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Abstract
We consider a dynamical model of distress propagation on complex networks, which we

apply to the study of financial contagion in networks of banks connected to each other by

direct exposures. The model that we consider is an extension of the DebtRank algorithm,

recently introduced in the literature. The mechanics of distress propagation is very simple:

When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses,

and so on. The original DebtRank assumes that losses are propagated linearly between

connected banks. Here we relax this assumption and introduce a one-parameter family of

non-linear propagation functions. As a case study, we apply this algorithm to a data-set of

183 European banks, and we study how the stability of the system depends on the non-lin-

earity parameter under different stress-test scenarios. We find that the system is character-

ized by a transition between a regime where small shocks can be amplified and a regime

where shocks do not propagate, and that the overall stability of the system increases

between 2008 and 2013.

Introduction

Complex networks [1–3] have proved useful to describe systems characterised by pair-wise
interactions. Properties of dynamical processes on networks can be strongly affected by the
underlying topology [4]. Examples include spread of news [5], rumours [6], diseases [7], finan-
cial distress [8], random walkers travelling the graph [9–11], and avalanches [12, 13].

In these cases stylizedmodels, despite their apparent simplicity, can give meaningful indica-
tions on the large scale dynamics of the system [7], also helping to shed light on the importance
of the network topology [14]. For example, models of epidemic contagion (such as SIS or SIR
[15]) display dramatically different behaviors dependingweather they take place on regular lat-
tices or on complex networks. Similarly, also the spread of distress [16–19] in financial net-
works is deeply dependent on the pattern of connections among financial institutions. In
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particular, it is not clear yet if a single topology can be considered robust with respect to differ-
ent types of shocks [20] or not [21, 22].

Financial institutions are strongly interconnected in a variety of ways (e.g. ownership rela-
tionships [23, 24], common asset holdings [25–27], trading of derivatives [28], possible arbi-
trage opportunities to exploit [29]) through which distress can propagate and lead to
amplification phenomena, such as default cascades. Here we focus on a single layer of intercon-
nectedness, namely that associated with interbank loans. To cope with fluctuations of liquidity,
banks constantly lend money to each other, at different maturities. Hence, lenders are subject
to counterparty risk, i.e. the risk that their borrowers could default and therefore not be able to
fulfill their obligations. This, in turn, could lead to the default of lenders, resulting in a further
wave of distress.

In the literature on financial contagion, a bank is represented by its balance sheet, consisting
of assets with a positive economic value (such as loans, derivatives, stocks, bonds, real estate)
and of liabilities with a negative economic value (such as customers’ deposits, debits). The bal-
ance sheet identity for bank i defines its equity as the difference between its total assets Ai and
its total liabilities Li: Ei = Ai − Li. A bank with a negative equity would not be able to pay back
its debtors, even assuming that it could sell all of its assets. Therefore, usually a negative equity
is considered a good proxy for the default of a bank. An interbank loan extended by bank i to
bank j is an asset for bank i and a liability for bank j. Hence, the relationship between a lender
and a borrower is pair-wise in nature and a convenient way to represent it is by means of a
directedweighted network [30, 31] in which edges of weight AIB

ij correspond to a loan of
amount AIB

ij from bank i to bank j. We call all the other assets and liabilities external and we
denote them with AE

i and LE
i respectively (see Fig 1).

The study of the interbank network has attracted considerable attention, also for its practical
importance. Two widely recognized algorithms to quantify losses due to financial contagion
are the Furfine algorithm [12, 32] and DebtRank [33–39]. The former is essentially a threshold
model according to which a bank propagates distress to its creditors only after its default. In
contrast, DebtRankwas introduced precisely to account for shock propagations occurring also

Fig 1. Interbank network and balance sheet. Sketch of a portion of the interbank network and stylised representation of the

balance sheet of a bank, with interbank assets and liabilities highlighted. The difference between assets and liabilities is the equity. A

negative equity is usually considered a good proxy for the default of a bank.

doi:10.1371/journal.pone.0163825.g001
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in absence of default. To this end, relative losses in the equity of a borrower translate into the
same relative devaluation of interbank assets of the corresponding lender. Those two mecha-
nisms represent two extremes. On one hand, the Furfine algorithm is likely to underestimate
the build-up of systemic risk. On the other hand, in DebtRank even tiny variations in the equity
(as those deriving from daily market fluctuations) have a sizeable impact on the value of inter-
bank assets. As a realistic scenario is likely to lie in-between those two extremes, in this paper
we propose a model that interpolates between them and use it to perform stress tests to the
European banking system.We will refer to the introducedmodel as non-linear DebtRank.

The paper is organized as follows: In the section Results we specify the model used and pres-
ent a detailed characterization of its behavior within the context of a case study. In the section
Discussion we discuss the main implications of our results, also from a policy-makingperspec-
tive, and point out some limitations of our approach. We refer the reader interested in the
details about the data used and a derivation of the algorithm to the sectionMaterials and
Methods.

Results

We perform stress tests on N = 183 publicly traded European banks using data from their bal-
ance sheets for the years from 2008 to 2013 (see the sectionMaterials and Methods: Data for a
detailed description of data). Since data on bilateral exposures are not publicly available, we
employ a reconstruction technique to infer plausible values [40, 41] and sample for each year
100 instances of interbank networks for given values of connectivity p, defined as the number
of reconstructed edges divided by the number of possible edges (N(N − 1)) (see the section
Materials and Methods: Data for more details about the reconstruction of data).

A stress test consists in applying an initial exogenous shock to the system and to measure its
response in terms of the resulting equity losses. From the point of view of risk management,
the relevant quantity is the relative equity loss of bank i at time t:

hiðtÞ ¼
Eið0Þ � EiðtÞ

Eið0Þ
: ð1Þ

The corresponding quantity at the aggregate level is the total relative equity loss:

HðtÞ ¼
PN

i¼1
Eið0Þ � EiðtÞ
PN

i¼1
Eið0Þ

¼
XN

i¼1

hiðtÞ
Eið0Þ

PN
j¼1

Ejð0Þ

 !

: ð2Þ

In the context of financial contagion, the initial exogenous shock amounts to a relative devalua-
tion of external assets, which corresponds to setting the initial condition hi(1) (see the section
Materials and Methods: Model dynamics). If banks hold no interbank asset they will not incur
any additional equity loss and their final equity losses will be equal only to the devaluation of
external assets. In contrast, let us suppose that bank i extends a loan to bank j and therefore
that it holds the corresponding interbank asset AIB

ij . If bank j suffers an equity loss, its probabil-
ity of default will increase and thus the probability that it will be able to fully pay back its loan
will decrease. Bank i will account for the possibility of not being fully paid back by reducing the
value of the interbank asset AIB

ij in its balance sheet (in financial jargon the interbank asset will
be marked-to-market). However, as the value of the interbank asset AIB

ij decreases, also the
equity of bank i will decrease by the same amount. Lenders of bank i will now re-evaluate their
interbank assets towards bank i, using the same mechanism used by bank i to re-evaluate its
interbank asset towards bank j. As a consequence, the process of re-evaluation of interbank
assets and equities proceeds recursively from borrowers to lenders, until convergence.

Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank
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As we show in the sectionMaterials and Methods: Model dynamics, the dynamic equation
for the relative equity loss that includes the aforementioned recursive re-evaluation of inter-
bank assets is the following:

hiðt þ 1Þ ¼ min 1; hiðtÞþ
X

j

Lij pD
j ðtÞ � pD

j ðt � 1Þ
h i

( )

; ð3Þ

where pD(t) is the probability of default of bank j at time t and Lij ¼ AIB
ij =Eið0Þ is the interbank

leveragematrix. In order to completely define the iterative map Eq (3), we need to establish a
relationship between pD

j ðtÞ and hj(t). In the case of Furfine’s algorithm, the probability of
default is equal to one only if the equity is smaller than or equal to zero, and it is equal to zero
otherwise,while in the linear DebtRank pD

j ðtÞ ¼ hjðtÞ. Here we take a practical approach by
introducing the following functional form:

pD
j ðtÞ ¼ hjðtÞe

a hjðtÞ� 1½ � ; ð4Þ

in which α is a free parameter. Such approach, albeit “phenomenological” in the sense that Eq
(4) is intended to provide an effective description of how shocks propagate, has several merits.
It depends on a single parameter, which has a clear financial meaning: it is the inverse of the
typical relative equity loss after which banks start to propagate distress to their creditors. Thus,
1/α can be interpreted as a soft threshold: losses smaller that 1/α have negligible impact on the
probability of the default of banks. The value α should be therefore tuned by practitioners and
regulators so that the probabilities of default can be calibrated (in principle also diversely) for
each bank. Estimating it is beyond the scope of this paper. However, we will perform a sensitiv-
ity analysis by exploring the behaviour of the model as a function of α. Moreover, Eq (4) leads
to probabilities of defaults that are convex with respect to the equity (see Fig 2), which is their

Fig 2. Comparison of different algorithms. Probability of default pDj ðtÞ as a function of the relative equity

loss hj(t) for different algorithms. The non-linear DebtRank interpolates between the Furfine algorithm and

the non-linear DebtRank.

doi:10.1371/journal.pone.0163825.g002
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expected behaviour. In fact small fluctuations in the equity of borrowers reasonably trigger tiny
variations in the probability of the default of lenders, while when borrowers experience larger
losses the marginal effect on lenders can be dramatic. Finally, Eq (4) easily allows to interpolate
between two of the mostly widely used contagion models: the linear DebtRank, which is recov-
ered for α = 0, and the Furfine algorithm, which is recovered for α!1. In Fig 2 we plot for
these cases the probabilities of default as a function of the relative equity loss. The importance
of the interbank leveragematrix in the context of distress propagation has been already
highlighted by [36, 39, 42], pointing out that the stability of the system is determined by its
largest eigenvalue. Also in our case, using the general framework discussed in [43] it is easy to
show that the system is stable if λmax eα< 1, i.e. if α> log λmax, where λmax is the largest eigen-
value of the interbank leveragematrixΛ.

Our stress test consists in assuming a devaluation of external assets by a factor xshock for a
fraction of banks equal to pshock. All presented results are averaged both over the network sam-
ples and over the set of initially shocked banks (10 realizations of such set for each network in
the sample). Therefore, independently for each realization, we proceed to shock pshock � N
banks. Each shocked bank suffers an initial loss in the external assets:AE

i ð1Þ ¼ xshockAE
i ð0Þ (see

the sectionMaterials and Methods: Model dynamics).
A first analysis is focused on the most critical year: 2008. In Fig 3 we show the effects of the

initial shock, as its propagation through the network unravels in time. More in details, Fig 3
shows S(t), the fraction of stressed banks,D(t), the fraction of defaulted banks, andH(t), the
total relative equity loss experiencedby the system. Stressed banks are those which have experi-
enced equity losses, but have not defaulted yet. Defaulted banks at time t are those for which
hi(t) = 1. From left to right, plots correspond to α = 0, α = 1, and α = 2.

The qualitative behaviour of both stressed and defaulted banks is shared by all panels.
Stressed banks sharply increase in the first time steps and decrease afterwards, as defaults start
to occur. This is consistent with the fact that stress propagates even in absence of defaults.
However, a clear dependence from α emerges. The most striking feature is that the time scale
over which the system reaches its steady state is a non-monotonous function of α. In fact, in
both panels A and C convergence is reached before the first 20 time steps, while in panel B the
dynamics is slower. This phenomenon can be intuitively understood as follows: α is related to a
soft threshold in the value of the relative equity loss that a bank needs to attain before it can
propagate a shock. Such threshold is zero in the linear case and approaches one in the strongly

Fig 3. Unraveling of shocks propagation over time. Fraction of stressed banks S(t) (blue line), fraction of defaulted banks D(t) (red line),

and H(t) (violet line), total relative equity loss experienced by the system as a function of the time t over which shocks propagate. Banks

experience a shock in the external assets, which suffer a relative loss equal to xshock = 0.5%. All points are averaged over a sample of 100

reconstructed networks with connectivity p = 0.05 and compatible with 2008 balance sheets, and over 10 realisations of the shock in which

each bank is shocked with probability pshock = 0.05. Error bars span three standard errors. α = 0 in panel A and the algorithm reduces to the

linear DebtRank, while α = 1 in panel B, and α = 2 in panel C. We see that the dynamics unravels within a few time steps in the panels A and

C, while it takes considerably more time steps in panel B.

doi:10.1371/journal.pone.0163825.g003
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non-linear regime (α� 1). In the first case shocks are quickly propagated through the net-
work, while in the second case shocks are easily dampened. In the intermediate regime the
build-up of the stress happens gradually. Nevertheless, the total relative equity loss can still
reach values comparable to those of the linear case (see panels A and B).

Next, we present a comprehensive characterization of the steady state. Fig 4 shows the sur-
face plots ofH1, the total relative equity loss in the steady state, as a function of α and xshock, for
network connectivity p = 0.05, and for different choices of pshock. n order to meaningfully com-
pare the results for different values of pshock, we tune the range of xshock spanned so that the
ranges of total shock pshock � xshock affecting the system are equal across all the cases considered.

Let us start from focusing on the behaviour ofH1 as a function of α for fixed values of
xshock. From the panel A of Fig 4 we can clearly see that, apart from the numerical fluctuations
due to the finite number of realizations, for any given value of xshock,H1 decreasesmonotoni-
cally with α. Starting from large values of α and moving towards smaller values,H1 reaches a
plateaux in which most of the equity in the system has been lost (H1> 0.9). As expected,
focusing instead on the behaviour ofH1 as a function of xshock, for fixed values of α,H1
increases with xshock. Overall we can detect two different regimes, one in which (almost) all the
equity in the system has been lost (for small values of α) and one in which (almost) no equity
has been lost (for large values of α and small values of xshock). For smaller and smaller values of
xshock the crossover between such two regimes is sharper and sharper. Finally, in the limit xshock
! 0 the system displays a transition between a stable regime in which no losses occur, and an
unstable regime in which also infinitesimal shocks can lead to large total relative losses. The
presence of such transition can be better appreciated from panel B of Fig 4, where we present
the results in the case in which all banks suffer the same initial shock (i.e. pshock = 1). This can
be interpreted as a shock to a risk factor common to all banks, such as a sudden change in
interest rates or similar to that experiencedduring a major macroeconomic downturn. We
note here that we have performed simulations for different values of the connectivity parameter
p ranging between p = 0.05 to p = 1 (fully connected network). Interestingly, we observed that
systems with very different connectivities behave in a similar way. A possible explanation is
that, due to the reconstruction technique used (see the sectionMaterials and Methods: Data),
p = 0.05 is already enough to connect systemically important banks.

Finally, in Fig 5 we adopt the same setting as in Fig 4 for different years. Overall, we observe
that H1markedly decreases from 2008 to 2013. It clearly emerges that the system was more

Fig 4. Equity loss in 2008. Surface plot of H1, the total relative equity loss in the steady state, as a function of the size of the shock

suffered by external assets of banks xshock and of the parameter α, which tunes the non-linearity of the algorithm. All points are averaged

over a sample of 100 reconstructed networks with connectivity p = 0.05, and compatible with 2008 balance sheets, and over 10 realization

of the shock in which each bank is shocked with probability pshock = 0.05 (panel A) and pshock = 1 (panel B). Note that the range of the total

size of the shock pshock � xshock is the same for both panels. As α increases, the propagation of the shock is dampened, resulting in smaller

losses, and in two different regimes, whose separation is especially evident for pshock = 1, i.e. when all banks are shocked.

doi:10.1371/journal.pone.0163825.g004
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prone to amplify shocks in 2008, when a region in parameters space in whichH1’ 1 exists.
This is consistent with the intuition that banks in 2008 were more fragile.

Discussion

In the present study, a general shock propagation mechanism is applied to an interbank net-
work of 183 publicly traded European banks.With probability pshock each bank is subject to an
initial shock consisting in the devaluation of their external assets by a factor xshock. The system
reaction to shocks is measured in terms of the total relative equity loss, which takes into
account the contribution of each bank to the relative equity loss of the system. The dynamics of
shock propagation that we consider (non-linear DebtRank) interpolates through the parameter
α between two stress test algorithms: the Furfine algorithm and the linear DebtRank.

We notice that the propagation of shocks strongly depends on the parameter α. In particu-
lar, in all stress scenarios that we have considered we observe a crossover between a regime of
large losses (for small α), in which potentially all banks could default, and a regime of small
losses (for large α), in which most banks survive the shock. The width of the intermediate
region shrinks as the fraction of banks affected by the shock approaches one.

The model also shows that the interbank network was significantlymore fragile in 2008,
when the financial crisis took place, than in the subsequent years. This observation holds quali-
tatively for all values of model parameters and connectivities explored and it is also in agree-
ment with other empirical studies [44].

In addition to the properties of the steady state we have also looked into the dynamics of
quantities such as the number of stressed and defaulted banks, whose behavior highlights the
existence of different time scales, depending on the model parameters. For instance, we observe
that the time needed to reach the steady state is a non-monotonic function of α: in certain
cases the shock produces a slow drive of the interbank network towards its collapse, while in
other cases the crash occurs immediately after the shock.

Clearly, establishing a coherent mapping between probability of defaults and changes in
equity opens several possible directions for future research. Obviously, calibrating α, possibly
extracting a different value for each bank, would represent a major achievement. Beyond the
“phenomenological” approach adopted here, one could try to derive such relationship in the
context of standard financial risk management theory. Moreover, here we have limited our
analysis to direct exposures due interbank landing. A proper assessment of systemic risk should
account for additional types of interconnectedness, such as that associated with overlapping
portfolios, exchange of derivates, and ownership structure. Hence, another future extension of
the model could be based on a multilayer network that incorporates those effects. Complex
interactions across different layers could lead to non-trivial amplification phenomena [45].

Fig 5. Equity loss in 2010 and 2013. Analogous of Fig 4, but for the years 2010 and 2013. Here the

connectivity of the reconstructed networks is p = 0.05 and the fraction of shocked banks on average is

pshock = 0.05. Going from 2008 (see Fig 4, panel A) to 2013 H1 is less and less sensitive to changes in α and

it is generally smaller, meaning that banks are more and more robust.

doi:10.1371/journal.pone.0163825.g005
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Finally, studying the stability of the system, which is becoming increasingly possible due to
recent works [43, 46], could allow regulators to develop faster qualitative stress-testing frame-
works to continuously monitor systemic risk.

Materials and Methods

Model dynamics

In order to derive Eq (3) we start from the balance sheet identity introduced in the section
Introduction in which we distinguish between external and interbank assets and liabilities:

EiðtÞ ¼ AE
i ðtÞ � LE

i þ
XN

j¼1

AIB
ij ðtÞ � LIB

ij ; ð5Þ

where, as customary in the literature on financial contagion, assets depend explicitly on time,
while liabilities do not. In fact, while external assets are subject to exogenous fluctuations, the
value of interbank assets AIB

ij will change accordingly (marked-to-market), depending on the
probability of default of the borrower j. However, the fact that bank i reassesses the value of its
interbank claim towards bank j does not change the value of the debt that bank j owes to bank
i: hence interbank liabilities (and analogously external liabilities) always keep their face value
(i.e. the value initially present in the balance sheet), and therefore do not depend on time. As a
consequence, using Eqs (1) and (5) we can readily compute:

hiðtÞ ¼
AE

i ð0Þ � AE
i ðtÞ

Eið0Þ
þ
XN

j¼1

AIB
ij ð0Þ � AIB

ij ðtÞ
Eið0Þ

: ð6Þ

If the probability of default of bank j is equal to zero, obviously its creditor bank i can expect to
fully recover the face value AIB

ij ð0Þ of its loan. In contrast, if the probability of default of bank j
is equal to one, bank j has defaulted and its creditor bank i can expect to recover only a fraction
RijAIB

ij ð0Þ of its loan, where Rij 2 [0, 1]. A natural way to interpolate between these two extreme
cases is to identify the value of interbank assets at time t + 1 with their expected value at time t:

AIB
ij ðt þ 1Þ ¼ AIB

ij ð0Þ 1 � pD
j ðtÞ

� �
þ RijA

IB
ij ð0Þp

D
j ðtÞ : ð7Þ

By making the conservative assumption [18, 47] that creditors do not actually recover any
amount of money in case of default of their borrowers, we have:

AIB
ij ðt þ 1Þ ¼ AIB

ij ð0Þ 1 � pD
j ðtÞ

� �
; ð8Þ

which implies that bank i updates the value of its interbank claims towards bank j such that it
is equal to their face value if the probability of default pD

j of the borrower bank j is zero and it
decreases proportionally to pD

j otherwise. By plugging Eq (8) into Eq (6) and using the defini-
tion of the interbank leveragematrix [36, 39]:

Lij ¼
AIB

ij ð0Þ

Eið0Þ
ð9Þ

we can immediately compute:

hiðt þ 1Þ � hiðtÞ ¼
AE

i ðtÞ � AE
i ðt þ 1Þ

Eið0Þ
þ
XN

j¼1

Lij pD
j ðtÞ � pD

j ðt � 1Þ
h i

: ð10Þ
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In our stress test scenario we will initially shock external assets by a relative amount xshock, i.e.
AE

i ð1Þ ¼ xshockAE
i ð0Þ, such that hið1Þ ¼ ð1 � xshockÞðAE

i ð0Þ=Eið0ÞÞ. However, after the initial
shock external assets do not change anymore and the evolution of the relative equity losses is
entirely due to the re-assessment of the value interbank assets. As a consequence, the first term
in the right-hand side of Eq (10) is equal to zero, for t> 1. Finally, when the equity of bank i
becomes equal to zero the bank defaults and is not able neither to further propagate shocks nor
to sustain any additional losses. Hence, the maximum value attainable by the relative equity
losses is one, which leads to Eq (3).

From Eq (3), we see that the results will depend on the relationship that we assume between
the relative loss in equity of a bank and its probability of default. In the Furfine algorithm we
have that:

pD
j ðtÞ ¼

0 if hjðtÞ < 1

1 if hjðtÞ ¼ 1 ;

(

ð11Þ

while in the linear DebtRank:

pD
j ðtÞ ¼ hjðtÞ : ð12Þ

In the non-linear DebtRankwe interpolate between this two extreme cases by means of the
parameter α (see Eq (4)): for α = 0 we recover the linear DebtRank, while for α!1 we
recover the Furfine algorithm.

Data

The original source for raw data about balance sheets of banks is the Bureau van Dijk Bank-
scope database, from which we extract data for a subset of 183 among the largest European
banks. In particularwe use data about the total interbank assets (liabilities)AIB

i ¼
P

j¼1
AIB

ij

(LIB
i ¼

P
j¼1

LIB
ij ) and we compute external assets (liabilities) as the difference between total

assets (liabilities) and interbank assets (liabilities):AE
i ¼ Ai � AIB

i (LE
i ¼ Li � LIB

i ). The same
data have already been used in [36, 39]. See [36] for all the details about the handling of missing
data. Even though European banks do not necessarily constitute an isolated system [48], they
are weakly correlated to American and Asian banks [49]. Moreover, banks outside Europe fall
under different regulating authorities, and therefore they might be subject to different condi-
tions (e.g. during bailouts). The analysis of Ref. [49] makes it clear that European banks are
also connected to financial institutions other than banks. To account for the additional chan-
nels of contagion due to the interaction between financial institutions of different types, one
could extend our approach to the case of multilayer networks, as suggested in the section
Discussion.

As already pointed out, the balance sheet of bank i contains only data about its total inter-
bank lending and borrowing, i.e. the values of AIB

i and LIB
i . As a consequence, the full matrix

needs to be reconstructed by making some assumptions. Here we proceed as in [39] and make
the reasonable assumption, successfully tested in [40, 41], that the probability that bank i
extended a loan to bank j is proportional to AIB

i , the total amount of interbank lending of bank i
and to LIB

i , the total amount of interbank borrowing of bank j. The fitness model [50] allows us
to compute the values of the probabilities {pij} that an edge i! j exists for a given value of con-
nectivity p. We then use {pij} to build a sample of 100 directed un-weighted networks for each
year. For each network in the sample we assign weights using the iterative RAS algorithm [51].
See [39] for a full account of the procedure.
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