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Lower bounds on the redundancy in computations from random
oracles via betting strategies with restricted wagers∗

George Barmpalias Andrew Lewis-Pye Jason Teutsch

September 21, 2016

Abstract. The Kučera-Gács theorem [Kuč85, Gác86] is a landmark result in algorithmic randomness
asserting that every real is computable from a Martin-Löf random real. If the computation of the
first n bits of a sequence requires n + h(n) bits of the random oracle, then h is the redundancy of the
computation. Kučera implicitly achieved redundancy n log n while Gács used a more elaborate coding
procedure which achieves redundancy

√
n log n. A similar bound is implicit in the later proof by Merkle

and Mihailović [MM04]. In this paper we obtain optimal strict lower bounds on the redundancy in
computations from Martin-Löf random oracles. We show that any nondecreasing computable function
g such that

∑
n 2−g(n) = ∞ is not a general upper bound on the redundancy in computations from

Martin-Löf random oracles. In fact, there exists a real X such that the redundancy g of any computation
of X from a Martin-Löf random oracle satisfies

∑
n 2−g(n) < ∞. Moreover, the class of such reals

is comeager and includes a ∆0
2 real as well as all weakly 2-generic reals. On the other hand, it has

been recently shown in [BLP16] that any real is computable from a Martin-Löf random oracle with
redundancy g, provided that g is a computable nondecreasing function such that

∑
n 2−g(n) < ∞. Hence

our lower bound is optimal, and excludes many slow growing functions such as log n from bounding
the redundancy in computations from random oracles for a large class of reals. Our results are obtained
as an application of a theory of effective betting strategies with restricted wagers which we develop.
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1 Introduction

Every sequence is computable from a sequence which is random in the sense of Martin-Löf [ML66].
This major result in algorithmic information theory is known as the Kučera-Gács theorem and was
proved by Kučera [Kuč85, Kuč89] and Gács [Gác86]. Both authors showed that the use of the oracle
in these reductions can be bounded above by a computable function, but Kučera did not focus on min-
imizing the number of bits of the oracle that are needed to compute the first n bits of the sequence. If
the latter number is n + h(n), we say that the computation has redundancy h. A close look at Kučera’s
argument shows that his techniques achieve redundancy n log n. Gács, on the other hand, took special
care to minimise the oracle use. His argument produces a slightly more elaborate computation with re-
dundancy 3

√
n log n, which can easily be improved to

√
n log n. Both of the arguments were formulated

in terms of effective measure, i.e. according to the Martin-Löf definition of randomness.

The major difference between the results of Kučera and Gács is that the latter provides a reduction
with oracle use n + o (n) while the former does not. Merkle and Mihailović [MM04] presented a
proof in terms of effective martingales, using similar ideas to Gács’ proof but expressed in terms of
betting strategies. Up to now, the only known strict lower bound on the redundancy in computation
from Martin-Löf random reals is the constant bound, and is due to Downey and Hirschfeldt [DH10,
Theorem 9.13.2]. Turing reductions with constant redundancy are also known as computably Lipschitz
or cl reductions and are well studied in computability theory, e.g. see [DH10, Chapter 9]. Downey
and Hirschfeldt showed that the redundancy in the Kučera-Gács theorem cannot be O (1). In fact, they
constructed a sequence which is not computed with constant redundancy by any real whose Kolmogorov
complexity is bounded below by a computable nondecreasing unbounded function. The reals with the
latter property are sometimes known as complex reals. A close look at this argument reveals that the
set of reals which cannot be computed from any complex real with constant redundancy is comeager.
Moreover, it follows from the effective nature of the argument that:

a weakly 2-generic real cannot be computed by any complex real with constant redundancy,

where a real is called weakly 2-generic if it has a prefix in every dense Σ0
2 set of strings.

By [BV11] a real which is not complex has infinitely many initial segments of trivial complexity in the
sense that C(X �n) = C(n) + O (1) and K(X �n) = K(n) + O (1), where K and C denote the prefix-free
and plain Kolmogorov complexities. Sequences with the latter property are known as infinitely often C-
trivial and K-trivial respectively. It follows that any sequence computing a weakly 2-generic sequence
with constant redundancy is infinitely often C-trivial and infinitely often K-trivial.

1.1 Our results, in context

In Section 3 we show that the redundancy in computations from Martin-Löf random oracles cannot be
bounded by certain slow growing functions. Recall that a real is ∆0

2 if and only if it is computable from
the halting problem.

Theorem 1.1. There exists a real X such that
∑

i 2−g(i) < ∞ for every nondecreasing computable
function g for which there exists a Martin-Löf random real Y which computes X with redundancy g. In
fact, the reals X with this property form a comeager class which includes every weakly 2-generic real.
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This result implies that any nondecreasing computable function g such that
∑

i 2−g(i) = ∞ is not a
general upper bound on the redundancy in computations of reals from Martin-Löf random oracles. A
typical function with this property is dlog ne, so the Kučera-Gács theorem does not hold with redun-
dancy dlog ne. On the other hand, if g(n) = 2 · dlog ne then

∑
i 2−g(i) < ∞. It was recently shown

in [BLP16] that any nondecreasing computable function g with the latter property is a general upper
bound on the redundancy in computations of reals from Martin-Löf random oracles. Hence Theorem
1.1 is optimal and gives a characterization of the computable nondecreasing redundancy upper bounds
in computations of reals from Martin-Löf random oracles. Note that the optimal bounds obtained in
[BLP16] are exponentially smaller than the previously best known upper bound of

√
n log n from Gács

[Gác86].

With slightly more effort we also obtain an effective version of Theorem 1.1, which gives many more
examples of reals X which can only be computed from random oracles with large redundancy. Recall
that the halting problem relative to A is denoted A′. The generalized non-low2 reals are an important
and extensively studied class in the context of degree theory: A is generalized low2 if A′′ has the same
Turing degree as (A ⊕ ∅′)′, and a set which is not generalized low2 is called generalized non-low2.

Theorem 1.2 (Jump hierarchy). Every set which is generalized non-low2 (including the halting prob-
lem) computes a real X with the properties of Theorem 1.1.

The proof of Theorem 1.1 also gives a nonuniform version of the latter result, requiring a weaker
condition regarding the computational power of the oracle. Recall from [DJS96] that a set A is array
noncomputable if for each function f that is computable from the halting problem with a computable
upper bound on the oracle use, there exists a function h which is computable from A and which is not
dominated by f . A degree is array noncomputable if its members are. The class of array noncomputable
degrees (again an extensively studied class) is an upwards closed superclass of the generalized non-low2
degrees, and includes low degrees amongst its members.

Theorem 1.3 (Array noncomputability). Suppose that
∑

i 2−g(i) = ∞ for some computable nondecreas-
ing function g. Then every array noncomputable real computes a real X which is not computable by
any Martin-Löf real with redundancy g.

The proof of all of the above results relies on an analysis of effective betting strategies with restricted
wagers. This is not entirely surprising as (a) Martin-Löf randomness can be expressed in terms of the
success of effective martingales (see Section 2.1) and (b) there is a direct connection between Turing
reductions, semi-measures and martingales, which goes back to Levin and Zvonkin [ZL70] (see the
discussion before Section 3.1). A strategy (or martingale) is said to have restricted wagers when it
can only bet amounts from a given set of possible values, where this set of legitimate values may
be allowed to vary from stage to stage of the betting game. The subject of martingales with restricted
wagers has been the focus of intense research activity recently. The simplest case is when the restriction
specifies only a minimum amount that the gambler can bet at each stage. Integer-valued martingales
are examples of strategies of this type, and were motivated and studied by Bienvenu, Stephan and
Teutsch [BST10, BST12], Chalcraft, Dougherty, Freiling, and Teutsch [CDFT12], Teutsch [Teu14],
Barmpalias, Downey, and McInerney [BDM15] and most recently Herbert [Her16]. A more general
study of betting strategies with restricted wagers can be found in Peretz [Per15] and Bavly and Peretz
[PB15]. Given a function g, a function on binary strings is called g-granular if its value on any string σ
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is an integer multiple of 2−g(|σ|). The notion of g-granular supermartingales is based on the above notion,
and is a formalisation of the intuitive notion of betting strategies with restricted wagers. We defer the
formal definition until Section 2.2, but state the following pleasing result now, which indicates their
importance. Let λ denote the empty string. The definition of c.e. supermartingales and other basic
terms will be reviewed in Section 2.1.

Theorem 1.4 (Granular supermartingales). Suppose that g is a nondecreasing and computable function.

(a) If
∑

i 2−g(i) < ∞, for every c.e. supermartingale N there exists a g-granular c.e. supermartingale
M such that for each X we have lim sups M(X �n) = ∞ if and only if lim sups N(X �n) = ∞.

(b) If
∑

i 2−g(i) = ∞, there exists a c.e. supermartingale N such that for all g-granular c.e. super-
martingales M there exists some X such that lim sups N(X �n) = ∞ and lim sups M(X �n) < ∞.

Informally, the first clause of Theorem 1.4 expresses the fact that if
∑

i 2−g(i) < ∞ for a computable
nondecreasing function g, then g-granular supermartingales suffice for the definition of Martin-Löf
randomness. The second clause of Theorem 1.4 says that, in fact,

∑
i 2−g(i) < ∞ is also a necessary

condition for the sufficiency of g-granular supermartingales for the purpose of defining Martin-Löf ran-
domness. The proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 rely on clause (b) of Theorem 1.4,
and more specifically on the following more detailed version of this statement, which is of independent
interest.

Lemma 1.5. Suppose that nondecreasing g is computable and
∑

i 2−g(i) = ∞. Given any g-granular
c.e. supermartingale M there exists a (g + 1)-granular c.e. supermartingale N and a real X which is
computable from M, such that lim supn M(X �n) ≤ M(λ) and lim supn N(X �n) = ∞.

Lemma 1.5 clearly implies clause (b) of Theorem 1.4, since it implies that the universal c.e. super-
martingale will satisfy Theorem 1.4 (b). However it is stronger than the latter, because the supermartin-
gale N is said to be (g + 1)-granular, i.e. just a single step more granular than the given supermartingale
M.

1.2 Further related work in the literature

The present work is a step towards characterizing the optimal redundancy that can be achieved through
a general process for coding reals into Martin-Löf random reals, which was completed in [BLP16].
Doty [Dot06] revisited the Kučera-Gács theorem from the viewpoint of constructive dimension. He
characterized the optimal asymptotic ratio between n and the use on argument n when a random oracle
computes X, in terms of the constructive dimension of X. Recall that the effective packing dimension
of a real can be defined as

Dim(X) = lim sup
n

K(X �n)
n

.

Doty [Dot06] showed that the number of bits of a random oracle needed to compute X �n is at most
Dim(X) · n + o (n). So for any real X with Dim(X) < 1 , its redundancy is negative on almost all of its
prefixes. On the other hand, any Martin-Löf random real has redundancy 0 since it reduces to itself.
Thus, Theorem 1.1 refers to reals that are non-random, but that have effective packing dimension 1. One
difference between Doty’s work and our project is that we are looking to characterize the redundancy
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that is possible for every sequence regardless its effective dimension. A second difference with the
work in [Dot06] (as well as [MM04]) is that we are interested in precise bounds on the redundancy of
computations from Martin-Löf random reals, rather than just the asymptotic ratio between n and the
use on argument n.

Asymptotic conditions on the redundancy g in computations from random oracles such as the ones in
Theorem 1.4, have been used with respect to Chaitin’s Ω in Tadaki [Tad09] and Barmpalias, Fang and
Lewis-Pye [BFLP16]. However the latter work only refers to computations of computably enumerable
sets and reals and does not have essential connections with the present work, except perhaps for some
apparent analogy of the statements proved.

2 Betting strategies with restricted wagers

The proof of our main result, Theorem 1.1, relies substantially on a lemma concerning effective betting
strategies, as formalised by martingales. This section is devoted to proving that lemma, but is also a
contribution to the study of strategies with restricted wagers. We are interested in strategies where the
wager at step s of the game must be an integer multiple of a rational number which is a function of s.
In the next subsection we summarise some required background material.

2.1 Algorithmic randomness and effective martingales

The three main approaches to the definition of algorithmically random sequences are based on (a)
incompressibility (Kolmogorov complexity), (b) unpredictability (effective betting strategies) and (c)
measure theory (effective statistical tests). There are direct translations between any pair of (a), (b) or
(c), and most notions of algorithmic randomness (of various strengths) are naturally defined via any of
these approaches. The first two approaches are most relevant to the present work.

Informally, the Kolmogorov complexity of a string is the length of its shortest description. The concept
of description is formalised via the use of a Turing machine V . Given V , we say that σ is a description
of τ if V(σ) is defined and equal to τ. There are different versions of Kolmogorov complexity that
may be considered, depending on the type of machine that is used in order to formalise the concept
of a description. Prefix-free complexity, based on prefix-free machines, is just one way to approach
algorithmic randomness, and is the notion of complexity that we shall use in order to obtain our results
here. Note, however, that our main results concern only the robust concept of Martin-Löf randomness,
which can be defined equivalently with respect to a number of different machine models (or more
generally via a number of diverse approaches, as we discuss in the following). A set of binary strings
is prefix-free if it does not contain any pair of distinct strings such that one is an extension of the other.
A prefix-free Turing machine is a Turing machine with domain which is a prefix-free subset of the
finite binary strings. The prefix-free Kolmogorov complexity of a string σ with respect to a prefix-
free Turing machine N, denoted KN , is the length of the shortest string τ such that N(τ) ↓= σ. Let
(Ne) be an effective list of all prefix-free machines. Prefix-free Kolmogorov complexity is based on the
existence of an optimal universal prefix-free machine U i.e. such that KU is minimal, modulo a constant,
amongst all KNe . For the duration of this paper, we adopt a standard choice for U, which is defined by
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U(0e ∗ 1 ∗ σ) ' Ne(σ) (where ‘'’ means that one side is defined iff the other is, and that if defined
the two sides are equal). From this definition it follows immediately that KU(σ) ≤ KNe(σ) + e + 1 for
all σ and all e. Clearly U is a universal prefix-free machine which can simulate any other prefix-free
machine with only a constant overhead, the size of its index. For simplicity we let K(σ) denote KU(σ),
i.e. when the underlying prefix-free machine is the default U, we suppress the subscript in the notation
of Kolmogorov complexity. We identify subsets of N with their characteristic functions, viewed as an
infinite binary sequences, and often refer to them as reals. Given a real A, we let A �n denote the first n
bits of A. The algorithmic randomness of infinite binary sequences is often defined in terms of prefix-
free Kolmogorov complexity. We say that an infinite binary sequence A is 1-random if there exists a
constant c such that K(A �n) ≥ n − c for all n. Informally, these are the infinite sequences for which all
initial segments are incompressible.

An equivalent definition of algorithmic randomness for reals can be given in terms of effective statistical
tests [ML66]. A Martin-Löf test is an effective sequence of Σ0

1 classes (Ve) (which we may view as a
uniformly c.e. sequence of sets of strings) such that µ(Ve) < 2−e for each e. A real X is Martin-Löf
random if X < ∩eVe for any Martin-Löf test (Ve). A third way to define algorithmic randomness,
due to Schnorr [Sch71b, Sch71a], can be given in terms of betting strategies, normally formalised as
martingales or supermartingales. We are interested in supermartingales as functions h : 2<ω → R≥0

with the property h(σ0) + h(σ1) ≤ 2h(σ). A supermartingale such that h(σ0) + h(σ1) = 2h(σ) for all
σ is called a martingale. We say that:

the supermartingale h succeeds on a real X if lim sup
s

h(X �n) = ∞.

Note that a stronger notion of success is the condition lims h(X �n) = ∞. In many situations, such as
in the characterization of Martin-Löf random sequences in terms of martingales (see below), it is not
important which notion of success is used. In the present work, however, it seems more appropriate to
use the weaker notion as a default, and to mention the stronger notion explicitly when it plays a role
in an argument. We say that a function f : 2<ω → R≥0 is left-c.e. if there is a computable function
f0 : 2<ω × N→ Q≥0 which is nondecreasing in the second argument and such that f (σ) = lims f0(σ, s)
for each σ. In this case the function f0 is called the left-c.e. approximation to f . A (super)martingale is
called c.e. if it is left-c.e. as a function. It is a well known fact, due to Schnorr [Sch71b, Sch71a] (see
for example [DH10, Theorems 6.2.3, 6.3.4]), that the following are equivalent for each real X:

(i) X is Martin-Löf random;

(ii) no c.e. supermartingale succeeds on X;

(iii) K(X �n) ≥ n − c for some constant c and all n.

In fact this equivalence is effective, in the sense of Lemma 2.1. Recall that λ denotes the empty string.
The weight of a prefix-free set of strings S is

∑
σ∈S 2−|σ|, and is equal to the measure of the Σ0

1 class of
reals represented by S , i.e. the reals that have a prefix in S .

Lemma 2.1 (Schnorr, implicit in [Sch71b, Sch71a]). Given the index for a c.e. supermartingale M,
m ≥ M(λ) and c ∈ N, one can effectively find k for which the following holds: for any finite string σ, if
M(σ) ≥ k, then K(σ) ≤ |σ| − c.
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Proof. Given a supermartingale M with M(λ) ≤ m, by Kolmogorov’s inequality the measure of reals X
for which there exists n such that M(X �n) ≥ k is bounded above by m/k. On the other hand, given an
integer c and a prefix-free and c.e. set of finite strings V such that the weight of V is bounded above by
2−c, we can effectively define a prefix-free machine N such that KN(σ) ≤ |σ| − c for all σ ∈ V (this is a
typical application of the so-called Kraft-Chaitin online algorithm for the construction of a prefix-free
machine). The crucial point is that given a c.e. supermartingale M and k, the set of reals X such that
M(X �n) ≥ k for some n, is a Σ0

1 class.

For each k let V(k) be the set of all of those strings σ for which M(σ) > k. Note that the measure of
V(k) is bounded above by m · k−1. We can effectively find k as required by the lemma, via the recursion
theorem (and its uniformity) as follows. We construct a prefix-free machine N, and by the recursion
theorem we may use its index b in its definition. We let k be 2m+b+c+1 and define N via the Kraft-Chaitin
online algorithm such that KN(σ) ≤ |σ|−c−b−1 for all σ ∈ V(k). Since the measure of V(k) is bounded
above by m · 2−c−m−b−1 < 2−c−b−1, the definition of N is valid, and the application of the Kraft-Chaitin
online algorithm along with the definition of the sets V(k) ensures that KN(σ) ≤ |σ| − c − b − 1 for all
strings σ such that M(σ) ≥ k. But according to our choice of optimal universal machine U this implies
that K(σ) ≤ |σ| − c for all strings σ such that M(σ) ≥ k, which concludes the proof. �

Martingales are expressions of betting games on sequences of binary outcomes. More specifically, if
h is a martingale, then h(σ) can be thought of as expressing the capital of the player betting according
to the strategy h, after the sequence σ of outcomes. If at state σ of the game we bet α on 0, then our
capital at the next stage will be h(σ0) = h(σ)+α or h(σ1) = h(σ)−α according to whether the outcome
was 0 or 1, respectively. So h(σ0) + h(σ1) = 2h(σ). Martingales can therefore be seen as modeling
the capital in a betting game along every possible sequence of outcomes. Given a martingale h, the
amount that is bet at state σ is |h(σ0)− h(σ)| = |h(σ1)− h(σ)| and is bet on 0 or 1 according to whether
h(σ0) > h(σ1) or not. Hence every martingale determines a betting strategy, which we may regard as
a function from strings to the non-negative reals, which determines what amount is bet and on which
outcome. Conversely, a betting strategy corresponds to a martingale, which models the remaining
capital at the end of each bet. Our definition of granular betting strategies in Section 2.2 relies on the
condition that the bets made at each stage (and not necessarily the remaining capital) are granular, in
the sense that they correspond to numbers from a specific set. For more detailed background on the
notions discussed in this section, we refer the reader to [DH10, Chapter 6]. For a general introduction
to algorithmic randomness we refer to [LV97].

2.2 Restricted martingales

Restricting the set of possible betting strategies may give rise to weaker forms of randomness. There are
many ways to impose such restrictions, but the method which is relevant to our work involves dictating
a minimum wager at each step of the betting process, and requiring that the gambler bets an integer
multiple of that minimum wager. We formalise this notion in the following definitions.

Definition 2.2 (Granularity of functions). Given functions g : N → N and M : 2<ω → R, we say that
M is g-granular (or has granularity g) if for every string σ the value of M(σ) is an integer multiple of
2−g(|σ|).
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We could now restrict our attention to supermartingales that are g-granular as functions, for some com-
putable non-decreasing function g. Indeed, this approach suffices for most of the results in this paper.
However we formalise betting strategies with restricted wagers in a slightly more general way, which is
both intuitively justifiable and also allows to prove the rather elegant characterization of Theorem 1.4.

Definition 2.3 (Granular c.e. supermartingales). Given a nondecreasing computable function g : N →
N, we say that a c.e. supermartingale M is g-granular if there exists a computable sequence of ra-
tionals (qi) and a g-granular left-c.e. function N : 2<ω → R such that M(σ) = N(σ) +

∑
i≥|σ| qi. In

the special case where f (n) =
∑

i≥n qi is constantly zero we say that M is a strongly g-granular c.e.
supermartingale.

Intuitively speaking, the function f in the above definition represents a part of the capital which is
not used for betting, and is transferred from each round to the next round, perhaps reduced due to
inflation, in accordance with the standard interpretation of supermartingales as betting strategies. More
precisely, the value of f does not depend on the particular bets that we have placed up to a certain
stage, but rather on the number of these bets, i.e. the stage of the game. The particular case where f
is the zero function is of special importance, as it is the notion that will be used in the proofs of most
of the results in this paper. We emphasize the fact that in Definition 2.3 we require N to be a left-c.e.
function, and so a c.e. index of a granular c.e. supermartingale M is not merely a program which gives
a left-c.e. approximation to M but a program that enumerates the values (qi) and also gives a left-c.e.
approximation N – thereby specifying a left-c.e. approximation to M.

We are ready to present and prove the main result of this section, which is a more elaborate version
of Lemma 1.5. Clearly Lemma 2.4 implies Lemma 1.5. However Lemma 2.4 also gives the rate of
growth of the supermartingale N as a function of g, which is absent in the statement of Lemma 1.5.
Summing up, Lemma 2.4 implies Lemma 1.5, which in turn implies clause (b) of Theorem 1.4. The
reason we preceded the following elaborate statement with the two weaker ones, is that the additional
technical information may only be of interest to some readers, and may distract others from the main
result, namely Theorem 1.4.

Lemma 2.4 (Granular c.e. supermartingales). Given a string ν0, a nondecreasing computable function
g : N→ N and a g-granular c.e. supermartingale M, there exists a real X ⊃ ν0 and a (g + 1)-granular
c.e. supermartingale N such that N(X �n) ≥

∑
0≤i≤n 2−g(i)−1 and M(X �n) ≤ M(ν0) for all n ≥ |ν0|.

Moreover if M is strongly g-granular, then N can also be chosen to be strongly (g + 1)-granular.

Proof. For the sake of ease of notation, we may assume that ν0 is the empty string. The proof of the
more general case is a direct adaptation of the proof of this special case. A first naive attempt would be
to let N bet in the opposite way to M, which means to define

N(σ ∗ i) =

N(σ) + 2−g(|σ|+1) if M(σ ∗ i) < M(σ ∗ (1 − i))
N(σ) − 2−g(|σ|+1) otherwise

and let X carve a path on the binary tree where N wins (so M loses) at every stage (ignoring for now the
possibility that M(σ ∗ 0) = M(σ ∗ 1)). This martingale, however, is not necessarily c.e., because M is
merely c.e. and not computable, so the condition M(σ ∗ i) < M(σ ∗ (1 − i)) is not decidable. Following
the same basic idea (letting N bet on the outcomes where M does not increase its capital) we produce a
more sophisticated definition, which defines N as a (g + 1)-granular c.e. supermartingale.
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The idea for this argument is to effectivize the above definition of N so that the resulting function is a
c.e. supermartingale. In order to do this, we need to avoid using the condition M(σ ∗ i) < M(σ ∗ (1− i))
in the above definition of N, since it is not decidable. The solution is to incorporate the effective
approximations to M(σ ∗ i),M(σ ∗ (1 − i)) into the definition of N(σ ∗ i),N(σ ∗ (1 − i)) in such a way
that we can still gain additional capital by choosing the right value of i. It turns out that we can do this
by using an additive term of 2−g(|σ|+1)−1, thus making N a (g + 1)-granular supermartingale, as indicated
in (2.2.3). In the following we formalize this idea, and prove that it works.

Let (Ms) = (M̂s + fs) be a left-c.e. approximation to M, such that each Ms is a g-granular supermartin-
gale, fs(n) =

∑
i:n≤i≤s qi for the computable sequence of rationals qi, M̂s(σ) is a g-granular function for

each s and such that M̂s(σ) is nondecreasing as a function of s. The reader may find the proof more
tractable if they assume f to be constantly zero. This corresponds to the case of the lemma regarding
strongly granular supermartingales and contains all the important ideas of the general proof. For com-
pleteness, however, we present the full argument here. There exist left-c.e. integer-valued functions
t : 2<ω → N, q : 2<ω → N with left-c.e. approximations ts, qs such that:

M̂s(σ ∗ 0) = ts(σ) · 2−g(|σ|+1) and M̂s(σ ∗ 1) = qs(σ) · 2−g(|σ|+1) (2.2.1)

for all σ, s. Recall that λ denotes the empty string. We will define a computable sequence of super-
martingales (Ns), which is also a left-c.e. approximation to their limit N, a c.e. supermartingale. In
fact, we will define a computable sequence of (g + 1)-granular functions (N̂s) such that the functions
Ns(σ) := N̂s(σ) + fs(|σ|) are computable supermartingales. Then clearly the limit N of Ns will be a
supermartingale and by Definition 2.3, the function N will also be a (g + 1)-granular supermartingale.
Let N̂s(λ) = M̂s(λ) + 2−g(0)−1 for all stages s and let N̂0(σ) = 0 for all nonempty strings σ. The values
of N̂s(σ) for s > 0 and nonempty strings σ are defined inductively as follows. We order the strings
first by length and then lexicographically. The notion of accessibility is defined dynamically during the
construction. At stage 0, no string has been accessed.

Construction of N̂s. At each stage s + 1, if M̂s+1(λ) , M̂s(λ) then do nothing other than define
N̂s+1(λ) = M̂s+1(λ) + 2−g(0)−1 and N̂s+1(τ) = N̂s(τ) for all τ , λ (g-granularity means this can only
occur at finitely many stages). Otherwise, find the least string σ of length at most s, such that for all
η ⊆ σ,

N̂s(η) ≥ M̂s(η) +
∑
i≤|η|

2−g(i)−1 (2.2.2)

and one of the following clauses holds:

(a) σ has not been accessed at any stage ≤ s;

(b) σ was last accessed at stage m < s + 1 and either ts+1(σ) , tm(σ) or qs+1(σ) , qm(σ).

If such a string does not exist, let N̂s+1(η) = N̂s+1(η) for all strings η. Otherwise define:N̂s+1(σ ∗ 0) =
∑

i≤|σ| 2−g(i)−1 + qs+1(σ) · 2−g(|σ|+1) + 2−g(|σ|+1)−1

N̂s+1(σ ∗ 1) =
∑

i≤|σ| 2−g(i)−1 + ts+1(σ) · 2−g(|σ|+1) − 2−g(|σ|+1)−1 (2.2.3)

and declare that σ has been accessed at stage s + 1. Note that in this case we have M̂s(σ) = M̂s+1(σ),
because if this was not true and η is the immediate predecessor of σ, then ts+1(η) , ts(η) or qs+1(η) ,
qs(η), which contradicts the minimality of σ.
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For τ other than σ ∗ 0 and σ ∗ 1 define N̂s+1(τ) = N̂s(τ). Note also that (a) the roles of q and t are
reversed in the above definition in the sense that qs+1 is used in the definition of N̂s+1(σ ∗ 0) rather than
N̂s+1(σ ∗ 1), and (b) the definitions of N̂s+1(σ ∗ 0) and N̂s+1(σ ∗ 1) are not symmetrical, since we add
2−g(|σ|+1)−1 in defining the former value, while we subtract it in defining the latter.

This concludes the construction of the functions N̂s and we let Ns(σ) = N̂s(σ) + fs(|σ|) for all σ. We
also let N(σ) = lims Ns(σ) for all σ.

Intuition for the construction. The driving force behind the construction is (2.2.2), which is guar-
anteed to hold for the empty string, but not for all strings. However, as we are going to verify in the
following, inductively we can argue that there is real X such that all of its initial segments η satisfy
(2.2.2). The updates defined in (2.2.3) ensure that (2.2.2) continues to hold for at least one immediate
extension of σ. The updates are made gradually, following the approximations to M, in order to ensure
that N is a c.e. supermartingale. Moreover the equations in the update mechanism (2.2.3) will ensure
that N is a (g + 1)-granular supermartingale, as required.

Verification. The fact that g is nondecreasing means that N̂t can never take negative values (in particular
the term −2−g(|σ|+1)−1 in the definition of N̂t+1(σ ∗ 1) cannot cause negative values). By (2.2.3) and the
fact that ts(σ), qs(σ) are nondecreasing we have that

N̂t(σ) ≤ N̂t+1(σ) for all t, σ. (2.2.4)

Since Ns(σ) = N̂s(σ) + fs(|σ|), and ( fs) is a left-c.e. approximation to the function f , it follows that
(Ns) is a left-c.e. approximation to the limit N of (Ns). Hence N is a left-c.e. function.

Next, we verify that each Nt is a supermartingale. We must show that for all t:

Nt(σ ∗ 0) + Nt(σ ∗ 1) ≤ 2 · Nt(σ). (2.2.5)

For t = 0 this property clearly holds. Given any t > 0, consider the largest s + 1 ≤ t at which σ was
accessed during the construction. If such stage does not exist, then N̂t(σ∗0) = N̂t(σ∗1) = 0 and (2.2.5)
holds by the monotonicity of f and its approximations fs. Otherwise, according to the construction,
and in particular (2.2.3), we must have

N̂s(σ) ≥ M̂s(σ) +
∑
i≤|σ|

2−g(i)−1 and N̂s+1(σ) ≥ M̂s+1(σ) +
∑
i≤|σ|

2−g(i)−1 (2.2.6)

where the second inequality holds because N̂s+1(σ) = N̂s(σ) (since σ was accessed at s + 1 and not
any of its predecessors) and M̂s+1(σ) = M̂s(σ) (because otherwise a predecessor of σ would have been
accessed at stage s + 1, or else σ = λ and σ would not have been accessed at stage s + 1). Moreover by
the choice of s we have N̂s+1(σ ∗ 0) = N̂t(σ ∗ 0), N̂s+1(σ ∗ 1) = N̂t(σ ∗ 1). Hence

Nt(σ ∗ 0) + Nt(σ ∗ 1) = N̂s+1(σ ∗ 0) + N̂s+1(σ ∗ 1) + 2 · ft(|σ| + 1). (2.2.7)

According to (2.2.3) we have

Ns+1(σ ∗ 0) + Ns+1(σ ∗ 1) ≤ 2 ·
( ∑

i≤|σ|

2−g(i)−1
)
+ 2−g(|σ|+1) ·

(
ts+1(σ) + qs+1(σ)

)
+ 2 · fs+1(|σ|+ 1). (2.2.8)
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By (2.2.1) and the fact that Ms+1 is a supermartingale we have:

2−g(|σ|+1)·
(
ts+1(σ)+qs+1(σ)

)
+2· fs+1(|σ|+1) = M̂s+1(σ∗0)+M̂s+1(σ∗1)+2· fs+1(|σ|+1) ≤ 2·M̂s+1(σ)+2· fs+1(|σ|)

so plugging this back to (2.2.8) we get

Ns+1(σ ∗ 0) + Ns+1(σ ∗ 1) ≤ 2 ·
( ∑

i≤|σ|

2−g(i)−1
)

+ 2 · M̂s+1(σ) + 2 · fs+1(|σ|).

Then applying the second inequality of (2.2.6) to the preceding inequality, we get

Ns+1(σ ∗ 0) + Ns+1(σ ∗ 1) ≤ 2 ·
(
N̂s+1(σ) + fs+1(|σ|)

)
= 2Ns+1(σ).

Since N̂s+1(σ∗0) = N̂t(σ∗0), N̂s+1(σ∗1) = N̂t(σ∗1) and since ft(|σ|)− fs+1(|σ|) ≥ ft(|σ|+1)− fs+1(|σ|+1)
this gives:

Nt(σ ∗ 0) + Nt(σ ∗ 1) ≤ 2 · Nt(σ).

Hence for each t the function Nt is a computable supermartingale. By (2.2.4) and the fact that ( fs) is a
left-c.e. approximation to f , it follows that (Ns) is a left-c.e. approximation to N. Hence N is a left-c.e.
supermartingale. In order to establish that N is a (g + 1)-granular supermartingale, recall that M is a
g-granular supermartingale, and for each σ the integer parameters ts(σ), qs(σ) are nondecreasing and
reach a limit after finitely many stages. Note that the only redefinition of N̂s+1 in the construction occurs
through (2.2.3). This, and the fact that ts(σ), qs(σ) are integers, shows that each N̂t is a (g + 1)-granular
function. Hence the limit N̂ of (N̂s) is also (g + 1)-granular. Then by Definition 2.3 it follows that N is
a (g + 1)-granular c.e. supermartingale.

It remains to show that there exists a real X such that N(X �n) ≥
∑

i≤n 2−g(i)−1 and M(X �n) ≤ M(λ) for
all n ≥ 0. By the definition of M,N and the fact that f is non-negative and nonincreasing, it suffices to
show that there exists a real X such that N̂(X �n) ≥

∑
i≤n 2−g(i)−1 and M̂(X �n) ≤ M̂(λ) for all n ≥ 0.

The idea is as we described it at the beginning of the proof, i.e. to let X follow the path where M does
not increase its capital. Define X inductively as follows. Given X �n define:

X(n) =

0 if M̂(X �n ∗0) ≤ M̂(X �n ∗1)
1 if M̂(X �n ∗0) > M̂(X �n ∗1).

We shall establish the stronger condition that:

N̂(X �n) ≥
∑
i≤n

2−g(i)−1 + M̂(X �n) for all n. (2.2.9)

We prove this by induction on n. It is clear that the claim holds for n = 0. Let Tm = lims ts(X �m) and
Qm = lims qs(X �m) for each m, and suppose that (2.2.9) holds for n. Suppose first that Tn < Qn, so that
M̂ may be thought of as betting that X(n) = 1, while N̂ guesses correctly that X(n) = 0. In this case it
follows from the fact that M̂ is a g-granular function that Qn · 2−g(n+1) ≥ M̂(X �n+1) + 2−g(n+1). From
(2.2.3) we then have

N̂(X �n+1) > M̂(X �n+1) +
∑

i≤n+1

2−g(i)−1.

Suppose next that Tn = Qn. In this case we still have X(n) = 0, but now Qn · 2−g(n+1) = M̂(X �n+1). The
final term 2−g(n+1)−1 in (2.2.3), however, means that (2.2.9) still holds. Suppose finally that Tn > Qn, so
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that X(n) = 1. Then Tn · 2−g(n+1) ≥ M̂(X �n+1) + 2−g(n+1), so then even though we subtract 2−g(n+1)−1

in (2.2.3), we may again conclude that (2.2.9) holds. This completes the inductive step and the proof
of (2.2.9). Finally, it is clear from the above argument that if f is constantly zero then N is a strongly
g-granular c.e. supermartingale. This shows the latter clause of the lemma. �

We make three observations regarding Lemma 2.4, which follow from its proof. First, not only does N
succeed on X, but it does so in an essentially monotonic fashion, in the sense of (2.2.9). Second, N is
obtained uniformly from M, in the sense that there is a computable function which, given a c.e. index
for M (i.e. a program which produces left-c.e. approximations to M̂ and f ), produces a c.e. index for N
with the prescribed properties. Finally, the real X is computable from M, which is a left-c.e. function.
Therefore X is computable from the halting problem. Note that Lemma 1.5 is a special case of Lemma
2.4 when

∑
i 2−g(i) = ∞.

2.3 Granular supermartingales and effective randomness

In this section we give a proof of Theorem 1.4. For clause (b) of Theorem 1.4, suppose that we are given
g with the assumed properties. Consider the universal c.e. supermartingale N. By Lemma 1.5, given any
g-granular supermartingale M we can find X such that lim supn M(X �n) is finite while lim supn N∗(X �n

) is infinite for some c.e. supermartingale N∗. By the universality of N, the latter condition implies that
lim supn N(X �n) is also infinite, which concludes the proof of clause (b). For clause (a), let N be a c.e.
supermartingale. Given positive rational numbers q, p let S(q, p) be the largest multiple of p which is
less than q. For each string σ we define

M(σ) =
∑
i>|σ|

2−g(i) + S(N(σ), 2−g(|σ|))

and note that M is c.e. as a function, because N is a c.e. function. Moreover, M is clearly g-granular,
and since N is a supermartingale we have

M(σ ∗ 0) + M(σ ∗ 1) ≤ N(σ ∗ 0) + N(σ ∗ 1) + 2 ·
∑

i>|σ|+1

2−g(i) ≤ 2 ·

N(σ) +
∑

i>|σ|+1

2−g(i)


But by the definition of S we have N(σ) ≤ S

(
N(σ), 2−g(|σ|)

)
+ 2−g(|σ|) so

N(σ) +
∑

i>|σ|+1

2−g(i) ≤ S
(
N(σ), 2−g(|σ|)

)
+

∑
i>|σ|

2−g(i) = M(σ).

Hence we may conclude that M(σ ∗ 0) + M(σ ∗ 1) ≤ M(σ) for all σ, which means that M is a c.e.
g-granular supermartingale. Also note that∑

i>|σ|

2−g(i) + N(σ) ≤ M(σ) + 2−g(|σ|) and M(σ) ≤
∑
i>|σ|

2−g(i) + N(σ).

The first inequality shows that if lim sups N(X �n) = ∞ for some X, then lim sups N(X �n) = ∞. The
second inequality above shows that if lim sups M(X �n) = ∞ for some X then lim sups N(X �n) = ∞,
which concludes the proof of Theorem 1.4.
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3 Lower bounds on the redundancy in computation from random reals

In this section we give proofs of Theorems 1.1, 1.2 and 1.3, using the result we now have for restricted
betting strategies. We start with the definition of redundancy, following Gács [Gác86].

Definition 3.1 (Oblivious use-function and redundancy). We say that f is a use-function of the Turing
functional Φ if for every X and n, during the computation ΦX(n) (whether it halts or not) all bits of X
that are queried are smaller than f (n). In this case we say that max{ f (n) − n, 0} is a redundancy of Φ.

Note that this definition is oblivious to the oracle X, a choice which reflects the fact that we are inter-
ested in general upper bounds for the Kučera-Gács theorem. Clearly, given a Turing functional, there are
many choices for its use function and its redundancy. However we are generally interested in minimis-
ing the use-function and the redundancy of computations. Moreover, we only consider use-functions
and redundancy functions which are computable and nondecreasing. Given a Turing functional Φ with
nondecreasing computable use-function f , we may view Φ as a partial computable function which maps
strings of length f (n) to strings of length n (for each n). The following fact links Turing reductions with
supermartingales.

Lemma 3.2 (Supermartingales from Turing functionals). Let Φ be a Turing functional with computable
nondecreasing redundancy g, and for each string ν let h(ν) be the number of strings τ of length |ν|+g(|ν|)
such that Φτ = ν. Then the function h∗(ν) := 2−g(|ν|) · h(ν) is a strongly g-granular c.e. supermartingale.

Proof. Since Φ is a Turing functional, we have h(ν0) + h(ν1) ≤ 2|ν|+1+g(|ν|+1)−|ν|−g(|ν|) · h(ν) and so

h(ν0) + h(ν1) ≤ 21+g(|ν|+1)−g(|ν|) · h(ν) for all strings ν.

Since h is an integer-valued function, h∗ is a g-granular function. Moreover:

h∗(ν0) + h∗(ν1) = 2−g(|ν|+1) ·
(
h(ν0) + h(ν1)

)
≤ 2−g(|ν|+1) · 21+g(|ν|+1)−g(|ν|) · h(ν) = 2 · h∗e(ν).

So h∗ is a strogly g-granular supermartingale. Finally h is a left-c.e. function, because Φ is a Turing
functional. So h∗ is a left-c.e. function, which concludes the proof. �

Lemma 3.2 establishes a method for constructing supermartingales from Turing reductions. Restricted
wagers in the supermartingales constructed correspond to upper bounds on the oracle-use of the Tur-
ing reductions they are built from. Similar arguments have been used in [BL07] and [DH10, The-
orem 9.13.2], for the special case of integer-valued martingales and Turing reductions with constant
redundancy. The underlying general topic here is the connection between Turing functionals and semi-
measures, which was explored in [ZL70]. For a recent account of this topic the reader is referred to
[BHPS16], while [DH10] also contains related material in various sections of Chapters 3,6 and 7.

We are now ready to apply Lemma 2.4 in order to prove a density lemma, which will be the basis of
an inductive construction specifying the reals required by Theorem 1.1. The proof of Theorem 1.2 also
establishes Theorem 1.1, but is slightly more involved than a direct proof of the latter. We therefore
choose to give a simple proof of Theorem 1.1 in Section 3.1, before expanding that proof in order to
obtain a proof of Theorem 1.2.
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3.1 Proof of Theorem 1.1

We use an effective forcing or finite extension argument, based on the following fact.

Lemma 3.3 (Density lemma). Let Φ be a Turing functional with redundancy a computable nonde-
creasing function g such that

∑
i 2−g(i) = ∞. Given any c ∈ N and any finite string ν0, there exists an

extension ν ⊃ ν0 such that K(µ) < |µ| − c for every string µ of length |ν| + g(|ν|) for which Φµ = ν.

Proof. Given the functional Φ, recall the associated functions h, h∗ from Lemma 3.2. Since Φ has
redundancy g, it follows that h∗ is a g-granular c.e. supermartingale. Then given ν0, by Lemma 2.4 it
follows that there exists a constant d, a c.e. supermartingale N and a real Z ⊃ ν0, such that h∗(Z �n) < 2d

for all n and N succeeds on Z . By the characterization of Martin-Löf randomness in terms of c.e.
supermartingales, it follows that the real Z is not Martin-Löf random. Moreover since h∗(Z �n) < 2d

for all n, given the definition of h∗ we have that h(Z �n) < 2d+g(n) for all n. We claim that there exists a
prefix-free machine M such that:

∀n ∈ N, µ ∈ 2n+g(n) (
Φµ = Z �n ⇒ KM(µ) ≤ K(Z �n) + g(n) + d

)
. (3.1.1)

The machine M is defined in the following self-delimiting way. Given a program σ, M first looks for
an initial segment σ0 of σ which is in the domain of the universal prefix-free machine U. If and when
it finds σ0, M calculates τ = U(σ0) – one can think of the machine as interpreting this string τ as Z �n.
It then calculates g(n) (where n is the length of τ) and reads σ1, which is the following g(n) + d bits of
σ (starting from bit |σ0| + 1). If σ does not have sufficiently many bits that σ1 is defined then M loops
indefinitely. Otherwise, M interprets the string σ1 as a number t ≤ 2d+g(n). It then interprets the number
t as the priority index of a string µ in the universal enumeration of strings ρ such that Φρ = τ. In other
words, M runs this universal enumeration and starts producing the computably enumerable sequence
of strings ρ with Φρ = τ, stopping at the tth such string µ. If there are less than t many strings ρ such
that Φρ = τ, then M loops indefinitely. Finally M assigns σ0 ∗ σ1 as a description of µ (i.e. we define
M(σ0 ∗ σ1) = µ). Since U is prefix-free and the length of σ1 is determined by σ0, the machine M is
prefix-free. Moreover, given a real Z such that h(Z �s) < 2d+g(s) for all s, M will describe every string µ
such that Φµ = Z �n with a string of length K(Z �n)+g(n)+d. Indeed, by the property h(Z �n) < 2d+g(n),
if M is given as an input the concatenation of a description of Zn and a string of length d + g(n) which
codes the priority index of string µ in the enumeration of all strings ρ with Φρ = Z �n, it will follow the
steps above, and will eventually output the string µ. This completes the proof of (3.1.1).

We can now use our assumption that Z is not Martin-Löf random in order to complete the proof of the
lemma. Since M is a prefix-free machine there exists some constant c0 such that K(ρ) < KM(ρ) + c0
for all strings ρ. Since Z is not Martin-Löf random we can choose some n > |ν0| such that K(Z �n) <
n − c0 − d − c. Then given any string µ of length n + g(n) such that Φ

µ
e = Z �n, according to (3.1.1) we

have:

K(µ) < K(Z �n) + g(n) + d + c0 < n − d − c0 − c + g(n) + d + c0 = n + g(n) − c = |µ| − c.

This concludes the proof of the lemma. �

Let (Φe, ge) an effective enumeration of all pairs of Turing functionals Φ and partial computable non-
decreasing functions g which are a redundancy function for Φ. This means that for each e, n and
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each oracle X, if ΦX
e (n) is defined then ge(n) is defined and the oracle-use in the computation ΦX

e (n) is
bounded above by n+ge(n). Let I contain the indices e such that ge is a total function with

∑
i 2−g(i) = ∞.

For each e, let S (e, c) be the set of strings ν with the property that for all µ of length |ν| + g(|ν|) such
that Φ

µ
e = ν we have K(µ) < |µ| − c. Then the sets S (e, c) are Σ0

2, uniformly in e, c. By Lemma 3.3, for
each e ∈ I and all c the set S (e, c) is dense, i.e. every string has an extension in S (e, c). Therefore every
weakly 2-generic real has a prefix in S (e, c), for each e ∈ I and each c. Theorem 1.1 follows directly
from this fact.

3.2 Essential part of the proof of Theorem 1.2

We denote Turing reducibility by ≤T . In this section we show how to effectivize the argument of
Section 3.1 in order to obtain a set X ≤T ∅

′ with the properties of Theorem 1.1. Then in Section 3.3
we use standard computability-theoretic apparatus in order to show that for any given set A which is
generalized non-low2 there exists such an X with X ≤T A, thus completing the proof of Theorem 1.2.

In the proof of Lemma 3.6 we will need to restrict the enumeration of strings µ such that Φµ = ν. The
following definition introduces some notation for imposing such restrictions.

Definition 3.4 (Restricted enumeration of Φ). Let Φ be a Turing functional with redundancy g. Given
any any string ν, let Q0(ν) be the set of all strings µ of length |ν| + g(|ν|) such that Φµ = ν, and let
Q0(ν)[s] be a computable enumeration of this set. For each d ∈ N define

Q(d, ν) =

Q0(ν), if |Q0(ν)| < 2d+g(|ν|);
Q0(ν)[s(d, ν)], otherwise.

where s(d, ν) is the largest stage such that |Q0(ν)|[s] < 2d+g(|ν|), in the case where |Q0(ν)|[s]| ≥ 2d+g(|ν|),
and s(d, ν) is undefined otherwise.

Note that Q(d, ν) is uniformly c.e. in Φ, g, ν, d. Of course the definition of Q(d, ν) also depends upon Φ

and the redundancy g, but these inputs will always be clear from context and so we suppress them for
the sake of tidy notation. The following lemma will also be used in the proof of Lemma 3.6.

Lemma 3.5 (Turing functionals and prefix-free complexity). Let Φ be a Turing functional with redun-
dancy g. There exists a prefix-free machine M such that

∀d, ν ∀µ ∈ Q(d, ν)
(
Φµ = ν ⇒ KM(µ) ≤ K(ν) + g(|ν|) + d

)
.

Moreover an index for M is uniformly computable from indices for Φ, g.

Proof. Such a machine M can be constructed as in the proof of Lemma 3.3. �

Lemma 3.6 (Effective density lemma). Let Φ be a Turing functional with computable nondecreasing
redundancy g. There exists a computable function f such that for every c, ν0:∑

i

2−g(i) > f (c, ν0)⇒
[
∃ν ⊃ ν0 ∀µ ∈ 2|ν|+g(|ν|)

(
Φµ = ν⇒ K(µ) < |µ| − c

)]
. (3.2.1)

Moreover an index of f can be obtained effectively from indices for Φ, g.
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Proof. Given Φ, g as in the hypothesis, consider the functions h, h∗ of Lemma 3.2. By Lemma 2.4, for
each string ν0 there exists a constant d = d(ν0) (an example of which we can find effectively since all
that is required is an upper bound for h∗(ν0)) and there exist a left-c.e. supermartingale N and a real Z
such that:(

Z ⊃ ν0
) ∧ (

h(Z �n) < 2d(ν0)+g(n) for all n
) ∧ (

N(Z �n) ≥
n∑

i=0

2−g(i) for all n > |ν0|
)
.

Note that the second clause of the conjunction above follows since h∗(Z �n) < 2d implies h(Z �n) <
2d+g(n). Moreover, as observed in Section 2.2, an index for N (together with an upper bound for N(λ))
can be obtained effectively from ν0 and indices for Φ and g. So by Lemma 2.1, there exists a computable
function f0 (whose index is computable from the indices of Φ, g) such that for all t ∈ N we have:∑

i

2−g(i) > f0(c, ν0)⇒ ∃ν ⊃ ν0
(
h(ν) < 2d(ν0)+g(|ν|) ∧ K(ν) < |ν| − c

)
. (3.2.2)

Now consider the machine M of Lemma 3.5, and let m be its index, which is a computable function
of indices for Φ, g. We define f (c, ν0) = f0(c + m + 1 + d(ν0), ν0) for each c, ν0, and show that f
meets condition (3.2.1). Given our choice for the underlying universal prefix-free machine U, we have
K(ρ) < KM(ρ)+m+1 for all strings ρ. Fix c, ν0 and assume that the left-hand-side of (3.2.1) holds. Then
by (3.2.2) and the definition of f , there exists an extension ν of ν0 such that K(ν) < |ν|−c−d(ν0)−m−1
and h(ν) < 2d(ν0)+g(|ν|). By Definition 3.4 the latter inequality implies that{

µ ∈ 2|ν|+g(|ν|) | Φµ = ν
}

= Q(d(ν0), ν).

From Lemma 3.5 it follows that for all strings µ of length |ν| + g(|ν|) with Φµ = ν:

KM(µ) ≤ K(ν) + g(|ν|) + d(ν0) ≤
(
|ν| − c − m − 1 − d(ν0)

)
+ g(|ν|) + d(ν0).

This establishes that K(µ) ≤ |ν| + g(|ν|) − c = |µ| − c. Finally observe that f is obtained effectively from
indices for Φ and g, which concludes the proof of the lemma. �

From the above proof and Lemma 2.1 we can see that Lemma 3.6 also holds for partial computable
functions g in the following sense. Let (Φe, ge) an effective enumeration of all pairs of Turing function-
als Φ and partial computable nondecreasing functions g.

There exists a computable function f∗ such that for each e, c, ν0, k, if ge(i) ↓ for all i ≤ k
and

∑k
i=0 2−ge(i) > f∗(e, c, ν0) then there exists an extension ν of ν0 of length k such that

K(µ) < |µ| − c for all strings µ of length |ν| + ge(|ν|) such that Φ
µ
e = ν.

(3.2.3)

Note that f of Lemma 3.6 had two arguments, while f∗ has three arguments, as it deals with every
potential redundancy function ge. We are now ready to prove Theorem 1.2. Given Lemma 3.6, this is a
standard argument in computability theory. We first describe the construction of a real X ≤T ∅

′ which
meets the requirements of the theorem, which are:

Re,c : If ge is total and
∑

i

2−ge(i) = ∞ then ∀Y
(
ΦY

e = X ⇒ ∃n K(Y �n) ≤ n − c
)
.
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The proofs of the full claims of Theorems 1.2 and 1.3, regarding generalized non-low2 and array non-
computable sets, will be modifications of this simpler case. Let 〈., .〉 : N × N → N be a computable
bijection. We describe a finite extension construction for the set X, which is computable from the
halting problem. The main issue here is that the left-hand-side of the outer implication in Re,c is not
computable from the halting problem. This is the reason why we need Lemma 3.6 and (3.2.3), and not
just Lemma 3.3.

We define a monotone sequence of strings (σi), beginning with the empty string σ0 and eventually
defining X = ∪iσi. At stage 〈e, c〉 + 1 we meet Re,c. Let f∗ be the function from (3.2.3). Inductively
assume that σi, i ≤ 〈e, c〉 have been defined. At stage 〈e, c〉 + 1 we ask if there exists k such that

ge(i) ↓ for all i ≤ k and
k∑

i=0

2−ge(i) > f∗(e, c, ν0).

If not, we simply let σ〈e,c〉+1 be σ〈e,c〉 ∗ 0. Otherwise we search for a proper extension ν of σ〈e,c〉 of
length at most k such that

∀µ ∈ 2|ν|+ge(|ν|)
(
Φ
µ
e = ν⇒ K(µ) < |µ| − c

)
. (3.2.4)

By (3.2.3) such a string ν exists. In this case we define σ〈e,c〉+1 = ν. This completes the inductive
definition of (σi) and X. An inspection of the construction suffices to verify that only Σ0

1 questions are
asked, so X ≤T ∅

′. Moreover for each e, c, condition Re,c is met by all reals extending σ0 ∗ · · · ∗σ〈e,c〉+1.
So the real X = ∪iσi meets Re,c for all e, c.

3.3 Proof of Theorem 1.2

Suppose that A is a generalized non-low2 set. We modify the construction of the previous section so as
to build X ≤T A. The requirements to be satisfied are Re,c as before. Recall that since A is a generalized
non-low2, for every ∆0

2 function n 7→ p(n) there exists a function n 7→ q(n) which is computable from A
and is not dominated by p, i.e. such that there exist infinitely many n for which q(n) > p(n). The rough
idea is the same as always when modifying constructions with oracle the halting set, in order to work
below A which is generalized non-low2. One defines a function p which is computable in the halting
set, and which gives an upper bound for the length of computable search required at each stage of the
construction in order to proceed ‘correctly’. Then one shows that, in fact, it suffices to use q which is
not dominated by p in order to bound the search at each stage.

3.3.1 Dominating function and dynamics of strategies

We first define a function p ≤T ∅
′ which is sufficiently fast growing so that it provides good approxi-

mations to the conditions involved in Re,c. Recall the definition of f∗ from (3.2.3). We may assume that
f∗(e, c, ν0) > |ν0|.
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We let p0(e, c, ν0) be the least k > |ν0| such that

ge(i) ↓ for all i ≤ k and
k∑

i=0

2−ge(i) > f∗(e, c, ν0) (3.3.1)

if there exists such, and we define p0(e, c, ν0) = 0 otherwise. Let p0(e, c, ν0) = k. Then we define
p1(e, c, ν0) to be the least s > k such that:

(a) ge(i)[s] ↓ for all i ≤ k if k > 0.

(b) For all ν of length at most k and µ of length |ν| + ge(|ν|) such that Φ
µ
e ↓= ν, we have Φ

µ
e [s] ↓= ν.

(c) For all µ of length at most k + g(k), K(µ) has settled by stage s, i.e. Ks(µ) = K(µ).

Finally, we define p(s) to be the least number greater than p1(e, c, ν0) for all e, c such that 〈e, c〉 ≤ s and
ν0 of length at most s.

Clearly p ≤T ∅
′. Now fix a function q ≤T A which is not dominated by p.

We are going to use q in order to construct X which meets all requirements Re,c. This will also be a
finite extension construction, but it is important to ensure that the length of X that has been determined
at stage e is of length e. This ensures that when we encounter some e such that q(e) ≥ p(e), it will not
be too late to make the right decision in terms of satisfying some requirement of high priority that had
remained unsatisfied in the previous stages. At the start of each stage s + 1 the initial segment X �s has
been defined in the previous stages and we are called to define X(s), therefore specifying X �s+1.

At stage s + 1 we say that Re,c requires attention if it has not already been declared satisfied, and:

(i) there exists a least k > s such that: k < q(s), for all i ≤ k we have ge(i)[q(s)] ↓, and∑k
i=0 2−ge(i) > f∗(e, c, X �s);

(ii) for this least k, there exists ν ⊃ X �s of length k which satisfies the following condition: for all
µ of length k + ge(k) such that Φ

µ
e [q(s)] ↓= ν, Kq(s)[µ] < |µ| − c.

In this case we also say that Re,c requires attention via ν for the lexicographically least ν satisfying the
conditions of (ii) above.

3.3.2 Construction of the real

At stage 0: Define X �0= λ.

At stage s + 1: If there does not exist 〈e, c〉 ≤ s such that Re,c requires attention, then define X(s) = 0.
Otherwise, let 〈e, c〉 be that of highest priority, and let ν be such that Re,c requires attention via ν. Define
X(s) = ν(s). If |ν| = s + 1 then declare Re,c to be satisfied.

3.3.3 Verification of the construction

Suppose that no requirement of higher priority than Re,c requires attention at any stage > s0. We show
that Re,c is satisfied, and that there exists a stage after which this requirement does not require attention.
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Let s1 > s0 be such that q(s1) > p(s1). From the definition of p(s1) and the fact that q(s1) > p(s1) it
follows that if Re,c does not require attention at stage s1 + 1 then either ge is not total, or else ge is total
and

∑
i 2−ge(i) is finite. If ge(i) ↑ for some i, then Re,c cannot require attention subsequent to stage i. If∑

i 2−ge(i) is finite, then it follows directly from our assumption that f∗(e, c, ν0) > |ν0| that Re,c can only
require attention at finitely many stages. So suppose, on the other hand, that Re,c requires attention at
stage s1 + 1 via ν. In this case the requirement will be declared satisfied by the end of stage |ν|.

3.4 Proof of Theorem 1.3

Recall that given an array noncomputable set A and any function p which is weak truth-table computable
in ∅′, there exists a function q ≤T A which is not dominated by p. So if the function p of Section 3.3.1
was computable from the halting problem with computable bound on the oracle use, then we would
have proved Theorem 1.2 under the weaker assumption of array noncomputability. Unfortunately, this
is not the case. However by the same argument we can obtain a nonuniform version of Theorem 1.2,
under the weaker hypothesis of array noncomputability on the oracle A. Let A, g be as in the statement
of Theorem 1.3, and let e be an index of g. We wish to construct X ≤T A which satisfies all requirements
Re,c, c ∈ N of Section 3.2, for the fixed index e of g. The crucial point is that if we fix e such that ge

is total and follow the definition of p of Section 3.3.1 restricting to this fixed e, then the corresponding
function pe is computable from the halting problem with computable bound on the oracle use. Hence,
if A is array noncomputable, we may choose an increasing function qe ≤ A which is not dominated by
pe. Then the construction of Section 3.3.2, restricted to a fixed e such that ge = g, gives a real X ≤T qe

which meets all requirements Re,c, c ∈ N. Again, the proof of this fact is the argument of Section 3.3.3,
restricted to our fixed e. Hence X ≤T qe ≤T A and X has the properties claimed in Theorem 1.3.

4 Conclusions

Kučera [Kuč85, Kuč89] and Gács [Gác86] showed that every real is computable from a random real.
The best known general upper bound for the redundancy of such computations is

√
n · log n, and is due

to Gács [Gác86] (Merkle and Mihailović [MM04] have provided a different proof of this fact). In the
present paper we asked for the optimal redundancy that can be achieved in the Kučera-Gács theorem.
We showed that no computable nondecreasing function g such that

∑
i 2−g(i) = ∞ can be such an upper

bound and demonstrated that a large class of oracles require larger redundancy when they are computed
by random reals. This result improves the constant bound obtained by Downey and Hirschfeldt [DH10,
Theorem 9.13.2]. Our result shows that, in general, the redundancy cannot be as slow growing as log n,
but a large exponential gap with the currently known bound of

√
n · log n remained. Recently it was

shown in [BLP16] that the strict lower bounds that we obtain in the present paper are optimal. In other
words, any computable nondecreasing function g such that

∑
i 2−g(i) < ∞ is a general upper bound on

the redundancy in the computation of any real from some Martin-Löf random oracle. This provides a
complete characterization of the redundancy bounds in the Kučera-Gács theorem.
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