THE LONDON SCHOOL
oF ECONOMICS AnD
POLITICAL SCIENCE

LSE Research Online

Luca Gerardo-Giorda, Guido Germano and Enrico Scalas
Large scale simulation of synthetic markets

Article (Published version)
(Refereed)

Original citation:

Gerardo-Giorda, Luca, Germano, Guido and Scalas, Enrico (2015) Large scale simulation of
synthetic markets. Communications in Applied and Industrial Mathematics, 6 (2). ISSN 2038-
0909

Reuse of this item is permitted through licensing under the Creative Commons:

© 2015 The Author
CC-BY-NC-ND

This version available at: http://eprints.lse.ac.uk/67563/
Available in LSE Research Online: September 2016

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. You may freely distribute the URL
(http://eprints.Ise.ac.uk) of the LSE Research Online website.

http://eprints.lse.ac.uk



Communications in Applied and Industrial Mathematics, DOI: 10.1685/journal.caim.535
ISSN 2038-0909, e-535

Large-scale simulations of synthetic markets

Luca Gerardo-Giorda', Guido Germano?®, Enrico Scalas'*

L' BCAM — Basque Center for Applied Mathematics
Bilbao, Basque Country, Spain
lgerardo@bcamath.org

2 Department of Computer Science
University College London, UK
g.germano@ucl.ac.uk

3 Systemic Risk Centre,
London School of Economics, UK
g.germano@lse.ac.uk

4 School of Mathematical and Physical Sciences
Department of Mathematics
University of Sussex, UK
e.scalas@sussez.ac.uk

Communicated by Gianni Pagnini

Abstract

High-frequency trading has been experiencing an increase of interest both for practi-
cal purposes within financial institutions and within academic research; recently, the UK
Government Office for Science reviewed the state of the art and gave an outlook analy-
sis. Therefore, models for tick-by-tick financial time series are becoming more and more
important. Together with high-frequency trading comes the need for fast simulations of
full synthetic markets for several purposes including scenario analyses for risk evaluation.
These simulations are very suitable to be run on massively parallel architectures. Aside
more traditional large-scale parallel computers, high-end personal computers equipped
with several multi-core CPUs and general-purpose GPU programming are gaining im-
portance as cheap and easily available alternatives. A further option are FPGAs. In all
cases, development can be done in a unified framework with standard C or C++ code
and calls to appropriate libraries like MPI (for CPUs) or CUDA for (GPGPUs). Here we
present such a prototype simulation of a synthetic regulated equity market. The basic
ingredients to build a synthetic share are two sequences of random variables, one for
the inter-trade durations and one for the tick-by-tick logarithmic returns. Our extensive
simulations are based on several distributional choices for the above random variables,
including Mittag-LefHler distributed inter-trade durations and alpha-stable tick-by-tick
logarithmic returns.
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1. Introduction
1.1. General considerations

High-frequency trading is a field that experienced an explosion of inter-
est within financial institutions, for practical purposes, and within academic
scholars, as well. The interested reader can consult a recent report by Furse
et al. [3] for a review of the state of the art and an outlook analysis. There-
fore, models for tick-by-tick financial fluctuations [2] are becoming more
and more important. A review of this literature can be found in a recent
book [6]. Along with high-frequency trading comes the need for fast sim-
ulations of full synthetic markets for several purposes including scenario
analyses for risk evaluation.

Some years ago, two authors of this paper, G.G. and E.S., proposed the
use of distributed computing for large-scale tick-by-tick synthetic market
simulation [5] also by exploiting the embarrassingly parallel character of
Monte Carlo simulations. Nowadays, rather new techniques and hardware,
such as graphics processsing units (GPUs) [10] and field programmable
gate arrays (FPGAs) [7], are available to assist decision making in high-
frequency and intra-day trading. Moreover, with the development of new
standard libraries for GPUs and FPGAs, it becomes no longer necessary
to develop programs in dedicated programming languages and one can use
code written in C or C++ with appropriate library calls. Suitable interpreters
or compilers port the software to the chosen hardware devices for fast and
reliable execution. In this paper, we show the simulation of synthetic regu-
lated equity markets, and in the following section we describe their modeling.

1.2. Modeling a synthetic market
1.2.1. Single equity

The behavior of a single equity in time is a combination of the time lapse
between two subsequent trades and the price variation at each trade. This is
due to the double-auction mechanism implemented in equity markets [11].
A synthetic share dynamics can therefore be modeled by the combined
effect of two sequences of random variables defined as follows.

Definition 1.1. (Inter-trade durations) The inter-trade durations are de-
fined as a sequence {J;}2, of positive real random variables.

Definition 1.2. (Tick-by-tick logarithmic returns) The tick-by-tick loga-
rithmic returns are defined as a sequence {Y;}°, of real random variables.

Remark 1.1. (Dependence) At this stage, no assumption is made on the
dependence structure of the random variables defined above.
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Remark 1.2. (Continuous double auction) The majority of regulated eq-
uity markets use the continuous double auction to determine trade prices.
This leads to asyncronous trading epochs; in other words not only the re-
turns are random variables but also inter-trade intervals.

With these two basic ingredients, we can define trading epochs

Definition 1.3. (Trading epochs) Let {J;}3°; be inter-trade durations,
then the sequence of trading epochs or events {7),}5° ; is defined as follows

() =%
=1

and the counting process is defined as

Definition 1.4. (Counting process) Let {T,}°2 ; be a sequence of trading
epochs, then the process N(t) counting the number of events up to time ¢
is given by

(2) N(t) = max{n : T, <t}.
Now, one can define the logarithmic-price process as

Definition 1.5. (Logarithmic-price process) Let {Y;}7°; be a sequence of
tick-by-tick logarithmic returns and let N(¢) be the counting process corre-
sponding to the trading epochs {T},}° ;, then the logarithmic-price process
X(t) is

N(t) 0o
(3) X(t) =) Y;=> Yl
=1 =1

We are ready to define a synthetic share process or price process

Definition 1.6. (Synthetic share) Let X (¢) be a logarithmic-price process
and let Sy be the opening price (at epoch Ty = 0) of the share (a given
positive real variable), then the synthetic share process or price process is

(4) S(t) = SpeX®,

Remark 1.3. (Opening price) In many regulated equity markets, the open-
ing price or open is fixed by an appropriate opening auction which does not
use the continuous double auction mechanism.
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1.2.2. Whole market

The above description of the dynamics of a synthetic share process can
be easily generalized to a procedure describing the behaviour of an arbitrary
number of shares M, representing the number of traded assets in an equity
market.

Definition 1.7. (Synthetic market) Let {S®*)(¢)}M | be a collection of
synthetic share processes defined as above. We say that this collection rep-
resents a synthetic market.

Remark 1.4. (Again on dependence) No assumption has been made on
the dependence of the price processes making up the synthetic market.
In general, these processes will not be independent, but their dependence
structure may evolve in time [9].

Remark 1.5. (Specification of processes) In order to derive theorems and
make calculations on synthetic markets, it is necessary to specify a market
process. For instance, we have studied the share process when the inter-
trade durations and the tick-by tick logarithmic prices are independent and
identically distributed and mutually independent. In this simple case, the
price process is semi-Markov and many properties can be derived [1,1,12,11].

1.2.3. Synthetic market simulation and assessment

Based on the construction outlined above, we use the following 4-steps
procedure to build effective synthetic markets for high-frequency trading
applications.

1. Selection: Select an intra-day market model with full specification of
the market process.

2. Fitting: Fit the parameters of the market process with the available
historical data.

3. Simulation: Run Monte Carlo simulations of the fitted synthetic mar-
ket.

4. Assessment of quantities of interest: Compute the quantities of
interest out of the Monte Carlo simulations.

Given the non-stationary nature of financial markets, this procedure does
not protect against unexpected events, but it is the best thing one can do,
also considering that the second step can be made adaptive and the fitting
procedure can be constantly updated during continuous trading. However,
in this paper, we do not discuss this interesting and difficult issue, nor are
we presenting rules or advices for the first step (the selection of the market
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model). Rather, we are interested in showing that the third and fourth steps
can be easily performed. This will be the subject of the next section.

2. Simulations
2.1. General framework

We consider a synthetic market consisting of N = 2000 different shares.
For the sake of simplicity, here we consider mutually independent couples
(J;,Y;) as well as mutually independent log-prices. Dependences among
stock prices can be conveniently introduced using factor models [8]. We
simulate a variety of scenarios, ruled by different choices for the inter-trade
durations and logarithmic returns. In particular, for any share (labeled with
s =1,...,N), the intra-trade duration epochs J; s are draws of a random
variable J following one of the following distributions.

1. Mittag-Leffler distribution, characterized by the survival function
() P(J > u) = Bg(—u”),

where Eg(z) is the one-parameter Mittag-Leffler function

oo n

(6) Es(x)=N -~ :eC.
A nzor(ﬁwr 1)

2. ACD(p,q) (Autoregressive Conditional Duration) distribution. The du-
rations are given by

(7) Ji = OZy,

where Z; are positive, independent and identically distributed random
variables, with E(Z;) = 1. The time series O, is given by

q p
®) O =ao+» ajdij+ Y BiO,

j=1 i=1
where ag >0, a; >0 (j=1,...,q9), >0 =1,...,p).

On the other hand, the tick-by-tick logarithmic returns Y; are given by
a time series modeled as follows.

1. Independent and identically distributed Lévy a-stable random variables.
We let Y; ~ L, where L, is a random variable with probability density
function given by

9) fro(x) = L /+Oo e IRl e=inT gy

2 J_ o
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Remark 2.1. Processes with a-stable i.i.d. increments that are subordi-
nated to the limit of a Mittag-Leffler process have a one-point probabil-
ity density function converging to the solution of the fractional diffusion
equation.

2. ARCH(q) (Auto-Regressive Conditional Heteroskedasticity): we let Y3 ~
€, where the last term is split into a stochastic term z; and a time-

dependent standard deviation o;. The ARCH model of order ¢ [2] reads

q
Gt2 = oy + Zaj(et_j)z
(10) =1

€t = Otzt,

where a;; > 0 (j > 0), while 2 is a standard white noise z; ~ N(0, 1).

3. GARCH(p,q) (Generalized Auto-Regressive Conditional Heteroskedastic-
ity ): we let again Y; ~ €;, where the last term is split into a stochastic
term z; and a time-dependent standard deviation o;. The GARCH model
of order (p,q) is obtained assuming an autoregressive moving average
model (ARMA) for the variance of the error, and reads [2]

q P
o2 =ag+ Z aj(e—j)? + Zﬁi o?
(11) j=1 i=1

€t = OtZt,

where a; > 0 (j =0,...,9), i >0 (i = 1,...,p), and again z is a
standard white noise z; ~ N(0,1).

Remark 2.2. Auto-Regressive Conditional Heteroskedasticity (ARCH)
models are used whenever there is reason to believe that, at any point
in a series, the terms will have a characteristic size or variance. For this
reason, such models are very popular in modeling financial time series
that exhibit time-varying volatility clustering.

2.2. Setup of test scenarios

In this section we present four different scenarios simulated from dif-
ferent combinations of the methods presented earlier, as reported in Table
1, where we summarize the choices of the inter-trade duration distribution
and the logarithmic returns.

For the inter-trade duration we use both a Mittag-Leffler and a
ACD(1,1) model, whose stability is guaranteed provided a; + 1 < 1.
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The tick-by-tick logarithmic returns are drawn from a i.i.d. Lévy a-
stable process (with o € (1,2) [13,15]), an ARCH(1), and a GARCH(1,1)
model. The stability of the latter model is guaranteed provided a1+ 51 < 1.

2.3. Simulations and results

We performed a Monte Carlo simulation with 10000 realisations of the
whole market, where, for each realisation, the parameters of the runs are
generated by a random algorithm, with 2000 draws from the distributions
summarized in Table 2. Finally, to simulate the individual behavior, we
associate each of the 2000 shares in the synthetic market with a rescaling
parameter - for the inter-trade duration, and a rescaling parameter ~, for
the tick-by-tick logarithmic returns. Such parameters are either constants
(7z), or obtained by draws of normally distributed random variables (7,
vz), and are reported in Table 3.

For each scenario, we present a realization of an intraday price series, the
histogram of the final price as well as the payoff of an at-the-money intraday
European call option, C(7'). This is given by C(T') = max(S(T") — K,0),
where T' is maturity and K is the strike price; here, we assume K = S(0).
Figures 1-4 present Scenarios 1-4. Figure 5 shows the collective behavior
of a portion of the market in the case of Scenario 2.

Table 1. The simulated scenarios: waiting times and jumps distributions.

Scenario 1 Scenario 2 | Scenario 3 | Scenario 4

Inter-trade durations Jy Mittag-LefHer ACD(1,1)

Log-returns Y; Lévy a-stable | ARCH(1) GARCH(1,1)

Table 2. Parameters for the ACD(1,1), ARCH(1) and GARCH(1,1) distri-

butions.
8 ag al B1
ACD(1,1) 1 N(0.21,0.01) N(0.46,0.01) N(0.077,0.001)
ARCH(1) 0.99 N(1,0.1) N(0.1,0.01) -
GARCH(1,1) 1 N(1,0.1) N(0.1,0.01) N(0.1,0.01)

3. Discussion and outlook

Using a simple set of equations and an appropriate set of stochastic pro-
cesses, it is easy to simulate synthetic equity markets using Monte Carlo



L. Gerardo-Giorda et al.

7t Scenario 1: realization g

6.5 . . . .
0 20 40 60 80 100

Time (arbitrary units)

100

90

70 Scenario 1: final price|

601

50

Frequency

40

30

20

3 4 5 6 7 8 9 10 11
Final price

600

Scenario 1: payoff

400 b

300 b

Frequency

200 b

0 0.5 1 1.5 2 25 3 3.5 4

Payoff

Figure 1. Top to bottom: a single share realization (time in arbitrary units), final price
and payoff histograms for Scenario 1.
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and payoff histograms for Scenario 2.

Top to bottom: a single share realization (time in arbitrary units), final price
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Scenario 3: realization
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Figure 3. Top to bottom: a single share realization (time in arbitrary units), final price
and payoff histograms for Scenario 3.
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Figure 4. Top to bottom: a single share realization (time in arbitrary
and payoff histograms for Scenario 4.
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Table 3. The scale factors v; and vz.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
v | N(0.01,0.001) N(0.01,0.001) N (0.01,0.001) N(0.01,0.001)
vz | N(1077,1078) 1075 x 10~7 1077

Scenario 2
30 Al
20 \‘M
c 10 " ’W\ A .
-§ oA *‘m ’ %xwx‘m@; M
o 0 Ll w ‘«\‘;\ W
! N Ao W) M
8 -10 0, Yt g Y 4
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100
20
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Time 00 Shares

Figure 5. A sample showing the behaviour of 20 shares out of the market generated in
Scenario 2

methods. Essentially one needs to generate a set of inter-trade durations
and a set of tick-by-tick log returns. This can be easily done and the embar-
rassingly parallel nature of Monte Carlo simulations can be used to speed
up the procedure if many processors are available.

We discussed a general 4-step procedure to build effective synthetic
markets for high-frequency trading applications. The procedure includes
model selection, fitting, simulations and assessment of quantities of interest.
Here, we have only considered simulations and assessment of quantities of
interest with some simple examples. We plan to devote future efforts on the
more difficult problems of model selection and fitting. For fitting, we plan
to use Bayesian hybrid Monte Carlo methods, whereas information criteria
will be used for model selection.
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