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Abstract
We address the problem of completability for 2-row orthogonal Latin rectangles (OLR2).

Our approach is to identify all pairs of incomplete 2-row Latin rectangles that are not com-
pletable to an OLR2 and are minimal with respect to this property; i.e., we characterize
all circuits of the independence system associated with OLR2. Since there can be no poly-
time algorithm generating the clutter of circuits of an arbitrary independence system, our
work adds to the few independence systems for which that clutter is fully described. The
result has a direct polyhedral implication; it gives rise to inequalities that are valid for the
polytope associated with orthogonal Latin squares and thus planar multi-dimensional assign-
ment. A complexity result is also at hand: completing a set of (n — 1) incomplete MOLR2
is A'P-complete.

1 Introduction

An m-row Latin rectangle R of order n is an m x n array where m < n, in which each value
1,...,n appears exactly once in every row and at most once in every column [12]. For m = n,
the above defines a Latin square, where each value 1, ...,n appears exactly once in every row and
column. We call a Latin rectangle normalized if values 1,...,n occur in the first row in natural
order. Counting Latin rectangles is a topic broadly studied in combinatorics; some examples
listed in chronological order are [16], [4], [7], [13] and [18].

Definition 1 Two m-row Latin rectangles of order n, with m < n, form an orthogonal pair
(OLR) if and only if when superimposed each of the n? ordered pairs of values (1,1), (1,2), ..., (n,n)

appears at most once.

An example of a normalized 2-row OLR (OLR2) of order 4 is shown in Table 1. Also
note that for m = n we have the case of orthogonal Latin squares (OLS) where each of the
n? ordered pairs of values (1,1),(1,2), ..., (n,n) appears exactly once when the two squares are

superimposed.

*This author has been supported by a research grant of the Athens University of Economics and Business.
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Table 1: An OLR2 of order 4

The definition for OLR naturally extends to a set T' of m-row Latin rectangles of order n,
which are called mutually orthogonal Latin rectangles (MOLR), if and only if all Latin rectangles
are pairwise orthogonal. Note that for m = n we have the case of of mutually orthogonal Latin
squares (MOLS). Here, we are interested only in 2-row Latin rectangles (i.e., MOLR2). Hence,
unless otherwise stated, whenever we refer to Latin rectangles we imply that they have two rows.

Latin rectangles and OLRs enjoy a close relationship to several areas of combinatorics like
design theory and projective geometry (e.g., see [12] and references therein). Beyond that, they

have recently received additional attention because of some quite important applications:

e [15] and [22] introduce the concept of physical layer network coding which has developed in
to a sub-field of network coding with new results in the domains of wireless communication,
wireless information theory and wireless networking. One branch of this new field works
with de-noise-and-forward-protocol in the network coding maps that satisfy a requirement
called the ‘exclusive law’, which reduces the impact of multiple access interference. In [21]
it is established that the network coding maps that satisfy the ‘exclusive law’ are obtainable
by the completion of incomplete Latin rectangles. Isotopic and transposed Latin squares

are also used to create network coding maps with particular desirable characteristics.

e Fibre-optic signal processing techniques [17] deliver multi-access optical networks for fibre-
optic communications. Relevant to that, an Optical Orthogonal Code (OOC) is a family of
(0,1) sequences with good auto and cross-correlation properties, i.e., fast and low interfer-
ence transmission properties. In [3] the authors propose two new coding schemes capable
of cancelling the multi-user interference for certain systems based on MOLR and MOLS
to accomplish large flexibility in choosing number of users, simplicity of construction and

suitability to all important transmission technologies.

e LDPC codes are the lead technology used in hard disk drive read channels, wireless 10-GB,
DVB-S2 and more recently in flash SSD as well as in communicating with space probes.
Pseudo-random approaches and combinatorial approaches are the two main techniques for
the construction of a specific LDPC code, based on finite geometries and first studied in
[9]. In [20] and [10] a different construction is devised, based on balanced incomplete block
designs constructed from M OLR and MOLS.

In this paper, after establishing that M OLR completion is N'P-complete, we address the
problem of completability for OLR2. To achieve this, it suffices to characterize all pairs of incom-
plete 2-row Latin rectangles that are not completable to an OLR2. Minimal such pairs define

circuits of the independence system (I.S) associated with OLR2 of order n (formal definitions



Ji J2 J3  Ja Ji1 J2  J3 Ja
i ki | k3| K| KL k2| k3| k3| K2
io kY Lk [ KL | A k3 | k3| k3| k2

Table 2: The OLR2 of Table 1

appear in the next section). In this system, a pair of incomplete 2-row Latin rectangles is in-
dependent if and only if it is completable to an OLR2 or, equivalently, it contains no circuits.
Notably, the circuits for the IS associated with 2-row Latin rectangles have been described in [6];
this description has been based on the notion of an availability matrix, which is also employed
here to provide a concise proof, despite the enumerative nature of our exposition.

Since there can be no polytime algorithm (unless P = N'P) generating the clutter of either
bases or circuits of an arbitrary IS [19], our work adds to the (few) independence systems in the
literature for which the clutter of circuits is fully characterized (see [5], [19] and [11]). The results
presented here have some polyhedral implications that are also discussed, namely they directly
give rise to lifted circuit inequalities for the polytope associated with both OLR and OLS.
Finally, our approach could be useful for the characterization of both circuits and associated
inequalities for MOLR, MOLS and possibly other highly symmetric combinatorial problems.

The remainder of this paper is organized as follows. In Section 2, we introduce our notation
and present some initial results, including the complexity of M OLR completion. After reviewing
the results of [6], along with counting the circuits associated with the completion of 2-row (single)
Latin rectangles in Section 3, we present our main contribution in Section 4. In Section 5, we
discuss the implications of our work regarding the polytope associated with orthogonal Latin
squares and thus planar multi-dimensional assignment [1]. We conclude in Section 6 with ideas

for future work. The proofs of some intermediate results appear in the Appendix.

2 Notation and basic results

Let us introduce our notation. For a given order n, let T' = {1,...,|T|}, where |T| < (n — 1)
is the number of MOLR2. The two sets I = {i1,i2} and J = {j1,...,jn} correspond to the
rows and columns of each Latin rectangle, while the |T'| disjoint sets K; = {ki,... k!} (t € T)
define the n elements appearing in the t* MOLR2. Define Gy = I x J x Ky, t € T, i.e., each
Gy contains 2n? triples and |J, - Gy contains 2|T|n? triples. Based on this notation, Table 1 is
revised in Table 2, while a Latin rectangle can be represented as an R; C Gy, e.g., Ry in Table

2 can be written as
_ .. 1 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Rl - {(217]17 kl)) (117]27 k2)7 (217]37 k3)7 (7’17j4) k4)7 (12)]17 k2)7 (227]27 k3)a (/LQL]?M k4)7 (227]47 kl)}

Similarly, an OLR2 is represented as Ry U Ry, where Ry C Gy, Ry C Gy and {t,t'} C T; for
example the OLR2 of Table 2 is represented as R1 U R».
We call two MOLR2 equivalent, if one is obtainable from the other by permuting the sets
3



Ji J2 J3  Ja Ji1 J2  J3 Ja

i KT kL Tk KT kLT &L
iy (RS TR TR K| [RCTE k]
Ri_ Ry

Table 3: A pair of incomplete Latin rectangles

I, J, Ky, ..., Kjp| and T. Note that directly interchanging the roles of sets I and J is not allowed
since we stipulate the existence of only 2 rows but n columns; the same applies to the interchange
of I or J with a set Ky,t € T. In contrast, interchanging two elements ¢, € T swaps the roles
of sets K; and Ky.

Let us now define the independence systems (IS) associated with MOLR2. For |T| = 1,
every B C (G; that forms a 2-row Latin rectangle is called a basis. Hence the clutter of bases
By ={B C G; : B is a 2-row Latin rectangle}; i.e., |B| = 2n for all B € B;. Accordingly, the
2-row Latin rectangle IS is §; = (G1,J1) where J; = {X C Gy : X C B, B € B;}. As usual,

S induces the unique clutter of circuits defined as
Ci={CCG:C¢&TJ,C\{c} e T forall ce C}.

The IS associated with M OLR2, denoted as S|, is again defined in terms of the clutter of bases
B, (each basis corresponding to an MOLR2) and induces the clutter of circuits Cjpy, i.e., the
set of all C that are not contained in any B € By (exclusion property) but all their subsets are
(minimality property); Cr| is also known as the set of minimal dependent subsets of the ground
set U,eq G-

An incomplete Latin rectangle (also called partial Latin rectangle) is an m X n array (with
m < n) whose cells receive values 1 to n but may also be empty; in our notation, such a rectangle
is represented by an R_ C (1. An incomplete Latin rectangle is called completable if there exists
R’ C Gy such that (R_UR') € By and incompletable otherwise. The incomplete Latin rectangle
R;i_ in Table 3 is incompletable since the only value allowed for the empty cell (i,j1) is k3,
which violates the Latin rectangle structure as it appears twice in column j;. In contrast, the
incomplete Latin rectangle Ry is completable since for Ry = {(i1, j1,k}), (i2, j3, k3)} it holds
that Ro_ U Ré, € B.

In a similar fashion, a set of |T'| incomplete Latin rectangles {R;_, t € T'} is completable if
and only if there are {R;_, t € T'} such that |J,., (R~ UR}_) € By, i.e., if these rectangles
can be completed to an M OLR2. Equivalence applies to (sets of) incomplete rectangles exactly
as for MOLR2.

Clearly, {R;—,t € T'} being completable implies that it is a subset of some B € Byr| thus
containing no circuits. Equivalently, if incompletable and therefore contained in no B € By, it

contains some circuit C' € Cj|. Hence the following.

Proposition 2 An set of incomplete Latin rectangles { Ry—, t € T'} is completable to an MOLR2
if and only if C\ (U,er Re—) # 0 for all C € Cip.
4



Ji J2 J3 Ja

i kL kL

is K| KD KD
Rt

Table 4: An incomplete Latin rectangle

Notice, that any C' € Cjp| is itself a set of incomplete rectangles that is also not completable.
In fact, sets of incomplete Latin rectangles that are incompletable are exactly the dependent
subsets of |, Gt

Let us introduce ways of presenting available values. The values available for filling the
empty cell (i1, 1) in the rectangle of Table 4 are k! and k%; any of them can be used without

violating the Latin rectangle structure. In general, the set of all available values for a row i are
Vi(Ri—) = {a € G¢ : aU Ry does not violate the Latin rectangle structure}
We illustrate V;(R;—) by the availability matriz of row i as first described in [6].

Definition 3 Let R;— (t € T') denote an incomplete Latin rectangle with n columns, K (i) denote
the set of symbols appearing in row i and J(i) the set of column indices of the v empty cells in
that row, where v < n. The availability matriz A(Ry—,1) is the v X v matriz obtained from the

n X n-matric

Koo K
e E
Kt kt

n n

after deleting from A all rows of elements of K (i) and all columns that are not members of J(i).
We mark an element of A(R¢—,1) in column j with the symbol «’ to indicate that the value is

not available if and only if that element appears in column j of Ry_.

We use curved () and square [] brackets for the availability matrix of the first and the sec-
ond row respectively, i.e., we write A(R;—,41) and A[R;_,i2]. Notice that there is a one-to-one
correspondence between V;(R;) and A(R;—,7). Therefore, in terms of set notation for a partic-
ular row 7, every combination of column j and value k! of the availability matrix represents a
member (4, j, k') of V;(R;_). Therefore, both A(R;_,i1) and A[R;_, 2], denoted simply by Ay,
are hereafter considered as a subset of Gy; that is (with a slight abuse of notation) A; is used to
refer both to the set Vi, (R;—) U V,(R:—) and to its matrix representation.

To complete any R;_ to a 2-row Latin rectangle (having the same rows), a single value must
be selected from every row and column in A(R;_,41) and A[R;_,i2] such that the value selected
in column j of A(R;—,1i1) is different from the one selected in column j of A[R;_,is]; values with
an ‘x’ cannot be selected. To ease our illustrations, we merge the availability matrices of the

two rows into one figure (see Table 5 for an example).
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J1J3
kL kb
I

Table 5: The availability matrix for the rectangle of Table 4

i [RCTRL TR TR

in RS TEL R K

is R TEL R
R

Table 6: The rectangle R obtained from the OLR2 of Table 2

Example 1 For the first row of Table 4, K(i1) = {kb, ki} and J(i1) = {j1,js}, therefore

i Js
A(Ry_,i1) = KL kb
Ky K
For the second row, K (iz) = {k', ks, k!} and J(i2) = {j1}, thus
‘ Ji
ARy, o] = [kt}
3

Also, Ay = {(i1, j1, k%), (i1, j1, kL), (i1, js, kL), (i2, ju, KS)}. Element (iy,js, k%) is not included in
Ayt as it has an ‘x’ indicating it is not available. It is easy to complete Ry_, since kY is the single

value available for cells (ia, j1), (i1, 73) and then k! becomes the single value available for (i1, j1).

Let us now present some initial results, which motivate on their own the study of the afore-

mentioned independence systems.

Proposition 4 Any set T' of normalized MOLR2 of order n is representable as a normalized

(IT| + 1)-row Latin rectangle of order n and vice versa.

Proof. The (|T'|+ 1)-row Latin rectangle of order n, denoted as R, is obtained from the |T|
normalized rectangles MOLR2 by placing the entries of the second row of R; (¢t € T') at the
(t + 1) row of R; that is, if the value of cell (2,7) of R is kj then cell (¢ + 1, ;) receives value
k:ll (Table 6 shows an example). It follows that every value appears once in each row of R, since
appearing once in every row of Ry (¢t € T'). It remains to show that every value occurs at most
once in each column of R.

Since all rectangles in T are normalized, for any two of them, say ¢ and t, the n pairs of
values (K¢, k’i/), ooy (KL k:f; ) appear at the first row. Then, to avoid repeating a pair, value k;
(I =1,...,n) occurrence at the second row of each R; (t € T') is bound to be at a different

column per R;. But then, value k! (I =1,...,n) appears at most once per column of R.
6



It is easy to see that the construction is applicable in the reverse direction, i.e., given a
normalized (|7'| + 1)-row Latin rectangle of order n, one can obtain |T| normalized MOLR2 of
the same order. m

Proposition 4 has some interesting implications. The first one follows from Hall’'s theorem
[8], i.e., from the fact that every m-row Latin rectangle of order n is completable to a Latin

square of order n.

Corollary 5 Any set T of MOLR2 (1 < |T| <n—1) of order n can be completed to a set of
n—1 MOLR2 of order n.

Moreover, a Latin rectangle of order n can have at most n rows, in which case it would be
a Latin square. Hence, Proposition 4 implies that there exist (n — 1) MOLR2 of order n; the
latter directly yields that there can be at most (n — 1) MOLS [12, Theorem 2.1].

Now consider the following decision problem: Is a given set of n — 1 incomplete Latin
rectangles of order n completable to a set of |T| MOLR2? Clearly this problems is in NP,
since given a solution we can easily verify its correctness by simply listing all pairs of values
obtained form the superimposed rectangles, and checking whether there appears a repetition of
a pair. Now the problem of completing an incomplete Latin square of order n to a Latin square,
known to be N'P-complete [2], reduces to the problem of completing a set of incomplete Latin

rectangles (as in the proof of Proposition 4). Hence the following.

Corollary 6 Deciding whether a set of n — 1 incomplete 2-row Latin rectangles of order n is
completable to an MOLR2 is also N'P-complete.

It becomes apparent by Proposition 4 that any set of |T'| < n—2 MOLR?2 is included into a
set of (|T'|+1) MOLR?2 of the same order; it easily follows that J; C Jy41, t = 1,...,|T| — 1. But
then, any set of |T| incomplete Latin rectangles that is not completable to a set of |T'| MOLR2,
is not completable to a set of (|T'| + 1) M OLR2 either. Hence our last implication.

Corollary 7 C; C Cyq1,t=1,...,n— 1.

Since the clutter C;, presented next, has been described in [6], it remains to characterize

C\Cr.

3 Circuits in C;

There are five equivalence classes in Cq, denoted as C; 4 with d = 1,...,5. Let us present a rep-
resentative from each equivalence class and count |C;|, assuming without loss of generality that
Ky = {1,...,n}. The representative of Cy ; is shown in Table 7, where C' = {(1, j1,1), (2, j1,1)}.
To see that C is a circuit, notice first that C' is a dependent set of Sy, since 1 appears twice in
column j; thus violating the Latin rectangle structure (i.e., C'is not contained in any B € B;);
it becomes easy to see that the removal of any ¢ € C' makes C'\{c} completable to a 2-row Latin

rectangle hence C' is minimal.



jl j2 jn—l jn

Table 7: A circuit of Cyq

1 J2 o Jn 1 J2 0 n

111 1,2

A circuit of Cy o A circuit of Cy 3

Joc Jn Jioc Jn
Ki\{1} Ki\{1}
Ki\{1} 1

A circuit of Cy 4 A circuit of Cy 5

Table 8: Circuits of C1 2 —C1 5

Table 8 illustrates a representative from each of the remaining four classes. For the last two
circuits presented, the notation K7\{1} means that all values of set K; except for 1, appear in

columns jo to jp.

Lemma 8

—_

e
ICi|=n?[14+2(n—1)+ ((n—1)! 22 +2n—1)
=0

Q

Proof. Family C; ; includes n? circuits, since there is one such circuit per column and value,
i.e., per member of J and K. To obtain a circuit in C; 2 (notice its representative in Table 8),
there are 2 options for the row, n options for the value in K7 and (g) options for the two columns
in which the value appears, i.e., a total of n?(n — 1) options. An analogous reasoning yields the
same size for the class C 3.

Regarding Cj 4, notice that there are n options for the value and n options for the column
left empty. Notice also that, for columns in J\{j1}, the second row must be a derangement of
the first (i.e., a permutation without a fixed point) in order to comply with the Latin rectangle

structure; since (as shown in [16]) the number of derangements of n symbols is

n| = n!Z(—
q=0

there are r3[n — 1] options for filling the second row per each of the (n — 1)! options of filling
the first one. Overall, C1 4 contains n? - ra[n — 1] - (n — 1)! circuits. Last, |C1 5| = 2n%(n — 1)!
since there are two options for the row where a single value appears, n options for the value, n
for the column and (n — 1)! options for filling the remaining row. The result follows from the

fact that the five classes in C; are disjoint. m



J1 J2 J3 Jn J1 J2 J3 - Jn

1 1]

Table 9: A circuit of Cy \ C1 (set E)

Ji J2 Jz3 cr Jan-1 Jn Ji1 J2 Jz - Jn
1] 2 n 1] 2 n
3 ‘ n 1 nil1]| 2 ‘ n—1

Table 10: Completion of E \ ¢ to an OLR2
Lemma 8 yields that |Cy] is of O (n2 (=12 rafn — 1]) .

4 Circuits in G\

Recall that two Latin rectangles R;, Ry are orthogonal if and only if, once superimposed, no
pair of values is repeated, i.e., if Ry U Ry € Bs. Two incomplete Latin rectangles Ry, Ro_ are
completable if and only if Ry U Ry C B € By (i.e., if Ry U Ry is in J2) or, equivalently,
Ri_UR5_ does not contain a member of Cs. Specifically, R, U Ry does not contain a member
of C2\Cy if and only if each of R;_, Ry_ is individually completablei.e., if R~ C B € By, t =1, 2.
Therefore, notice that each of R1_, Ro_ neither violates the Latin rectangle structure (i.e., does
not contain a circuit of C;; —Cy,3) nor its completion can be done in a manner that violates this
structure (i.e., does not contain a circuit in Cy 4 or Cy 5).

It follows that R;_ U Re_ containing a member of C3\C; implies that the completion of Rj_
and Ry_ forces a pair of values to be repeated. Also, equivalence yields that we may assume
that pair (k%, k%) appears twice in columns j; and js. That is, we assume that any completion
of Ri1_ U Ry_ is bound to include the set E = {(1, 71, k}), (2, 52, k1), (1, 1, k%), (2, j2, k%) }. Table
9 shows this by assuming k% = k%; in fact, to simplify our exposition, let us hereafter assume
that K1 = Ko ={1,...,n}.

Lemma 9 FE belongs to Co\Ci.

Proof. It becomes easy to see that each incomplete Latin rectangle in Table 9 is completable
to a Latin rectangle, i.e., I/ does not contain a member of C1, while the pair is not completable
to an OLR2. Also, it holds that E is minimal, since E\{c} C B for some B € Ba, for any c € E.
By symmetry, it suffices to show that for element (2, ja, 1) of the left rectangle and this is exactly
illustrated in Table 10. =

Most importantly, up to equivalence, any member of C2\C1, may contain elements of F. Hence,

define Co g C C2\C1,d =0,...,4 as Cog = {C € C2\C; : C is equivalent to some C” such that

|C" N E| = d}; evidently, classes {Ca4, d =0, ...,4} form a partition of C5\Cy. Also, it is direct
9



that E is, up to equivalence, the single circuit in class Ca 4. For any other class we provide a list
of all non-equivalent circuits (i.e., we consider that it splits into more than one sub-classes and

list one representative per sub-class).

Theorem 10 The pairs of incomplete Latin rectangles of Table 11 comprise, up to equivalence,

the complete list of circuit members of Ca .

Ji J2 J3 Ja - Jn Ji J2 Js Ja - Jn
- 3 K1\{1,2,3} - 3 Ko\{1,2,3}
6- 2 n | K:1\{1,2,3,n} 6- 2 n | K5)\{1,2,3,n}
JuoJ2 J3 Ja Jn Ji J2 J3 - Jn
R 3 Ki1\{1,2,3} R Ko\{1,2}
6— 2 n [ K1\{1,2,3,n} =1y [ K>\{1,2,n}
JiJ2 J3 - Jn J1 J2 J3 o - Jn
R Ki\{1,2] - Ko\{1,2]
B n ‘ Kl\{1727n} - n ‘ KZ\{lvzvn}
J1 J2 J3 Ja - Jn J1 J2 Jn
R Kl\{1,2,3} R KQ\{172}
23= n [ K:\{1,2,3,n} 1= Ko\{1,2}
Ji1 J2 J3 - Jn Ji o J2 Jn
R24 Kl\{172>3} Rll K2\{172}
a Kl\{172>3} a K2\{172}

Table 11: Circuits in Ca

To prove Theorem 10, we need some intermediate results and definitions, which are to be
employed for revealing also the non-equivalent circuits per class Co 4,d = 0,...,4.

To obtain a circuit of class Co, we start with an arbitrary pair of 2-row Latin rectangles,
say R; and Ro, that do not form an OLR2 due to the repetition of exactly one pair of values
in the first two columns. That is, RiU Ry is dependent containing a circuit of class Ca 4, i.e.,
containing F. Notice that the set (R; U R2) \ E remains dependent, since completing each of the
rectangles corresponding to Ri1\E and Ry\E forces the repetition of pair (1,1) in cells (1, 1)
and (2, j2) (see Table 12). But then, (R; U Rg) \ E still contains a circuit (since dependent) but
no element of E. This yields that (R; U Ry) \E contains a circuit of class Ca . It follows that,
starting with an arbitrary (R; U Ry) \E and after removing elements we are bound to end up
with such a circuit.

For our search to be more concise, we observe first that any of R\ E or R\ E (after removing
some of its elements) must always be completable in a way that forces some value to appear
twice in the first two columns, i.e., in cells (1, j1), (1, j2), (2,71) and (2, j2). For convenience, let

us introduce the following.
10



J1 Jo Jn J1 2 Jn
Ki\{1} Ko\ {1}

] K\ ki) Fa || Ko\{1, ko
R\E R\E

Table 12: A pair of incomplete Latin rectangles containing a circuit of class Ca o

J1 J2 J3 Ja - Jn J1 J2 J3 g4 - Jn
1]13]2 Ki\{1,2,3} 1132 K>\{1,2,3}
1| n|3[K\{1,23n} 312 n|1]K\{1,23n}
R Ros_

Table 13: Completing the pair of pink rectangles Rg_ and Ra3—

Definition 11 An incomplete Latin rectangle R_ is called pink if R— C Ry (where Ry is an
arbitrary rectangle that includes elements (1,71,1),(2,72,1)) and any completion of R_ forces

some value to appear twice in the first two columns.

In the proof that follows, to demonstrate that a particular R_ is not pink, we draw a circle O
(for the first row) and square [ (for the second row) around selected values of the corresponding
availability matrix. Such a selection shows that R_ can be completed without repeating a value
in the first two columuns.

In summary our exhaustive, yet concise procedure, to reveal all non-equivalent circuits in Ca g
is the following: first we identify all pairwise non-equivalent pink (incomplete) Latin rectangles,
then combine them to obtain pairs of incomplete orthogonal Latin rectangles in all possible ways
and finally, omit any incomplete OLR2 that are not minimal. Since we start this expedition
with a single rectangle, for convenience we will enumerate these using notation R,_ for the
incomplete Latin rectangles and A, for the corresponding availability matrices, with z simply
denoting the sequence in which rectangles are examined. However, not all combinations of pink
rectangles give rise to a dependent (i.e., not completable) pair. For example, incomplete Latin
rectangles R§_ and Rgs— (Table 11) are pink but well completable to an OLR2 as shown in
Table 13 (i.e., R§_ U Ra3_ contains no circuit).

Before proceeding, let us note that all circuits listed in our enumeration show up for n > 5.
For the sake of completeness, we list all (non-equivalent) circuits that arise for n =3 and n =4
in the Appendix (see Tables 29-36).

Definition 12 A pink Latin rectangle R_ is of type I, II or III, if its completion forces the

same value to appear

type I: only in cells {(1,71),(2,j2)};

type II: in cells {(1,71),(2,72)} or in cells {(1,72),(2,j1)};
type III: in cells {(1,j1),(2,72)} and in cells {(1,j2),(2,71)}.

11



For example (see Table 11), R§_ is of type I, Ros_ is of type II and Ryi_ is of type III.

Let us emphasize that there exist alternative ways of completing a pink Latin rectangle of
type 11, one in which the same value appears in cells {(1, j1), (2, j2)}, a second in which the same
value appears in cells {(1, j2), (2,71)} and, possibly, a third in which both pairs {(1,71), (2, j2)}
and {(1,72),(2,j1)} contain equal values (see Ras_, for instance). Definition 12 means that,
whenever the third way is available, the first two ways also are, thus completing such a rectangle
forces (i.e., makes unavoidable) the same value to appear in only one pair of cells (and not
necessarily in both). This is in contrast to pink Latin rectangles of Type III, for which only one
way of completing is possible, forcing both pairs {(1,j1), (2,72)} and {(1,2), (2, 1)} to contain

equal values. The following is now easy to show.

Lemma 13 Two pink rectangles form a pair whose completion forces a repetition of a pair of

values in the first two columns if and only if both are of type I or one is of type III.

Thus, two pink rectangles R_ and R’ comply with Lemma 13 if (i) both R_ and R’ are of
type I or (ii) R_ is of type I and R’ is of type III or (iii) R_ is of type II and R’ is of type
III or (iv) both R_ and R’ are of type III. But then, a necessary condition for a dependent set
R_UR’ to be minimal is direct: there must exist no R” such that R” C R_ (resp. R’ C R")
and R_, R” (resp. R, R") are of the same type.

Definition 14 A pink Latin rectangle R_ is called dominated if there is some pink rectangle
R’ C R_ such that R_ and R’ are both of the same type (i.e., [,11,11I).

Let us list one last observation, to be utilized in the proof listed next.
Remark 15 For any two Ri_ and Ro_, R1_ C Ro_ if and only if As C A;.

Proposition 16 The non-dominated pink rectangles, which share no element with E, are R§_,
Rip—, R11-, Rog— and Ray_.

Proof. The proof proceeds by progressively emptying cells from the left rectangle of Table
12. To avoid enumerating equivalent (i.e., symmetric) cases, we assume that the number of cells
emptied from the first row are less than or equal to the number of cells emptied from the second
row. For each case, we illustrate the availability matrix A, of the rectangle R,_ obtained after
emptying cells. An ‘«’ besides a value in A, denotes that this value is not available (e.g., due to
its occurrence in a non-empty cell in the same column); we emphasize the occurrence of some

‘*’ in A, by writing, instead, A} and R}.
Case 16.1 Emptying 1 cell in row 2

Without loss of generality we assume that the cell emptied is either (2, j3) or (2, j1) and that
the two values missing from row 2 are {1,2}. Emptying cell (2, j3) gives rise to Ri_ or R}_ (see

Table 14) depending on whether value 2 appears in cell (1, j2); emptying cell (2, j1) results, in
12



Ji o J2  J3 Jn Ji J2 J3 Jn

k1 Ki\{1,2,k } k1 Ki\{1,2,k}
Ri_ 1-
J1J2 Jn J1 J2 Jn
ko | Ki\{1,k2} 2 Ki\{1,2}
Kl\{1’2} Kl\{172}
Ry R;_

Table 14: Incomplete Latin rectangles for Case 16.1

() | 1 (1) 1 1 (1) 1 (1) 1
2 2% 2 22 2 27
A1z Row 1, Col 0 A" Row 1, Col 0 As: Row 1, Col 1 A’ Row 1, Col 1

Figure 1: Availability matrices for the rectangles of Table 14 (Case 16.1)

a similar manner, to Ry or R5_ (also depicted at Table 14). Please notice the corresponding
availability matrices in Figure 1 and the ‘*’ in matrix A} regarding value 2 for the second row
and column js (and similarly in A%); notice also that the caption below each matrix presents the
number of rows and columns that are common to the availability matrix of both rows (at least
one row is common since value 1 is missing from both rows). From these four matrices, only the
last three are pink, since A; implies the completability of Ry without repeating a value in the
first two columns; that is, Ry is completable by placing 1 in cells (1, 1) and (2, j3) and 2 in cell

(2, 72) and this is illustrated (for convenience) by its circled and squared entries in Figure 1.
Case 16.2 Emptying 2 cells in row 2

We assume the cells emptied are (2, j3) and either (2, j4) or (2,71) and that the three values
missing from row 2 are {1,2,3}. Emptying cells (2, j3) and (2, j4) gives rise to Rz_ or R;_ (see
Table 15) depending on whether values 2 and 3 appear in cells (1, j2) and (1, j3); emptying cells
(2,1) and (2, j3) results, in a similar manner, to Ry or R}_ (also at Table 15). It becomes
easy to see that R3_ is not pink since completable by placing 1 in cells (1,71) and (2,j4), 2 in
cell (2,73) and 3 in cell (2, j2); in fact, R5_ (that is more ‘restricted’ than Rz_ since A5 C Az3)
is not pink either, since completable in exactly the same manner (see the circled entries of A3_
and A} at Figure 2). This fact gives us a useful rule to avoid examining some rectangles: if R_
is non-pink so is R,_.

The opposite does not hold. For example, R4 is not pink since completable by placing 1 in
cells (1,71) and (2, j3),3 in cell (2,71) and 2 in cell (2, j2); to the contrary R}_ is completable
only by placing either 1 in cells (1, j1) and (2, j2) or 2 in cells (1, j2) and (2, j1) thus being pink
(see the circled entries of A4 at Figure 2).

Case 16.3 Emptying at least 3 cells in row 2
13



Ji1 Jo J3 Ja Jn Ji1 J2 J3  Ja Jn

ko | ks | kg | K1\{1, ko, ks, kq} 2| 3 | kg | K1\{1,2,3,k4}
ky Ki\{1,2,3,k} k1 Ki\{1,2,3,k1}
Rs_ R
J1 J2 J3 Jn J1 J2 J3 Jn
ko | k3 Kl\{l,kg,kg} 213 Kl\{l,2,3}
Ki\{1,2,3} Ki\{1,2,3}
Ry R}

Table 15: Incomplete Latin rectangles for Case 16.2

Jn Joo o ds e Ji Joo s s Jn Joo s Jn 2 s

(@) 11 (@) 11 (@) 1 (1) 1 1
2 2 2” 2 2 2 2 20 2
33 37 3 3 3 3 3 3

As: Row 1, Col 0 A% Row 1, Col 0 Az Row 1, Col 1 A*g: Row 1, Col 1

Figure 2: Availability matrices for the rectangles of Table 15 (Case 16.2)

Let us hereafter illustrate just the availability matrices, since the corresponding rectangles
can be derived unambiguously. The list of all incomplete Latin rectangles examined hereafter
(pink or not) appears in the Appendix (Tables 22-24). In addition, Tables 25-28, also in the
Appendix, illustrate the completion of pink rectangles, grouped by their type.

Now, Case 16.3 yields only non-pink rectangles. To see this, observe that the most restricted
rectangle is the one arising after emptying exactly 3 cells in row 2, namely (2, 1), (2,73) and
(2,74), and in addition, having values 2, 3 and 4 in cells (1, j2), (1,j3) and (1, j4), respectively.
The availability matrix shown in Figure 3 (see also Table 22 in the Appendix) illustrates that
this rectangle, namely RZ_ is non-pink, i.e., its circled entries show how R:_ is completable
without any value appearing twice in the first two columns (in fact, its completion is made
similarly to R3_ and Rj_ in Case 16.2).

Case 16.4 Emptying 1 cell in row 1 and 1 cell in row 2

_®) 1 1
2 27 2
3 3" 3

4 4 4

A5 Row 1, Col 1

Figure 3: Availability matrix for the rectangle of Case 16.3
14



j1od2 i3 s jvode s o2 s e

3] 3
111 1 \1 1\ 1] 111 \1
GG ()

A% Row 1, Col 0 A7 Row 1, Col 1 A"z Row 1, Col 1 As: Row 1, Col 2
Jjuode i e juode s o2
1 1
@ 1y 1] 1\1
) @ 2 20 2 |2 2 2
Ag: Row 2, Col 0 Aip: Row 2, Col 1 Ai: Row 2, Col 2

Figure 4: Availability matrices for the rectangles of Case 16.4

For all rectangles in this case, notice that row 1 has two empty cells hence two missing values
{1,2}; the same applies to row 2, apart from the fact that the second missing value may be 2
or not, i.e., the values missing from row 2 can be either {1,2} or {1,3}. Thus, there is a 2 x 2
availability matrix per row and these two matrices share 1 or 2 rows (if the second value missing
from row 2 is 2 or 3, respectively) and 0,1 or 2 columns (depending on which cells are empty
at each row). In total, the possible availability matrices (and hence rectangles) to be examined
are shown at Figure 4.

Notice that Ag (i.e., A§ without any ‘+’) is not listed because R is easily completable
without a value appearing twice in the first two columns; in contrast, R§_ is pink (see Table
11). Based on the circled entries of A7 we observe that R7_ is not pink, whereas R%_ is. There is
no R_ fort =8,9,10,11 : observe that columns j; and js are empty at both rows regarding Rg_
and Rj1— (thus no value is forbidden at some row because of its occurrence in the other row),
while values 1 and 2 are missing from both rows regarding Rg_ and Rig_. The circled entries of
Ag show that Rg_ is not pink. Thus this case includes the pink rectangles R§_, R;_, Rg_, Rio—
and R11—~

Case 16.5 Emptying 1 cell in row 1 and 2 cells in row 2

Here, row 1 has 2 empty cells hence two missing values {1, 2}, whereas row 2 has 3 empty cells
thus its missing values are either {1, 3,4} or {1,2,3}; hence there is a 2 x 2 availability matrix
for row 1 and a 3 x 3 such matrix for row 2. These two matrices share 1 or 2 rows (depending on
whether value 2 is missing from row 2) and 1 or 2 columns (depending on which cells are empty
at each row); notice that should these matrices share 0 columns, any corresponding rectangle
would not be pink.

The possible availability matrices (and hence rectangles) to be examined are shown at Figure

5, with the circled and squared entries showing that R}, (and hence Rjs_) is not pink, the
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4 [4] 4 [4] 4 4

3" 3 3 3 33
M1\ @ 1 OR 1
(o) - o
A2 Row 1, Col 1 A%y Row 1, Col 2 A"11: Row 2, Col 1

v B juoje B

3 3 3 3 3 3°

11 \1 11 |1

2 2 /2 2 2 /2

Ais: Row 2. Col 2 A% Row 2. Col 2

Figure 5: Availability matrices for the rectangles of Case 16.5

same applying to Ri3—, Rj;_ and to R4, R}, _. Hence this case yields the pink rectangles Ri5_
and Rj5_.

Case 16.6 Emptying 2 cells in row 1 and 2 cells in row 2

In this case, row 1 has 3 empty cells thus its missing values are {1,2,3}, whereas row 2 has
also 3 empty cells but its missing values can be {1,4,5} or {1,3,4} or {1,2,3}; hence there is
a 3 x 3 availability matrix per row and the two matrices share 1 up to 3 rows and 0 up to 3
columns; notice that should these matrices share 0 columns, any corresponding rectangle would
not be pink.

The possible availability matrices (and hence rectangles) to be examined are shown at Figure
5, with the circled and squared entries showing that all rectangles except for Rog_ and Ro4_ are
not pink. Notice also the non-applicability of an ‘x’ in all matrices except for A;g, since columns
Ji,j2, 73 are all empty at both rows regarding Rig—, Ro1— and Ray4— (thus no value is forbidden
at some row because of its occurrence in the other row), while values 1,2, 3 are all missing from
both rows regarding Raz— and Ras_.

Having enumerated all pink rectangles in Cases 16.1-16.6 (see Table 16), it remains to exclude
dominated ones (recall Definition 14), by utilizing Remark 15. Since A} C Ajg and Az C Ajo,
Remark 15 yields that R}_, Ro— are dominated. Also, A}, A7 and Ag being subsets of Agy yields
R;_,R;_, Rs— as dominated; the same applies to Ri5—, Rj5_ since Ay C A5 C Agy. Last, R5_
is dominated since A5 C Aj;. The remaining rectangles establish the result. m

The proof of Theorem 10 is now easy to complete.

Proof (Theorem 10). Since, by definition, a pair of rectangles R1_ U Ry_ is a circuit
of Ca only if |[Ri— N E| = |Ry— N E| =0, to obtain all non-equivalent circuits of C2y one must
examine only pink rectangles sharing no element with E. In fact, it suffices to examine only
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joje s
1 1

A9 Row 2, Col 1

5 5
4 4
1 1\ 1

Ja s jod2 s s
4 4"
1

Ag: Row 2, Col 2

Buode ds s s

111
2@22
3 [3] 3 3

Az Row 3, Col 1

2" 2

3@3

A7 Row 1, Col 2

A%p: Row 2, Col 2

o2 i3 ja

Ass: Row 3, Col 2

Figure 6: Availability matrices for the rectangles of Case 16.6

Type

Rectangles

I | R_,Ro R, Rio_

17 RZ—? R;—a RS—; R15—7 RT5—7 R23—7 R24—

117

Ri_ Rii_

Table 16: All pink rectangles that share no element with £

o s
5 5

4 4
1

Ais: Row 1, Col 3

o2 s
4 4
1 Q@
2 2]

3 3

Asi: Row 2, Col 3

juooje s
1 1 1
2 2 2
3 3 3

Ass: Row 3, Col 3



non-dominated such rectangles, i.e., the five rectangles stipulated by Proposition 16, since a
circuit is by definition inclusion-wise minimal. Recall from Table 16 that R;_ and Rio— are of
type I, Ros— and Ro4_ are of type Il and Ry;_ is of type III.

By Lemma 13, R_ can be paired by itself or with Rio—, the same applying for Ri9—; hence
the first three circuits of Table 11. The same lemma yields that Re3_ and Rss_ can be paired
neither with one another nor with any of R§_ and Rjo—. The last implication of Lemma 13 is
that any of Rf_, Rio—, R23—, R24— can be paired with the single type III pink rectangle Rqq_.
However notice that Roz— C Rg_ and Roy— C Rig—, ie., Ro3— U Ryi— C Rg_ U Ry;— and
Roy URj1— C Ryp— U Ry1—. It follows that the only remaining pairs, which are inclusion-wise
minimal, are exactly the ones defining the last two circuits of Table 11. m

Let us now proceed to examine classes Ca 1 — Ca.3; to avoid distracting the reader, the proof

of some intermediate results appear at the Appendix.

Theorem 17 The pairs of incomplete Latin rectangles of Table 17 comprise, up to equivalence,

the complete list of members of Ca 1.

Ji o J2 J3 Ja Jn J1 o J2 Jn
R* 3 Kl\{1’2)3} R* KQ\{172}
6- 2 n | Ki1\{1,2,3,n} 25— 1
J1 J2 Jz o - Jn J1 J2 Jn
R Ki\{1,2} o Ko\{1,2}
0= [ Ki\{1,2,n} 25— 1
Ji o J2 Jn J1i J2 Jn
Ki\{1,2} . Ko\{1,2}
R Ki\{1,2} Rs- 1
J1 J2 Js Ja - Jn J1J2 Jn
R Kl\{17273} R* K2\{172}
23= n [ K1\{1,2,3,n} 26— 91
JioJ2 J3 o - Jn J1J2 Jn
R Kl\{1>273} R* K2\{132}
24= Ki\{1,2,3} 26— 9|1
J1 o J2 Jn Ji1 J2 Jz - Jn
R Ki\{1,2} R [ K,\{1,2,3}
H= Ki\{1,2} 27— T2 1

Table 17: Circuits in Co 1
To prove Theorem 17 we need the following result, whose proof we illustrate at the Appendix.
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Proposition 18 The non-dominated pink rectangles, which share one element with E, are R55_
(type 1), Rss_ (type 1II) and R3,_ (type II).

Proof (Theorem 17). By definition, a pair of rectangles Rj_ U Ry_ is a circuit of
Ca only if |(R1— U Rp—) N E| = 1, thus assume without loss of generality that |[Ri_ NE| =0
and |Ro— N E| = 1. To maintain inclusion-wise minimality, we restrict ourselves to the five
rectangles listed in Proposition 16 (that can play the role of Ry_) and the three rectangles listed
in Proposition 18 (that can play the role of Ry_). However, not all 15 combinations give rise to
minimal incompletable pairs of rectangles, as explained next.

Recall from Table 16 that Ri_ and Rio— are of type I, Ro3— and Ros— are of type II and
Ry is of type III. By Lemma 13, R§_ or Rjo— can be paired with R5;_ (since all are of type
I), hence the first two circuits of Table 17. By the same Lemma, Ri1— can be paired with R3;_
since the former is of type III, hence the third circuit of Table 17.

All five rectangles of Proposition 16 can be paired with R3;_ since the latter is of type III.
Notice, however, that R5;_ C R3;_ hence the pairs R§_ U R3;_, Rio— U R35_ and Ry1— U R55_
dominate, respectively, the pairs Rg_ U R5;_, R1o— U R5¢_ and Ry1— U R5;_, which are therefore
omitted. It follows that the only remaining pairs containing R3,_ are Ro3_ U R3s_ and Rgs— U
R3_, i.e., the fourth and the fifth circuit, respectively, of Table 17.

Last, Ry1— (being of type III) can be paired with all rectangles of Proposition 18; as above,
R5s_ C R5_ yields that the Rji— U R5;_ is not a circuit, hence the remaining two pairs
containing Rj;_ are the third and the last circuits of Table 17. m

Theorem 19 The pairs of incomplete Latin rectangles of Table 18 comprise, up to equivalence,

the complete list of members of Ca 2.
The proof of the following appears in the Appendix.

Proposition 20 The non-dominated pink rectangles, which share two elements with E, are
Rog_ (type I) and Rag— (type I1I).

Proof (Theorem 19). By definition, a pair of rectangles Ri_ URs_ is a circuit of Cz 2 only
if |(R1— U Ro—) N E| = 2, thus we may consider that either |Ry_ N E| =0 and |Re— N E| =2 or
|Ri-NE|=|R;—NE|=1.

For the former case (|R1— N E| =0, |Ra— N E| = 2) we restrict ourselves to the five rectangles
listed in Proposition 16 (in the role of R;_) and the two rectangles listed in Proposition 20 (in the
role of Ry_). By Lemma 13, R§_ or Rjo— can be paired with Rag_ (since all are of type I), hence
the first two circuits of Table 18. By the same Lemma 13, Ri1_ can be paired with Rsg_ since
the former is of type III, hence the third circuit of Table 18. All five rectangles of Proposition
16 can be paired with Reg_ since the latter is of type III; however, since Rog— C Rog_, the pairs
R§_ U Rag_, Rig— URgg— and Ry U Rag_ are dominated, respectively, by the first three pairs
of Table 18. The only remaining pairs containing Rog_ are Roz_ U Rog_ and Ros_ U Rog_, i.e.,

the fourth and the fifth circuit, respectively, of Table 18.
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J1 J2 J3 Ja - Jn 1 Jjo Jn

" 3 Kl\{1,2,3} 1
Fs- 2 n [ K1\{1,2,3,n} Fas— 1
J1 J2 Js Jn J1J2 Jn
Kl\{l,Q} 1
Rio- = [ Ki\{1,2,n} FRag- 1
Ji J2 Jn J1 J2 Jn
Kl\{l,Q} 1
Rii— K\{1,2) Rog— 1
J1 J2 J3 Ja - Jn J1 o J2 Jn
Kl\{1,2,3} 1 2
Foa— n [ K1\{1,2,3,n} Fao- 1
JioJ2 g3 - Jn Ji o J2 Jn
Kl\{1,2,3} 1 2
Raa- Ki\{1,2,3} Roo- 57
J1 J2 Jn J1 J2 Jn
25— 1 25— 1
J1 o J2 Jn J1J2 Js .- Jn
* Kl\{172} * KQ\{17273}
R267 2 1 R277 2 1 ‘

Table 18: Circuits in Ca 2

For the latter case (|[Ri— N E| = |R2— N E| = 1), it suffices to examine the three rectangles of
Proposition 18. By Lemma 13, R3._ (of type I) can be paired with itself and with R3._ (of type
III); however, R5. UR3,  C R3s_ U Rj;_ since R5,_ C Rjs_; for the same reason R3,_ U RS,
(plausible by Lemma 13 since R3,_ is of type III) is omitted since it is a subset of R3;_ U R55_.
Last, Rb;_ can be paired with R5. . Overall, the case of |R1— N E| = |Ra— N E| = 1 leads to
the last two circuits of Table 18. m

Theorem 21 The rectangles of Table 19 comprise, up to equivalence, the complete list of mem-
bers of Ca 3.

Proof. By definition, a pair of rectangles R _UR5_ is a circuit of Co 3 only if |(R1—- U Ro—) N E| =
3, thus we may consider without loss of generality that |[R1— N E| =1 and |Re— N E| = 2. That
is, we may restrict ourselves to the three rectangles of Proposition 18 and the two rectangles of
Proposition 20 for the roles of Ry and Rs_, respectively.

By Lemma 13, Rj;_ can be paired with Rgpg_ (since both are of type I), hence the first
20



circuit of Table 19. By the same Lemma, all three rectangles of Proposition 18 can be paired
with Rag_ since the latter is of type III; observe, however, that Rog— C Raog— yields R5;_URag_ C
R35s_ U Rog_ and R3;_ C R34 yields R3;_ U Rag_ C R3q_ U Rag_, the only non-omitted such
pair is the second circuit in Table 19. Last, although R3;_ (since of type III) can also be paired
with Raog_, R;Gf U Rag_ includes R§57 U Rog_ since R%f C R§67. |

J1J2 Jn J1J2 Jn
” Ki1\{1,2} R 1
25— 1 28— 1
1 J2 Jz . Jn 1 J2 Jn
* Kl\{17273}
Ra;_ 511 | Rag- 1

Table 19: Circuits in Ca 3

Overall, Tables 11, 17, 18, 19 and 9 list, up to equivalence, all circuits in C2\C;y.

5 Implications

The results of the previous section, the sole such results in related literature except for [6] and [5],
essentially address the question on whether a given pair of 2-row rectangles is completable to an
OLR2. To answer that, it suffices to examine all non-equivalent circuits listed above. Checking
whether a given pair of incomplete 2-row Latin rectangles contains a circuit of a specific class
can be done in time polynomial with respect to n, hence the completability problem for pairs of
rectangles is polytime solvable (although NP-hard in general).

Beyond that, these results could also be fruitful in terms of optimization, i.e., regarding
the design of an algorithm finding whether a specific pair of incomplete Latin rectangles is
completable to an OLS. To show that, let us first illustrate how to formulate the OLR completion
problem as an Integer Program (IP). Considering that the two rectangles are R and R/, let

variable ;1. (resp. yijx) be 1 if value k appears in cell (¢, j) of R (resp. R').

maXZ{xzjk: Z'GI,jEJ,kEKl}JrZ{yijk: iel, jed ke Ky}

Z{:Eijkiief}gl,jEJ,k‘GKl, (1)
d{zip:jeJ<liel ke kK, (2)
> {wgr: ke K} <liel jeJ, (3)
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SHygr: i€} <1, ke ks, (
S {wije:jeJ} <1 i€l ke Ky, (5
D {yijp: ke Koy <1iel jel, (
Tivjiky + Tigjoky + Yirjike + Yinjoks < 3, {01, 2} © 1, {j1, jo} C J, k1 € K1, ky € Ky (7
zijr €{0,1},iel, je J ke Ky
yijk €{0,1},iel, je J ke K

Constraints (1) and (4) ensure that no value is repeated per column of R and R’, constraints
(2) and (5) ensure the same per each row and constraints (3) and (6) ensure that every cell
of R and R’ contains at most one value; constraints (7) ensure that R and R’ are orthogonal,
i.e., it forbids a pair of values to occur twice. Therefore, integer vectors (z,y) that are feasible
with respect to (1)-(7) are in 1 — 1 correspondence with pairs of (possibly incomplete) Latin
rectangles, each not violating the Latin rectangle structure; clearly these vectors include also
OLS for all orders other than 6. Also, a pair of incomplete Latin rectangles can be modelled via
the above IP simply by setting to 1 one variable per non-empty cell; then, the pair is completable
to an OLS if and only if there is a solution having exactly 2n? variables at value 1 (i.e., if the
optimum value for the IP is 2n?).

Any C € C3\C; induces a circuit inequality, stating that not all variables indexed by C' should

receive value 1. That inequality is

D {re: c€CNGI}+ ) {ye: c€CNGY<|CI -1, CEC\G (8)
or, if C'is denoted as RU R/,

 {re: c€RY+D {ye: c€ R} <|RUR|—1, (RUR)) € C\C1.

For example, (7) is the set of all inequalities arising from Cy 4. Clearly, adding all circuit in-
equalities restricts the set of feasible integer vectors (z,y) to those corresponding to pairs of
rectangles in which any two rows are completable in a way that no pair of values occurs more
than once (in these two rows only); hence our interest in actually obtaining these inequalities.
Since, however, the number of circuit inequalities is prohibitively large, it would be far more
useful to employ such inequalities in a cutting-plane algorithm, i.e., generating them only if
violated by the current LP-solution.

Even better, one would be interested in generating lifted circuit-inequalities, i.e., circuit in-
equalities in which further variables are included one-by-one in their left-hand side with the
largest (positive) coefficient such that the augmented inequality remains valid. In our setting,
an inequality is valid if not excluding integer feasible vectors, i.e., vectors associated with com-

pletable pairs of rectangles. This process is known as sequential lifting [14]. A lifted circuit
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inequality has the form

Z{asxsz sESﬁG1}+Z{a5ys: s€SNGy}+
+D {ze: c€CNGI}+ Y {ye: c€CNGY <|C] =1, C €N\, (9)

where S C (G1 UG2)\C and as > 0,s € S. To avoid a lengthy presentation, we only list here
some general properties of these inequalities, along with the inequalities arising from Cs 3 and
Ca,4. Our aim is to indicatively show that the results of the previous section have some interesting

consequences, along with presenting the diversity of inequalities arising from 2-row circuits.
Proposition 22 No lifted circuit inequality can have a left-hand side coefficient greater than 2.

Proof. Consider that the inequality (8) is augmented by introducing variable zs with

coefficient as where s € G1\C, i.e.,
asxs—i—Z{xc:CECQG1}+Z{yC:CECﬂG2}S|C|—1. (10)

Define C(s) = {c € CN Gy : |sNe| =2} and let us show that |C(s)| < 3. For s = (is, js, ks), ¢ €
C(s) implies ¢ € {(ic,Js; ks), (is, Jes ks), (is, Jss ke)} where 4. € I\{is},je € J\{js} and k. €
K\{ks}. Clearly, |C(s)| > 3 only if there are two elements ¢,d in C(s) sharing the same two
indices with s, e.g., (ic, js, ks) and (iq, js, ks); but then, circuit C including both (i., js, ks) and
(4, js, ks) implies that value ks appears twice in column js, a contradiction to the fact that no
C € C5\(C; violates the Latin rectangle structure.

Next, notice that constraints (1)-(3) yield that any s € G; appears in the same constraint
with some ¢ € G1\{s} if and only if ¢ and s share two among the indices i, j, k. It follows that

setting x5 = 1 implies z. = 0 for all ¢ € C(s), in which case (10) becomes,

as+ Y {zc:c€ (CNG)\C()}+ D fye:ceCNGyy <|C| -1

or, using that |C(s)| < 3,

IN

as

0] —1— <Z{xc e (CNG)\C()} + Y {ye:ce C’OGQ}) <
< Cl=1—(C]=[C(s)) <[Cl =1 (|C| =3) = 2.

The following is shown in a pretty similar fashion.
Corollary 23 as > 1 only if |Cs| > 2.

Let us now examine the inequalities arising from class C3 4. Recall that Co4 has a single
circuit, up to equivalence (recall Table 9) hence (7) represents the circuit inequalities in this

class. By Corollary 23, it is easy to see that as > 1 only if s is one of (i1, jo, k1), (i2, j1, k1) in Gy
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Ji o J2 ot gn JioJ2 o Jn
ey |- Ky
k1 ks

Table 20: A pair of rectangles containing no circuit

or one of (i1, j2, k2), (i2, 71, k2) in G2. Notice however that including both (i1, jo, k1), (42, j1, k1)
yields the inequality

Tiyjiky t Tigjoky T Yivjiks T Yisjoks T Tiyjoks + Tiggiky <3

which is invalid since setting the last four variables to value 1 is not allowed (because of the
left-hand side becoming 4), although the corresponding pair of rectangles (see Table 20) contains
no circuit; it follows that only one of (i1, j2, k1), (i2,j1, k1) can be included, the same applying

to (i1, 2, k2), (i2, j1, k2) of Ga. Hence the lifted circuit inequalities arising from class C 4 are

Tiyjiky + Tigjoky + Yirjiks T Yizjoko T Tivjoky T Yirjoks = 3,
Tiyjiky + Tigjoky + Yirjiks T Yinjoko T Tivjoky T Yiojiks = 3,
Tiyjiky + Tigjoky + Yirjiks + Yigjoko T Tigjiky T Yirjoks < 3, and
Tivjiky T Tigjoky + Yivjiks + Visjoko + Tinjiky + Yiojihe <3,

where {i1,i2} C I,{j1,j2} C J, k1 € K; and kg € Ko.

To provide one more example, recall that class C 3 contains two non-equivalent circuits listed

in Table 19. The first one gives rise to the circuit inequality

Z Tiyjn(s) T Tigjoks + Yirjiks T Yiojoks < T
J€I\{J1,32}
where {i1,i2} C I,{j1,j2} € J,{k1,k2} C Ki1,k3 € Ky and 7 : J\ {j1,j2} — K1\ {k1,ka} is

bijective. This inequality yields two different families of lifted circuit inequalities, namely:

Z Tiyjk + Tigjoky + Yirjiks T Visjoks + Tigjoko T Yirjaks < M, and
je€I\.d2}
kEKl\{kl,kQ}

Z Tiyjk + Tigjoks T Yirjiks T Yiogoks T Tijoks + Yinjiks < M-

J€IN\{J1.32}
keK1\{k1,k2}
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6 Concluding Remarks

The results presented here could motivate an analogous study for either two Latin rectangles
having more than 2 rows (as in [5] for a single 3-row rectangle) or for more than two 2-row Latin
rectangles. An exhaustive enumeration of non-equivalent circuits in these cases remains an open
question. As a motivating example, Table 21 presents a set of three incomplete Latin rectangles
that are not completable to three M OLR2, although any two are completable to an OLR2. This
is because the completion of R3_ forces the same value to occur in cells {(1,51), (2,72)} (hence
violating the orthogonality condition with Ry_) or in cells {(1, j3), (2, j2)} (hence violating the
orthogonality condition with R;_); observe that emptying any of the non-empty cells yields a

completable set.

Ji J2 J3 J1 J2 J3 J1 J2 J3
1 1 K3\{1,2,3}
1 1 K3\{1,2,3)
Ri_ Ro_ R3_

Table 21: A circuit in C3\Ca.

Also, the IP listed in the previous section can be solved using an arbitrary linear function,
thus addressing the issue of finding the maximum-weight OLR2 or the maximum-weight such
OLR?2 arising from the completion (if any) of a given pair of incomplete 2-row Latin rectangles.

Our last remark is that there are circuits in distinct sets Cy 4 that are equivalent, at least
for n < 4. For instance, Rig— U Ri9— € Ca is equivalent to Rog_ U Rog_ € U2 4 when n = 3, or
Rz U Ro3_ € (s is equivalent to Rog— U Rog— when n = 4. It is indeed interesting to study
this aspect for the general case n > 5, because it could be used to determine the corresponding
distribution of circuits into equivalence classes.

Acknowledgments. We would like to thank a Reviewer for suggesting the last remark
on distributing circuits into equivalence classes and for several comments that have helped

considerably in improving this paper.
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Appendix

Proof (Proposition 18). Let us assume without loss of generality, that the element shared
with E is (2, j2,1). Our goal is to enforce a repetition of a pair in the first two columns, therefore

since value 1 already appears in cell (2, j3) we can start by emptying all other cells in row 2.
Case 18.1 Emptying 1 cell in row 1 and n — 1 cells in row 2

Here, by definition cell (1, j1) is emptied in the first row resulting in an incomplete Latin rectangle

of type I which is clearly dominated by the pink rectangle R5.  (type I).
Case 18.2 Emptying 2 cells in row 1 and n — 1 cells in row 2

In the second row, all cells but (2, j2) are emptied and in the first row we can assume that the
cells emptied are (1,j;) and (1, j2) with missing values {1,2}. This gives rise to R3;_ which
is pink (type I), since value 1 is forbidden for the cell (1, j2) hence appearing with a ‘*’ in the
availability matrix of row 1, leaving value 1 as the only option for cell (1, j1). Emptying any cell
other than (1, j2), e.g., (1,73) will give rise to a non-pink rectangle, since value 1 can then be
placed in cell (1,73) and value 2 in cell (1, j1). Emptying additional cells in row 1 will result in
a similar non-pink structure, unless an additional cell is filled in row 2 to enforce the selection

of value 1 in cell (1, 71), hence Case 18.4.
Case 18.3 Emptying 2 cells in row 1 and n — 2 cells in row 2

In the second row, all cells but (2,j;) and (2, j2) can be emptied and in the first row we can
assume that the cells emptied are (1,71) and (1, j2) with missing values {1,2}. Emptying cells
(1,41) and (1, j2) gives rise to R5g_ which is pink (type III) since values 1 and 2 are forced to
appear in cells (1,71) and (1, j2) due to the ‘«’ appearing in the availability matrices, indicating

that cells (2,71) and (2, j2) contain values 2 and 1, respectively.

Case 18.4 Emptying 3 cells in row 1 and n — 2 cells in row 2
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2 2 3 3 3 3 313 /3 3

3 3 3 3 4 4 4 4 4 4

n n n n n n ..n n n .
A’ Row 1, Col 1 A’ Row 0, Col 0 A’y Row 1, Col 1

Figure 7: Availability matrices for the rectangles of Proposition 18

2 /2 2 2
3 3
3] 3 3 3
n n
n\n n n
Ass: Row n-1, Col n-2 As: Row n-2, Col n-2

(Common columns are js...jn)

Figure 8: Availability matrices for the rectangles of Proposition 20

Here, emptied cells in the second row remain as per previous case, while in row 1 cells (1, 1),
(1, j2) and (1, j3) are emptied with missing values {1,2,3}. This gives rise to R%, which is pink
(type II) and which is completable either by placing value 1 in (1,5;) or value 2 in (1, j3) or
both. Notice that emptying any other cell from row 1 leads to a non-pink rectangle.

Incomplete rectangles R35, R3¢, R5;, are shown in Table 17, while their availability matrices
are shown in Figure 7. Notice that although A3, C A3; and A%; C A3;, by Remark 15 R3q_ is
not dominated (recall Definition 14) since being of type III, whereas R3;_ is of type I and R}, _
is of type I1. m

Proof (Proposition 20). The two elements shared with E are (1,j1,1) and (2, j2,1);
keeping only these two elements yields the first availability matrix of Figure 8, i.e., Rog— which
is of type I and clearly dominates any other incomplete rectangle of the same type that shares
two elements with F but has fewer empty cells. However, we may also include elements (1, jo, 2)
and (2, j1,2), thus yielding the second matrix of Figure 8 that corresponds to Rag_. Although
Rog— C Rog_, Rog_ is not dominated since it is of type III, whereas Raog_ is of type I. =
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J1 J2 J3 Ja - Jn J1 J2 J3 Ja Jn
ko | ks | Ki\{1, ko, k3} ko | ks | kg | Ki\{1, ko, k3, kq}
k1 Ki\{1,2} k1 Ki\{1,2,3,k1}
Rl_ RS—
J1 J2 J3 Ja Jn 1 J2 J3 Jn
913 ks | Ki\(L,2,3, k) ko | k3 | Ki\{L, ka, ks )
ki Ki\{1,2,3. k1) K\{1,2,3)
Ry R
Ji1 J2 J3 J4 Jn Ji1 o J2 Jz .- Jn
213 |4 Kl\{1,2,3,4} Kl\{l,Z}
Ki1\{1,2,3,4} n | K1\{1,3,n}
RE_ R
J1 J2 J3 Ja Jn J1 J2 J3 Ja Jn
k1 Ki\{1,2,k} 34| Ki1\{1,2,3,4}
ko ks | K1\{1,2, kg, ks} k1 Ki\{1,3,4,k}
Ry 12—
J1 J2 J3 Jn JiJ2 J3 Ja Jn
3| Ki1\{1,2,3} 3 Ki\{1,2,3}
Ki\{1,3,4} k1 | K1\{1,2,3,k}
Ris_ 14—

J1 J2 J3 Ja Js Jn J1 J2 J3 Ja Jn
4 | 5 | K1\{1,2,3,4,5} 5 | K1\{1,2,3,5}

2 3 Ki1\{1,2,3,4,5} 2 Ki\{1,2,4,5}

16— 17—

Ji1 J2 J3 Jn J1 J2 J3 Ja Js Jn
Kl\{l,2,3} 4 Kl\{l,2,3,4}
Ki\{1,4,5} 3 k1 | K1\{1,2,3,4}

RIS— Tg,
Ji1 J2 J3 Ja Jn Ji1J2 Js Jn
4 | K1\{1,2,3,4} Ki\{1,2,3}
3 Kl\{1,2,3,4} Kl\{1,2,4}
Ry Ro1_
Ji1J2 J3 Ja Js Jn
Ki1\{1,2,3}
k1 ko | [ Ki\{1,2,3}

Table 22: Non-pink rectangles
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J1

Jn

R (L2 ks)

k1

Kl\{1> 2}

J1

*
1—
In

KL )

Kl\{L 2}

Ji

Ry

Jn

R\(,2)

Kl\{l’ 2}

J1

Ry

J3

Jn

3

Ki\{1,2,3}

Ki1\{1,2,3}

J1

J3

i

j4 ]n

1%1\{1,2,3}

| K1\{1,2,3,n}

J1

J2

J3

Ry
i

K\ (12)

| K1\{1,2,3}

J1

J2

R:_

Jn

R(L2)

Kl\{173}

Ji

J2

J3

Rs_

Jn

R (12)

| Ki\{1,2,n}

J1

J2

Jn

K12}

Ki\{1,2}

J1

J2

J3

Ry1-

Jn

k1

Kl\{lv 2: kl}

Ki\{1,2,3}

Ry5_

Table 23

AT = {(17j1) 1)1 (27j27 1)7 (2>j37 1)(27j37 2)}

Ag = {(ij 1)a (Qajl’ l)a (27j17 2)? (2,j2, 1)7 (27j27 2)}

A; = {(17j17 1)5 (27j1) 1)7 (27j17 2)a (2)j2a 1)}

AZ - {(17j17 1)? (27j17 1)7 (zvjla 2)7 (2?.j17 3)7 (27.j27 1)7
(27,727 3)> (27j37 1)a (27j3’ 2)}

Ag = {(le) 1)7 (17j37 1)7 (1>.j3a 2)3 (27j27 1)7
’ (27j47 1)7 (27j47 3)}

A:; = {(]"jl? 1)’ (17j27 1)7 (1’j2’ 2)7 (2’j25 1)7 (2aj23 3)’
(27j37 1)7 (27j37 3)}

Ag = {(17j17 1)7 (17j1’ 2)7 (17j27 1)7 (1)j27 2)7 (27j17 1)
(27j17 3)7 (2>j27 1)7 (27j27 3)}

AIO = {(17j17 1)7 (17j17 2)7 (17j27 1)7 (1aj27 2)7 (27j27 1);
(23j2> 2)a (27j37 1)7 (2?j3a 2)}

An = {(lvjla 1)7 (lev 2)7 (1aj27 1)7 (17j27 2)7 (27j17 1)
(27j15 2)7 (2)j27 ]-)7 (2)j27 2)}

Ay = {(lea 1)7 (lea 2)7 (1aj27 1)a (Lj?v 2)7 (2aj17 1)5
(27j17 2)7 (27j17 S)a (27j27 1)7 (27j27 2)7 (27j27 3)7
(27j37 1)a (27j3’ 2)7 (27j3a 3)}

: Pink rectangles and set notation
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Ji

J2

Jn

3 | K1\{1,2,

3}

Kl\{lv 2,

3}

J1

J2

.RT?—
J3 )4

Jn

K\{1.2.3]

n | K1\{1,2,3,n}

J1

J2

J3

Jn

Kl\{17 27

3}

Kl\{]-a 27

3}

J1

J2

Ros—

Jn

K\ (1.2)

J1

J2

R5
Jn

KL

J1

J2

R§6_
J3

Jn

\ }{’1\{1,2,

3}

J2

Ry,
- jn

Ros_
Jn

Rag—

Table

24

ATE) = {(17j17 ]-)7 (1)j17 2)7 (1aj27 1)7 (17j27 2)) (27j17 1)7
(27j17 2)? (27j17 3)1 (27j27 1)7 (2>j27 2)7 (2)j27 3)7
(27j37 1)7 (27j37 2)}

Aoz = {(lvjla 1)7 (lev 2)7 (lev 3)7 (17j27 1)7 (17j27 2)a
(17j27 3)’ (17j37 1)a (17j3’ 2)7 (17j3,3)7 (2,j1, 1)7
(Qajla 2)7 (27j1> 3)a (27j27 1)7 (27.727 2)7 (2>j2a 3):

(27j47 1)7 (27j4’ 2)7 (27]473)}

Ags = {(lvjla 1)7 (lev 2)7 (lev 3)7 (laj27 1)7 (17j27 2)a
(1aj27 3)’ (17j37 1)’ (17j3’ 2)7 (17j373)7 (2,j1, 1)7
(Qajla 2)7 (27j1> 3)a (27j27 1)7 (27.727 2)7 (2vj2a 3):

(27j37 1)7 (27j3) 2)7 (27j37 3)}

Ass ={(1,51,1), (1,51,2), (1, j2, 2),
(27j17 2)7 (27j173)a ey (2ajla TL),
(27j37 2)7 weey (27j37n)7 ceey (27jn7 2)7 ceey (2,]7—“77,)}

A§6 = {(17j17 1)7 (17j27 2)7 (27j37 3)7 ey (27j37n)7 ceey
(2’jn7 3)’ b} (27.7”7”)}

A;? - {(1,j1, 1)7 (17j27 2)7 (17j37 1)7 (17j37 2)7 (17j37 3)
(2aj37 3)) ceey (2,j3,’l’l), ceey (27jna 3)7 ceey (27]717”)}

A28 = {(17j2a 2)7 ceey (17j2a n)a seey (Ljn» 2)7 ceey (]-7jn; n)
(27j17 2)7 ceey (27j17 n)? (27j37 2)7 vy (27j37n)"'7
(2,Jns3), -+ (2, n, 1)}

Agg = {(1,j3, 3), veey (1,j3, n), ceny (1,jn,3), ceey (1,jn, n),
(2,73,3), 0y (2,73,m), o0y (2, G0y 3)5 ooy (2, G, ) }

: Pink rectangles and set notation (Continued)
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J1 J2 J3 Jn
1|2 | ks | Ki\{1,2,ks}
ki | 1] 2| Ki\{1,2,k}
i
J1 g2 Jn
1 [ ks | Ki\{L K2}
2 1] Ki\{L2}
Ry
J1 J2 J3 Ja - Jn
132 K1\{1,2,3}
2 1 [n|3]K\{123n}
i
1 J2 Jz Jn 1 J2 Jz Jn
1| 2 Kl\{l,Q} 2|1 Kl\{l,Z}
n|1]2][K\{1,2n} Cin 21 [ K\{1,2,n}
Ryo- Ryo—
jl j2 .]n
1] 2] Ki\{L2}
ki | 1
R55_
J1 J2 In
1 k1
ko 1

Table 25: Completion of type I pink rectangles
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J1_J2 J3 Jn 1 J2 J3 Jn
123 K\{L2,3} 123 K\{1,23}
312 K\{L23} 2 [ 3| 1] K\{L2,3}

R;_ R;_
i J2 J3 Jn 1 J2 J3 Jn
1] 2 K\{1,2} 1] 2 Ki\{1,2}
2 [1]3]K\{1,23} 2 [3]1]K\{1,23}
J1 )2 In J1 ]2 Jn
12 K\{1,2] 2 (1] Ki\{L2]
31| Ki\{1,3} 13| Ki\{1,3}

Rs_ Rg_

J1J2 J3 Jn A J2 Js - Jn
12 [k | Ki\{1,2,k1) 12 [k | Ki\{1,2, k1)
2 13| K1\{1,2,3} 312 Ki\{1,2,3}

Ry5- Ry5—
1 J2 Jz - Jn . J2 Jz - Jn
2 [ 1 [k | Ki\{L,2, K1} 2 [ 1 [k | Ki\{L,2,k1}
123 K1\{1,2,3} 32| 1] K\{1,2,3}

Rys5- Rys5—
1 J2 J3 - Jn 1 J2 3 Jn
123 K\{L2,3} 1123 K\{1,23}
312 K\{L23} 2 [ 3| 1] K\{L2,3}
Ji1J2 J3 - In Ji J2 J3 Jn
2 1] 3] K\{L23} 2 (1] 3][K\{L2,3}
132 K\{123} 32 1] K\{L23}
o I ‘ o B )
Ji1 J2 J3 J4 - In Ji1 J2 I3 J4 - In
123 K1\{1,2,3} 123 K\{1,2,3}
2[1[n|3][K\{1,23n} 23| n|1][K\{1,23n}

Ros— Ros—
J1J2 J3 J4a - Jn
123 Ki\{1,2,3} Similar completion for Rog_ if values
3|1 |n|2 ‘ Ki\{1,2,3,n} 1,2, 3 are placed in different cells in first row.
Ros_

1 J2 J3 Jn 1 J2 3 Jn
1123 K\{L2,3} 123 K\{123}
2 |3 | 1| K\{L,23} 312 K\{L2,3}

Ros— Ros—

Similar completion for Roy4— if values 1,2, 3 are placed in different cells in first row.

Table 26: Completion of type II pink rectangles
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JiJ2 Jz - Jn Ji J2 Jz - Jn

1]2]3]K\{1,23} 1 2 [ Ki\{1,2,3}
2 11 21
Ry Ry
J1 J2 J3 Jn
3[2]1]K\{1,23}
2 11
Ry

Table 27: Completion of type II pink rectangles (Continued)

1 J2 Jn
1] 2] K12}
21| Ki\{1,2)
s
1 J2 Jn
1 K\{1,2)
2|1
Rag
J1 J2 Jn
2
1
Roo_
1 J2 Jn J1 J2 Jn
2 | Ki\{1,2} 2 11 K\{1,2}
2 11| Ka\dL2y | [1] 2] K\{L2}
Ry Ry

Table 28: Completion of type III pink rectangles

Complete list of non-equivalent C,\C; circuits for n = 3

J1 J2  J3 J1 J2 J3
3 3
1 1
R35_ R3s_

Table 29: Circuit in Co 2
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Ji1 J2  J3 Ji1 J2  J3
3 1
1 1
R Rog—

Table 30: Circuit in Co 3

Ji J2  J3 Ji J2 J3
1 1
1 1
R28_ R28—

Table 31: Circuit E € Co4

Complete list of non-equivalent C,\C; circuits for n = 4

Ji J2 J3 Ja Ji J2 J3  Ja

3 4 3 4
2 4 2 4
Ri_ R

Ji1 J2 J3 Ja Ji J2 J3  Ja

3 4 3| 4

2 4 4 3
Ri_ Rio_

Ji J2 J3 Ja Ji J2 J3 Ja

3| 4 3| 4

4 3 4 3
Ryo— Ryo-

Table 32: Circuits in Ca
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J1 o J2 J3  Ja J1 J2 J3 Ja
3 4 314
2 4 1
R§_ R
Ji J2 J3 Ja J1 J2 J3 Ja
3| 4 31| 4
4 3 1
Rl()_ R;EB,
Table 33: Circuits in Ca 1
Ji1 o J2 J3 Ja J1 J2 J3 Ja
3 4 1
2 4 1
Rgi Rog
Ji o J2 J3  Ja J1 J2 J3 Ja
3 4 1
4 3 1
Rio- Ras—
J1 J2 J3 Ja J1 J2 J3 Ja
3 4 1
4 | 3 1
Ri- Ris_
Ji J2 J3 Ja Ji1 J2 J3 Ja
314 3| 4
1 1
Ry Ry
Table 34: Circuits in Ca 2
Ji J2 J3 Ja Ji1 J2  J3 J3
314 1
1 1
Rys Ras—
Ji1 J2 J3 Ja J1 J2 J3 I3
4 1 2
2 1 2 1
Ry Rag—
Table 35: Circuits in Co 3
Ji1 J2 J3 Ja Ji1 Je2  J3 J3
1 1
1 1
R3g_ Rg_

Table 36: Circuit E € Coy4

36
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