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Effros, Baire, Steinhaus and Non-Separability

By A. J. Ostaszewski

Abstract. We give a short proof of an improved version of the Effros Open
Mapping Principle via a shift-compactness theorem (also with a short proof),
involving ‘sequential analysis’rather than separability, deducing it from the
Baire property in a general Baire-space setting (rather than under topological
completeness). It is applicable to absolutely-analytic normed groups (which
include complete metrizable topological groups), and via a Steinhaus-type
Sum-set Theorem (also a consequence of the shift-compactness theorem) in-
cludes the classical Open Mapping Theorem (separable or otherwise).

Keywords: Open Mapping Theorem, absolutely analytic sets, base-σ-
discrete maps, demi-open maps, Baire spaces, Baire property, group-action
shift-compactness.
Classification Numbers: 26A03; 04A15; 02K20.

1 Introduction

We generalize a classic theorem of Effros [Eff] beyond its usual separable
context. Viewed, despite the separability, as a group-action counterpart of
the Open Mapping Theorem OMT (that a surjective continuous linear map
between Fréchet spaces is open —cf. [Rud]), it has come to be called the
Open Mapping Principle —see [Anc, §1]. Our ‘non-separable’approach is
motivated by a sequential property related to the Steinhaus-type Sum-set
Theorem (that 0 is an interior point of A − A, for non-meagre A with BP,
the Baire property —[Pic]), because of the following argument (which goes
back to Pettis [Pe]).
Consider L : E → F, a linear, continuous surjection between Fréchet

spaces, and U a neighbourhood (nhd) of the origin. Choose A an open nhd
of the origin with A−A ⊆ U ; as L(A) is non-meagre (since {nL(A) : n ∈ N}
covers F ) and has BP (see Proposition 2 in §2.3), L(A) − L(A) is a nhd of
the origin by the Sum-set Theorem. But of course

L(U) ⊇ L(A)− L(A),
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so L(U) is a nhd of the origin. So L is an open mapping.1

Throughout this paper, without further comment, all spaces considered
will be metrizable, but not necessarily separable. We recall the Birkhoff-
Kakutani theorem (cf. [HewR, §II.8.3]), that a metrizable group G with neu-
tral element eG has a right-invariant metric dGR. Passage to ||g|| := dGR(g, eG)
yields a (group) norm (invariant under inversion, satisfying the triangle in-
equality), which justifies calling these normed groups; any Fréchet space qua
additive group, equipped with an F-norm ([KalPR, Ch. 1 §2]), is a natural
example (cf. Auth in §2.2). Recall that a Baire space is one in which Baire’s
theorem holds —see [AaL]. Below we need the following.

Definitions 1 (cf. [Pe]). For G a metrizable group, say that ϕ : G×X → X
is a Nikodym group action (or that it has the Nikodym property) if for
every non-empty open neighbourhood U of eG and every x ∈ X the set
Ux = ϕx(U) := ϕ(x, U) contains a non-meagre Baire set. (Here Baire set, as
opposed to Baire space as above, means ‘set with the Baire property’.)
2. Aq denotes the quasi-interior of A —the largest open set U with U\A
meagre (cf. [Ost1, §4]); other terms (‘analytic’, ‘base-σ-discrete’, ‘group
action’) are recalled later.

Concerning when the above property holds see §2.3. Our main results are
Theorems S and E below, with Corollaries in §2.3 including OMT; see below
for commentary.

Theorem S (Shift-compactness Theorem). For T a Baire non-
meagre subset of a metric space X and G a group, Baire under a right-
invariant metric, and with separately continuous and transitive Nikodym ac-
tion on X:
for every convergent sequence xn with limit x and any Baire non-meagre

A ⊆ G with eG ∈ Aq and Aqx ∩ T q 6= ∅, there are α ∈ A and an integer N
such that αx ∈ T and

{α(xn) : n > N} ⊆ T.

In particular, this is so if G is analytic and all point-evaluation maps ϕx are
base-σ-discrete.

1This proof is presumably well-known —so simple and similar to that for the automatic
continuity of homomorphisms —but we have no textbook reference; cf. [KalPR, Cor. 1.5].
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This theorem has wide-ranging consequences, including Steinhaus’Sum-
set Theorem —see the survey article [Ost4], and the recent [BinO3].

Theorem E (Effros Theorem —Baire version). If
(i) the normed group G has separately continuous and transitive Nikodym
action on X;
(ii) G is Baire under the norm topology and X is non-meagre
— then for any open neighbourhood U of eG and any x ∈ X the set Ux :=
{u(x) : u ∈ U} is a neighbourhood of x, so that in particular the point-
evaluation maps g → g(x) are open for each x. That is, the action of G is
micro-transitive.
In particular, this holds if G is analytic and Baire, and all point-evaluation

maps ϕx are base-σ-discrete.

By Proposition B2 (§2.3) X, being non-meagre here, is also a Baire space.
The classical counterpart of Theorem E has G a Polish group; van Mill’s

version [vMil1] requires the group G to be analytic (i.e. the continuous image
of some Polish space, cf. [JayR], [Kec2]). The Baire version above improves
the version given in [Ost3], where the group is almost complete. (The two
cited sources taken together cover the literature.)
A result due to Loy [Loy] and to Hoffmann-Jørgensen [HofJ, Th. 2.3.6 p.

355] asserts that a Baire, separable, analytic topological group is Polish (as
a consequence of an analytic group being metrizable —for which see again
[HofJ, Th. 2.3.6]), so in the analytic separable case Theorem E reduces to
its classical version.
Unlike the proof of the Effros Theorem attributed to Becker in [Kec1, Th.

3.1], the one offered here does not employ the Kuratowski-UlamTheorem (the
Category version of the Fubini Theorem), a result known to fail beyond the
separable context (as shown in [Pol], cf. [vMilP], but see [FreNR]).
For further commentary (connections between convexity and the Baire

property, relation to van Mill’s separation property in [vMil2], certain spe-
cializations) see the extended version of this paper on arXiv.

2 Analyticity, micro-action, shift-compactness

We recall some definitions from general topology, before turning to ones that
are group-related. We refer to [Eng] for general topological usage (but prefer
‘meagre’to ‘of first category’).
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2.1 Analyticity

We say that a subspace S of a metric space X has a Souslin-H representation
if there is a determining system 〈H(i|n)〉 := 〈H(i|n) : i ∈ NN〉 of sets in H
with ([Rog], [Han2])

S =
⋃

i∈I

⋂
n∈N

H(i|n), (I := NN, i|n := (i1, ..., in)).

A topological space is an (absolutely) analytic space if it is embeddable as a
Souslin-F set in its own metric completion (with F the closed sets); in par-
ticular, in a complete metric space Gδ-subsets (being Fσδ) are analytic. For
more recent generalizations see e.g. [NamP]. According to Nikodym’s theo-
rem, ifH above comprises Baire sets, then also S is Baire (the Baire property
is preserved by the Souslin operation): so analytic subspaces are Baire sets.
For background —see [Kec2] Th. 21.6 (the Lusin-Sierpiński Theorem) and
the closely related Cor. 29.14 (Nikodym Theorem), cf. the treatment in [Kur]
Cor. 1 p. 482, or [JayR] pp. 42-43. For the extended Souslin operation of
non-separable descriptive theory see also [Ost2]. This motivates our inter-
est in analyticity as a carrier of the Baire property, especially as continuous
images of separable analytic sets are separable, hence Baire.
However, the continuous image of an analytic space is not in general

analytic — for an example of failure see [Han3] Ex. 3.12. But this does
happen when, additionally, the continuous map is base-σ-discrete, as defined
below (Hansell’s Theorem, [Han3] Cor. 4.2). This technical condition is the
standard assumption for preservation of analyticity and holds automatically
in the separable realm. Special cases include closed surjective maps and open-
to-analytic injective maps (taking open sets to analytic sets). To define the
key concept just mentioned, recall that for an (indexed) family B := {Bt :
t ∈ T}:
(i) B is index-discrete in the space X (or just discrete when the index set T
is understood) if every point in X has a nhd meeting the sets Bt for at most
one t ∈ T,
(ii) B is σ-discrete if B =

⋃
n Bn where each set Bn is discrete as in (i), and

(iii) B is a base for A if every member of A is the union of a subfamily of B.
For T a topology (the family of all open sets) with B ⊆ T a base for T , this
reduces to B being simply a (topological) base.

Definitions. 1. ([Mic1], Def. 2.1) Call f : X → Y base-σ-discrete (or
co-σ-discrete, [Han3, §3]) if the image under f of any discrete family in X
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has a σ-discrete base in Y.
2 ([Han3, §2]). An indexed familyA := {At : t ∈ T} is σ-discretely decompos-
able if there are discrete families An := {Atn : t ∈ T} such that At =

⋃
nAtn

for each t.
3 ([Mic1], Def. 3.3). Call f : X → Y index-σ-discrete if the image under f of
any discrete family E in X is σ-discretely decomposable in Y. (Note f(E) is
regarded as indexed by E , so could be discrete without being index-discrete.)

2.2 Action, micro-action, shift-compactness

Recall that a normed group G acts continuously on X if there is a continuous
mapping ϕ : G×X → X such that ϕ(eG, x) = x and ϕ(gh, x) = ϕ(g, ϕ(h, x))
(x ∈ X, g, h ∈ G).The action ϕ is separately continuous if g : x 7→ ϕ(g, x) is
continuous for each g, and ϕx : g 7→ ϕ(g, x) is continuous for each x; in such
circumstances:
(i) the elements g ∈ G yield autohomeomorphisms of X via g : x 7→ g(x) :=
ϕ(g, x) (as g−1 is continuous), and
(ii) point-evaluation of these homeomorphisms, ϕx(g) = g(x), is continuous.
In certain situations joint continuity of action is implied by separate conti-
nuity (see [Bou] and literature cited in [Ost2]).
The action is transitive if for any x, y in X there is g ∈ G such that

g(x) = y. For later purposes (§2.3 and 3), say that the action of G on X is
weakly micro-transitive if for x ∈ X and each nhd A of eG the set

cl(Ax) = cl{ax : a ∈ A}

has x as an interior point (in X). The action is micro-transitive (‘transitive
in the small’—for details see [vMil1]) if for x ∈ X and each nhd A of eG the
set

Ax = {ax : a ∈ A}
is a nhd of x. This (norm) property implies that Ux is open for U open in
G (i.e. that here each ϕx is an open mapping). We refer to Ax as an x orbit
(the A-orbit of x). The following group action connects the Open Mapping
Theorem to the present context.

Example (Induced homomorphic action). A surjective, continuous
homomorphism λ : G → H between normed groups induces a transitive
action of G on H via ϕλ(g, h) := λ(g)h ( cf. [Ost2] Th. 5.1), specializing
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for G,H Fréchet spaces (regarded as normed, additive groups) and λ = L :
G→ H linear (Ancel [Anc] and van Mill [vMil1]) to

ϕL(a, b) := L(a) + b.

Of course for Fréchet spaces, by the Open Mapping Theorem itself, ϕL has
the Nikodym property.

Definitions. 1. Auth(X) denotes the autohomeomorphisms of a metric
space (X, dX); this is a group under composition. H(X) comprises those
h ∈ Auth(X) of bounded norm:

||h|| := supx∈X dX(h(x), x) <∞.

2. For a normed group G acting on X, say that X has the crimping property
(property C for short) w.r.t. G if, for each x ∈ X and each sequence {xn} →
x, there exists in G a sequence {gn} → eG with gn(x) = xn. (This and a
variant occurs in [Ban, Ch. III; Th.4]; and [ChCh]; for the term see [BinO2].)
For a subgroup G ⊆ H(X), say that X has the crimping property w.r.t.

G if X has the crimping property w.r.t. to the natural action (g, x) → g(x)
from G×X → X. (This action is continuous relative to the left or right norm
topology on G —cf. [Dug] XII.8.3, p. 271.)
3. As a matter of convenience, say that the Effros property (or property E)
holds for the group G acting on X if the action is micro-transitive, as above.
4. For a subgroup G ⊆ Auth(X) say that X is G-shift-compact (or, shift-
compact under G) if for any convergent sequence xn → x0, any open subset U
in X and any Baire set T co-meagre in U, there is g ∈ G with g(xn) ∈ T ∩U
along a subsequence. Call the space shift-compact if it isH(X)-shift-compact
(cf. [MilO], [Ost5]).
In such a space, any Baire non-meagre set is locally co-meagre (co-meagre

on open sets) in view of Prop. B2 below.
We shall prove in § 3.1 equivalence between the Effros and Crimping

properties:

Theorem EC. The Effros property holds for a group G acting on X iff
X has the Crimping property w.r.t. G.

We now clarify the role of shift-compactness.

Proposition B1. For any subgroup G ⊆ H(X), if X is G-shift-compact,
then X is a Baire space.
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Proof. We argue as in [vMil2] Prop 3.1 (1). Suppose otherwise; then
X contains a non-empty meagre open set. By Banach’s Category Theorem
(or localization principle, for which see [JayR] p. 42, or [Kel] Th. 6.35),
the union of all such sets is a largest open meagre set M, and is non-empty.
Thus X\M is a co-meagre Baire set. For any x ∈ M the constant sequence
xn ≡ x is convergent and, since X\M is co-meagre in X, there is g ∈ G with
g(x) ∈ X\M . But, as g is a homeomorphism, g(M) is a non-empty open
meagre set, so is contained in M, implying g(x) ∈M, a contradiction. �

A similar argument gives the following and clarifies an assumption in
Theorem E.

Proposition B2 (cf. [vMil2]; [HofJ, Prop. 2.2.3]). If X is non-meagre
and G acts transitively on X, then X is a Baire space.

Proof. As above, refer again to M, the union of all meagre open sets,
which, being meagre, has non-empty complement. For x0 in this complement
and any non-empty open U pick u ∈ U and g ∈ G such that g(x0) = u. Now,
as g is continuous, g−1(U) is a nhd of x0, so is non-meagre, since every nhd
of x0 is non-meagre. But g is a homeomorphism, so U = g(g−1(U) is non-
meagre. So X is Baire, as every non-empty open set is non-meagre. �

2.3 Nikodym actions

The following result generalizes one that, for separable groups G, is usually a
first step in proving the weakly micro-transitive variant of the classical Effros
Theorem (cf. Ancel [Anc] Lemma 3, [Ost3] Th. 2). Indeed, one may think
of it as giving a form of ‘very weak micro-transitivity’.

Proposition 1. If G is a normed group, acting transitively on a non-
meagre space X with each point evaluation map ϕx : g 7→ g(x) base-σ-discrete
relative —then for each non-empty open U in G and each x ∈ X the set Ux
is non-meagre in X.
In particular, if G is analytic, then G is a Nikodym action.

Proof. We first work in the right norm topology, i.e. derived from the
assumed right-invariant metric dGR(s, t) = ||st−1||. Suppose that u ∈ U, and
so without loss of generality assume that U = Bε(u) = Bε(eG)u (open balls of
radius some ε > 0); then put y := ux andW = Bε(eG). Then Ux = Wy. Next
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work in the left norm topology, derived from dGL(s, t) = ||s−1t|| = dGR(s
−1, t−1)

(for which W = Bε(eG) is still a nhd of eG). As each set hW for h ∈ G is
now open (since now the left shift g → hg is a homeomorphism), the open
family W = {gW : g ∈ G} covers G. As G is metrizable (and so has a
σ-discrete base), the cover W has a σ-discrete refinement, say V =

⋃
n∈N Vn,

with each Vn discrete. Put Xn :=
⋃
{V y : V ∈ Vn}; then X =

⋃
n∈NXn, as

X = Gy, and so Xn is non-meagre for some n, for n = N say. Since ϕy is
base-σ-discrete, {V y : V ∈ VN} has a σ-discrete base, say B =

⋃
m∈N Bm,

with each Bm discrete. Then, as B is a base for {V y : V ∈ VN},

XN =
⋃

m∈N

(⋃
{B ∈ Bm : (∃V ∈ VN)B ⊆ V y}

)
.

So for some m, say for m =M,⋃
{B ∈ Bm : (∃V ∈ VN)B ⊆ V y}

is non-meagre. But as BM is discrete, by Banach’s Category Theorem (cf.
Prop. B1), there are B̂ ∈ BM and V̂ ∈ VN with B̂ ⊆ V̂ y such that B̂ is
non-meagre. As V refines W, there is some ĝ ∈ G with V̂ ⊆ ĝW, so B̂ ⊆
V̂ y ⊆ ĝWy, and so ĝWy is non-meagre. As ĝ−1 is a homeomorphism of X,
Wy = Ux is also non-meagre in X.
If G is analytic, then as U is open, it is also analytic (since open sets

are Fσ and Souslin-F subsets of analytic sets are analytic, cf. [JayR]), and
hence so is ϕx(U). Indeed, since ϕx is continuous and base-σ-discrete, Ax is
analytic (Hansell’s Theorem, §2.1), so Souslin-F , and so Baire by Nikodym’s
Theorem (§2.1). �

Definition. (Ancel [Anc]). Call the map ϕx countably-covered if there
exist self-homeomorphisms hxn of X for n ∈ N such that for any open nhd U
in G the sets {hxn(ϕx(U)) : n ∈ N} cover X.

Proposition 1′ (cf. Ancell [Anc]) For the action ϕ : G × X → X with
X non-meagre, if each map ϕx is countably-covered and takes open sets to
sets with the Baire property, then the action has the Nikodym property.

Proof. If ϕx is countably-covered, then there exist self-homeomorphisms
hxn of X for n ∈ N such that for any open nhd U in G the sets {hxn(ϕx(U)) :
n ∈ N} cover X. Then for X non-meagre, there is n ∈ N with hxn(ϕx(U))
non-meagre, so Ux = ϕx(U) is itself non-meagre, being a homeomorphic copy
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of hxn(ϕx(U)). As Ux is assumed Baire, the action has the Nikodym property.
�

For E separable, an immediate consequence of continuous maps taking
open sets to analytic sets (which are Baire sets) and of Prop. 1′ is that ϕL

is a Nikodym action.
For the general context, one needs demi-open continuous maps, which

preserve almost completeness (absolute Gδ sets modulo meagre sets — see
[Mic2] and its antecedent [Nol]), as it is not known which linear maps are
base-σ-discrete — a delicate matter to determine, since the former include
continuous linear surjections (by Lemma 1 below) and preserve almost ana-
lyticity as opposed to analyticity.
For present purposes, however, the monotonicity property below suffi ces.

We omit the proof of the following observation (for which see the opening
step in [Rud, 2.11], or [Con, Ch. 3 §12.3], or the Appendix in the arXiv
version of this paper). For the underlying translation-invariant metric of a
Fréchet space denote below by B(a, r) the open r-ball with centre a.

Lemma 1. For a continuous linear map L : X → Y from a Fréchet space
X to a normed space Y , for s < t < r

int(clL(B(0, s))) ⊆ L(B(0, t)) ⊆ L(B(0, r)).

Hence for L(a, r) convex, either L(B(a, r)) is meagre or differs from intL(B(a, r))
by a meagre set.

Proposition 2. For L a continuous linear surjection from a Fréchet
space E to a non-meagre normed space F, the action ϕL has the Nikodym
property.

Proof. As in Prop 1′ for L : E → F a continuous linear surjection,
{ϕLx : x ∈ F} are countably-covered. Indeed, fixing x ∈ F

hxn(z) := n(z − x) (n ∈ N and z ∈ F )

is on the one hand a self-homeomorphism satisfying hxn(ϕx(L(V ))) = L(nV ),
since n[(L(v) + x)− x] = nL(v) = L(nv); on the other hand the family

{hxn(L(V ) + x) : n ≥ 1}
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covers F, as {nV : n ∈ N} covers E for V any open nhd of the origin in E
(by the ‘absorbing’property, cf. [Con, 4.1.13], [Rud, 1.33]). In particular,
nL(B(0, 1)) is non-meagre for some n, and so L(B(0, s)) is non-meagre for
any s. By Lemma 1, L(B(0, t)) for any t > s contains the non-meagre Baire
set clL(B(0, s)). �

Corollary 1 below is now immediate; it is used in [Ost2, Th. 5.1] to
prove the ‘Semi-Completeness Theorem’, an Ellis-type theorem [Ell, Cor.
2] (cf. [Ost6]) giving a one-sided continuity condition which implies that a
right-topological group generated by a right-invariant metric is a topological
group.

Corollary 1 (cf. [Ost2, Th. 5.1], ‘Open Homomorphism Theorem’). If
the continuous surjective homomorphism λ between normed groups G and
H, with G analytic and H a Baire space, is base-σ-discrete, then λ is open;
in particular, for λ bijective, λ−1 is continuous.

Corollary 2. For L : E → F a continuous surjective linear map between
Fréchet spaces, the point evaluations ϕLb for b ∈ F are open, and so L is an
open mapping.

Proof. By surjectivity of L, the action is transitive, and by Prop 2 the
action ϕL has the Nikodym property. So by Theorem E above the point-
evaluations maps ϕLb are open. Hence so also is L. �

3 Proofs

3.1 Proof that E ⇐⇒ C

In [BinO1] Th. 3.15 we showed that if the Effros property holds for the
action of a group G on X, then X has the crimping property w.r.t. G. We
recall the argument, as it is short. Suppose that x = limxn. For each n,
take U = BG

1/n(eG); then Ux := {u(x) : u ∈ U} is an open nhd of x, and so
there exists hn,m ∈ U with hn,m(x) = xm for all m large enough, say for all
m > m(n).Without loss of generality we may assume thatm(1) < m(2) < ....
. Put hm := eG form < m(1), and form(k) ≤ m < m(k+1) take hm := hk,m.
Then hm ∈ BG

1/k(eG), so hm converges to eG and hm(eG) = xm.
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For the converse, suppose that the Effros property fails for G acting on
X. Then for some open nhd U of eG and some x ∈ X, Ux := {u(x) : u ∈ U}
is not an open nhd of x. So for each n there is a point xn ∈ B1/n(x)\Ux. As
xn converges to x there are homeomorphisms hn converging to the identity
eG with hn(x) = xn. As U is an open nhd of eG and since hn converges to
eG, there is N such that hn ∈ U for n > N. In particular, for any n > N,
hn(x) = xn ∈ Ux, a contradiction.

3.2 Weak S

We view Th. S as having ‘two tasks’: to find a ‘translator of the sequence’τ ,
and to locate it in a given Baire non-meagre subset of the group —provided
that subset satisfies a consistency condition (a necessary condition).
For clarity we break the tasks the into two steps —the first delivering a

weaker version of S in Proposition 3 below. The arguments are based on the
following lemma. We note a corollary, observed earlier by van Mill in the case
of metric topological groups ([vMil2, Prop. 3.4]), which concerns a co-meagre
set, but we need its refinement to a localized version for a non-meagre set.

Separation Lemma. Let G be a normed group, with separately con-
tinuous and transitive Nikodym action on a non-meagre space X. Then for
any point x and any F closed nowhere dense, Wx,F := {α ∈ G : α(x) /∈ F}
is dense open in G. In particular, G separates points from nowhere dense
closed sets.

Proof. The set Wx,F is open, being of the form ϕ−1x (X\F ) with ϕx
continuous (by assumption). By the Nikodym property, for U any non-empty
open set in G, the set Ux is non-meagre, and so Ux\F is non-empty, as F is
meagre. But then for some u ∈ U we have u(x) /∈ F . �

Corollary 2. If G is a normed group, Baire in the norm topology with
transitive and separately continuously Nikodym action on a non-meagre space
X space, and T is co-meagre in X— then for countable D ⊆ X, the set
{g : g(D) ⊆ T} is a dense Gδ.
In particular, this holds if G is analytic and each point-evaluation map

ϕx : g → g(x) is base-σ-discrete.

Proof. Without loss of generality, the co-meagre set is of the form T =
U\
⋃
n∈ω Fn with each Fn closed and nowhere dense, and U open. Then, by
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the Separation Lemma and as G is Baire,

{g ∈ G : g(D) ⊆ T} =
⋂

n∈ω
{g : g(D)∩Fn = ∅} =

⋂
d∈D,n∈ω

{g : g(d) /∈ Fn}

is a dense Gδ. �

Proposition 3. If T is a Baire non-meagre subset of a metric space
X and G a normed group, Baire in its norm topology, acting separately
continuously and transitively on X, with the Nikodym property — then, for
every convergent sequence xn with limit x0 there is τ ∈ G and an integer N
with τx0 ∈ T and

{τ(xn) : n > N} ⊆ T.

Proof. Write T :=M ∪ (U\
⋃
n∈ω Fn) with U open, M meagre and each

Fn closed and nowhere dense in X. Let u0 ∈ T ∩ U. By transitivity there is
σ ∈ G with σx0 = u0. Put un := σxn. Then un → u0. Put

C :=
⋂

m,n∈ω
{α ∈ G : α(um) /∈ Fn},

a dense Gδ in G; then, by the Separation Lemma above, as G is Baire,

{α ∈ G : α(u0) ∈ U} ∩ C

is non-empty. For α in this set we have α(u0) ∈ U\
⋃
n∈ω Fn. Now α(un) →

α(u0), by continuity of α, and U is open. So for some N we have for n > N
that α(un) ∈ U. Since {α(um) : m = 1, 2, ..} ∈ X\

⋃
n∈ω Fn, we have for

n > N that α(un) ∈ U\
⋃
n∈ω Fn ⊆ T.

Finally put τ := ασ; then τ(x0) = ασ(x0) ∈ T and {τ(xn) : n > N} ⊆ T.
�

3.3 Proof of S

We work in the right norm topology and use the notation of the preceding
proof (of Proposition 3), so that U here is the quasi-interior of T and σx0 =
u0. As eG ∈ Aq and A is a non-meagre Baire set, we may without loss of
generality write A = Bε(eG)\

⋃
nGn, where each Gn is closed nowhere dense

with eG /∈ Gn and Bε(eG) is the quasi-interior of A.
As Aqx0 ∩ T q is non-empty, there is α0 ∈ Bε(eG) with α0x0 ∈ U (but, we

want a better α so that αx0 ∈ T and α ∈ A). Put β0 = α0σ
−1; then

β0 = α0σ
−1 ∈ Bε(eG)σ

−1 ∩ {α : α(x0) ∈ U}σ−1

= Bε(eG)σ
−1 ∩ {β : β(σx0) ∈ U} = Bε(eG)σ

−1 ∩ {β : β(u0) ∈ U},

12



i.e. the open set {β : β(u0) ∈ U} ∩Bε(eG)σ
−1 is non-empty. So

(C\
⋃

n
Gnσ

−1) ∩ {β : β(u0) ∈ U} ∩Bε(eG)σ
−1 6= ∅,

since G is a Baire space and each Gnσ
−1 is closed and nowhere dense in G

(as the right shift g → gσ−1 is a homeomorphism).
So there is β with β(u0) ∈ U such that α := βσ ∈ Bε(eG)\

⋃
nGn = A.

That is, αx0 = βu0 ∈ U ; so β(un) ∈ U for large n, for n > N say, as αx0 =
limαxn = lim βσxn = lim βun. But {β(um) : m = 1, 2, ..} ∈ X\

⋃
n Fn, as

β ∈ C; so β(un) ∈ U\
⋃
n Fn ⊆ T for n > N .

Finally, α(x0) = βσ(x0) ∈ T and {α(xn) : n > N} ⊆ T. �

3.4 Proof that S =⇒ E

Assume G acts transitively onX and thatX is non-meagre. Let B := Bε(eG)
and suppose that for some x the set Bx is not a nhd of x. Then there is
xn → x with xn /∈ Bx for each n. Take A := Bε/2(eG) and note first that A
is a symmetric open set (A−1 = A, since ||g|| = ||g−1||), and secondly that
by the Nikodym property Ax contains a non-meagre, Baire subset T . So
by Theorem S, as Ax meets T q, there are a ∈ A (which being open has the
Baire property) and a co-finiteMa such that axm ∈ Ax for m ∈Ma. For any
such m, choose bm ∈ A with axm = bmx. Then xm = a−1bmx ∈ A2x ⊆ Bx, a
contradiction (note that a−1 ∈ A, by symmetry).
As earlier, in the special case that G is (metrizable and) analytic, A is

analytic, since open sets are Fσ and Souslin-F subsets of analytic sets are
analytic, cf. [JayR, Th. 2.5.3], by Prop. 3 Ax is Baire non-meagre, as ϕx is
base-σ-discrete.
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comments that influenced the final presentation, and Henryk Toruńczyk for
drawing my attention to Ancel’s work and related literature.
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to express once more the great debt to UW friends and colleagues, among
whom also was Anatole Beck, recently passed away.
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