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Abstract

We present an elementary treatment of the Optional Decomposition Theorem for
continuous semimartingales and general filtrations. This treatment does not assume
the existence of equivalent local martingale measure(s), only that of strictly positive
local martingale deflator(s).
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Introduction

The Optional Decomposition Theorem (ODT) is an important result in the field of
Stochastic Analysis, and more particularly in Mathematical Finance. In one of its most
“classical” forms, following [Kra96], the ODT can be stated as follows. For some d € N,
let X be a R%valued locally bounded semimartingale on a given filtered probability space
(Q, F,P), F = {F(t)}+cr,, and assume that Q, the collection of probability measures
that are equivalent to IP and bestow the local martingale property on X, is non-empty.
Then, a given nonnegative process V' is a supermartingale under all probabilities in Q, if
and only if it admits the “optional” decomposition

V=V + [ (H@.4X0) - O (OD)
0
here H is a predictable X-integrable process, and C is a nondecreasing right-continuous
adapted process with C(0) = 0.

The representation (OD) is relevant in the setting of Mathematical Finance. Indeed,
suppose the components of X represent returns of the (discounted) prices of assets in
a financial market. If H = (Hi)ie{l,...,d} is the investment strategy of an agent in the
market, where H; stands for the amount of currency in asset 7 held in the portfolio,
for all i € {1,...,d}, and C measures the agent’s aggregate consumption, then V
in (OD) corresponds to the wealth process generated by the investment/consumption
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strategy (H, C) starting with initial capital V' (0). The ODT offers an illuminating “dual”
characterization of all such wealth processes, as supermartingales under all equivalent
local martingale measures of X. Using this characterization, the ODT establishes the
superhedging duality via use of dynamic programming techniques in non-Markovian
settings; see, for instance, [KS98, Chapter 5] or [Kra96].

Stochastic controllability results, similar to the ODT and obtained via martingale
methods, can be traced as far back as [DV73] and, in the context of Mathematical
Finance, to [KLSX91]. A version of the ODT when X is driven by Brownian motion
under quasi-left-continuous filtrations appears in [EKQ95]. The first paper to treat the
ODT for general locally bounded semimartingales is [Kra96], where functional (convex)
analytic methods and results from [DS94] were employed. In [FK97], the more general
case of constraints on investment is considered, using essentially similar arguments.
In [FK98], the assumption of local boundedness on the semimartingale integrator X is
dropped and, more importantly, the authors avoid infinite-dimensional convex analysis by
following an alternative approach via predictable characteristics; this involves Lagrange
multipliers, separating hyperplane arguments in Euclidean space, and measurable
selections. Although the treatments of the ODT in the aforementioned papers are quite
general, they do require a significant level of sophistication; indeed, they involve either
use of difficult functional-analytic results, or deep knowledge of the General Theory of
Processes as presented, e.g., in [JS03, Chapters I and II].

The present paper offers a rather elementary proof of the ODT in its Stricker-Yan
[SY98] formulation, for continuous-path semimartingale integrators X but arbitrary
filtrations IF. Instead of assuming that the collection O of equivalent local martingale
measures is nonempty, we use the more “localized” assumption that the class ) of strictly
positive local martingale deflators is non-empty. This assumption Y # () is both more
general and more descriptive: it allows for an equivalent structural characterization of its
validity by inspecting the local drift and local covariation processes of X, as mentioned
in Theorem 1.1. By contrast, the more restrictive assumption Q # () does not admit such
a descriptive characterization. (In fact, [SY98] treats the ODT using the condition ) # 0,
by applying a localisation technique on the result assuming Q # (). By contrast, the
arguments provided here are direct.) The important pedagogical element of the paper is
that it avoids use of functional analysis and predictable characteristics in order to obtain
the ODT. Since arbitrary filtrations support local martingales with potential jumps at
both accessible and totally inaccessible times, it is impossible to avoid entirely the use
of certain results from the general theory of Stochastic Processes. However, we feel
that the path taken here is as elementary as possible. Although some intersection with
previous work exists (notably, [EKQ95], as well as [Jac12] which deals with continuous
asset prices and continuous filtrations), we believe that the present treatment is more
straightforward.

1 The Setting

1.1 Preliminaries

We shall work on a probability space (2, F, P), endowed with a right continuous filtra-
tion F = {F(t)}:er, . We stress that no further assumption is made on the filtration. We
do not even require the usual hypothesis of augmentation by null sets, as semimartingale
integration theory can be developed without it; see, for example, [JS03, Chapter I].

Let X = (X)ieq1,...,a} be a d-dimensional semimartingale with continuous paths. We
write X = A + M for the Doob-Meyer decomposition of X ; here A is a d-dimensional
process with continuous paths of finite variation and A(0) = 0, and M is a d-dimensional
local martingale with continuous paths.
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For i € {1,...,d}, we shall denote by A, the process of finite first variation associ-
ated with A4;. Upon defining G := Zle (Ai + [M;, Ml]) it follows that there exist a d-
dimensional predictable process a, and a predictable process c taking values in the set of
nonnegative-definite matrices, such that A = [ a(t)dG(t) and [M;, M;] = [, ci;(t
hold fori € {1,...,d} and j € {1,...,d}.

We shall denote by P the predictable o-field on 2 x R, and by ]P ® G the measure on
the product measurable space (2 x R4, P) which satisfies (P®G)[J Uo 1,(t)dG ()]
forall J € P.

Let P(X) denote the collection of all d-dimensional, predictable and X-integrable
processes. A given d-dimensional predictable process H belongs to P(X) if, and only if,
both processes [ [(H(t),a(t))|dG(t) and [, (H(t),c(t)H(t)) dG(t) are finitely-valued.

We shall be using the notation
£(Z) = exp (Zf - ) T[] (1 + AZ(1)) exp (—AZ (1))
t<-

for the stochastic exponential of a scalar semimartingale Z w1th Z(0) = 0; we note that
this process satisfies the integral equation £(Z) = 1+ [, £(Z)(t—)dZ(t).

1.2 Strictly positive local martingale deflators

We define ) as the collection of all strictly positive local martingales Y with Y'(0) =1,
such that Y X; is a local martingale for all i € {1,...,d}. The next result gives conditions
on the drift and local covariance structure of X which are equivalent to the requirement
of non-emptiness for ).

Theorem 1.1. In the above setup, the following two conditions are equivalent:

1. Y #0.
2. There exists a d-dimensional, predictable process p, such that a = ¢p holds (P ® G)-
a.e. and the process [, (p(t),c(t)p(t)) dG(t) is finitely-valued.

The structural conditions in statement (2) of Theorem 1.1 have appeared previously—
see, for example, [Sch95] or [KS98, Theorem 4.2, page 12]. A proof of Theorem 1.1
can be found in [Karl10, Section 4]. We shall not repeat it here, but will provide some
discussion in order to introduce important quantities that will be used later on.

1.3 Discussion of Theorem 1.1

Let us start by assuming that condition (2) of Theorem 1.1 holds. Since a = cp implies
that (p,a) = (p,cp) = |{p,a)| holds (P ® G)-a.e., it follows that p is X-integrable, i.e.,
p € P(X). Then, the continuous-path semimartingale

Vo—¢ (/0 (p(t),dX(t))) (1.1)

is well-defined and satisfies the integral equation
V= 1+/ V(t) (p(t),dX (1)) . (1.2)
0

Straightforward computations show now that (1/ IA/) is a local martingale, as is (X;/ \7)
foralli € {1,...,d}; consequently, (1/V) € Y. In fact, whenever L is a local martingale
with L(0) = 0, AL > —1 and [L, M] = 0, the product (1/V) £(L) is an element of . This
multiplicative structure of ) under the path-continuity of X is crucial in the proof of the
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ODT presented here; if jumps are present in X, the present approach does not appear
to generalize in any straightforward way. Although we shall not make direct use of this
fact, let us also note that every element of J can be written as (1/17) E(L), where L is a
local martingale with L(0) = 0, AL > —1 and [L, M] = 0; see, for instance, the argument
in [LZ07, Proposition 3.2].

The argument of the preceding paragraph establishes the implication (2) = (1) in
Theorem 1.1. For completeness we discuss now briefly, how the failure of condition
(2) implies the failure of condition (1) in Theorem 1.1. The arguments outlined below
highlight the further equivalence of the conditions in Theorem 1.1 with the notion of no
arbitrage of the first kind, and with the existence of a so-called “numéraire portfolio”
in financial markets. This is the minimal condition that allows problems like hedging
of contingent claims and utility maximization to have meaningful solutions. Detailed
discussion and complete arguments are in [Kar10, especially Section 4].

Two contingencies need to be considered:

(i) The vector a fails to be in the range of the matrix ¢, on a predictable set E of
strictly positive (IP ® G)-measure. In this case one can find ¢ € P(X), such that ¢¢( =0
and the process [, (C(t),dX(t)) = [, (¢(t),a(t)) dG(t) is nondecreasing everywhere and
eventually strictly positive on E. This implies in a straightforward way that ) = 0.

(ii) A d-dimensional predictable process p exists, so that a = cp holds (P ® G)-a.e.; but
the event { fOT (p(t),c(t)p(t)) dG(t) = oo} has positive probability for some T > 0. Then,
upon noting that ply|,/<,} € P(X) holds for all n € IN, and defining

V=€ </O <p(t)1{|p<t>|<n}vdx(t)>) ,

one can show that the collection {V,,(T") | n € IN} is unbounded in probability. This again
implies Y = 0.

Indeed, if Y were not empty, then for any Y € ) it would be straightforward to check
that Y'V,, is a nonnegative local martingale—thus, a supermartingale—for all n € IN.
By Doob’s maximal inequality, this would imply that {Y(T)V,.(T) | n € IN} is bounded
in probability; and since Y is strictly positive, the set {V,,(T) | n € N} would then be
bounded in probability. But we have already seen that the opposite is true.

Remark 1.2. A Reduction: Under condition (2) of Theorem 1.1, a given d-dimensional
and predictable process H belongs to P(X) if and only if [, (H(t),c(t)H(t)) dG(t) is
finitely-valued. Indeed, the Cauchy-Schwartz inequality (see also [KS91, Proposition
3.2.14]) and the (P ® G)-identity a = ¢p imply then

[ weawnace < ([ w.comwacn) v ([ worcmonace) "

and show that [, [(H(t),a(t))|dG(t) is a fortiori finitely-valued.
In obvious notation, we have P(X) = P(M) under the condition (2) of Theorem 1.1.

Remark 1.3. An Interpretation: It follows from (1.2) that the process V can be inter-
preted as the strictly positive wealth generated by the predictable process p viewed
as a “portfolio”, starting with a unit of capital. The components of X represent then
the returns of the various assets in an equity market; the strictly positive processes
S; = £(X;) are the prices of these assets; the components of p stand for the proportions
of current wealth invested in each one of these assets; whereas the scalar processes
9 = (IA//Si)pi (respectively, H; = ?pi) keep track of the numbers of shares (resp.,
amounts of currency) invested in the various assets.
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1.4 Optional Decomposition Theorem
The following is the main result of this work. It is proved in Section 2.

Theorem 1.4. Assume that ) # ). Let V be an adapted cadlag process, locally bounded
from below. Then, the following statements are equivalent:

1. The product YV is a local supermartinagle, forall Y € ).
2. The process V is of the form

V = V(0) +/‘ (H(t),dX (1)) — C, (1.3)
0

where H € P(X) and C is a nondecreasing, right-continuous and adapted process
with C'(0) = 0, which is locally bounded from above.

The properties of right continuity and adaptedness, imply that the non-decreasing pro-
cess C in (1.3) is optional - whence the terminology “Optional Decomposition Theorem".
This process may, however, fail to be predictable, as it is in the classical Doob-Meyer
decomposition.

Remark 1.5. On Uniqueness: In the present setting, the decomposition (1.3) of V' is
unique in the following sense: If in addition to (1.3) we have also

V= V(0) +/A (H' (1), dX (t)) — C"
0

for some H' € P(X) and some nondecreasing, right-continuous and adapted process
C’ with C"(0) = 0, then C = C" and [, (H(t),dX(t)) = [, (H'(t),dX(t)) hold modulo
evanescence.

Indeed, let Y = 1/17 D=C"-C, F:= H' — H, and note that

VD= ?/0' (F(t), dX (£))

is a continuous-path local martingale. This follows from integration-by-parts on the
right-hand side of the last equality, the equation (1.2) for V, and property (2) in Theorem
1.1 for p. (For the latter local martingale property, see also the proof of the implication
(2) = (1) in Theorem 1.4 in the beginning of §2.2.) Integrating by parts again, we see
that

/' Y(t)dD(t) = VD — / D(t—)d¥ (1)
0 0

is both a continuous-path local martingale and a finite-variation process, which implies
I Y (t)dD(t) = 0 modulo evanescence. Since Y is strictly positive, this last fact implies
D = 0 modulo evanescence, completing the argument.

Finally, let us note that for the integrands H and H’' we may only conclude that
H = H’ holds in the (P ® G)-a.e. sense.

2 Proof of Theorem 1.4

We shall denote by L¢ the collection of all local martingales L with continuous paths
and L(0) = 0; furthermore, we shall denote by £9 the collection of all local martingales
L with AL > —1 and L(0) = 0 which are purely discontinuous, i.e., satisfy [L, A] = 0 for
all A € L©.
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2.1 An intermediate, but crucial, result

In order to prove Theorem 1.4, we first isolate an auxiliary result that will enable us
eventually to deal only with continuous-path local martingales. In a sense, the result
that follows constitutes the main technical argument in this proof. In [Jac12], the author
treats the ODT for continuous semimartingales under the additional assumption that the
underlying filtration supports only continuous martingales; in this case, it is completely
straightforward to check that the process B appearing in Lemma 2.1 is automatically
nondecreasing, making the proof of the ODT considerably simpler.

Lemma 2.1. Let B be a semimartingale with the following properties:

1. B be alocally bounded from above, and B(0) = 0.
2. B+ [B, L] is a local submartingale, for every L € L.
3. [B,L] =0, for every L € L°.

Then, B is actually non-decreasing.

Proof. Property (2) implies that B itself is a local submartingale (just take L = 0 there).
Standard localization arguments imply that we may take B to be bounded from above;
therefore, we shall assume the existence of b € R, such that B < b. In view of the
submartingale convergence theorem, B is an actual submartingale with last element
B(o0), and E [B(T)] > E[B(0)] = 0 holds for all stopping times T'.

Consider now a countable collection (7,,),en of predictable stopping times that
exhaust the accessible jump-times of B; see [Del72, Theorem T30, page 84]. Defining
also the predictable set

J = U [7ns ] s

nelN
we note that the process

B /(07.]1,,(75) dB(t) = 3 AB(7.) 1(r, <

nelN
is a local submartingale.

e We shall first show that B is nondecreasing, which amounts to showing that AB(r,,) >
0 holds on {7, < oo} for all n € IN. To this end, we define for each n € IN the F(7,,—)-
measurable random variable

Pn = P [AB(Tn) <0 | .F(Tn—” 1{7’-,L<OO} .

On the event {7, < 0o, p, =0}, we have AB(7,) > 0. Forn € IN and k£ € IN, we define
L, € £9 to be the local martingale with L, 1(0) =0 and a single jump at 7, , such that
ALn,k(Tn) - (1 - (]-/k)) ((1/pn) 1{AB(Tn,)<O} - 1) 1{pn>0} .

We note that B+ [B, L,, ;] = B < bholds on [0, 7,,[, while on the event {r,, < o0, p,, > 0}

we have
A(B+[B,Lyi]) (ta) = AB(75,) (1 + ALy (70))
AB(Tn) k—1 — +
= - AB(1,))” < (AB(m))" .
o~ = (AB(r))” < (AB(r)

Property (2) imposed on B and the above facts imply that B+[B, L,, ;] is a local submartin-
gale bounded from above by b on [0, 7,,]. It follows that on the event {7, < oo, p,, > 0}
we have E[AB(1,) (1 + ALy (7)) | F(tn—)] > 0, which translates into

E [(AB(m))" | F(ra-))
14+ ((k—1)/pn)

I [(AB(Tn))_ \ f(Tn_):| < , on the event {7, < co, p, > 0},
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for all k € IN. Sending k — oo, it follows that AB(7,,) > 0 holds on {7, < oo, p, > 0}. We
conclude that we have indeed AB(7,,) > 0 on the event {7, < cc}.

e It remains to show that
B= B8 = [ gau@as0
(O"

is also a nondecreasing process. We note that B’ inherits some of the properties of B: in
particular, we have B’(0) = 0 and for every L € L4, the process

B + [BI7L] = A 1(Q><]R+)\J(t) (dB(t) + d[B,L](t))

is a local submartingale. We also have B’ < B < b, and additionally B’ has jumps only at
totally inaccessible stopping times. To ease the notation we write B instead of B’ for
the remainder of this proof, assuming from now onwards that B jumps only at totally
inaccessible stopping times. For each n € IN, we define the local martingale

Ly :=n) 1{aB@<-1/n} — Dn,
t<-
where D,, is a suitable nondecreasing process with continuous paths (since the jumps of
B are totally inaccessible—see [Del72, Theorem T40, page 111].). Observe that L,, € £9,
which implies that B + [B, L,] is a local submartingale for all n € IN. Furthermore, we
note that
B+ [B, Ln] =B+n Z AB(t) 1{AB(t)§—1/n} < b7
t<-

which implies that B + [B, L,] is a true submartingale. It follows that

nE | =Y AB(t) liapw<-1/m}| < E[B(n)—B(0)] = E[B(n)] <b, VneN,

t<n

and the monotone convergence theorem gives B[}, (AB(t))” | = 0, which implies
AB > 0. Continuing, we define for each n € IN a new local martingale

L, =D, — (1 (1/n)) Z LiAB@t)>1/n) »

t<-

where P" is an appropriate continuous and nondecreasing process. Note that we have
again L, € £° for all n € IN, which implies that the processes

B—l—[B,En] =B - (1 —1/n) ZAB(t) LiaBt)>1/n} > nelN
t<

are local submartingales, uniformly bounded from above by b. Thus, it follows that
S, . AB(t) is finitely-valued; and that B := B — Y, .. AB(t) is a local submartingale.
Recalling that the jumps of B occur only at totally inaccessible stopping times, this last
process B has continuous paths (again, see [Del72, Theorem T40, page 111]) and is
strongly orthogonal to all continuous-path local martingales, which means that it is of
finite variation. Since it is a local submartingale, this process has to be nondecreasing.
It follows from this reasoning that the process

B=|B-Y AB(t)|+> AB(t)
t<- t<-
is nondecreasing, and this concludes the argument. O
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Let us note that the proof of Lemma 2.1 would be slightly simpler, were we to
make the assumption that the underlying filtration supports only quasi-left-continuous
martingales; this is because in this case the process B is predictable.

2.2 Proof of Theorem 1.4
The implication (2) = (1) is straightforward. Indeed, we fix Y € ) and note that

Z = /0 Y(t—)dX(t) + [V, X] = YXfX(O)f/O X(t)dY (¢)

is a d-dimensional local martingale. Then, if V' =V (0) + [, (H(t),dX(t)) — C is a process
as in (1.3), one computes

YV:V(0)+/O' V(t—)dy(t)ju/o' (H(t),dZ(t))—/O'Y(t)dC(t),

which shows that YV is a local supermartingale.

e For the implication (1) = (2), let us assume that the process V as in the statement
of the theorem is such that YV is a local supermartingale for all Y € ). In particular,
recalling the notation of (1.1), we note that U := (V/ XA/) is a local supermartingale.
We apply to the continuous local martingale part of this process the Kunita-Watanabe
decomposition with respect to the continuous local martingale M, and obtain the Doob-
Meyer decomposition

U= VIV = V(O)—i—/‘ (O(), dM (1)) + N — B, @.1)

Here 6 € P(X) (recall Remark 1.2), and N € £° satisfies [N, M] = 0, whereas B is a
local submartingale with B(0) = 0 and “purely discontinuous”, in the sense that

[B,L] =0 holds for every L € L. (2.2)

In particular, we note that [B, N] =0 = [B, M].
(i): The first item of business is to show that the process B in (2.1) is actually nonde-
creasing; for this we shall use Lemma 2.1. Since N + [ (0(t),dM (t)) is continuous and
U locally bounded from below, the process B = V(0) + N + [, (8(t),dM (t)) — U is locally
bounded from above.

Let us fix L € £9. From (1/V)&(L) € Y we observe — e.g., using the product rule —
that the process

V. (V) EL) = UE(L) = (V(O) +N+/' (O(8), dM () —B) £(L)

is a local supermartingale. Furthermore, the process (N + [, (6(t),dM(t))) (L) is a
local martingale, and it follows from these two observations that

Be(r) = [ e (B +B.L) () + [ (BEWL) ()AL
0 0
is a local submartingale. This, in turn, implies that

B+[B.L :/0‘md(B-g(L))(t)—/.B(t—)dL(t)

0

is also a local submartingale. Recalling the property (2.2) and invoking Lemma 2.1, we
conclude from this observation that the local submartingale B in the decomposition (2.1)
is indeed non-decreasing.
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(ii): The second item of business is to show that NV = 0 holds in (2.1). The crucial obser-
vation here is that, because of [N, M] =0, the product (1/ V)E&(nN) is an element of Y
for all n € IN. As a consequence, UE(nN) =V - (1/V) E(nN) is a local supermartingale
for all n € IN.

Since [€(nN),B] = 0 and [£(nN), M] = 0, it follows that £(nN)(B — N) is a local
submartingale for all n € IN. Now we observe

E(nN)(B—N):/O.(B—N)( _)dE(mN)( /gnN )d(B — N — [nN, N))(2),

from which it follows that B — n[N, N] is a local submartingale for all n € IN. This is only
possible if [N, N] = 0 which, since N(0) = 0, implies N = 0; as a result, (2.1) becomes

= (V/V) = V(0) + / (6(t),dM (t)) — B. (2.3)
0
(iii): We are now in a position to conclude. Yet another application of the integration-by-

parts formula on V' = VU gives, in conjunction with (1.2), (2.3) and Theorem 1.1, the
decomposition

V:V(O)—&—/'U( —)dv(t) + /f/()dU()Jr[f/,U]

/ /v X(t))-/o~ V(t)dB(t)
/17 Jo(t) + 0(t), dX(t)%/o' V() dB(2).
Defining U_(t) := U(t—) for t > 0, as well as

=V(U_p+6) e P(X) and C ::/ V(t)dB(t),
0
we obtain the decomposition (1.3) as claimed. O
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