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Effros, Baire, Steinhaus and Non-Separability

By A. J. Ostaszewski

Abstract. We give a short proof of an improved version of the Effros Open
Mapping Principle via a shift-compactness theorem (also with a short proof),
involving ‘sequential analysis’ rather than separability, deducing it from the
Baire property in a general Baire-space setting (rather than under topological
completeness). It is applicable to absolutely-analytic normed groups (which
include complete metrizable topological groups), and via a Steinhaus-type
Sum-set Theorem (also a consequence of the shift-compactness theorem) in-
cludes the classical Open Mapping Theorem (separable or otherwise).

Keywords: Open Mapping Theorem, absolutely analytic sets, base-o-
discrete maps, demi-open maps, Baire spaces, Baire property, group-action
shift-compactness.

Classification Numbers: 26A03; 04A15; 02K20.

1 Introduction

We generalize a classic theorem of Effros [Eff] beyond its usual separable
context. Viewed, despite the separability, as a group-action counterpart of
the Open Mapping Theorem OMT (that a surjective continuous linear map
between Fréchet spaces is open — cf. [Rud]), it has come to be called the
Open Mapping Principle — see [Anc, §1]. Our ‘non-separable’ approach is
motivated by a sequential property related to the Steinhaus-type Sum-set
Theorem (that 0 is an interior point of A — A, for non-meagre A with BP,
the Baire property — [Pic]), because of the following argument (which goes
back to Pettis [Pe]).

Consider L : E — F, a linear, continuous surjection between Fréchet
spaces, and U a neighbourhood (nhd) of the origin. Choose A an open nhd
of the origin with A— A C U; as L(A) is non-meagre (since {nL(A) : n € N}
covers I') and has BP (see Proposition 2 in §2.3), L(A) — L(A) is a nhd of
the origin by the Sum-set Theorem. But of course

L(U) 2 L(A) = L(4),



so L(U) is a nhd of the origin. So L is an open mapping.!

Throughout this paper, without further comment, all spaces considered
will be metrizable, but not necessarily separable. We recall the Birkhoff-
Kakutani theorem (cf. [HewR, §I1.8.3]), that a metrizable group G with neu-
tral element ec has a right-invariant metric d%. Passage to ||g|| := d%(g, eq)
yields a (group) norm (invariant under inversion, satisfying the triangle in-
equality), which justifies calling these normed groups; any Fréchet space qua
additive group, equipped with an F-norm ([KalPR, Ch. 1 §2]), is a natural
example (cf. Auth in §2.2). Recall that a Baire space is one in which Baire’s
theorem holds — see [AaL]. Below we need the following.

Definitions 1 (cf. [Pe]). For G a metrizable group, say that ¢ : Gx X — X
is a Nikodym group action (or that it has the Nikodym property) if for
every non-empty open neighbourhood U of es and every z € X the set
Uz = ¢,(U) := p(z,U) contains a non-meagre Baire set. (Here Baire set, as
opposed to Baire space as above, means ‘set with the Baire property’.)

2. A7 denotes the quasi-interior of A — the largest open set U with U\ A
meagre (cf. [Ostl, §4]); other terms (‘analytic’, ‘base-o-discrete’, ‘group
action’) are recalled later.

Concerning when the above property holds see §2.3. Our main results are
Theorems S and E below, with Corollaries in §2.3 including OMT; see below
for commentary.

Theorem S (Shift-compactness Theorem). For T a Baire non-
meagre subset of a metric space X and G a group, Baire under a right-
wmvariant metric, and with separately continuous and transitive Nikodym ac-
tion on X:

for every convergent sequence x, with limit x and any Baire non-meagre
A C G with eq € A? and Alx NT9 # 0, there are o € A and an integer N
such that ax € T and

{a(z,) :n>N}CT.

In particular, this is so if G is analytic and all point-evaluation maps ¢, are
base-o-discrete.

IThis proof is presumably well-known — so simple and similar to that for the automatic
continuity of homomorphisms — but we have no textbook reference; cf. [KalPR, Cor. 1.5].



This theorem has wide-ranging consequences, including Steinhaus’ Sum-
set Theorem — see the survey article [Ost4], and the recent [BinO3].

Theorem E (Effros Theorem — Baire version). If
(i) the normed group G has separately continuous and transitive Nikodym
action on X;
(ii) G is Baire under the norm topology and X is non-meagre
— then for any open neighbourhood U of eq and any © € X the set Uz :=
{u(z) : w € U} is a neighbourhood of x, so that in particular the point-
evaluation maps g — g(x) are open for each x. That is, the action of G 1is
micro-transitive.

In particular, this holds if G is analytic and Baire, and all point-evaluation
maps ¢, are base-o-discrete.

By Proposition B2 (§2.3) X, being non-meagre here, is also a Baire space.

The classical counterpart of Theorem E has G' a Polish group; van Mill’s
version [vMill] requires the group G to be analytic (i.e. the continuous image
of some Polish space, cf. [JayR], [Kec2]). The Baire version above improves
the version given in [Ost3], where the group is almost complete. (The two
cited sources taken together cover the literature.)

A result due to Loy [Loy] and to Hoffmann-Jgrgensen [HofJ, Th. 2.3.6 p.
355] asserts that a Baire, separable, analytic topological group is Polish (as
a consequence of an analytic group being metrizable — for which see again
[HofJ, Th. 2.3.6]), so in the analytic separable case Theorem E reduces to
its classical version.

Unlike the proof of the Effros Theorem attributed to Becker in [Kecl, Th.
3.1], the one offered here does not employ the Kuratowski-Ulam Theorem (the
Category version of the Fubini Theorem), a result known to fail beyond the
separable context (as shown in [Pol], cf. [vMilP], but see [FreNR]).

For further commentary (connections between convexity and the Baire
property, relation to van Mill’s separation property in [vMil2], certain spe-
cializations) see the extended version of this paper on arXiv.

2 Analyticity, micro-action, shift-compactness

We recall some definitions from general topology, before turning to ones that
are group-related. We refer to [Eng] for general topological usage (but prefer
‘meagre’ to ‘of first category’).



2.1 Analyticity

We say that a subspace S of a metric space X has a Souslin-H representation
if there is a determining system (H(i|n)) := (H(i|n) : i € NV) of sets in H
with ([Rog], [Han2])

S = Uiel ﬂneN H(iln), (I:=N", in = (i1, ...,in)).

A topological space is an (absolutely) analytic space if it is embeddable as a
Souslin-F set in its own metric completion (with F the closed sets); in par-
ticular, in a complete metric space Gs-subsets (being F,s) are analytic. For
more recent generalizations see e.g. [NamP]. According to Nikodym’s theo-
rem, if H above comprises Baire sets, then also S is Baire (the Baire property
is preserved by the Souslin operation): so analytic subspaces are Baire sets.
For background — see [Kec2] Th. 21.6 (the Lusin-Sierpinski Theorem) and
the closely related Cor. 29.14 (Nikodym Theorem), cf. the treatment in [Kur]
Cor. 1 p. 482, or [JayR] pp. 42-43. For the extended Souslin operation of
non-separable descriptive theory see also [Ost2]. This motivates our inter-
est in analyticity as a carrier of the Baire property, especially as continuous
images of separable analytic sets are separable, hence Baire.

However, the continuous image of an analytic space is not in general
analytic — for an example of failure see [Han3] Ex. 3.12. But this does
happen when, additionally, the continuous map is base-o-discrete, as defined
below (Hansell’s Theorem, [Han3] Cor. 4.2). This technical condition is the
standard assumption for preservation of analyticity and holds automatically
in the separable realm. Special cases include closed surjective maps and open-
to-analytic injective maps (taking open sets to analytic sets). To define the
key concept just mentioned, recall that for an (indexed) family B := {B; :
teT}:

(i) B is indez-discrete in the space X (or just discrete when the index set T
is understood) if every point in X has a nhd meeting the sets B, for at most
oneteT,

(ii) B is o-discrete if B =, B, where each set B, is discrete as in (i), and
(iii) B is a base for A if every member of A is the union of a subfamily of B.
For 7 a topology (the family of all open sets) with B C 7 a base for 7, this
reduces to B being simply a (topological) base.

Definitions. 1. ([Micl], Def. 2.1) Call f : X — Y base-o-discrete (or
co-o-discrete, [Han3, §3]) if the image under f of any discrete family in X
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has a o-discrete base in Y.

2 ([Han3, §2]). An indexed family A := {A, : t € T} is o-discretely decompos-
able if there are discrete families A, := {4, : t € T'} such that 4, =, Aw,
for each t.

3 ([Micl], Def. 3.3). Call f : X — Y index-o-discrete if the image under f of
any discrete family £ in X is o-discretely decomposable in Y. (Note f(&) is
regarded as indexed by &, so could be discrete without being index-discrete.)

2.2 Action, micro-action, shift-compactness

Recall that a normed group G acts continuously on X if there is a continuous
mapping ¢ : G x X — X such that p(eq,z) = x and p(gh, z) = p(g, p(h,x))
(x € X,g,h € G).The action ¢ is separately continuous if g : x +— (g, x) is
continuous for each g, and ¢, : g — (g, ) is continuous for each z; in such
circumstances:
(i) the elements g € G yield autohomeomorphisms of X via g : z +— g(z) :=
©(g,z) (as g~1 is continuous), and
(ii) point-evaluation of these homeomorphisms, ¢, (g) = g(z), is continuous.
In certain situations joint continuity of action is implied by separate conti-
nuity (see [Bou] and literature cited in [Ost2]).

The action is transitive if for any x,y in X there is ¢ € G such that
g(x) = y. For later purposes (§2.3 and 3), say that the action of G on X is
weakly micro-transitive if for x € X and each nhd A of es the set

cl(Az) = cl{az :a € A}

has x as an interior point (in X'). The action is micro-transitive (‘transitive
in the small’ — for details see [vMill]) if for € X and each nhd A of e the
set

Ax ={ax :a € A}

is a nhd of z. This (norm) property implies that Uz is open for U open in
G (i.e. that here each ¢, is an open mapping). We refer to Az as an x orbit
(the A-orbit of x). The following group action connects the Open Mapping
Theorem to the present context.

Example (Induced homomorphic action). A surjective, continuous
homomorphism A : G — H between normed groups induces a transitive
action of G on H via ¢*(g,h) := A(g)h ( cf. [Ost2] Th. 5.1), specializing



for G, H Fréchet spaces (regarded as normed, additive groups) and A = L :
G — H linear (Ancel [Anc|] and van Mill [vMill]) to

©"(a,b) := L(a) + .

Of course for Fréchet spaces, by the Open Mapping Theorem itself, o has
the Nikodym property.

Definitions. 1. Auth(X) denotes the autohomeomorphisms of a metric
space (X,dX); this is a group under composition. H(X) comprises those
h € Auth(X) of bounded norm:

|h]] := sup,ex dX(h(x),x) < 0.

2. For a normed group G acting on X, say that X has the crimping property
(property C for short) w.r.t. G if, for each x € X and each sequence {z,} —
x, there exists in G a sequence {g,} — eg with g,(x) = z,. (This and a
variant occurs in [Ban, Ch. III; Th.4]; and [ChCh]; for the term see [BinO2].)

For a subgroup G C H(X), say that X has the crimping property w.r.t.
G if X has the crimping property w.r.t. to the natural action (g,z) — g(x)
from G x X — X. (This action is continuous relative to the left or right norm
topology on G — cf. [Dug] XII.8.3, p. 271.)
3. As a matter of convenience, say that the Effros property (or property E)
holds for the group G acting on X if the action is micro-transitive, as above.
4. For a subgroup G C Auth(X) say that X is G-shift-compact (or, shift-
compact under G) if for any convergent sequence z,, — ¢, any open subset U
in X and any Baire set T' co-meagre in U, there is g € G with g(x,) € TNU
along a subsequence. Call the space shift-compact if it is H(X)-shift-compact
(cf. [MilO], [Ost5]).

In such a space, any Baire non-meagre set is locally co-meagre (co-meagre
on open sets) in view of Prop. B2 below.

We shall prove in § 3.1 equivalence between the Effros and Crimping
properties:

Theorem EC. The Effros property holds for a group G acting on X iff
X has the Crimping property w.r.t. G.

We now clarify the role of shift-compactness.

Proposition B1. For any subgroup G C H(X), if X is G-shift-compact,
then X is a Baire space.



Proof. We argue as in [vMil2] Prop 3.1 (1). Suppose otherwise; then
X contains a non-empty meagre open set. By Banach’s Category Theorem
(or localization principle, for which see [JayR| p. 42, or [Kel] Th. 6.35),
the union of all such sets is a largest open meagre set M, and is non-empty.
Thus X\ M is a co-meagre Baire set. For any = € M the constant sequence
x, = x is convergent and, since X\ M is co-meagre in X, there is g € G with
g(x) € X\M. But, as g is a homeomorphism, g(M) is a non-empty open
meagre set, so is contained in M, implying g(z) € M, a contradiction.

A similar argument gives the following and clarifies an assumption in
Theorem E.

Proposition B2 (cf. [vMil2]; [HofJ, Prop. 2.2.3]). If X is non-meagre
and G acts transitively on X, then X is a Baire space.

Proof. As above, refer again to M, the union of all meagre open sets,
which, being meagre, has non-empty complement. For x; in this complement
and any non-empty open U pick u € U and g € G such that g(zq) = u. Now,
as g is continuous, g1 (U) is a nhd of xy, so is non-meagre, since every nhd
of zg is non-meagre. But g is a homeomorphism, so U = g(¢~!(U) is non-
meagre. So X is Baire, as every non-empty open set is non-meagre. [

2.3 Nikodym actions

The following result generalizes one that, for separable groups G, is usually a
first step in proving the weakly micro-transitive variant of the classical Effros
Theorem (cf. Ancel [Anc] Lemma 3, [Ost3] Th. 2). Indeed, one may think
of it as giving a form of ‘very weak micro-transitivity’.

Proposition 1. If G is a normed group, acting transitively on a non-
meagre space X with each point evaluation map ¢, : g — g(x) base-o-discrete
relative — then for each non-empty open U in G and each x € X the set Ux
18 non-meagre in X.

In particular, if G is analytic, then G is a Nikodym action.

Proof. We first work in the right norm topology, i.e. derived from the
assumed right-invariant metric d%(s,t) = ||st71||. Suppose that u € U, and
so without loss of generality assume that U = B.(u) = B:(eg)u (open balls of
radius some € > 0); then put y := uzr and W = B.(eg). Then Uz = Wy. Next
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work in the left norm topology, derived from d¥ (s, t) = |[s~!t|| = d5%(s71,t7})
(for which W = B.(e¢) is still a nhd of eg). As each set hW for h € G is
now open (since now the left shift ¢ — hg is a homeomorphism), the open
family W = {gW : g € G} covers G. As G is metrizable (and so has a
o-discrete base), the cover W has a o-discrete refinement, say V = J,, .y Vn
with each V, discrete. Put X, := J{Vy : V € V,,}; then X = (J, .y Xy, as
X = Gy, and so X, is non-meagre for some n, for n = N say. Since gpy i
base-o-discrete, {Vy : V € Vy} has a o-discrete base, say B = |
with each B,, discrete. Then, as B is a base for {Vy:V € Vy},

mGN

xy=J <U{B €B,,:(3VeVy)BC Vy})

So for some m, say for m = M,
| {B€B,.:(3VeVy)BCVy}

is non-meagre. But as By is discrete, by Banach’s Category Theorem (Cf
Prop. B1), there are B € By, and V € Vy with B C Vy such that B is
non-meagre. As V refines VW, there is some § € G with vV C gW, so B C
Vy C gWy, and so gWy is non-meagre. As §—! is a homeomorphism of X,
Wy = Ux is also non-meagre in X.

If G is analytic, then as U is open, it is also analytic (since open sets
are F, and Souslin-F subsets of analytic sets are analytic, cf. [JayR]), and
hence so is ¢, (U). Indeed, since ¢, is continuous and base-o-discrete, Ax is
analytic (Hansell’s Theorem, §2.1), so Souslin-F, and so Baire by Nikodym’s
Theorem (§2.1). O

Definition. (Ancel [Anc]). Call the map ¢, countably-covered if there
exist self-homeomorphisms h; of X for n € N such that for any open nhd U
in G the sets {hZ(p,(U)) : n € N} cover X.

Proposition 1’ (cf. Ancell [Anc]) For the action ¢ : G x X — X with
X mnon-meagre, if each map ¢, is countably-covered and takes open sets to
sets with the Baire property, then the action has the Nikodym property.

Proof. If ¢, is countably-covered, then there exist self-homeomorphisms
h% of X for n € N such that for any open nhd U in G the sets {hZ(¢,(U)) :
n € N} cover X. Then for X non-meagre, there is n € N with hZ(p,(U))
non-meagre, so Uzx = ¢, (U) is itself non-meagre, being a homeomorphic copy
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of hl (¢, (U)). As Uz is assumed Baire, the action has the Nikodym property.
0

For E separable, an immediate consequence of continuous maps taking
open sets to analytic sets (which are Baire sets) and of Prop. 1’ is that ”
is a Nikodym action.

For the general context, one needs demi-open continuous maps, which
preserve almost completeness (absolute Gs sets modulo meagre sets — see
[Mic2] and its antecedent [Nol]), as it is not known which linear maps are
base-o-discrete — a delicate matter to determine, since the former include
continuous linear surjections (by Lemma 1 below) and preserve almost ana-
lyticity as opposed to analyticity.

For present purposes, however, the monotonicity property below suffices.
We omit the proof of the following observation (for which see the opening
step in [Rud, 2.11], or [Con, Ch. 3 §12.3], or the Appendix in the arXiv
version of this paper). For the underlying translation-invariant metric of a
Fréchet space denote below by B(a,r) the open r-ball with centre a.

Lemma 1. For a continuous linear map L : X — 'Y from a Fréchet space
X to a normed space Y, for s <t <r

int(clL(B(0,5))) € L(B(0,t)) C L(B(0,r)).

Hence for L(a,r) convex, either L(B(a,r)) is meagre or differs from intL(B(a, 1))
by a meagre set.

Proposition 2. For L a continuous linear surjection from a Fréchet
space E to a non-meagre normed space F, the action ©* has the Nikodym

property.

Proof. As in Prop 1’ for L : E — F a continuous linear surjection,
{pL : z € F} are countably-covered. Indeed, fixing z € F

hi(z) :=n(z — x) (neNand z € F)

is on the one hand a self-homeomorphism satisfying hZ (¢, (L(V))) = L(nV),
since n[(L(v) + x) — 2] = nL(v) = L(nv); on the other hand the family

{ha(L(V) +x):n =1}



covers F, as {nV : n € N} covers F for V any open nhd of the origin in F
(by the ‘absorbing’ property, cf. [Con, 4.1.13], [Rud, 1.33]). In particular,
nL(B(0,1)) is non-meagre for some n, and so L(B(0,s)) is non-meagre for
any s. By Lemma 1, L(B(0,t)) for any ¢ > s contains the non-meagre Baire
set clL(B(0,s)). O

Corollary 1 below is now immediate; it is used in [Ost2, Th. 5.1] to
prove the ‘Semi-Completeness Theorem’, an Ellis-type theorem [Ell, Cor.
2] (cf. [Ost6]) giving a one-sided continuity condition which implies that a
right-topological group generated by a right-invariant metric is a topological

group.

Corollary 1 (cf. [Ost2, Th. 5.1], ‘Open Homomorphism Theorem’). If
the continuous surjective homomorphism A between normed groups G and
H, with G analytic and H a Baire space, is base-o-discrete, then \ is open;
in particular, for X bijective, X" is continuous.

Corollary 2. For L : E — F a continuous surjective linear map between
Fréchet spaces, the point evaluations oF for b € F are open, and so L is an
open mapping.

Proof. By surjectivity of L, the action is transitive, and by Prop 2 the
action o’ has the Nikodym property. So by Theorem E above the point-
evaluations maps ¢} are open. Hence so also is L. [

3 Proofs

3.1 Proof that E — C

In [BinO1] Th. 3.15 we showed that if the Effros property holds for the
action of a group G on X, then X has the crimping property w.r.t. G. We
recall the argument, as it is short. Suppose that x = limx,. For each n,
take U = BlG/n(eg); then Uz := {u(z) : w € U} is an open nhd of z, and so
there exists hy,,,, € U with hy, ,(x) = z,, for all m large enough, say for all
m > m(n). Without loss of generality we may assume that m(1) < m(2) < ....
. Put hy, := eq for m < m(1), and for m(k) < m < m(k+1) take hy, := hj .
Then h,, € BlG/k(eg), so h,, converges to eg and h,,(eq) = Typ,.
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For the converse, suppose that the Effros property fails for G' acting on
X. Then for some open nhd U of e and some z € X, Uz := {u(z) : u € U}
is not an open nhd of x. So for each n there is a point z,, € By, (z)\Ux. As
T, converges to x there are homeomorphisms h, converging to the identity
eq with h,(z) = x,. As U is an open nhd of eg and since h,, converges to
eq, there is N such that h, € U for n > N. In particular, for any n > N,
hn(x) = x,, € Uz, a contradiction.

3.2 Weak S

We view Th. S as having ‘two tasks’: to find a ‘translator of the sequence’ 7,
and to locate it in a given Baire non-meagre subset of the group — provided
that subset satisfies a consistency condition (a necessary condition).

For clarity we break the tasks the into two steps — the first delivering a
weaker version of S in Proposition 3 below. The arguments are based on the
following lemma. We note a corollary, observed earlier by van Mill in the case
of metric topological groups ([vMil2, Prop. 3.4]), which concerns a co-meagre
set, but we need its refinement to a localized version for a non-meagre set.

Separation Lemma. Let G be a normed group, with separately con-
tinuous and transitive Nikodym action on a non-meagre space X. Then for
any point x and any F closed nowhere dense, W, p :={a € G : a(x) ¢ F}
is dense open in G. In particular, G separates points from nowhere dense
closed sets.

Proof. The set W, r is open, being of the form ¢ *(X\F) with ¢,
continuous (by assumption). By the Nikodym property, for U any non-empty
open set in G, the set Uz is non-meagre, and so Uz \ F' is non-empty, as F is
meagre. But then for some u € U we have u(x) ¢ F. O

Corollary 2. If G is a normed group, Baire in the norm topology with
transitive and separately continuously Nikodym action on a non-meagre space
X space, and T is co-meagre in X — then for countable D C X, the set
{g:9(D) CT} is a dense Gs.

In particular, this holds if G is analytic and each point-evaluation map
0, g — g(x) is base-o-discrete.

Proof. Without loss of generality, the co-meagre set is of the form 7" =
U\ U,.e., Fn with each F), closed and nowhere dense, and U open. Then, by
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the Separation Lemma and as G is Baire,
{9€G:g(D)CT} = ﬂ Ag:9(D)nF, =0} =)

is a dense G5. O

{9:9(d) ¢ F.}

deDnew

Proposition 3. If T is a Baire non-meagre subset of a metric space
X and G a normed group, Baire in its norm topology, acting separately
continuously and transitively on X, with the Nikodym property — then, for
every convergent sequence x,, with limit xq there is T € G and an integer N
with Txg € T and

{r(zy) :n >N} CT.

Proof. Write T":= M U (U\ U, .., F») with U open, M meagre and each
F, closed and nowhere dense in X. Let ug € T'N U. By transitivity there is
o € G with czg = ug. Put w,, := ox,,. Then u,, — ug. Put

C:= ﬂm’new{a €G:aluy) ¢ F,},
a dense G5 in (G; then, by the Separation Lemma above, as GG is Baire,
{a € G:aluy) eUNC

is non-empty. For « in this set we have a(ug) € U\, Frn- Now a(u,) —
a(up), by continuity of «, and U is open. So for some N we have for n > N
that a(u,) € U. Since {a(u,) : m = 1,2,..} € X\ U, ., Fn, we have for
n > N that a(u,) € U\U, ., Frn € T.

Finally put 7 := ao; then 7(z) = ao(z) € T and {7(x,) :n > N} CT.
0

new

3.3 Proof of S

We work in the right norm topology and use the notation of the preceding
proof (of Proposition 3), so that U here is the quasi-interior of 7" and oxy =
ug. As e € A9 and A is a non-meagre Baire set, we may without loss of
generality write A = B.(e¢)\ U,, G, where each G,, is closed nowhere dense
with eq ¢ G,, and B.(eg) is the quasi-interior of A.

As A%xyNT? is non-empty, there is ag € B.(eq) with agzg € U (but, we
want a better a so that axg € T and a € A). Put 3, = apo™!; then

By = ago t € B.eg)o ' n{a:alrg) € Uro™?
= B.(eq)o ' N{B: Bloxg) € U} = B.(eg)o * N{B: Bluy) € U},

12



i.e. the open set {3 : 3(up) € U} N B.(eg)o™! is non-empty. So

(C\ Un Gno )N {B: Blug) € UY N Be(eg)o ™t # 0,
since G is a Baire space and each G,o7! is closed and nowhere dense in G
(as the right shift ¢ — go~! is a homeomorphism).

So there is § with B(ug) € U such that a := fo € B.(eq)\U, Gn = A.
That is, axg = Pug € U; so B(u,) € U for large n, for n > N say, as axg =
lim ax,, = lim fox, = lim fu,. But {f(u,) : m =1,2,..} € X\U, Fn, as
B e C;so p(u,) € U\U,, Fr, CT forn > N.

Finally, a(zo) = fo(z9) € T and {«a(z,) :n> N} CT. O

3.4 Proof that S — E

Assume G acts transitively on X and that X is non-meagre. Let B := B.(eg)
and suppose that for some = the set Bx is not a nhd of . Then there is
r, — x with z,, ¢ Bx for each n. Take A := B, 3(e¢) and note first that A
is a symmetric open set (A™' = A, since ||g|| = ||¢7!||), and secondly that
by the Nikodym property Az contains a non-meagre, Baire subset 7. So
by Theorem S, as Ax meets 79, there are a € A (which being open has the
Baire property) and a co-finite M, such that az,, € Ax for m € M,. For any
such m, choose b,, € A with az,, = b,,xz. Then z,, = a~'b,,x € A%z C Bz, a
contradiction (note that a™! € A, by symmetry).

As earlier, in the special case that G is (metrizable and) analytic, A is
analytic, since open sets are F, and Souslin-F subsets of analytic sets are
analytic, cf. [JayR, Th. 2.5.3|, by Prop. 3 Az is Baire non-meagre, as ¢, is
base-o-discrete.

Acknowledgement. I thank the Referee for some thought-provoking
comments that influenced the final presentation, and Henryk Torunczyk for
drawing my attention to Ancel’s work and related literature.
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Rudin in 1972 (at the Keszthely conference) and subsequent frequent stays at
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