2. If a,(6,, x") is not interior then, generically,

Vig, (01, X¢) = Usg, (0, A (0, x*), x") > 0, 21

where the inequality again follows from part (ii) of Assumption 2.

It remains to prove that v’ satisfies part (iii) of Assumption 2. To simplify notation,
we only prove this claim for the case when the contractible decision is unidimensional
in each period, thatis, X, c Rforall t =0, ..., T. Suppose first that a,(6,, x') is interior.
Note that for all = < ¢,

~ — t ¢ ~ — t ¢ c?ﬁt(Ot,xt)
Vig,x, (01, X¢) = Urg,x, (0r, (01, X°), X7) + Urg,a,(0r, @1 (0, X)), x )—&x

.
ﬂm,x,(@nat(enxt),xt)

~ = ot ~ = ot
= Urg,x, (0, @,(0r, X7 ), X°) — Ug,a,(0r, (0, X)), X' )= —=
tAT 2 ’ ’ 1l b > > uta%(et,a,(ﬂt,xt),xt) >

where the first equality follows from (20) and the second one follows from (8) and the im-
plicit function theorem. Note that #i;g,x., U;6,4,, and U4, are all nonnegative by part (iii)
of Assumption 2 and parts (ii) and (iii) of Assumption 3. In addition, ﬁt 2 is negative by
part (i) of Assumption 3. Therefore, vsg,x,(6;, x;) > 0. Suppose now that a,(6;, x") is not
interior. Then, for all 7 < ¢, generically,

UtO,xT(Ot, xt) = ’ﬁtet.x'r(et’ﬁt(et, xt)a xt) > 05

where the equality follows from (21) and the inequality follows from Assumption 3(ii). O
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Proor oF LEMMA 2. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that

(22)

_ - a, (0, yr)
wtﬁt(gta Vi, xt) = utgt(et, gt(et, yt), Xt) + uta,(gta gt(eta yt), xt) to., AEd .

0:

We apply the implicit function theorem for the identity f;(6;, a,(6;, y;)) = y; to get

da,(0¢, yr) _ _ftOt(Htagt(Otayt))
d0; fra,(6:,8,(0;, y1))’

which is negative by part (ii) of Assumption 5. Since 9, > 0 by part (ii) of Assumption 2
and u;,, < 0 by part (i) of Assumption 5, we conclude that wy is strictly increasing in 6.

Next, we prove that w; satisfies part (iii) of Assumption 2. First, we establish the
single-crossing property with respect to 6; and y;. By (22),

oa,(0¢, yr)

wtetyt(etaytaxt):ﬁtotat(etagt(etayt)’xt) &y
t

da,(0y, y) da,(0;, yr)
O7yt &Gt

7*a,(0:, yr)
30,9y

+ 1,2 (01, 8,(61, 1), ")
+ ﬁmt(gta gz(eta yt), xt)

To sign da,/dy; and #*a, /36, dy:, we appeal to the implicit function theorem once again:

a,(0r, y1) 1
2% fra,(01,8,(0;, y1))

Jro;(01,8,(01,y1))
azgt(gt,yt) _ fmg(gt,?_lt(et,%))m - fza,et(ﬂt,g,(ez,yz))

903y fra(B2,3,(60, 1))

Therefore, wyg,y, (01, y1, x") can be rewritten as

Zit«%(@t, a, (0, yr), x")
ftat(et,i_lt(et,)’t))

_flef(eiagt(el’yl))
ff,(01,8,(01, y1))

0,,a,(0;,
Fraa (B> 8, (81, Y)Y HEGERCNE — fiave, (61, ,(61, 7))
fh, (60, ,(61, y1)) '

+ ’lzta%(et’ gt(et’ Yt): xt)

+ Uz, (0;, 2,(6, Y1), xh)

The first term is positive by part (ii) of Assumption 2 and part (ii) of Assumption 5. The
second term is positive by part (i) of Assumption 3 and part (ii) of Assumption 5. The
third term is positive by parts (i) and (iii) of Assumption 5. Therefore, we conclude that
Weo,y, = 0.

It remains to show that the single-crossing property in part (iii) of Assumption 2 also
holds with respect to 6, and x, for all + < ¢. To simplify notation, we only prove this
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claim for the case when the contractible decision is unidimensional in each period, that
is, Xy cRforall=0,...,T. By (22),

da,(0y, yr)

d0;
ft(},(ets Q[(Ol’ Yt))
fra,(0,8,(01, y1))”

wtﬁ;xT(ota ) xt) = ﬂtﬁ,xf(et, gt(et: ), xt) + ﬁta[xf(ety é_lt(ﬁ't, t), xt)

= ﬂt@;xf(eh gt(eta J’t)> xt) - ﬂta,x.r(eta gt(eta J’t), xt)
which is positive by part (iv) of Assumption 5. O

ProoF oF ProposITION 4. Fix an increasing decision rule (XT,aT) and a 6 > 0. Below,
we construct a transfer rule, p, such that (X7, a’, p) satisfies (9). To this end, define the
function ¥’ : 7 — Y7 such that¥,(8) = f,(6,,a,(8")) for all t and ¢". Since @, is increas-
ing in 6’ and f; is strictly increasing in both 6, and a, (see part (ii) of Assumption 5), the
function y, is also increasing in 6’. Therefore, by Lemma 2 and Proposition 2, the deci-
sion rule (X7, ¥7) is implementable in a pure adverse selection model where the agent
flow utilities are {wt}tT:o- Letp: ®7 — R denote a transfer rule that implements (X’ , ?T).

Fix a K € N such that |#,,| < K and f;,, > 1/K. By part (i) of Assumption 0 and
part (ii) of Assumption 5, such a K exists. By Theorem 2 of McAfee and Reny (1992),
for each t =0, ..., T, there exists a function p; : S; x Y; — R such that E,,(p/(s;, y;)|
f(0:,a;)=y)=0and

/ / 8
Es (pe(se, yOIf (1, a0) = y)) = K2y, — y)| — T (23)

Let us now define p: 7 x ST — R by

T
p67,s)=DOT) + ) pilsi, Vi (6")). (24)
t=0

Next, we show that the agent cannot generate an excess payoff of é by deviating from
truth-telling and obedience in the mechanism (XT,a’, p). First, note that the agent can-
not benefit from making her strategy at time ¢ contingent on the history of contractible
signals, s’ ~1 because her continuation payoff does not depend on these variables in the
mechanism (X7, a’, p). Therefore, we restrict attention to strategies that do not depend
on past realizations of the contractible signal. Any such strategy induces a mapping
from type profile to reports and actions in each period. Let p;(6") and «,(6") denote the
agent’s report and action at time ¢, respectively, conditional on her type history ¢’. Let
o;(6") denote the solution of

ft(0s, a) = fi(pe(0"),a:(pe(0"))  [=F:(pe(6")] (25)

in a;. In other words, a;(6") is the agent’s action that generates the same value of f;
conditional on ¢ as if the agent’s true type was p;(6’) and she took action a,(p,(6")).
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Then the expected payoff generated by (p’, a!), conditional on 6, is

T
Egr [Z 000, 0 (6"), % (pi(6')) — P(p” (67), ST)‘OO}

t=0

T
= Eyr [Z%(et,az(e’xi’(pt(ef))) —ﬁ(PT(GT))‘OO}
t=0

(26)
T

+ ZEQT)ST[az(Oz, a;(6"),X (pc(6"))) — U (6, @ (6"), X (ps(6')))
t=0

—Pt(St,?t(Ot))WO],

where the equality follows from (24).
We first consider the first term on the right-hand side of the previous equality. Note
that

T
Eqr [Z (01, @(6), X (p(6))) —ﬁ(PT(OT))‘%}

t=0

r T
= Egr Zw:(az,yt<pt<0f>>,if<pt<0’>>>—§<pT(0T)>]60}

Lt=0 27)

r T
< Egr| > wi(6:,y:(6"),%(6")) ﬁ(eT))eo]
L t=0

- T
=Eyr Zﬁt(et,it(ef),i‘(e’)) —ﬁ(HT)‘00i|,
L =0

where the inequality follows from the assumption that the transfer rule p implements
&7, §7) if the flow utilities are {w'}’_. Also note that

U (B, ar(07), X (pe(0'))) — Tig (07, @r(6"), X (pe(6))) — Esr[pe(se, Ve(pe(07)))160, e (6")]
< K& (8") — ar (8] — Egr[pe(se, e(pe(07)))16;, ar (6]
< K?[£i(0;, @ (0") — f1(0r, 2,(0")| — Eqr[pe(se, Fe(pe(07)))16,, ar (6]

= KZWt(Pt(OT)) - f,(p;(OZ), at(el))’ - EST[Pt(Sz,?t(Pt(eT)))Wt, at(et)]
1)
T+1’

=
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where the first and second inequalities follow from |#i;,,| < K and fi,, > 1/K, the equality
follows from (25), and the last inequality follows from (23). Summing up these inequali-
ties for t =0, ..., T and taking expectation with respect to 7 yields

T
ZE(;T,ST[%(% ai(60"),X (p (")) — (6,3, (pi(8"), X (p:(6")))
t=0 (28)
—pi(s1,¥1(6))160] < 6.

Therefore, plugging (27) and (28) into (26) we get that

T
Egr g1 {Z T (01, (09, X (pi(6")) — B(p” (67), ST)‘OO}

t=0

T
<Eyr |:Z U (0;,,(0"),%'(0")) —5(0T)‘00] +6
=0
T
=Egr g1 |:Zﬁt(0t>5z(9t),it(0t)) - ﬁ(pT(OT),sT)‘OO] +8,
=0

where the equality follows from Ej,[p:(s:, y)|f(6:, a;) = y.] = 0. This implies that the
agent cannot gain more than 8§ by deviating from truth-telling and obedience in the
mechanism (X7, a’, p). O
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