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Abstract

This paper analyses a dynamic game of investment in R&D or advertising, where
current investments change future market conditions. It investigates whether under-
investment can be supported in equilibrium by the threat of escalation in investment
outlays. When there are no spillovers, or there is full patent protection,
underinvestment equilibria are shown to exist even though, by deviating, a firm can
get a persistent strategic advantage. When there are strong spillovers and weak
patent protection, underinvestment equilibria fail to exist. This implies that weaker
patent protection can actually lead to more investment in equilibrium. Furthermore,
potential entry is introduced into the model so as to address issues of market
structure. It is shown that underinvestment equilibria can be stable with respect to
further entry, independently of market size and entry cost. Finally, the
“nonfragmentation” result of statis stage games (Shaked and Sutton, 1987) is proved
to hold in this dynamic game. That is, fragmented outcomes cannot be suppoorted in
any equilibrium, no matter how large the market, and despite the existence of under-
investment equilibria.
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1 Introduction

A central theme in the literature on investment is whether firms have sufficient incen-
tives to invest. For instance, the rationale for patent protection is to give innovating
firms the “right” incentives to engage in R&D. In oligopolistic markets, firms usually
invest in order to gain a competitive advantage over their rivals. Because of this
“business stealing effect”, noncooperative investment levels tend to be higher than
the level that maximises firms’ joint profits. In a dynamic model of investment, the
following question arises therefore naturally: ‘Is it possible that firms “underinvest”
in equilibrium only because investing more would lead to an escalation of invest-
ment outlays by rival firms?’ In other words, ‘Do tacitly collusive “underinvestment
equilibria” exist?’

When analysing this question, there is a subtle but important distinction to be
made between infinitely repeated games (supergames) and truly dynamic investment
games. The theory of supergames, which has been applied mostly to price or quantity
setting games, is well developed. Since oligopolistic interaction has the underlying
structure of a prisoner’s dilemma game, we know from the Folk Theorem that in
supergames tacitly collusive equilibria always exist for a discount factor sufficiently
large. By contrast, truly dynamic investment games, in which current actions change
future payoffs, are not yet very well understood. In particular, the existence of tacitly
collusive (underinvestment) equilibria is not obviously ensured. The reason is that,
by deviating, a firm might change future market conditions and, thereby, gain a per-
sistent strategic advantage over its rivals. In their paper on investment in capacity,
Fudenberg and Tirole (1983) have given an example of the existence of underinvest-
ment equilibria in dynamic investment games. However, in their continuous-time
framework, they have muted, by construction, the above distinction in that a firm
cannot leapfrog its rivals by deviating.

In R&D- and advertising-intensive industries, endogenous industry dynamics play
a particularly important role in that current investments in product or process inno-
vation, or in “goodwill”, change not only current but also future market conditions.
Since investments in R&D or advertising are sunk, these investments have a com-
mitment value. This obviously suggests to model dynamic competition in R&D or
advertising as a truly dynamic investment game rather than as an infinitely repeated
game since, in the latter, tangible market conditions are assumed to be stationary.

In this paper, we explore the incentives of firms to invest, and to collude, in a
dynamic (infinite horizon) game of investment in R&D or advertising. The focus is
not on the dynamics of investments as such but rather on the commitment value of
investments. We investigate, in particular, the issue of existence of tacitly collusive
underinvestment equilibria when firms, by deviating, can get ahead of their rivals



and, thereby, gain a considerable strategic advantage.

In our model, the existence of underinvestment equilibria depends crucially on
the presence of spillover effects in the appropriation of the benefits from investment.
When there are no spillovers or, alternatively, there is full patent protection, underin-
vestment equilibria exist as long as the investment cost function is sufficiently elastic,
and the discount factor sufficiently large. However, when there are strong spillovers
and no patent protection, underinvestment equilibria fail to exist, even for discount
factors arbitrarily close to unity. This implies that a weakening in the degree of patent
protection can actually lead to more investment in equilibrium. The reason is that
firms have less incentives to invest when they cannot fully appropriate the benefits,
and this reduction in the incentives to invest destroys the mechanism through which
underinvestment can be supported in equilibrium. Our model thus casts doubt on
the effectiveness of complete patent protection in fostering investment. This should
be of particular concern since, as we show, underinvestment unambiguously reduces
welfare.

The issue of existence of underinvestment equilibria in our model raises an impor-
tant question for the analysis of market structure. The static version of our dynamic
investment model satisfies the “nonconvergence property” (see Shaked and Sutton
(1987) and Sutton (1991)): as market size becomes large, free entry does not lead to
a fragmentation of the market.! In the limit when market size tends to infinity, the
market share of the largest firm is bounded away from zero. This result is based on
the “escalation mechanism”. The larger the size of the market, the greater are the re-
turns accruing to a firm from raising its investment outlays. This implies, under some
conditions, that increases in market size are associated with a rising level of firms’
investment outlays. In the limit, at least one and at most a finite number of firms will
find it worthwhile to engage in an escalation of R&D or advertising spendings to cap-
ture a positive market share. Hence, concentration remains bounded away from zero,
no matter how large the market. The escalation mechanism has been successfully
tested by Sutton (1991) in his seminal work on advertising-intensive industries.?

However, the nonconvergence property has been obtained almost solely in static
stage-game models. The open question is whether this result still holds in dynamic
models. In a static model, the way to prove the nonconvergence property is to
show that there always exists a profitable deviation for some firm in a large and
fragmented market. This deviation consists in a sufficient rise in investment outlays
so as to capture a positive market share. In a dynamic model, however, such a
single deviation might be followed by a severe (and possibly complex) “punishment”

In Sutton’s (1991) terminology, the static version of our model is an “endogenous sunk cost
model”.
2For a recent study on R&D-intensive industries, see Sutton (1998).



strategy by rival firms. What is at issue here is that the existence of underinvestment
equilibria (when there are no spillovers) implies that firms do not necessarily engage in
an escalation of R&D or advertising spendings precisely because firms will otherwise
be punished. But without an escalation mechanism at work, the nonconvergence
property breaks down. This is the central question on market structure we address
in the present paper. Our result is very reassuring: the nonconvergence property
is robust to the existence of underinvestment equilibria in our dynamic investment
game.

The plan of the paper is as follows. In section 2, we present the basic two-firm
version of our model when there are no spillovers. The equilibrium analysis is given
in section 3. This is, in section 4, followed by a comparison of welfare in the collusive
underinvestment equilibria and the noncollusive investment equilibrium. In section
5, we introduce spillovers into the model. Then, in section 6, we turn to the analysis
of market structure, and investigate whether the two-firm underinvestment equilibria
are stable with respect to further entry, independently of market size and entry costs.
In the following section, we turn to the central question on market structure: ‘Does
the nonconvergence property hold in our dynamic game, despite the existence of
underinvestment equilibria?’ Finally, in section 8, we conclude briefly.

2 The Basic Model

In this section, we present our basic dynamic model without spillovers. There are two
firms, each offering a product variety. In each period, firms first decide how much to
invest in R&D or advertising. Then, they compete in quantities. Investment is sunk,
and persistently raises the consumers’ willingness-to-pay for the product variety. By
investing more than its rival, a firm can, therefore, get a competitive advantage.
Here, we do not allow for entry of a third firm. The topic of potential entry, which is
essential for the analysis of market structure, will be taken up in the second part of
the paper.

We consider an infinite-horizon game of investment in R&D or advertising. The
framework is essentially a dynamic version of the model in Sutton (1991). Time is
discrete and indexed by t. There are two firms, ¢+ = 1, 2, and /N consumers, indexed by
[. Consumer preferences are defined over a ‘quality good’, produced in the industry
under consideration, and an ‘outside good’ (or Hicksian composite commodity) whose
price and attributes are assumed to be constant. There are two varieties of the quality
good on offer, one by each firm. Consumers are assumed to value quality. More
specifically, consumer [’s utility in period ¢ is given by

2 i
U2yt 2%, yp) = o' n (30 uiat’) + (1)
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if 2 uizy” > 0, and U'(2y', 2%, y)) = —oo otherwise. We denote by z;" > 0

and 3! > 0 the quantities consumed of firm i’s variety of the quality good and the
outside good, respectively; u! is the quality of firm i’s offering in period ¢, and ! is a
parameter, assumed to be strictly positive, that measures the intensity of consumer
I’s preferences for the quality good. Consumer income in each period is denoted
by m!. We assume m! > o!, for all consumers [; otherwise we allow for arbitrary
heterogeneity of consumers in the o’s and in income. The quality index is normalised
so that the ‘basic version’ of the quality good is of quality 1, i.e. ui > 1. Note that,
for z* > 0, utility is strictly increasing in quality wu!.

In the quality good industry, firm ¢’s period-t-cost of investment in R&D or ad-
vertising is given by

Fujsui 1) = Fo (uf)” = Fy (ui )" 2)

if u! > wui_;, and F(ul;ui_;) = 0 otherwise, where F > 0 and 3 > 1 are parameters
that measure the effectiveness of R&D or advertising outlays in raising the consumers’
willingness-to-pay. That is, we assume that the effectiveness of R&D or advertising
outlays are subject to diminishing returns; for simplicity, we do not consider “adjust-
ment costs”. In the case of investment in advertising, the quality of firm 4’s period-¢
offering can be interpreted as the stock of firm ¢’s “goodwill” accumulated up to pe-
riod t.> Note that F(u;u) = 0; that is, investment costs are zero if a firm does not
want to raise the quality of its product. We assume that quality does not depreciate;
moreover, ui > u} ;. Both firms have constant and strictly positive marginal costs of
production, ¢, that are independent of quality.

The time structure of the game is as follows. In each period, there are two stages.
In the first stage, firms 1 and 2 simultaneously decide whether and how much to invest
in quality improvement, and incur the fixed investment outlays. In the second stage,
the two firms simultaneously decide how much to produce (quantity competition);
consumers, taking price as given, decide how much to consume of each product, and
prices are such that markets clear. Firm i’s second-stage profit in period ¢ is therefore
given by (p; — ¢)z}, where pi and z} are price and quantity, respectively; firm 7’s total
profit in period ¢ is then (pi — ¢)z} — F(u};ui ;).

Consumers are assumed to maximise the discounted value of per-period-utility,
taking the sequence of prices and qualities as given. Since, for simplicity, saving and
storing are not allowed, this amounts to consumers maximising per-period-utility
myopically. Firms maximise the discounted value of profits. The common discount
factor is 6, 0 < 6 < 1. All parameters of the model, and all moves in past periods
and stages, are assumed to be common knowledge.

3The goodwill approach to advertising goes back to Nerlove and Arrow (1962).
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3 Equilibrium Analysis: Escalation and Underin-
vestment

In this section, we turn to the equilibrium analysis of the basic model without
spillovers. We first show the existence of a noncollusive “investment equilibrium”
in which firms engage in an escalation of investment outlays. The central result of
this section is developed in subsection 3.3, where we show the existence of a collusive
“underinvestment equilibrium”. Underinvestment can be supported in equilibrium
by the credible threat of escalation in case of deviation, even though, by deviating, a
firm can get a persistent strategic advantage over its rival.

In the equilibrium analysis, we confine attention to Markov strategies that depend
on the tangible state only; hence, the relevant solution concept is that of Markov
perfect equilibrium (MPE). Recall that every MPE is a subgame perfect equilibrium
(SPE), even when strategies are not restricted to be Markov. The idea of this ap-
proach is that history should influence current actions only if it has a direct effect
on the current environment, but not because players believe that history matters.
Furthermore, the state-space approach greatly simplifies the equilibrium analysis; as
Shapiro (1989) notes, it allows us to focus on strategic aspects of commitment. (For
further justification of the approach, see Maskin and Tirole (1988).)

At each decision node, the state of the industry can be summarised by the current
pair of qualities (u',u?) € [1,00)%. Firm i’s (pure) Markov action rule at stage 1 in
period t is a mapping s’ : (u} ;,u; ;) — ul; at the second stage of the same period
its action rule is a mapping ¢ : (ui,u?) — z¢. The state-space approach has real bite
here in that it eliminates all bootstrap-type action rules in the output stage. Since
quantity choice at a given stage 2 does not affect future payoff-relevant variables
(qualities), the second stage in any given period can be analysed as a one-shot game.

3.1 Cournot Competition with Perceived Quality

The important result of this subsection is that, for all pairs of qualities, there exists
a unique stage-2 Nash equilibrium in quantities. The associated equilibrium profit is
given by equation (6), which will serve, in the remainder of the paper, as a reduced-
form stage-2 profit function for the dynamic investment game. Below we present
some routine calculations; they can easily be skipped by the reader.

Given qualities and prices, a consumer’s optimisation problem in period ¢ (stage
2) can be written as

max o' In(3; ulzht) + ¢
{ah 7}y o
st > ple” + yl < m



where we have normalised the price of the outside good to one, and dropped time
indices for convenience. This programme is equivalent to

max ol n (max {u_}) + o ln(ml — yl) + /.
Yy 1 P

Hence, in equilibrium the quality-price ratio u’/p’ must be the same for all firms 4
with positive market share. Solving the first-order condition yields ' = m! — of,
which is nonnegative by assumption. Total sales in the quality good industry, S, are

therefore equal to

2 2 N N N
SEsz.Iz:szz.fl’Z:Z(ml—yl):Zal. (3)
i=1 i=1  1=1 =1 =1
Given its rival’s price, firm j’s price in equilibrium is given by
T
) = - ! 4
p=—p (4)

for j # i. Using equation (4) and the definition of S yields firm 4’s price as a function
of firms’ quantities:

S

P i Wy

Thus, given its rival’s quantity, firm ¢ sets 2° so as to maximise

e ) )

Remark that this expression is strictly concave in z°; it is zero at 2° = 0, and tends
to —oo as ' — oo. Its first derivative at z* = 0 is strictly positive if S/c > (v /u’)z?.
Hence, the first-order condition, which can be written as

R PN S WP,
zt + (uf fut)ad '+ (uf fut)ad c=5

gives a unique interior maximum if S/c¢ > (v’ /u’)z?. Subtracting the two first-order
conditions yields z¢ = 2/ = z. Simple calculations then give quantities, prices and
profits in the unique stage-2 Nash equilibrium:

i /] S
o u'fu s
c

(i 1)



pzzc<—.+1),
u’

) = § (ﬁ) (0

utfud + 1

and

for 7,7 = 1,2, 4 # j. Observe that profits in stage 2 depend on the quality ratio, and
market size, only. Furthermore, equation (6) has the nice and intuitive property that
a firm’s stage-2 profit is increasing in its own quality, and decreasing in its rival’s
quality; this differs from models of pure vertical product differentiation.

Above we have assumed that both firms will have positive market shares in equi-
librium. To show uniqueness, we still have to prove that there does not exist an equi-
librium with only one firm making (strictly) positive sales. From expression (5) it can
be seen that firm ’s unique best reply to any quantity =7 such that z7 > (u’/u’?)S/c
is to set its own quantity equal to zero. If only one firm has a positive market share
in equilibrium (firm j, say), then its price is given by p/ = S/z7, and its profit by
S — ca? | which is strictly decreasing in z7. Given that firm 7 sets its quantity z’ equal
to zero, firm j therefore wants to set z7 strictly below (u’/u’)S/c. Hence, there is no
(pure strategy) Nash equilibrium in quantities such that only one firm has a positive
market share.

Finally, remark that, in equilibrium, each consumer is indifferent between the
offerings by the two firms. Consumer [’s period-t utility, in equilibrium, is therefore
equal to

i
Ulluf,u?) = o'ln (alp—f> +m! — o
i

u% +u§

1,2
= o'ln (alﬂ> —a'lnc+m! — o, (7)

3.2 Dynamic Investment: Escalation

Having solved each period’s quantity competition stage, the dynamic game can now
be viewed as a simple infinite-horizon investment game in which, in each period, the
two firms simultaneously invest in quality, and firm i’s payoff in period ¢ is given by

I (g, ) = 7 (g ug) — F(up g _y). (8)

Infinite-horizon dynamic games, like the present one, are notoriously difficult to
analyse since neither do they have a stationary structure (like infinitely repeated
games), nor can they be solved by backward induction (like finite-horizon games).
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However, a class of subgame perfect equilibria can be found in our game by first
viewing each firm’s sequence of investment decisions as a single-player dynamic opti-
misation problem, holding the quality of the other player fixed. In this way, we can
determine a region in the space of qualities (state variables) such that neither firm
wants to invest further, given that its rival will never invest again. Since this region is
associated with “high” quality levels, we can then, in a backward induction fashion,
proceed to determine equilibria for subgames starting at “lower” quality levels.
Suppose that the current quality of firm ¢’s offering is given by u’ |, with u’ ; > 1.
Holding firm j’s quality, u’, fixed forever, firm 4’s optimisation problem is then given
by
mex > 87T u, ), (9)
Ury 120

with wf = u/ for all 7 > 0. Due to the additive separability of the investment cost
function, the dynamics are conveniently simple: given that its rival will never invest
again, it is optimal for firm ¢ to do all its investment at once, and then cease investing
forever.* That is, firm i’s optimisation problem can be rewritten as

S u Ju?
max ——
wo 1—86 \u/u +1

2

and the optimal sequence of qualities is given by u’ = u*(u’) for all 7 > 0, where
u*(u’) denotes the solution to the above problem.® Note that u*(u/) > u’ ; since a
firm’s stage-2 profit is strictly increasing in its own quality, so that it never pays to
reduce quality; that is, sunk investments have commitment value. If u*(u/) > u’ |,
then u*(u’) is the solution to°

max — ( u'fu )2—F0(ui)ﬂ. (10)

wo 1—6 \u/u +1

The concept of a best-reply (or reaction) function is a familiar one in the context
of static games. Now, in a dynamic game, a best reply is defined relative to the

4We could get more “interesting” dynamics by allowing for “adjustment costs”, for instance.
However, this would complicate the analysis unnecessarily and not change the qualitative insights.

SRemark that firm i’s stationary best-reply, u*(-), depends on firm i’s current quality, u® ;. For
notational convenience, we drop this argument.

6To see that in this case it is indeed optimal to invest all at once, observe that the dynamic
optimization problem (9) can be rewritten in the following way:

o0 i fod o\ 2 . 4
T ,7__0 T

and that u*(u?) maximizes the expression in curly brackets.



whole sequence of action rules only; the best reply to any given quality level is not
well defined since it depends on future actions. What is well defined, however, is a
firm’s best reply to its rival’s quality, given that the rival firm will never invest again.
This is exactly how we have constructed u*(-); we will, therefore, refer to u*(-) as
to the “stationary” best-reply function. In the following, we will characterise both
firms’ stationary reaction functions; due to symmetry, we can restrict ourselves to
firm ¢’s best-reply function.

Lemma 1 If 3 > 2, firmi’s stationary best reply, u*(u’), is given by

u*(u!) = max {ﬁ(uj), u’_l} :
where u® | is firm i’s current quality, and u(u?) is the unique strictly positive solution
to the first-order condition of (10), i.e.

25 a(ud)u!
1—6 (u(u) 4 ud)

<~ 05 (aw))” " =o. (11)

(If =2 and v/ > \/25/(1 — 8)BFy, there is no strictly positive solution to (11). In
this case, u(u’) =0.)"

Remark that firm ¢’s “interior” stationary best-reply function, %(-), does not de-
pend on the initial quality u’ ;; this is in contrast to u*(-). The following lemma is
straightforward to show. For all proofs that are not given in the text, the interested
reader is referred to the appendix.

Lemma 2 There is a unique intersection of the two interior (stationary) best-reply
2. This intersection corresponds to a symmetric state, (U,u), where

curves in (0, 00)2.
u = (4(1—755)617()% : (12)

w is given by
2

Lemma 2 implies that if (ul,,u?,) < (u,u), then (u,u) is the unique intersection
of the two stationary reaction curves. The stationary reaction curves are shown in
Figure 1.

We can now define four regions in the space of qualities. In Region 1, U™, the
qualities of both firms are above their respective interior best-replies:

UW = { (!, u?) € [1,00)? | u > aw?), i,j=1,2, i # j}.

"Strictly speaking, the stage-2 reduced-form profit function is not defined for qualities below the
minimum quality of 1. For expositional clarity, we extend function (6) to all nonnegative qualities

u’.



Figure 1: Stationary Reaction Curves
10



Graphically speaking, this is the region above the outer envelope of the two interior
best-reply curves. Region 2 consists of the pairs of qualities such that firm 1’s quality
is above w and firm 2’s quality is below its interior best-reply; that is,

U® = {(ul,uQ) €[1,00)? |u! >, u? < ﬁ(ul)}

Region 4 is defined as Region 2, but firm indices are reversed. Finally, Region 3
encompasses all states that are below the symmetric intersection:

U® = {(ul,u2) €[1,00)? |u' <@, i = 1,2}.

We are now in the position to determine a MPE of the dynamic investment game,
starting from any state of the industry.

Proposition 1 The following set of mappings from the current state, (ui_,,u? ),
to the space of feasible actions, [1,00), induces a pure strategy for each firm. The
induced strategy profile, ¥2°°°, forms a MPE starting from any state.

(i) If (ul [, u? ) € UN, then s'(u} |, u? ) =ui |, i=1,2. (“No investment.”)

(i) If (wy_y,ui—y) € UP), then s'(uy_y,uiy) = w_y, and s*(wi_y,ui_y) = a(u_,).
(“Only firm 2 invests.”)

(ii) If (ul_,,u?_)) € U®), then s'(u}_,,u?_ ) =7, i = 1,2. (“Both firms invest up
tow.”)

() If (uj_y,ui 1) € UW, then s'(up_y,ui 1) = (ui_y), and s*(ui_q,uf ) = uj ;.
(“Only firm 1 invests.”)

Proof. Note that per-period net profits, IT’(u;, u?), are bounded above (by S), and
each firm maximises the discounted sum of its per-period net profits. This implies that
the one-stage deviation principle for infinite-horizon games applies (see Fudenberg
and Tirole (1991)): it is impossible to gain by an infinite sequence of deviations when
one cannot gain by a single deviation in any subgame.

Observe now that, in each state of the industry, there exists a unique intersection
of the two stationary reaction curves. Remark further that, according to >, the
state of the industry will move at once to this unique intersection. Now, recall that
the stationary best-reply function, u*(-), gives the unique best reply, holding the rival
firm’s quality fixed forever. Furthermore, notice that the unique intersection lies in
UM so that no firm will invest again along the equilibrium path. Thus, by definition
of u*(+), any single deviation that does not induce the nondeviant rival to (dis)invest
again cannot be profitable. However, according to >¢*¢; a deviation can never induce

11



the nondeviant firm to disinvest since investment costs are sunk. Finally, consider a
single deviation that induces the nondeviant rival to invest in the following period.
Since stage-2 profits are decreasing in the rival’s quality, the deviant’s payoff along
this path would be smaller than the payoff if the nondeviant did not invest again.
But if the nondeviant firm did not invest again, then the deviant’s payoff would be
even higher by not deviating at all. Hence, such a deviation cannot be profitable. B

Comparative statics results are easily obtained. Investment along the equilibrium
path is weakly increasing in the discount factor, ¢, and the size of the market, S, and
weakly decreasing in the cost parameters 5 and Fj.

Remarks. (1) Given the current pair of qualities, the stationary reaction curves
of the dynamic game converge to the usual reaction curves of the corresponding static
stage game as the discount factor 6 goes to zero. Hence, as 6 — 0, strategy profile
¥%¢ converges (in the space of action rules) to the unique Nash equilibrium of the
associated static game. That is, the “investment equilibrium” is simply the dynamic
version of the static (noncollusive) equilibrium.

(2) The investment equilibrium has another nice property. Let us denote our
dynamic investment game with payoff function (6) by I'. Define the dynamic game I"
as being equivalent to I', but with the following assumption on each firm’s information
set: starting from an initial state (u',u?), which is common knowledge, each firm
observes, in any period, calendar time and its own past moves only; the rival’s quality
level is unobservable. (This is equivalent to the assumption that, in the initial period,
each firm has to “precommit” to the sequence of its future investments. Hence, I"
is essentially a static game.) It is possible to show that, for any initial state, I”
possesses a unique Nash equilibrium. Given (u',u?), the unique equilibrium path of
I coincides with the equilibrium path induced by ¥ in the original game I'. The
unique Nash equilibrium of the modified game I" is often referred to as the open-loop
(or precommitment) equilibrium of the original game I'; see Fudenberg and Tirole
(1991). Notice, however, that the result is due to the absence of adjustment costs in
our investment cost function.

(8) Consider the following T-period truncation of the dynamic investment game
I' with payoff function (6): after 7" periods, T > 1, firms are restricted to choose
the null action “no investment”, i.e. uj,, = uj for all t > T. The truncated game
I'T possesses a unique SPE, which coincides with 3-¢* (except for the fact that the
SPE of the truncated game depends in a degenerate way on the entire history of the
game). For more general investment cost functions with adjustment costs, the unique
SPE of I'" would converge to >°“ as T — oc.

These remarks, especially remark (3), show that > ° is the natural noncollusive

benchmark equilibrium in the dynamic investment game I'. In the remainder of the
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paper, the investment equilibrium will, therefore, serve as the benchmark noncollu-
sive equilibrium. We will call “underinvestment equilibrium” any equilibrium that
exhibits less investment along the equilibrium path than this benchmark equilibrium.

3.3 Dynamic Investment: Underinvestment

Along the equilibrium path, induced by strategy profile ¢ from proposition 1, both
firms engage in an “escalation” of R&D or advertising spendings up to the symmetric
quality level @ if the current state is “below” (@,%). In particular, if the current state
is (u,u), where u < 7, then the state of the industry will move to (u,u), and stay
there forever, even though both firms would prefer to stay at (u,u). (Since the stage-2
profit function, (6), depends on the ratio of qualities only, the stage-2 profit is the
same in both states but, of course, moving to the higher state involves spending on
R&D or advertising.) That is, both firms have an incentive to coordinate not to
invest at all in order to avoid an escalation of R&D or advertising outlays, which is
wasteful from their point of view.

Since we have established the existence of an MPE exhibiting escalation of invest-
ment, it might be possible to support “tacitly collusive” MPE, exhibiting little or no
investment, by the threat of escalation in case of deviation. Formally, we consider
a strategy profile, denoted by X, that is induced by the following action rules. If
(ui_y,u? ) = (u,u), then st(ul_,u? ) = u; if, however, (u}_,,u? ;) # (u,u), then
firms revert to strategy profile ¢

However, it is by no means obvious whether such an underinvestment equilibrium
exists. Firstly, suppose the discount factor is (approximately) zero. Then, clearly,
a deviation to @(u), where @(u) > u by definition of underinvestment, is profitable
since the deviant firm does not care about future costs and stage-2 profits. Hence, by
continuity of discounted payoffs in ¢, there exists a profitable deviation for discount
factors sufficiently small.

Secondly, suppose firm ¢ deviates in period ¢ by investing up to quality level u’,
u' > 7. According to strategy profile 3  the nondeviant will then, in period ¢ + 1,
react and invest up to u(u’), where u(u') < u; no further investment will occur.
(By deviating to w/ > 4 !(u), firm i can even preempt any reaction by its rival.)
Along this path, the deviant will make, in each period, higher stage-2 profits than
in the symmetric underinvestment situation. That is, by deviating, firm ¢ can get
ahead of its rival, and ensure that it will always have the higher quality. These
additional stage-2 profits have to be compared with the associated investment costs,
which occur in period ¢t only. Intuitively then, such a deviation should be profitable
for a sufficiently large discount factor. However, the higher is the discount factor, the
larger are the returns accruing from investment in R&D or advertising, and hence

13



the higher is the level of investment associated with ¥¢*¢. That is, the larger is 9,
the more expensive it is for the deviant firm to ensure itself a persistent strategic
advantage over its rival.

The following proposition gives one of the main results of this paper.

Proposition 2 If 3 > 2, and the discount factor is sufficiently large, underinvest-
ment equilibria exist. In particular, suppose the current state is given by (u} ,u? |) =
Qu, u), where the quality level u is arbitrary. Then there is a threshold discount factor
6 € (0,1), such that for all § € (6,1), the path (ul,u?) = (u,u), for all T > t, can be
supported as a MPE, namely by strategy profile 3.

It is straightforward to see that, under the conditions of of the proposition, asym-
metric underinvestment equilibria exist as well; this is a consequence of stage-2 profits
being continuous in qualities.

As we have already argued above, the higher is the discount factor 6, the larger is
the increase in the discounted sum of stage-2 profits from deviating to a given quality
level v/, v/ > . But with increasing 6, the stationary reaction curves move outwards
so that deviating to «’ for a given quality ratio v'/u(u’) > 1 becomes more and more
expensive. Now, when the investment cost function is sufficiently elastic, i.e. 3 is
sufficiently large, then the cost effect dominates the stage-2 profit effect.®.

Our results are reminiscent of the existence of “early stopping equilibria” in the
dynamic model of investment in capacity by Fudenberg and Tirole (1983).° In their
continuous-time model, firms face linear investment costs and an exogenous upper
bound on the feasible flow of investment at each point in time.!° These extreme as-
sumptions directly imply that a firm cannot leapfrog its rival by deviating. Moreover,
notice that, in a model of capacity investment, gross profits for both firms can be
higher at low capacity levels than at high levels; this is due to the fact that com-
petition in quantities is tougher when both firms have higher capacities. (This is
an important difference to models of investment in R&D or advertising, where gross
profits will, in general, not be higher in lower states; see the remark below.) Hence,
in this model, underinvestment equilibria trivially exist for all discount factors. To

8 Actually, the effect of an increase in 3 on the profits from deviation is rather subtle; there are
two opposing effects. On the one hand, an increase in 3 makes the deviation to a given u’ more
expensive; on the other hand, it makes the response of the nondeviant rival less aggressive in that
it decreases u(u') for a given «’. For any given quality ratio u'/u(u’) > 1, one can show that profits
from deviation are first increasing, and then decreasing, in .

9Reynolds (1987,1991) analyses Fudenberg and Tirole’s model in a linear-quadratic differential
game framework, where capacity depreciates over time.

10That is, Fudenberg and Tirole assume the information lag to be extremely short (zero) relative
to the speed of investment, in contrast to our model. Their assumption seems to be more reasonable
in the context of capacity investment than in the case of investment in R&D (or advertising).
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see this, consider two points in the state space, “A” and “B”, where “A” exhibits
lower capacity levels than “B”, but higher gross profits (stage-2 profits). Suppose,
moreover, that the noncollusive benchmark equilibrium requires firms to invest from
“A” to “B”. Clearly, “no investment” at “A” can be sustained in equilibrium, inde-
pendently of the discount factor.!!

Remark. Consider a model of capacity investment such as Fudenberg and Tirole
(1983), but allow for more general cost functions and positive detection lags. We then
claim the following. In a model of investment in capacity, if a firm can leapfrog its
rival by deviating, and thereby get forever higher gross profits (stage-2 profits), then,
for discount factors sufficiently close to unity, such a deviation must be profitable.*?
Hence, underinvestment cannot be supported. The idea behind this claim is simple.
As the discount factor 6 goes to one, the stationary reaction curves converge to some
“limit curves”. (The reason is that firms have no incentives to build huge excess
capacities which are worthless.) Thus, investment levels are bounded from above, and
get “dwarfed” by the discounted sum of gross profits as 6 — 1. In fact, Fudenberg
and Tirole mostly confine attention to the case 6 = 1, where investment costs do not
enter firms’ objective functions.

This is in sharp contrast to our model of investment in R&D or advertising, where
the toughness of competition in investment levels is essentially independent of the
level of investment. This implies that the stationary reaction curves do not converge
to some limit curves as 6 — 1, and investment costs do not get dwarfed. Hence,
underinvestment can be supported in our model, even though, by deviating, a firm
can ensure itself forever higher gross profits. We believe that this difference between
investment in capacity and investment in R&D or advertising is an important one. In
fact, this difference is closely related to Sutton’s (1991) distinction between exogenous
and endogenous sunk cost industries, which is crucial for the analysis of industrial
market structure; see section 7.3

In the analysis conducted so far, we have left out the important issue of potential

" Notice also that Fudenberg and Tirole’s motivation is quite different from ours: they focus on
“mobility barriers”. In particular, they investigate the validity of the proposed Stackelberg solution
in Spence (1979), where an early entrant in a new market can exploit its head start by strategic
investment in capacity.

PImplicitly, we assume here that the increase in stage-2 profits is bounded away from zero, no
matter how large the discount factor.

3The point is the following. If a firm can already serve the whole market with its capacity, any
further increase in its capacity has no impact on the firm’s market share; this is the exogenous sunk
cost case. In contrast, by outspending its rivals in fixed R&D or advertising outlays, a firm can
steal business from its rivals and thus increase its market share, although the investment may not
increase industry sales. This is the endogenous sunk cost case.
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entry. We will generalise the model so as to allow for potential entry and an arbitrary
number of active firms in the second part of the paper, namely in sections 6 and 7.
But before turning to the analysis of market structure, we will first analyse welfare
in the basic model and, then, introduce spillovers.

4 Welfare Analysis

The aim of this section is to compare “welfare” in the symmetric investment equilib-
rium and in an arbitrary (symmetric) underinvestment equilibrium. This is of great
interest since any action by antitrust authorities is justified only if “tacit collusion”
indeed reduces welfare.

As a welfare measure, we choose the sum of discounted profits and discounted
utility; we will call this measure “net surplus”. In our setting, this choice is natural
and theoretically well justified since we use quasilinear preferences for this same
reason. In particular, consumer utility is linear in “money” (outside numéraire good),
and there are no income effects so that all profits can be redistributed to consumers
without changing our analysis.

A priori it is not quite obvious whether or not net surplus is lower in an un-
derinvestment equilibrium. Clearly, consumers’ utility, prior to any redistribution of
profits, is lower in an underinvestment equilibrium, simply because per-period utility
is increasing in quality, and prices depend on the ratio of qualities only. However,
firms’ profits are unambiguously larger under “tacit collusion” since firms engage in
less R&D or advertising. Indeed, from the viewpoint of a social planner, any R&D
(or advertising) outlays by a second firm are wasted, holding prices fixed. (A social
planner would set price equal to marginal cost, and one (subsidised) firm only would
engage in investment and production.)

Nevertheless, the following proposition shows that the welfare comparison is un-
ambiguous. But before stating and proving the proposition, we want to set the
problem formally. Given an initial state (u';,u*;) and any sequence of states,
{(u},u?)},°,, net surplus along this path is equal to

e’} 2 N
S5 {Zmui,u%) iy Ul<u§,u§>} | 13)
t=0 i=1 =1

with U'(+) and IT’(-) defined in (7) and (8), respectively. This assumes implicitly that

at any stage 2 the industry is in equilibrium, depending on the current state. The

equilibrium path associated with the symmetric investment equilibrium is (u},u}) =

(u,u) for all t > 0; in case of a symmetric underinvestment equilibrium it is (u;, u?) =

u,u) for all t > 0, where, by definition of underinvestment, max{u',,v?,} < u < 7.
Yy 1 1

16



Proposition 3 In the symmetric investment equilibrium welfare, as measured by
(13), is higher than in any symmetric underinvestment equilibrium.

The intuition behind the result is the following. Even in a second best world where
two firms compete a la Cournot and the quality level is constrained to be identical
for both firms, the noncollusive symmetric “investment” equilibrium exhibits too low
a level of investment; this is true despite the presence of a business stealing effect.
The reason is that the duopolists capture only a relatively small part of the surplus
from R&D or advertising, and thus invest too little. Consequently, the problem of
underinvestment is even more severe in any collusive “underinvestment” equilibrium.

5 Spillovers and Patents

So far we have assumed that a firm’s investment cost function, F'(u};u!_;), depends
on its own quality level only. However, spillover effects are a pervasive phenomenon
in many markets. For instance, a firm might be able to copy cheaply its rival’s
technology. The rationale for patents is, of course, to prevent such free-riding; but, in
practice, firms can often “invent around” existing patents. (For a survey on spillovers
and R&D, see De Bondt (1996).) Similarly, it might be profitable for a firm to imitate
the design and packaging of a rival brand so as to free-ride on the rival’s advertising
outlays.

To highlight the effects of spillovers on the incentives for firms to invest and
to collude, we make the following clearcut assumption. There are no immediate
spillovers, but full spillovers after one period. More precisely, a firm can costlessly
“copy” its rival’s quality of last period. Consequently, u! > u*® = max {utl_l, uf_l},
and firm 4’s investment cost function (2) is replaced by

Flufsups) = Fy (uf)” - Fy [ups]”.

This can be thought of, for instance, as firms having one-period patent protection
when imitation is virtually costless. Alternatively, there might be no patent protec-
tion but a time-lag of imitation.'* Consequently, the payoff-relevant state at the start
of period ¢ is now given by (u?ff‘, ui{af‘), i.e. it lies on the 45°-line in the (u', u?)-space.
To shorten notation, we denote the state by the scalar u;**".

Intuition might suggest that the presence of spillover effects makes tacit collusion

“easier” (supportable for lower discount factors) since, in the long run, firms will

14 This is consistent with there being many paths that lead to a given quality level: by investing
in R&D, a firm discovers its own path; but a firm has also the option to copy its rival’s path which
is protected for only one period.
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always end up in a symmetric state. Hence, by deviating to a quality level above
the symmetric investment quality, w, a firm can no longer ensure itself higher stage-
2 profits ad infinitum than in any (symmetric) underinvestment equilibrium. The
proposition below shows, however, that the opposite result holds.

For expositional clarity, let us proceed along the lines of our earlier analysis.
In the presence of spillovers, firm i’s stationary reaction function has to be defined
differently since u) > u™™. Firm i’s stationary best reply to u%, u*(ué), is now the
solution to the following dynamic optimisation problem:

max > 6T (ul, u?),

P 2 07 (.0

where u/ = u™ for 7 > 1, and IT¢ (ul,u?) = 7 (ul,u2) — F(ul;u™). The inte-
rior stationary best reply, @(uj), is defined as the unique positive solution'® to the
following programme:

i/ 2
max S (%) — Folu)® + Folum™]° + 1%55 (14)

S
v \up/up+1 4’

where the last term is the discounted sum of stage-2 profits from 7 = 1 onwards that
arise when both firms offer the same qualities. Clearly, the stationary best reply is
given by u*(u}) = max{a(u}),u™>}.'% As in the case without spillovers, one can
show that there is a unique intersection of the interior (stationary) best-reply curves,
namely at (7,u7). The corresponding symmetric quality level, @, is now

[ 87
u:<4ﬂF0> |

Note that this symmetric quality level equals the one without spillovers, as given by
(12), when the discount factor is zero.

Since the payoff relevant state at the start of each period lies on the 45°-line in
the state space, we have to modify the definitions of strategy profiles ¥¢¢ and X!,
The noncollusive benchmark strategy profile £°°¢ is now induced by the following set
of action rules:

(i) If u"™ < 7w, then s"(u™¥) =u, i =1,2.

(i) If wPa > 7, then s*(ul"™) =yt =1,2.

15\We assume here, as before, that 3 > 2. If 3 = 2 and ué > /2S/BFy, then ﬁ(uf)) =0.
6Notice that firm i’s stationary best reply, u*(u}), now depends not on u’ ;, but on u™&*. As
before, we drop the additional argument for notational convenience.
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Analogously to ¢ the collusive strategy profile £ is defined as follows. If
u =y, then s'(uf">) = u, i = 1,2; otherwise firms revert to %"
We can now state and prove another main result of our paper.

Proposition 4 In the presence of spillovers, there exists a unique MPE, which is
given by the noncollusive benchmark equilibrium €. That is, underinvestment

cannot be sustained in equilibrium. In particular, the collusive strategy profile L
does not form an MPE.

The intuition for proposition 4 is as follows. The existence of spillover effects
reduces each firm’s (noncooperative) incentive to invest, given its rival’s quality. This
implies that any “noncollusive” investment equilibrium, as supported by strategy
profile ¥¢¢ exhibits low quality levels in the long run, relative to the case without
spillovers. But any underinvestment equilibrium can only be enforced by the credible
threat of escalation. In the presence of spillover effects, however, this threat is rather
blunt.

Abstracting from strategic issues, in a world where costless imitation is possible,
the individual incentives to get ahead of one’s rival are exactly the same as in a
“myopic” world with or without spillovers, where the discount factor is equal to
zero. Now, clearly, if the discount factor were zero, underinvestment could not be an
equilibrium outcome since, by definition of underinvestment, there are always short-
run gains from some suitable deviation. However, introducing spillovers in our model
is not equivalent to reducing the discount factor (to zero). To see this, notice that the
optimal “myopic” deviation from state u < @ is to invest up to quality u(u). Suppose
that, indeed, one firm deviates to @(u) in, say, period ¢. If u(u) < @, then, in period
t+1, both firms will invest further, namely up to quality level . That is, the optimal
myopic deviation requires to invest in both periods ¢ and ¢ 4 1, whereas the gain in
stage-2 profits is confined to period t. Hence, when 6 > 0, the optimal deviation
in the presence of spillovers is, by continuity, not identical to the optimal myopic
deviation. Furthermore, it is a priori not obvious whether, for large 6, a profitable
deviation exists at all. (Notice, however, that the case u(u) < @ for u < @ would not
arise if qualities were global strategic substitutes.)

Let us compare the equilibrium investment level when there are spillovers to the
investment level when there are no spillovers. Clearly, if firms do not collude in the
latter case, then the investment level is higher than in the case with spillovers, holding
fixed all parameters. But if firms do underinvest in the absence of spillovers, then
the equilibrium investment level can be higher in the presence of spillovers. To see
this, suppose the current state is given by u and choose parameters such that © > u
in the presence of spillovers. Then, if the discount factor is sufficiently close to unity,
there exists an equilibrium in the absence of spillovers such that no firms raises its
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quality level above u. Another interesting comparison is the following. Suppose the
discount factor ¢ is such that, in the absence of spillovers, underinvestment can be
supported in equilibrium. Now, if the size of the market in the presence of spillovers
is 1/(1 — 6) times the market size in the absence of spillovers, then the quality level
7 is the same in both cases. However, proposition 4 implies that underinvestment
cannot be supported in the presence of spillovers. In particular, a deviation from a
quality level u, u < w, to w is profitable if spillovers are present and firms use strategy
profile " but unprofitable if there are no spillovers and firms use £ — although
the path induced by the deviation is the same in both cases. The reason is that market
size was assumed to be larger in the presence of spillovers so that the deviant’s gain
in the period of deviation is larger.

Our result has important implications for the literature on patents. A recurrent
theme throughout the whole literature is that patents give firms higher incentives to
invest in R&D, and will hence result in higher equilibrium levels of investment. Now,
in a world where technological spillovers are present, one can interpret our model
without spillovers as representing the case of infinite patent length and breadth,
while the extension with spillovers corresponds to the case of short patent length.
As we have shown, a shorter patent length can lead to higher R&D in equilibrium
simply because it reduces the incentives to invest, and hence destroys the mechanism
through which underinvestment can be supported. In light of the welfare analysis
conducted in the last section, this suggests that, for any given discount factor, there
exists an “optimal” patent length that gives maximal incentives to invest but is just
short enough so as to prevent firms from colluding in investment.

Remark. In this section, we have focussed on spillovers in the appropriation of
the benefits from investment in R&D or advertising. In particular, we have assumed
that spillovers are asymmetric in that technological laggards (or weak brands) profit
from the investments of technological (or brand) leaders but not vice versa. This is a
natural way of modelling spillovers in the present setup, and captures exactly what
patent protection is about.

This differs from the way how spillovers are modelled in the literature on R&D
cartels and joint ventures in the tradition of d’Aspremont and Jacquemin (1988) and
Kamien, Muller, and Zang (1992). In this literature, process innovation is modelled
as a static two-stage game. Spillovers directly affect the innovation process and are
assumed to be immediate and symmetric: the innovation process of a technological
leader benefits as much from the current investments of a technological laggard as the
laggard can free-ride on the leader’s current effort. When products are substitutes
and there are strong positive spillovers, the “cooperative equilibrium” exhibits higher
investment in R&D than the noncooperative Nash equilibrium, while the opposite
result holds when spillovers are negative, or positive but weak. Notice that in these
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static models, the joint profit maximising “cooperative equilibrium” is not a Nash
equilibrium.

In a recent paper, Kesteloot and Veugelers (1995) have analysed the standard two-
stage model of this literature when it is infinitely repeated. In this setting, tacitly
collusive SPE always exist for large discount factors. However, as we have already
argued in the Introduction, the supergame framework is not very appropriate for
modelling strategic interaction in investment since it fails to capture the commit-
ment value of investment. Kesteloot and Veugelers focus on the question of how the
threshold discount factor, 5 , above which tacit collusion can be sustained, varies with
the magnitude of spillovers. They show that when the strength of the spillover effect
is sufficiently high, then an increase in the magnitude of the spillover leads to a rise
in g, i.e. collusion becomes “more difficult” to sustain. This is somewhat in line
with our results. However, in the case of strong positive spillovers, welfare in the
collusive equilibrium is higher than in the noncollusive one since it exhibits higher
levels of investment; this is in contrast to our model. The intuition for their result is
the following: the larger are the spillovers, the stronger are the incentives for a firm
to invest less and to free-ride on the nondeviant’s R&D expenditures. In our model,
in contrast, it is always the nondeviant laggard that can free-ride in the following
period on the deviant leader.

6 Potential Entry

We now turn to the analysis of market structure. In particular, we take up the issue
of potential entry that has so far been kept aside in the analysis. The question is
whether the high profits the incumbents make while underinvesting will trigger new
entry. For this purpose, we extend the basic model by introducing an additional stage
in each period at which further entry can occur.

By postulating a sufficiently high entry cost, the modeller could always ensure that
it is not profitable for a new firm to enter the market. But for a given entry cost, entry
would then still occur in sufficiently large markets. There is, however, an endogenous
mechanism which might deter entry: the incumbents’ threat of escalation. The aim
of this section, therefore, is to investigate whether or not this threat of escalation is
credible, and whether it successfully deters entry, no matter how large the market.This
question is of interest for two reasons. First, it relates to the robustness of our two-
firm underinvestment equilibrium. Second, it addresses a fundamental issue in the
theory of market structure, namely whether or not concentration can be high in large
markets.

The basic model is modified as follows. There are three players: the incumbents,
firms 1 and 2, and a potential entrant, firm 3. In each period, there are now three
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stages. At stage 1, the potential entrant decides whether to enter or not if it has not
yet decided to do so. If firm 3 decides to enter, it has to pay an entry fee (“setup
cost”) € > 0. At stage 2, the firms that are present in the market (the two incumbents,
and firm 3 if it has decided to enter in this period or before) decide simultaneously
whether and how much to invest in R&D or advertising. The potential entrant starts
up with “zero” quality; its investment cost function in the period of entry is given by
Fé(u) = Fyu”, and in all subsequent periods by (2). There are no spillovers. Finally,
at stage 3, firms compete simultaneously in quantities. Consumers’ utility is given
by the natural extension of (1) to three varieties of the quality good. As before, all
past actions are assumed to be common knowledge.

The equilibrium analysis proceeds along the lines of section 3. In period ¢, the
state of the industry is given by the quality triple (u},u?,u}) € 3, where we adopt
the convention that uj = —1 if firm 3 has not yet entered the market, and u? = 0
if firm 3 has entered the market but not yet invested in quality. A pure investment
action rule is a mapping s' : (ul ,u? ;,u} ;) — ul; a pure output action rule is a
mapping ¢ : (u},u?,ul) — zt. As before, the minimum quality (in order to make
positive sales) is equal to one; therefore, the initial investment outlays necessary to
produce the basic version of the quality good are equal to Fp.

As to the equilibrium analysis of the output stage, it is straightforward to show
that there exists a unique pure strategy Nash equilibrium in quantities, given any
state (u},u?,u}). If firm 3 has not yet entered the market, or not invested, then
its stage-3 profit is zero, and the incumbents’ equilibrium profits are given by (6).
Otherwise, firm i’s stage-3 equilibrium profits are given by

2
<Zk 1 t/ut ) ka ) uf >2

Zk 1ut/ut
i1 2 3
T (U, Uy, Uy ) = /u min [ - .
(ug, ug, uy) S(ut/tutjrl) if % - “t Ll > um™m (0 #£ )
0 if Zkzl ’Z/? —_— U?ln,
(15)
where u"™ = min {u},u?,u}}.'" Hence, in the three-firm equilibrium there exists a

“quality window” such that a firm makes zero sales if its quality is too low relative
to its rivals’ qualities. But there will always be at least two firms making positive
sales in equilibrium; this explains why we did not find any quality window in the
two-firm case. Observe that 7(u;, u?,u}) is continuous in all its arguments, despite
the quality window.

The resulting subgame after entry of firm 3 can, in principle, be analysed analo-

gously to the two-firm investment game, given the stage-3 profit function (15). How-

I"For a general proof of the n-firm case, see the proof of Lemma 3 in the Appendix.
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ever, entry is endogenous and might be deterred by the incumbents. We do not
attempt here to investigate the three-firm case comprehensively. Rather, we focus on
the question whether or not the two incumbents can be in a two-firm underinvestment
equilibrium, and successfully deter entry by credibly threatening to engage in an es-
calation of R&D or advertising outlays in case of entry. The following proposition
summarises our results.

Proposition 5 There ezists a B > 2 such that if B € [Q,B], any two-firm underin-
vestment equilibrium is stable with respect to entry by a third firm. In particular, for
8 sufficiently large, there exists a MPE such that (ul,u? u3) = (u,u,—1) for all T,
with w <. This is true independently of market size and entry costs.

We have thus shown that the same mechanism that supports underinvestment in
equilibrium can be sufficient to deter further entry. The proposition illustrates that
concentration can be high even in very large markets. Remark that, if g € [2, B], the
(symmetric) investment equilibrium is also stable with respect to entry by a third
firm but, of course, even without the threat of further escalation.

7 Market Structure and Nonconvergence

In the early literature on industrial market structure, the alleged negative relationship
between market size and concentration, even though noted by some authors, has not
received much attention. From a theoretical viewpoint, such a negative relationship
was considered to be quite obvious: for a given level of “barriers to entry”, an increase
in market size should raise the profitability of incumbent firms, and thus trigger new
entry, which would lead to a fall in concentration. However, the empirical evidence
from cross-sectional studies was found to be rather weak.

It is only quite recently that the size-structure relationship has become a major
focus of research. In his landmark book, “Sunk Costs and Market Structure”, Sut-
ton (1991) shows that the alleged size-structure relationship breaks down in certain
groups of industries. In particular, Sutton makes the important distinction between
“exogenous” and “endogenous” sunk cost industries. In exogenous sunk cost indus-
tries, the only sunk costs involved are the exogenously given setup costs; R&D and
advertising outlays are insignificant. In endogenous sunk cost industries, on the other
hand, the equilibrium level of sunk costs is endogenously determined by firms’ invest-
ment decisions. Roughly, these are industries in which advertising or R&D “works”
in that investments in some fixed outlays raise the consumers’ willingness-to-pay (or
reduces marginal costs of production). Sutton’s predictions are that in exogenous
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sunk cost industries, the lower bound to concentration tends to zero as the mar-
ket becomes large, whereas in industries for which the endogenous sunk cost model
applies, the lower bound to concentration is bounded away from zero.!®

The “fragmentation” result for exogenous sunk cost industries can be illustrated
by reference to a simple two-stage game. At stage 1 (“entry stage”), firms decide
simultaneously or sequentially whether or not to enter the industry. If they decide
to do so, they have to pay an entry fee ¢ > 0. At stage 2 (“output stage”), the
firms that have entered the market compete in prices or quantities, according to
some static oligopoly model. Firm ¢’s stage-2 equilibrium payoft can be summarised
by some reduced-form profit function S7*(n(S, €)), where S denotes market size, and
n(S, €) the number of entrants. It is assumed that the number of potential entrants,
no(S,€), is sufficiently large; that is, ng(S,e) > n(S,€) (“free entry”). For a wide
class of standard oligopoly models describing competition in the output stage, the
equilibrium number of firms in the market tends to infinity as the market becomes
large, i.e. n(S,€) — oo as S — oo, and the market share of each firm converges to
zero.'?

In the endogenous sunk cost model, there is a further stage in which active firms
make sunk investments in, say, R&D or advertising. The resulting game consists
of three stages: the entry stage, the investment stage, and the output stage. The
“nonfragmentation” or “nonconvergence” result states that, under some general con-
ditions, the market share of the largest firm is bounded away from zero in any equilib-
rium. In some models a stronger result obtains: the number of active firms remains
finite in the limit when S — oo. The reason is that, as the market becomes large,
firms engage in an escalation of investment outlays which makes it increasingly ex-
pensive for rivals to capture a positive market share. Sutton calls this the “escalation
mechanism” .2

However, the nonconvergence result has been obtained almost solely in static
stage games.?! According to Sutton (1998), the open question is whether it still

8This result follows from an exercise in comparative statics with respect to market size. Notice
that it is not assumed that market size increases over time.

YFor another class of models (which allow, for instance, for multiproduct firms), multiple equilib-
ria are endemic. The same model may permit fragmented equilibria, in which, for example, each firm
offers one product, and concentrated equilibria, in which a single firm is crowding out the product
space. The more general fragmentation result refers, therefore, to the lower bound to concentration.
This has been dubbed the “bounds approach” to concentration. For a discussion, see Sutton (1991).

20For a precise statement of the conditions under which the nonconvergence property holds, see
Shaked and Sutton (1987) and Sutton (1991). In the case of pure vertical product differentiation
and price competition, the finiteness result has been first obtained by Shaked and Sutton (1983).

21Two exceptions are in Sutton (1998) and Hole (1997). Hole uses the Pakes-McGuire algorithm
to simulate a stochastic dynamic model with incremental sunk costs. However, market size (and
hence the average number of entrants) is kept small. Sutton analyses a rather special setting with
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holds in dynamic investment games like ours. What is at issue is that the existence of
underinvestment equilibria in our dynamic game implies that firms do not necessarily
engage in an escalation of R&D or advertising outlays; but without an escalation
mechanism at work, the nonconvergence property cannot hold. To make this point
clear, let us consider the following example. Suppose that, for a given market size
S, there exists a symmetric underinvestment equilibrium in which all n(S, €) active
firms offer quality u in each period, where n(S, €) is such that any additional entrant
would make an overall loss. Now, if this underinvestment equilibrium still holds under
free entry when the market becomes large, then we are back in an “exogenous sunk
cost world”, in which each firm has to pay an exogenous setup cost of € + F'(u).
Consequently, the nonconvergence result breaks down in this case. (Actually, one
could allow quality u to increase with S, and still get that n(S,e) — oo as S — oo,
unless u increases too fast with S.)

Another way of seeing this point is the following. In a static stage game, the non-
convergence property is proved by showing that in a sufficiently large and fragmented
market, there always exists a profitable deviation for some firm. This deviation con-
sists in an escalation of fixed R&D or advertising outlays so as to capture a larger
share of the market. Now, in a dynamic game such a deviation might not be prof-
itable since it can trigger an escalation of investment spendings by rival firms, which
is detrimental for the deviant firm’s profit.

As to the result of section 6, this can be seen as an example of nonfragmentation in
that two firms are able to deter further entry, no matter how large the market, as long
as # € [2,]. However, this equilibrium is not unique; there is another equilibrium
in which the two firms acquiesce, and further entry takes place.

To address the issue of nonconvergence, we have to modify the basic version of
our dynamic investment game. The time structure is as in section 6; that is, there
are three stages in each period: entry, investment, and quantity competition. There
is an initial period (say, 0) before which there are no active firms, i.e. all firms are
potential entrants in period 0. Entry costs as well as the investment cost functions
for a new entrant and for an incumbent are as in section 6. The consumers’ utility
function can be generalised in an obvious way to an arbitrary number of firms offering
each a variant of the quality good.

As before, the output stage in each period can be analysed as a one-shot game.

Lemma 3 In any given stage 3, there exists a unique (Markov-)Nash equilibrium in
quantities. Suppose there are n(S) active firms. Re-label the firms such that firm
1 offers the highest quality, u', and firm n(S) the lowest quality, u™). Then, in
equilibrium, there is a “quality window” such that firms 1 to n(S) only make positive

spillovers, in which our problem of interest, underinvestment, does not arise.
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sales, where n(S) is the mazimum integer z, z < n(S), such that ¥7_; (u?/u’) > z—1.
Firm i’s stage-3 equilibrium profit is given by**

2
oy ) if i < n(S)

m(ut, .l ) = S (1 D (i i) (16)

otherwise.

Notice that the above labelling is not unique when two or more firms offer the
same quality; in this case, however, each of these firms produces the same amount in
equilibrium.

Using equation (16) as the reduced-form stage-3 profit function, we can now fo-
cus on the analysis of investment strategies. For technical convenience, we restrict
attention to equilibria such that all investment, along the equilibrium path, occurs
in the initial period, when the market opens.?® This implies, in particular, that the
number of active firms remains constant over time. However, we allow for all the “in-
vestment”, “underinvestment” and “entry deterring” strategies we have considered
earlier as well as for much more complex strategies. Of course, we allow strategies
and any equilibrium path to depend on market size.

In a dynamic game, the lower bound to concentration for a given market size
might be quite different from that in a static game. The open theoretical question is
whether or not the asymptotic properties are the same, namely that the lower bound
does not converge to zero as market size becomes large. In the section on potential
entry, we have already seen that nonconvergence is a possible outcome in our model;
what is at issue is whether or not it is a necessary outcome in that it occurs in all
equilibria. The following proposition gives the central result on market structure.

Proposition 6 The nonconvergence property holds in our dynamic game. In partic-
ular, in any MPE, the number of active firms, n(S), remains finite as market size
tends to infinity.

The proof of this proposition is rather lengthy, and can be found in the appendix.
Here, we just give a sketch of it. We first assume that there exists an equilibrium such
that n(S) — oo as S — oo, and then show that this leads to a contradiction. We
pick the firm with the lowest quality in equilibrium and calculate an upper bound
on its equilibrium profit. Then, we consider a carefully selected deviation for this

22For notational convenience, we describe the current state by the quality tuple of active firms
only.

23This assumption is not essential; its only purpose is to pin down an (arbitrary) equilibrium
path. Notice also that there is no “technological” reason why firms should not do all investment in
the first period.

26



firm, which is a function of market size and its rivals’ qualities. One can easily
calculate the deviant’s associated profits in the period of deviation. Since we do not
make any restrictions on the “punishment strategies”, we cannot say much, at this
level of generality, about the deviant’s profit in the periods after deviation. What
we do know, however, is that these profits are nonnegative. This is sufficient to
show that the deviation is profitable for large markets. Hence, the threat of future
escalation does not have enough bite to prevent the deviating firm from escalating
its investment outlays so as to capture a larger share of the market. This contradicts
the initial assumption.

Our result is reassuring in that it shows the robustness of the nonfragmentation
result to the existence of underinvestment equilibria in dynamic games. Remark that
we have actually shown a “strong version” of the nonconvergence property to hold:
the market share of all firms is bounded away from zero, no matter how large the
market. Note also that proposition 6 does not imply that underinvestment equilibria
necessarily break down when market size becomes large, as we have already seen in
section 6.

8 Conclusion

In this paper, we have explored a dynamic game of investment in R&D or adver-
tising. It is quite distinct from the applied literature on supergames since, in our
model, current investments change future market conditions. From a game-theoretic
viewpoint, the model is related to the dynamic game of capacity investment by Fu-
denberg and Tirole (1983). It differs from their continuous-time framework in that
firms can leapfrog their rivals. Therefore, the existence of tacitly collusive equilibria
is no longer ensured. In the first part of the paper, we have focussed on the issue of
existence of underinvestment equilibria when firms have strong incentives to deviate
and, thereby, to persistently improve their strategic position. In the second part,
we have introduced potential entry into the model so as to address issues of market
structure.

Using a state-space approach, we have shown that when strong spillovers in the
appropriation of the benefits from investment are present, underinvestment equilibria
fail to exist, while the opposite result holds without spillovers. This implies that a
weakening in the degree of patent protection can actually lead to more R&D in
equilibrium even though (or, rather, because) it reduces the individual incentives
to invest. Furthermore, we have shown that underinvestment should be an issue of
concern for antitrust authorities in that it unambiguously reduces welfare. This is
especially true since detecting tacit collusion in R&D or advertising is likely to be
much more difficult than detecting tacit collusion in price setting.
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The existence of underinvestment equilibria has raised the question whether one
of the central results on market structure in the 1.O. literature, the “nonconvergence
property” namely, breaks down in dynamic investment games. What has been at
issue is that, in an underinvestment equilibrium, firms do not engage in an escala-
tion of fixed investment outlays; but without an escalation mechanism at work, the
nonconvergence property cannot hold. Our main result on market structure is very
reassuring: the nonconvergence property is robust to the existence of underinvestment
equilibria.

9 Appendix

Proof of Lemma 1. The first-order condition of (10) is given by

¥ (“ | “j) = 12_55 (uiu;u;j):s — By (“i)ﬂ_l =0 (17)

Now, observe that ¢ (u’ | u/) — —oo as u' — oo, ¢ (0 |u/) = 0. Furthermore, for
u' > 0: 5
o . B2, . A3
) >0 & ————u > (v )
go(u|u) (1—6)5]70” (u) (u —i—u)

The Lh.s. of the last inequality is independent of u’, and strictly positive for u? > 0.
If 3 > 2, then the r.h.s. tends to zero as u’ — 0. If 3 = 2, then in the limit as

u’ — 0, the Lh.s. is larger than the r.h.s. if and only if u/ < \/ZS/(l — 6)BF,. Note
also that for 8 > 2, the r.h.s. is strictly increasing in u’. Therefore, if 3 > 2 (or
if 3 =2and v/ < \/25/(1 — 8)BFy), there exists a strictly positive @(u’) such that
¢ (u' | w) > 0if and only if v < u(u’), and ¢ (u' | w?) < 0 if and only if u* > @(u?).
Thus, @(w’) is the unique strictly positive solution of (17), and hence of (10). (If
f=2and u > \/QS/(l — 6)3Fy, however, then @(u?) = 0.)

This obviously implies

u*(u!) = max {ﬁ(uj), uz_l}

aslongas >2.
Proof of Lemma 2. Suppose there exists an intersection of the two interior
stationary best-reply curves at (u',u?) € (0,00)?. By definition, @(u') = u* and
u(u') = u?. From lemma 1, the associated first-order conditions are given by (11),
le.
28 ulu?
1—6(u! +u?)

c=pR () i=12
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Since the left-hand side is the same for both firms, it follows immediately that u! = u?.

Simple calculations show that u! = u? =, as given by (12).

Proof of Proposition 2. Since the strategy profile ¥°* forms an MPE, it is
sufficient to show that there is no single profitable deviation when the current state
is given by (uj ;,u? ;) = (u,u). The proof is organised as follows. We first seek the
optimal deviation for any player (due to symmetry, we can confine attention to an
arbitrary firm), and then show that the associated net present value of future profits,
I1%v  is not larger than the corresponding value in case of nondeviation, I1¢!%. We
distinguish three cases.

Case (i): Firm 1, say, deviates in period t by raising its quality to u’, where
u < u' < @; that is, the state moves to (v/,u) in period ¢. According to strategy
profile X% both firms will then invest further in period t + 1, and the state of the
industry will be given by (ul,u?) = (u,u) for all 7 > ¢+ 1. The associated discounted

sum of profits for the deviant is equal to

u'/u ? 6 S

% =5 (————| - (1-8)FW)’+ Fu’ + ——= — 6Fyu’ 1
S(u’/u+1> (L= 8)Fp(w)"+ Fou” + 3—57 —oFm,  (18)
while in case of nondeviation it is given by " = S/[(1 — §)4]. Maximising I1¢¢

with respect to u’ gives a first-order condition identical to (11); hence the condition
is sufficient for a maximum. Note, however, that the unique positive solution to (11)
might be larger than @. (It is straightforward to show that this is indeed the case
when T < (24 +/5)u; we are dealing with this case in part (i) of the proof. Hence, in
the following we analyse the case when the reverse inequality holds. By choosing ¢
sufficiently close to 1 this can always be ensured.) Denote the optimal value of u’ by
u'(u). Then, from (11), (1—8)Fo[u'(u)]? = (2/8)S[v (u)]*u/[v/ (u) +u]3. Substituting
(1 —8)Fo[u/(u)]? and u in (18) gives

which is continuous in 6. Now, multiplying both sides by (1 —4§), and taking the limit
as 6 goes to one, one gets

, S (-1 S .
dev o coll
%1_{%(1 — H)II = 1 ( 5 > <5 = %1_{1%(1 &) I1e%.

Hence, there exists a 6@ < 1 such that for all § > §®) deviation is not profitable.

Case (ii): Suppose now that, in period ¢, firm 1 deviates to a quality u’ such
that @='(u) >« > . In period ¢ + 1, firm 2 will then react and raise its quality to
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u*(u') = u(u'), where u < u(v') < u. Hence, the sequence of states induced by the
deviation will be given by (ul,u?) = (v/,u) for 7 = ¢, and (ul,u?) = («/,u(u’)) for

7 > t+ 1. The deviant’s discounted sum of profits is thus equal to
2 . 2
u fu ) o' fu(u)
M =5 (———| — K@)’ + Fp” S : 19
(u’/u+1) ()" + Fou” + 1-6" \W/u(uw)+1 (19)

Maximising this expression with respect to «' yields the first-order condition for
optimal deviation:

’ AP /@u_’l
LW 6w fa(w) —wigH]
28 — AR aS 0, (20)

where u(u’) is implicitly defined by (11), and du(u')/du’ can be obtained by implicit
differentiation of (11):

~ 28 u(u)[u(u) 2]
du(u’) 1-6 [u’—i—ﬂ(u’)]‘l
l _

du’ u/ u’7217u’ ~ o
W 2l (1) Fyfa(u) 2

In order to reduce the dimensionality of the problem, let us define v such that
u(uy) = Au), where A € (0,1]. For a fixed A, the first-order condition for the
nondeviant’s best reply to «), (11), can then be rewritten as

25 uh ()

— BFy[Mu,)P = 0.
T—o7a, + oy DT

Solving for u/, gives

28 1 s
N = . 21
“* ((1 — 8)BFy N 2(1 + )\)3> (21)
This enables us to calculate du(u')/du’ locally at u' = u)y, as a function of A:
o B

du(u') _ A2 —N) | (22)

du' | _ 2 =1+ (B—=1)(1+A)

P

which is strictly negative for A € (0, 1] and 3 > 2: the higher is the deviant’s quality,
the less will be invested by its rival.

We can interpret firm 1’s “optimal deviation problem” as a choice of A\. The
deviant’s first-order condition, (20), for the optimal A\, denoted by As, can now be
written as

/ ul)\& [)\5u//\6 B ul/\s %;Tll P ]
25— B )P + 28 S 'Y
[u), + ul? 8 1-6 [Asu, + uj,]?
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u'=u

where v\, and du(u')/du’|

both sides by (1 — §), taking the limit as § goes to one, and simplifying, one gets

Byt 1+B -2
E(M) =M+ XN 3 A1 3

where A\; = limg_,; As. This is the first-order condition for the optimal \ as a function
of  in the limit when § — 1. Since the sign of the coefficients in (23) changes once
if 3 > 2, Descartes’ sign rule tells us that (23) has exactly one (strictly) positive
root.?* Now, £(1) =1/, £€(0) = (2—8)/8 < 0if 8 > 2, and £'(0) < 0. Hence, if
B > 2, there exists exactly one A\; € (0,1] such that £(A\;) = 0. Since an increase in
u' corresponds to a decrease in A, and £(0) < 0 and £(1) > 0, (23) defines indeed a
maximum! The optimal choice of A, in the limit when § — 1, is therefore the unique
A1 € (0,1] satisfying (23).% Tt is straightforward to show that \; is strictly increasing
in 3,26 and that \; — 1 as 3 — 00.%".

Substituting « in (19) by v , as given by (21), and substituting u(u’) by Aju)_,
multiplying both sides of (19) by (1 — 6), and taking the limit as § — 1, yields

S 2
lim(1 - &% = —— (1 - ———
513%( ) (14 \1)? ( BAT2(1 +>\1)>

, are given by (21) and (22), respectively. Multiplying
13

0, (23)

S 5
TESWE (1_ﬁ+1+(ﬁ—2)/)\1>

_ S (/6_1))\1+/6—2 e
(14N ((5+1)>\1+ﬁ_2> =1""(\, ),

241t is straightforward to generalize Descartes’ sign rule, which has been developed for polynomials,
to the case when the powers are not necessarily integers, but (more generally) rational numbers.
To see this, define £(x) = ag + a12® + ... + apa®, where b; = p;/q; and p;,q; € N. Suppose
q is the smallest common denominator of the b;’s. Then, {(z) can be rewritten as a polynomial:

&(x) = ag + a1y® + ... + a,y’, where y = /9 and b = qpi/q; € N. As to irrational ’s, one can
show that, in our case, {(x) has exactly one sign change at some positive z for any real (rational or
irrational) 8 > 2.

Z5Here, we abstract from the lower bound on A, which is given by u/ta~1(u).

26Tmplicit differentiation of (23) gives

() AT + (A - 2)/62

a6 BT+ (B-1)N = (B+1)/8
Clearly, the numerator of the r.h.s. expression is negative for A\; < 1. As to the denominator, (23)
implies that Ay + X271 — (1 4+ 8)\ /8= (8—2)/8>0if 8> 2, and hence BN\ " + (8 — 1)) % —
(1+8)/8> N4 \P72 — (14 3)/8 > 0if 8> 2. That is, the denominator is positive, and hence
d\/dp >0, for 5> 2.

2TTo see this, suppose otherwise that Ay — k < 1 as 8 — oco. Then, from (23), it follows that

&(M1) —» —k—1<0as 8 — oo. But this contradicts the definition of A;.
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where the second equality follows from the definition of A, in equation (23). Observe
that OI1%v (), 8)/0A; < 0. To find a suitable lower bound on A, let us define

A B2
B(B—1) B

If 3 > 2, there is a unique strictly positive A such that n(Xl) = 0; it is given by
A = (6 —1)/3. Furthermore, we have n()\) > &(\) for all X € (0,1], where £()) is
defined as in (23). Hence, \; < A; and II%?(X, §) > 1190 (\y, 3) = limg_; (1 — 6)IT%.

Remark that if 3 = 2, then A\, = 1/2, and II9(1/2,2) = 45/27 < S/4 =
lims_1(1 — &)1 One can show that the total derivative of II%(X;(3),3) with
respect to (3 is positive: the higher is the elasticity of the investment cost function, the
higher is the upper bound on the profits from deviation. Finally note that A(3) — 1
as 3 — oo, and thus TI%(A;(6), ) —p—ee S/4 = lims_ (1 — 6)I1!. Hence, for all
B> 2, lims_1 (1 — 6T < limgs_;(1 — &)1,

Because of continuity in ¢, there exists therefore, for any § > 2, a threshold value
8 < 1 such that for all § > 5(“), deviation is not profitable.

Case (74i): Finally, suppose the deviant firm (firm 1, say) preempts any reaction by
its rival. That is, in period ¢, firm 1 chooses a quality level «’ such that a(u') < u; in
the induced subgame, the state of the industry will then be given by (ul,u2) = (v, u)
for all 7 > ¢.

Since @~ (u) > u*(u) (where the inverse of 4(-) is defined over the decreasing part
of 4(-) only), the deviant firm chooses ' such that u(u’) = u so that its rival is just
preempted. That is, the optimal preemptive deviation, v, is implicitly defined by

28 uu’
1 =6 (u+u)

n(A) =X -

P(u) = - — BRu’ ! =0. (24)
Now, ¢(u) > 0 if and only if u < @ (which is, of course, the relevant case of underin-
vestment, and can always be ensured by choosing ¢ sufficiently large), lim,/ ., ¢(u') =
—BFu’~! < 0, and ¢'(v/) < 0 for all v/ > u/2. Thus, if u < %, there exists a
unique v/, v’ > u, such that ¢(v') = 0. Define (u’) = «'/(u + «’), and note that
Y(u') € (1/2,1), and lim, o ¢(v') = 1. Equation (24) can now be rewritten, and

solved for u':
, (28 p)\"*
T\ —8)pR w2 .

The discounted sum of profits from deviation is then equal to

25 P(u) 1/2 . 2 1/2
Hdev _ S ((1_‘5)ﬁF0 “'872) v _ FO [(( 25 ¢(ul)> / —u

(1 -0) ( 25 M)W 1—6)3F, uP2
(17(5)ﬂF0 ub—2

Y
+ F(ﬂ,L’S,
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and, hence,

—o0 if f>2
lim (1 — O =¢ 0 ifp=2
- S otherwise.

If 3 > 2, there exists therefore a 8¢ < 1 such that for all § > §()_ [dev < [0l m

Proof of Proposition 3. Instead of directly comparing welfare in the two
“classes” of equilibria under consideration, we opt for a more instructive proof. Let
us define the symmetric “second best quality” as the common quality level, u*, that
maximises our welfare measure, (13), under the assumption that both firms compete
a la Cournot at the output stage. Given any quality level @, with max{u! ;,u?,} < 4,
consider the sequence of quality pairs (u},u?) = (@, u) for all ¢ > 0. From (7), (8)
and (12) it follows directly that the sum of discounted consumer utility along this
path is given by

0 N 1 N Oél
S8 U, uf) = —=> {a'In|=u| —a'lnc+m' —a'},
t=0 I=1 1—46 =1 2

and the sum of discounted net profits by

e} 2 ' 1
S (] =2 [ - R (o) 4 R ()
t=0 i=1

Maximising net surplus (i.e. the sum of the two expressions above) with respect to
u yields the following first-order condition:

where we have used the fact that 3, o = S. It is easy to see that +/(#) < 0 for all @,
i.e. net surplus is strictly concave in u. Furthermore, v(1) > 0 if w > 1 as assumed,
and () — —oo as U — oo. Therefore, the second best symmetric quality level is
uniquely defined by v(u*) = 0, and is equal to

4@)

Since u* > w > wu, it follows immediately that welfare is higher in the symmetric
investment equilibrium than in any symmetric underinvestment equilibrium. B
Proof of Proposition 4. The proof proceeds in several steps.

(i) Suppose the current state, u™*, is “above” @, i.e. u™* > w. Then, at most
one firm will invest along the equilibrium path in any given period. To prove this

33



claim, we consider period ¢, and assume that v < u} = u* along the equilibrium

path. It is easy to see that it is optimal for firm j to set u] = u"**: the choice of ul
does not affect j’s payoff in the continuation game as long as u} < u}, and firm j’s
best reply from below to u;*** is given by the solution to

j 2
~ max S( - ) - F, (Ui)ﬂﬂLFo (“m{)ﬂ,
ujefuma ]\ uf + uj
which is equal to ;"% since u™ > w.

(ii) We now claim that no firm will invest along the equilibrium path starting
from any state u™®* above u. To see this, suppose otherwise. From (i), we know that
at most one firm invests in any given period. Assume firm ¢ invests in period ¢ (and
hence firm j does not), and let V*(-) denote firm i’s value function. Then, firm i’s

discounted sum of profits (or value) in period ¢, V* (uﬁaf‘), must satisfy

Ve (uf‘_alx) = max S (L)Q — Fpu’? + Fy (U?I_af()ﬁ + 6V (u)

s "\ u 4wy
>S4+ 6V (ury),

where the inequality follows from the fact that ¢+ may decide not to invest, in which
case uy"™ = u™*. This yields

; S
Vl umax > i
(tl)—4u—®
Since each firm’s gross profit is decreasing in its rival’s quality, we obtain an upper
bound on firm ¢’s profit by assuming that firm ;7 will never invest again in the future.
Firm ¢’s stationary best reply to any quality level above @ is never to invest. Hence,
for any u > w,
- S
Vi(u) < ——.
(u) < 4(1 —96)
Combining the equations gives V* (u?‘_alx) =S5/[4(1—=9)],i=1,2, and u™™ = u"¥".
(iii) Suppose now that u}*%* < @w. We claim that ;" < u. To see this, suppose
u > 77 o that the continuation payoff for both firms is given by V¢ (ul*®*) =
S/[4(1—6)],i=1,2. Assume u < u} = u™**. Then the two value functions must
satisfy

2
V() —maes () = A )+ ) o
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and

i\ 2 : S
v ) = S () 0 ) ey

The only tuple (u},u?) which satisfies both equations is given by (u,u). Hence,
u™* < implies u**™* € [u?‘_alx,ﬂ]

(iv) Any equilibrium is symmetric. That is, along the equilibrium path, u; =
u? = u™ for all t. Above, we have shown that this holds for the unique equilibrium

starting from state u™{* > w. We now extend this result to the case where u™* <.

From our earlier analysis, we know that uj"** € [uﬁaf‘, ﬂ} for all . We claim that firm

i has a profitable deviation if u} < ul = u;"**. Indeed, firm ¢’s quality choice does not
affect its continuation payoft provided that it does not invest more than its rival. But
firm i’s best reply from below is to set its quality equal to the rival’s quality since
t(u) > u for any u <, , where 4 (-) is the interior stationary best reply function.

ax

(v) Suppose that v;"** < @ and @ (u?jaf‘) > 1, where @ (-) denotes again the
interior stationary best reply function. We then claim that u} = u? = for all s > t.
To see this, recall again that we obtain an upper bound on firm ¢’s profit by assuming
that firm j will never invest again in the future. Now, if v/ < u, then firm ¢ may
deviate to @ (uf) > u. In the equilibrium of the induced subgame, both firms will

never invest again. By definition of @ (-), the deviation must therefore be profitable.
(vi) Suppose that ™% < uw and @ (uf‘_alx) < w. Note that the latter inequality

holds if and only if @ > (24++/5)u™*. We now prove by contradiction that u! = u? =7
for all s > ¢. Assume to the contrary that ;" < @ and consider a period-t deviation
by firm 1 to quality level w. The deviation induces the following sequence of quality
levels: (uj,u?) = (u,u), and (ul,u?) = (w,u) for all s > t + 1. The deviation is

profitable if and only if

2
a7 max 6 1
S (WL) R 4 Ry 0 S 1S

1 +a/upe 1-64 1-64
2
uu S(p+1 3
v _ - = _F max
= S<1+ﬂ/uinax> > 4< ﬁ O(Ut )
1
= (>

(=) -]

For a given f3, the Lh.s. of the last inequality is independent of u}*** and @, while the
r.h.s. is strictly decreasing in the ratio @/u™*, for @ > u**. Since @ > (24 +/5)u"®,
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the proof is complete if we can show that

1
8> 7 = 0.61803,
245
4 <1+2+\/5) a 1]

But this inequality holds by assumption. R

Proof of Lemma 3. The analysis of the n(S)-firm case proceeds analogously to
that of the 2-firm case (see subsection 3.1). Denote by I the set of firms with positive
equilibrium market share, i.e. I = {i=1,...,n(S) | 2* > 0}. Since each consumer
chooses the variant of the quality good with the highest quality-price ratio, all firms
with positive sales must exhibit the same quality-price ratio in equilibrium. That is,
firm j’s equilibrium price is given by

for 4,5 € I, i # j. Using the definition of total sales, S = 3,-; p‘a’, one obtains
u S
S uiwt

Firm j’s stage-3 profit can then be written as

; ulS
x - . . — C .
dicr Ut

This expression is strictly concave in 7, equal to zero at z7 = 0, and tends to
—oo as ¥/ — oo. Its first derivative is strictly positive at 7 = 0 if and only if
WS > ¢Y e utat. Thus, the following first-order condition yields a unique interior
maximum if u/S > ¢ Y, u'at:

P =

S Jul S
— = (25)
DierwWat (Yo utt?) w
This gives x7 as a function of “weighted” aggregate output:
L N u'a’ ¢ u'a’
v ul u S (26)

Summing (25) over all firms with positive market share, one gets

S gt = S

1
il C Diel
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where #1 denotes the number of elements in I. Inserting the r.h.s. expression into
(26), we obtain firm j’s equilibrium output, price and profit:

x32§@<1_#]_})7

¢ Zie[% Ziel%
i
p]_c#l_17

and

2
il . u") =8 (1 _#= 1)

J
Zie[ %

provided that Y ,c; Z—Z > #I — 1, and 2/ = 7/ = 0 otherwise.?®
It remains to show that, in any equilibrium, I = {1,...,n(S)} and, hence, #I =
n(S). First, notice if ZZGIU{]} UZ > #(IU{j}) -1, then ) > 0,1e. j €I, in

equilibrium; otherwise firm j could profitably dev1ate by producing =/ = (S/ c)
(#I/ Sictuy (U /u )) gj — (#I/ Yoy (W Jut ))) We now prove that there cannot
be an equilibrium in which a product of some quality has zero market share while
another offering of lower quality makes positive sales. That is, there are no firms k
and [, k < [ such that k ¢ I and | € I. To see this, suppose otherwise. From k ¢ I,
it follows that Y ez (u¥/u’) < #1, and from [ € I that >cp(u!/u’) > #1 — 1. Tt
is easy to show that these two inequalities lead to a contradiction. This completes
the proof. M

Proof of Proposition 6. Suppose that there exists an equilibrium such that
n(S) — oo as S — oo. Below, we will prove that, for S sufficiently large, there will
then exist a profitable deviation for some firm, contradicting the existence of such an
equilibrium.

Consider firm n(S). Remark first that n(S) = n(S); otherwise, if n(S) > n(S),
firm n(S)’s stage-3 profit would be nil in each period, and firm n(S)’s profitable devi-
ation would be not to enter the market. Now, oberserve that firm n(S)’s discounted
sum of profits, prior to entry, is bounded above by

S n(S)\ B
B(S)EW—FO () e,

) to depend directly on S. For notational convenience, we

where we allow quality uq

28Remark that, in equilibrium, the condition for positive output is equivalent to the condition for
an interior solution, w’S > ¢} . u'x’.
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will henceforth drop the subscript S. In equilibrium, clearly, B(S) > 0, and hence

(1—68)e (u®) 1

Since, by assumption, n(S) — oo as S — oo, it follows that

S (u”(s))_ﬁ — 500 O0. (27)

Now, consider the investment stage in an arbitrary period. Suppose that firm
n(S) deviates and invests up to quality level v’ > u™¥) where v’ is allowed to depend
on S. Then, a sufficient condition for this deviation to be profitable is given by

2
S W(S) —1 N n(5)\?
— <S5 |1- — Fo(u Fo(u
D) ( SRR +1) o )"+ o (u7)
The expression on the L.h.s. is an upper bound on the discounted sum of stage-3
profits from nondeviation. The first term on the r.h.s. is a lower bound on stage-
3 payoffs from deviation, and the remaining terms correspond to investment costs.
(Actual payoffs from deviation might be higher for two reasons: firstly, the deviant
firm might get positive stage-3 profits in future periods as well, and not only in the
period of deviation, and secondly, the deviation might induce low-quality firms (such
as firm n(S) — 1) to fall out of the quality window.)
Let us now consider the following deviation:

1

U = (Suh(n(S)))m ’
where 1)) is the harmonic mean of firm n(S)’s rival qualities, i.e.

hnsy — (S) =1
u ST L

=1 uwl

1
Notice that w5 > 48 > 1 and that (Suh(”(s)))mrl > u™S) for S suffi-

ciently large. Furthermore, u™*)/ v"™%)) — 1 as § — oo since firm n(S)’s stage-
3 profit is positive in equilibrium. Thls, in conjunction with (27), implies that

limg_o, S [sh("(s))}ﬂ = oo. The sufficient condition for the deviation to be prof-

itable can be written as
2
1 - ] 1
1 —6)[n(9)]? B n(S))1—B
(1= 8)[n(5) (5 o) ) R

_S 'R, (Suh(n(S’))) sy +S1F, (un(S))f@
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Remark that the Lh.s. of this inequality converges to zero as market size tends to
infinity. Furthermore, it is straightforward to see that

2

B
Slgn 1— — . SleO (Suh(n(S))) P
> (S [uh<n<s>>]*5) R -

since limg .o S [uh("(s)) 7 0o. Hence, for S sufficiently large, the r.h.s. of the

above inequality is larger than the 1.h.s.; that is, there exists a profitable deviation
in large markets. W
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