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a b s t r a c t

Wedevelop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect
can be interpreted quite generally, in either a geographical sense, or employing notions of economic
distance, or when parametric modelling arises in part from a common factor or other structure. In the
former case, observations may be regularly-spaced across one or more dimensions, as is typical with
much spatio-temporal data, or irregularly-spaced across all dimensions; both isotropic models and non-
isotropicmodels canbe considered, and awide variety of correlation structures. In the second case,models
involving spatial weight matrices are covered, such as ‘‘spatial autoregressive models’’. The setting is
sufficiently general to potentially cover other parametric structures such as certain factor models, and
vector-valued observations, and here our preliminary asymptotic theory for parameter estimates is of
some independent value. The test statistic is based on a Gaussian pseudo-likelihood ratio, and is shown
to have an asymptotic standard normal distribution under the null hypothesis that one of the twomodels
is correct; this limit theory rests strongly on a central limit theorem for the Gaussian pseudo-maximum
likelihood parameter estimates. A small Monte Carlo study of finite-sample performance is included.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Spatial and spatio-temporal data are liable to exhibit corre-
lation, which will likely depend on locations of observations or
distances between them. Knowledge of locations or distances can
improve precision and is desirably employed inmodelling and sta-
tistical inference. Regular spacing across a temporal dimension
is likely, but intervals between observations across geographical
space can be regular or irregular, while geographic distances be-
tween observations can be unavailable or less relevant than ‘‘eco-
nomic distances’’, say. Models for regularly-spaced ‘‘lattice’’ data
in two or more dimensions (see e.g. Whittle, 1954) can relatively
straightforwardly extend time series ones, but statistical infer-
ence for irregularly spaced data is not well developed. For exam-
ple, for irregularly spaced observations on a continuous Gaussian
process, despite such work as Dunsmuir (1983), Matsuda and Ya-
jima (2009) and Robinson (1977), there appear to exist no satis-
factory set of regularity conditions for the central limit theorem
for parametric maximum likelihood estimates which separate out
the process generating the observations from that generating the
locations, and this is the case even in the single dimension
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irregularly-spaced time series setting, which has attracted atten-
tion over the years. Partly as a result, models of ‘‘spatial au-
toregressive’’ type, first developed by Cliff and Ord (1972), have
proved popular, especially in economics; these model correlations
in terms of spatial weight matrices, often linearly in observations
and unknownparameters, and possibly also in theweights, and are
relatively convenient computationally. The elements of the weight
matrices are pairwise inverse measures of distance, either eco-
nomic distances or geographic ones, where the latter might not
be Euclidean, allowing for example for natural barriers such as
rivers. The philosophy of such models is quite different from that
of spatial statistics models for observations whose argument is lo-
cation.

The diversity of possible dependencemodels highlights the lack
of a ‘‘generic’’ spatial data set, and motivates development of sta-
tistical inference that potentially covers a variety of the settings
mentioned above, rather than being limited to a single model
class. In the present paper we focus on justifying tests of non-
nested hypotheses for spatial or spatio-temporal correlation. The
rival models could be two members of the same general class,
for example two different models of autoregressive moving av-
erage type in case of regularly-spaced ‘‘lattice’’ data, or a Matern
and Markov model when irregularly-spaced locations are known,
or two weight matrix type models such as a ‘‘spatial autoregres-
sive’’ versus ‘‘spatialmoving average’’ model, or they could be from
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http://dx.doi.org/10.1016/j.jeconom.2015.02.044
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2015.02.044&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:p.m.robinson@lse.ac.uk
http://dx.doi.org/10.1016/j.jeconom.2015.02.044
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


386 M.A. Delgado, P.M. Robinson / Journal of Econometrics 187 (2015) 385–401
different classes, given that the weight matrix models can in prin-
ciple be employed in all these data settings. Nonparametric meth-
ods for estimating spatial correlation have been developed but in
general aremore problematic than in the time series settingwhere
stationarity and regular spacing allow consistent estimation of au-
tocovariances or spectral densities despite lack of replication. We
thus focus on parametric models. Moreover the testing scenario
is between models of covariances between observations, or much
more likely, between unobservable disturbances, rather than be-
tween full statistical models.

In particular, for random variables uj, j = 1, 2, . . . ,we consider
the rival models

Hi : Cov

uj, uk


= σ 2

i0ωijk (θi0) , j, k = 1, 2, . . . ; i = 1, 2, (1)

where, for i = 1, 2, θi0 is an unknown pi × 1 vector, σ 2
i0 is an un-

known positive scalar, variation-free of θi0, and ωijk (.) is a known
function of its pi-dimensional argument. Because inference will be
based on implicitly-defined extremum estimates of parameters,
the zero subscript is as usual used to denote true value. Though
observable uj are covered, wemotivate our focus on (1) in the con-
text of a parametric model for the sequence of observations yj:

fj(yj; β0) = uj, j = 1, 2, . . . , (2)

where the fj are known functions of their arguments andpossibly of
observable explanatory variables varying with j, β0 is an unknown
q × 1 parameter vector assumed variation-free of the θi0, and uj
is, thus, unobservable, but assumed to be a random variable with
mean zero. For example, fj(yj; β0) may represent the deviation of
yj from a linear or nonlinear regression function,

fj(yj; β0) = yj − g(zj; β0), (3)

where g is a known linear, partly linear or wholly nonlinear func-
tion of its arguments and zj is a vector of observable stochastic
(but exogenous) or nonstochastic explanatory variables, including
time trends in a spatio-temporal setting, or dummyvariables.More
generally, fj might be nonlinear in yj, for example a parametric
Box–Cox or arcsinh transformation. Correlation and heteroscedas-
ticity in yj are thus supposed not to be fully accounted for by zj.

Given n observations on yj in (2), and writing u = (u1, . . . , un)
′,

there is interest in estimating the covariance matrix E(uu′),
which has (j, k)th element Cov


uj, uk


, for the sake of robust

and/or efficient inference on β0. For example, given observations
y1, . . . , yn, the linear or nonlinear least squares estimate of β0 in
(3) is

√
n-consistent as n → ∞ with a centred limiting normal

distribution under regularity conditions on g and the zj, as well
as conditions which suitably limit the extent of the correlation in
the uj, but the variance matrix in the limit distribution depends
on the covariance structure of the uj, and information on this is
needed to consistently estimate this variance matrix and thereby
provide robust inference on β0, that is, asymptotically valid
hypothesis tests and consistent interval estimates. Further, in the
presence of dependence in the uj the least squares estimate of
β0 is generally asymptotically inefficient; efficient estimation via
generalized linear or nonlinear least squares, and thence locally
most powerful testing, will again require information on the
covariance structure of uj. The correlation in the uj is described in
terms of the n× 1 vector u even though n is regarded as increasing
in asymptotic theory because, as mentioned previously, some
spatial models are expressed in terms of one or more specified
n × n spatial weight matrices: a generic such matrix W has
zero diagonal elements and typically satisfies some normalization
restriction, e.g. that each of its rows sums to unity (though it
need not necessarily be symmetric and it may have some negative
elements). Consequently the ωijk (.), and thence the elements of u
and thus y, can be n-dependent, but we suppress this feature in
the notation. Of course since the uj are unobservable we would
estimate the θi0 in (1) after replacing each uj by its proxyuj =

fj(yj;β), where β is a
√
n-consistent estimate of β0, such as

described above, and we suppose that, for i = 1, 2, θi0, σ 2
i0 are

variation-free of β0 in (2). Given a
√
n-consistent estimateβ of β0

in (2) we can proxy the uj by theuj = fj(yj;β) in estimating the
ωijk (θi0), in the usual way.

We test between the hypotheses in (1) by tests of Cox (1961,
1962) type. Non-nested tests between structures of ‘‘spatial au-
toregressive’’ form have been developed by several authors, see
e.g. Anselin (1986), Burridge (2012), Burridge and Fingleton (2010),
Han and Lee (2013), Jin and Lee (2013), Kelejian (2008), Kele-
jian and Piras (2011), Piras and Lozano-Gracia (2012), but mainly
J-tests, though Jin and Lee (2013) also develop Cox tests, and
mostly focusing on the issue of testing between different spatial
weight matrix specifications. As indicated previously, our frame-
work is designed to cover not only ‘‘spatial autoregressive’’ mod-
els, but also others, which do not involve weight matrices, as
well as models for panel and spatio-temporal data which may or
may not employ weight matrices; parametric modelling of het-
eroscedasticity can also be embraced. Cox tests may be more
suitable than J-tests when only covariance structure is at issue.
Kelejian and Piras (2011) note that J-tests are based on whether
or not predictions based on alternative models add significantly to
the explanatory power of the null model, and show that they can-
not be used to construct a test which concerns only the structure of
the error term in SARmodels. A comparison between Cox tests and
J-tests for SARmodels, which includes a Monte Carlo study, can be
found in Jin and Lee (2013). Formally, our methodology can also
cover tests of nested hypotheses. An ancillary contribution of the
paper is the justification of Gaussian pseudo-likelihood parameter
estimates in a quite general setting. Our conditions do not assume
stationarity of uj but are motivated by approximate stability. In-
evitably, in view of the diversity of settings covered and the intrin-
sic issues with some of them, our conditions are high level, and
some can be hard or impossible to satisfactorily check, but we pro-
vide some discussion. It would be possible to extend our work also
to test between non-nested models for yj of type (2), for example
between two regression models alongside non-nested models for
E(uu′).

The following section describes a number of models that
might feature as non-nested hypotheses. Our non-nested test is
presented in Section 3, including versions that are robust with
respect to departures from normality, and Section 4 contains
a small Monte Carlo study of finite-sample performance, with
Section 5 offering some concluding comments. Theoretical, large-
sample, justification of the test is left to Appendices. Appendix A
lists and discusses regularity conditions. Appendix B presents and
proves several theorems: our test statistic is a function of Gaussian
pseudo-maximum likelihood estimates of the parameter vectors
θ10 and θ20 in (1), and the null (taken to be the hypothesis H1)
asymptotic distribution of the test statistic depends heavily on
the null asymptotic distribution of the parameter estimates, so for
these we provide consistency and asymptotic normality results
which have some novelty in our general setting and represent by
far the main technical contribution of the paper, given the breadth
of models potentially covered.

2. Spatial correlation models

We consider first observations recorded on d-dimensional
Euclidean space Rd. For this purpose we introduce the location
t ∈ Rd. We proceed as if we have observations uj, j = 1, . . . , n,
though as discussed above the uj are likely unobservable and
replaced in estimation by observable proxies. An important theme
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in the early spatial statistics literature concerned the foundations
ofmodelling dependence in terms of distributional behaviour,with
a debate between commencing from the joint distribution of the
data uj, j = 1, . . . , n (see e.g. Whittle, 1963), and from conditional
distributions (see e.g. Bartlett, 1955). In particular, the specification
of conditional distributions might not lead to a well defined joint
distribution. The Hammersley–Clifford Theorem (see Hammersley
and Clifford, unpublished manuscript, Besag, 1974) derived the
most general formpossible for a joint distribution, under regularity
conditions. Both the joint distribution and conditional distribution
approaches lead to a variety of statistical models, as does that of
modelling the uj, j = 1, . . . , n, as a (possibly linear) filter of n
(or possibly infinitely many) independent unobservable random
variables (see e.g. Tjostheim, 1978, 1983, Whittle, 1954). Because
the rules of statistical inference we develop are based on the
Gaussian pseudo-likelihood, the (parametric) specification of
the covariance matrix is basic to our approach, with actual
distributional form not of concern. Thus our discussion will stress
covariance structure, though we will also give some space to
connections with the approaches to modelling referred to above.

Given observations at n distinct locations t1, . . . , tn on a scalar
zero-mean process U (t), we make the identification U


tj


= uj,
j = 1, . . . , n, where unlike with time series there is no natural
ordering. However, in part motivated by the time series setting it
is natural to consider the simplifying case that U (t) is covariance
stationary, so EU (t)U (t + s) = σ 2

0 γ (s) for some function γ (s)
and unknown positive scalar σ 2

0 , and all t , s ∈ Rd. Consider a
parameterization γ (s;φ), φ ∈ Rm, such that γ (s;φ0) = γ (s) for
some φ0 ∈ Rm. Here φ0 generically represents either θ01 or θ02 of
the previous section. We thus take ωjk (φ) = γ


tj − tk; φ


, which

generically representsω1jk (θ1) orω2jk (θ2) above, θi ∈ Rpi , i = 1, 2.
When t has integer-valued components, i.e. t ∈ Zd, there

is an extension of the regularly-spaced time series setting, and
thus extensions of typical time series models can be considered,
for example, autoregressive moving averages, following Whittle
(1954). To define these, introduce L = (L1, . . . , Ld) such that
Πd

h=1L
lh
h U (t) = U (t − l), l = (l1, . . . , ld) ∈ Zd, and a (L; φ)

=
qU1

l1=−qL1
· · ·
qUd

ld=−qLd
al(φ)Πd

h=1L
lh
h , b (L; φ) =

rU1
l1=−rL1

· · ·rUd
ld=−rLd

bl(φ)Πd
h=1L

lh
h for given non-negative integers qLh, qUh,

rLh, rUh, h = 1, . . . , d, and given functions al(φ), bl(φ). Letting
ε (t), t ∈ Zd, be independent and identically distributed (iid)
random variables with zero mean and variance σ 2

0 , under suitable
conditions on a (L; φ) and b (L; φ), the process U (t) generated by

a (L; φ0)U (t) = b (L; φ0) ε (t) , t ∈ Zd, (4)

not only generalizes the time series stationary and invertible
autoregressive moving average process to a general dimension d,
but also allows for leads as well as lags, recognizing the lack of
chronological ordering of spatial data. The γ (s;θ) and thus ωjk (θ)
can be determined from (4). The model (4) potentially suffers
seriously from the curse of dimensionality. Thismight be alleviated
by, for example, replacing a (L; φ), b (L; φ) by the product forms
Πd

h=1
qUh

lh=−qLh,
alh(φ)Llhh , Πd

h=1
rUh

lh=−rLh,
blh(φ)Llhh , respectively. A

parsimonious case of (4), d = 2 with m = 1 treated in the
geography literature (see e.g. Hepple, 1976), is the first-order
quadrilateral autoregression
1 − φ


L−1
1 + L−1

2 + L1 + L2


U (t) = ε (t) . (5)

On the other hand Haining (1978) considered the corresponding
moving average model

U (t) =

1 + φ


L−1
1 + L−1

2 + L1 + L2


ε (t) . (6)

Isotropy is another assumption that can produce parsimonious
models. To define this we return to the previous more general
setting of t ∈ Rd. We say U (t) is isometric if for some function
on R, γ (s) = δ (|s|), where |s| is the Euclidean distance of s from
the origin. Thus we consider parametric functions δ (|s| ; φ). One
important class is the model of Matern (1986), which has various
parameterizations (see Stein, 1999, pp. 48–51), one of which is

δ (|s| ; φ) =
1

2φ1−1Γ (φ1)


(2φ1)

1/2
|s|

φ2

φ1

× Kφ1


(2φ1)

1/2
|s|

φ2


, (7)

for m = 2, φ = (φ1, φ2)
′ with φj > 0, j = 1, 2, and where Kφ1

is the modified Bessel function of the second kind (see e.g. Grad-
shteyn and Ryzhik, 1994). Another parsimonious isotropic model
with m = 2 has

δ (|s| ; φ) = exp

− |s/φ2|

φ1

, (8)

where φ1 ∈ (0, 2], φ2 > 0, (see e.g. Diggle et al., 1988, De Oliveira
et al., 1997, Stein, 1999). When φ1 = 0.5, (7) reduces to the
exponential covariance function exp (− |s/φ2|), which is identi-
cal to (8) with φ1 = 1, while as φ1 → ∞, (7) converges to
exp


− (s/φ2)

2 /2

, but non-nested tests can choose between (7)

and (8). A number of other models, and their fitting to irregularly-
spaced data, have been considered by, e.g., Vecchia (1988), Jones
and Vecchia (1993), Handcock andWallis (1994), Stein et al. (2004)
and Fuentes (2007).

Other examples entail one or more of the spatial weight
matrices described in the previous section. Similarly to (4), these
are most commonly expressed as a linear transformation of
unobservable iid zero-mean random variables. Denoting by ε an
n × 1 vector of these, we write

S (φ0) u = ε. (9)

where the n × n matrix S (φ) has full rank for all relevant φ, and
suppressing reference to weight matrices. Thus Ω (φ), the n × n
matrix with (j, k)th element ωjk (φ), is given by

Ω (φ) = S (φ)−1 S (φ)−1′ . (10)

Models of this type can be natural in, for example, a network
setting. Consider first the mth order spatial autoregression
(SAR(m)), for m ≥ 1, where

S (φ) = In −

m
j=1

φjWj, (11)

where In is the n × n identity matrix and the Wj are n × n weight
matrices. By far the most frequently treated case of (11) in the
theoretical and empirical literature is the SAR(1) (see e.g. Cliff and
Ord, 1972; Arbia, 2006). Here, W1 is sometimes chosen to be row-
normalized such that the elements of each row sum to 1. The
SAR(m) might be compared in non-nested testing with the spatial
moving average SMA(m), where

S (φ) =


In +

m
j=1

φjWj

−1

. (12)

Both (11) and (12) are nested in

S (φ) =


In +

ma+mb
j=ma+1

φjWj

−1 
In −

ma
j=1

φjWj


, (13)

denoting the spatial autoregressive moving average (SARMA(ma,
mb)), for ma ≥ 1, mb ≥ 1, ma + mb = m. In non-nested testing,
the SARMA(ma,mb) might be compared with the SARMA(mb,ma),
where either ma > mb or ma < mb, or with the SAR(m) or
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SMA(m). An alternative type of model is the matrix exponential
spatial model MESS(m), where

S (φ) = exp


−

m
j=1

φjWj


(14)

and exp(.) is the matrix exponential function,
exp(A) =


∞

j=0 A
j/j!;

thismodel was proposed form = 1 by LeSage and Pace (2009). The
MESS(m) might naturally be compared in non-nested testing with
the SAR(m) as in Han and Lee (2013) or with the SMA(m). Other
S (φ) that are non-linear functions of weight matrices might also
be considered.

Advantages of the class (9) include the guaranteednon-negative
definiteness of Ω (φ) (10), the ‘‘lag’’ interpretation in (11)–(13),
somewhat analogous to time series models, and the possibility of
choosing weight matrices to be non-symmetric and to have some
negative elements (though often they are symmetric with non-
negative elements). However, given that the (j, k)th element wjk
of a weight matrix can represent the inverse ‘‘distance’’ between
agents j and k, it is noticeable that for all of the cases of (9)
presented in the previous paragraph ωjk (φ) does not depend only
on wjk. For example, for the SMA(1), ωjk (φ) depends on wjl, wlk,
all l = 1, . . . , n, while for the SAR(1) and MESS(1) it depends
on the whole weight matrix. Such outcomes can be rationalized,
but there is also a case for using a weight matrix in a simpler and
more direct way in modelling Ω (φ), which is arguably the most
basic quantity of interest, indeed under Gaussianity it uniquely
describes the distribution of u, apart from a scale factor. If we
consider a weight matrix V with rather different properties from
before, being positive definite (and thus having positive elements
on the diagonal), we might consider

ωjk (φ) = ωjk

vjk; φ


, (15)

the notation stressing the dependence ofωjk (φ) ononly the (j, k)th
element vjk of V . As very simple examples, withm = 1 and vjk ≥ 0,

ωjk (φ) = v
φ

jk, φ > 0, (16)

or

ωjk (φ) = φ1/vjk , φ ∈ (0, 1) . (17)

In both cases, ωjk (φ) → 0 as vjk → 0. However, we would
require that Ω (φ) is positive definite for all relevant values of φ,
and we are unable to give sufficient conditions for this property
for either the models (16) or (17). Nevertheless, commencing
modelling from the form (15) receives some further support from
Section 4.2.2 of Besag (1974), who showed how a joint normal
distribution for us, s = 1, . . . , n, with covariance matrix σ 2

0 Ω (φ0)
can arise from a certain specification of each of the n (normal)
conditional distributions of the us (rather than from (10) and (9)
with normal ε), with likelihood-based inference depending on
positive definiteness of Ω (φ) for all relevant values of φ.

The setup in (1) is sufficiently general to cover alsomultivariate
data (e.g. where n = NK , and we have N observations on a
K -dimensional vector, for fixed K and N → ∞) and panel data
(where n = NT , and either or both the cross-sectional dimensionN
and the time dimension T are regarded as diverging in asymptotic
theory); in each case a variety of dependence structures is possible.

3. Non-nested tests

Cox (1961, 1962) developed log-likelihood ratio type tests
between non-nested probability densities for iid observations;
White (1982) provided asymptotic justification in that setting. Our
concern is to test between rival spatial correlation structures,
with precise distributional structure not of interest. Our tests
are based on a Gaussian pseudo-log-likelihood ratio and thus
share the robustness to non-Gaussianity property of the parameter
estimates studied in the previous section. For a known, non-
normal, parametric density for the εj more efficient tests would be
based on the appropriate maximum likelihood estimates. Indeed,
the same efficiency could be achieved using adaptive estimates
when the εj have density of unknown, nonparametric form (as
studied in a spatial autoregressive context by Robinson (2010)).

Our non-nested tests are based on parameter estimates of both
models in (1). For i = 1, 2, denote by θi, σ

2
i respectively a pi × 1

vector and a scalar, representing any admissible values of θi0, σ
2
i0

respectively, write p = p1 +p2, let Ωi (θi) be the n×nmatrix with
(j, k)th element ωijk (θi), and define

Li

θi, σ

2
i


=

1
2
log σ 2

i +
1
2n

log |Ωi (θi)| +
1

2nσ 2
i
u′Ω−1

i (θi) u, (18)

which is minus the normalized Gaussian pseudo-maximum-
likelihood based on (1), up to a constant. We do not assume
normality, but base our parameter estimates and non-nested tests
on (18). Our estimates of θi0, σ 2

i0 minimize Li

θi, σ

2
i


. For given θi,

Li

θi, σ

2
i


has a minimum

Qi (θi) = Li

θi, σ

2
i (θi)


=

1
2
log σ 2

i (θi) +
1
2n

log |Ωi (θi)| +
1
2
, (19)

where

σ 2
i (θi) =

1
n
u′Ω−1

i (θi) u =
1
n
u′Ω−1

i u, (20)

writing Ωi = Ωi (θi). For i = 1, 2, define Ri to be a given compact
subset of Rpi andθi = arg

θi∈Ri
minQi (θi) , (21)

σ̂ 2
i = σ 2

i

θi , (22)

the Gaussian pseudo-maximum-likelihood estimates of θi0, σ 2
i0.

From (18), (19), the Gaussian pseudo log-likelihood-ratio
statistic for comparing the models in (1) is

2

Q2
θ2− Q1

θ1 = log
σ 2

2

θ2
σ 2

1

θ1 +
1
n
log

Ω2
θ2

−
1
n
log

Ω1
θ1 .

This converges in probability to a non-zero limit under H1, where
throughout our asymptotic theory conditions on locations, which
might be regarded as stochastically generated in some situations.
Defining, for i = 1, 2,

σ̃ 2
i = σ̃ 2

i (θi) = E1σ 2
i (θi) = σ 2

10n
−1tr


Ω−1

i Ω10


(23)

and

Q̃i = Q̃i (θi) =
1
2
log


σ̃ 2
i (θi)


+

1
2n

log |Ωi (θi)|

=
1
2
log


σ̃ 2
i


+

1
2n

log |Ωi| , (24)

a centred statistic is

2

Q2
θ2− Q1

θ1− 2

Q̃2
θ2− Q̃1

θ1
= log

σ 2
2

θ2
σ 2

1

θ1 − log
σ 2
2

θ2σ 2
2

θ1 .
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This can be written, using (23), as

log
σ 2

2

θ2
σ 2

1

θ1 − log
tr

Ω−1

2

θ2Ω10


tr

Ω−1

1

θ1Ω10
 ,

which can be estimated by

log
σ 2

2

θ2
σ 2

1

θ1 − log
1
n
tr

Ω−1

2

θ2Ω1
θ1 ,

which we write as

LR = log
σ 2

2

θ2
σ 2

2(
θ1,θ2) ,

where

σ 2
2(θ1, θ2) = σ 2

1 (θ1) u (θ1, θ2) ,

with

u (θ1, θ2) =
1
n
tr

Ω−1

2 (θ2) Ω1 (θ1)

.

Under H1 and conditions in Appendix A, σ 2
2

θ2 − σ 2
2(
θ1,θ2) =

op (1), but under H2 LR will generally have a non-zero probability
limit, indicating that LR is a basis for testing H1. In Theorem 4 of
Appendix Bwe justify the following large sample approximate null
distributions:

LR ≃ N

0, n−1e′M−1NiM−1e , i = 1, 2, 3, 4, (25)

wheree, M and theNi are defined below and normality is assumed
for i = 1 but robustness to departures from normality is afforded
by the other choices of i, as will be explained.With levelα ∈ (0, 1),
and zα such that the probability that a standard normal variate
exceeds zα is α, it is proposed to reject H1 in the direction of H2

if |LR| ≥

n−1e′M−1NiM−1e1/2 zα/2. In that event, as is common

practice in non-nested testing, one can switch H1 and H2 and if
there is a further rejection the test is deemed inconclusive. At
the end of Appendix B we mention test statistics that are slightly
simpler but valid less generally.

To definee in (25), introduce τi =

θ ′

i , σ
2
i

′, τi =
θ ′

i ,σ 2
i

′
,

i = 1, 2, τ =

τ ′

1, τ
′

2

′,τ =
τ ′

1,τ ′

2

′ and
cj (τ ) = −

σ 2
1

n
tr

Ω−1

2 Ω1j

, j = 1, . . . , p1;

dj (τ ) =
σ 2
1

n
tr

Ω−1

2 Ω2jΩ
−1
2 Ω1


, j = 1, . . . , p2,

and then

e (τ ) =

c1 (τ ) , . . . , cp1 (τ ) , −u (θ1, θ2) ,

d1 (τ ) , . . . , dp2 (τ ) , 1
′

/σ 2
2 , e = e (τ) .

To define M in (25) denote, for i = 1, 2 and j, k, l = 1, . . . , pi,

Ωij = Ωij (θi) =

∂/∂θij


Ωi,

Ωijk = Ωijk (θi) = (∂/∂θik) Ωij, (26)
Ωijkl = Ωijkl (θi) = (∂/∂θil) Ωijk,

where the existence of the derivatives is assured by Assumption 8
in Appendix A. For i = 1, 2, let Mi = Mi (τ ) be the (pi + 1) ×

(pi + 1) symmetric matrix with (j, k)th elementMijk given by

Mijk =
σ 2
1

2σ 2
i n

tr

Ω−1

i ΩijΩ
−1
i ΩikΩ

−1
i Ω1


+

1
2n

tr


Ω−1
i


ΩijΩ

−1
i Ωik − Ωijk


×


σ 2
1
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Ω−1
i Ω1 − In


, j, k = 1, . . . , pi; (27)
Mi,j,pi+1 =
σ 2
1

2nσ 4
i
tr

Ω−1

i ΩijΩ
−1
i Ω1


,

j = 1, . . . , pi; Mi,p2+1,p2+1 =
σ 2
1

nσ 6
i
tr

Ω−1

i Ω1

−

1
2σ 4

i
.

Now take Mi = Mi (τ), i = 1, 2, and

M =

M1 0
0 M2


.

Note that M results from derivingp lim
∂2L1

∂τ1∂τ ′

1
0

0 p lim
∂2L2

∂τ2∂τ ′

2


and then evaluating atτ . The second derivative terms, involving
Ω2jk, are present in someM2jk due to imposingH1 on theH2 model,
but the second trace in (27) vanishes for i = 1.

To define N1 in (25), let N = N (τ ) be the (p + 2) × (p + 2)
matrix

N (τ ) =


N11 N12
N ′

12 N22


,

where, for h, i = 1, 2, Nhi = Nhi (τ ) is the (ph + 1) × (pi + 1)
matrix with (j, k)th element Nhijk given by

Nhijk =
σ 4
1

2nσ 2
h σ 2

i
tr

Ω−1

h ΩhjΩ
−1
h Ω1Ω

−1
i ΩikΩ

−1
i Ω1


,

j = 1, . . . , ph, k = 1, . . . , pi;

Nhij,pi+1 =
σ 4
1

2nσ 2
h σ 4

i
tr

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h ΩhjΩ
−1
h Ω1Ω
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i Ω1


,

j = 1, . . . , ph;

Nhi,ph+1,k =
σ 4
1

2nσ 4
h σ 2

i
tr

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i ΩikΩ
−1
i Ω1Ω
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h Ω1


,

k = 1, . . . , pi;

Nhi,ph+1,pi+1 =
σ 4
1

2nσ 4
h σ 4

i
tr

Ω−1

h Ω1Ω
−1
i Ω1


.

Note thatN11 = M1. TakeN1 = N(τ), and note thatN1 results from
deriving

E1




∂L1
∂τ1
∂L2
∂τ2




∂L1
∂τ1
∂L2
∂τ2


′
 ,

(with E1 denoting expectation under H1) with the assumption that
the ui are Gaussian, and then evaluating atτ .

Our N2, N3 and N4 are robust to departures from Gaussianity,
and are thus potentially less precise than N1 when u is actually
Gaussian. We need to proxy the iid innovations εs, with zero mean
and variance σ 2

10, that appear in the linear process representation
for uj,

uj =

∞
s=1

bjsεs, j = 1, 2, . . . , n, n = 1, 2, . . . , (28)

described in Assumption 7 of Appendix A and discussed further
immediately afterwards. The representation (28) is central to the
proofs of Theorems 2–4 (on the limit distribution ofτ and the null
limit distribution of our test statistic) in Appendix B. Such a repre-
sentation follows naturally if we commence from an H1 model of
form S (θ10) u = ε (cf. (9)), with εs the sth element of ε, or a model
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of form (4). Given the functions bjs (θ1), such that bjs = bjs (θ10),
let the n × n matrix B (θ1) have (j, s)th element bjs (θ1), and de-
fine the n × 1 vectorε = B

θ1−1
u. Note that for a model of form

S (θ10) u, we have B (θ1) = S (θ1)
−1, and we have an exact factor-

ization Ω1 (θ1) = B (θ1) B (θ1)
′. In models involving more than n,

including infinitelymany, εs, such as (4), B (θ1) B (θ1)
′ only approx-

imately factorizes Ω1 (θ1), but the truncation in (28) entailed in
usingε = B

θ1−1
u can be rigorously justified (given the summa-

bility properties of the bjs in Assumption 7 of Appendix A). De-
noting by bs (θ1) the n × 1 vector with kth element bks (θ1), for
i = 1, 2 and k = 1, . . . , n let aist (τ ) be the (pi + 1) × 1 vector
with jth element aijst (τ ) = −


2nσ 2

i

−1 b′
s (θ1) Ω−1

i ΩijΩ
−1
i bt (θ1)

for j = 1, . . . , pi, and −

2nσ 4

i

−1 b′
s (θ1) Ω−1

i bt (θ1) for j = pi + 1,
and put ast (τ ) = (a1st (τ )′ , a2st (τ )′)′; note that ast (τ ) = ats (τ ).
Denote the sth element of ε byεs; theεs might also be used in
bootstrap versions of our tests. Define

N2 = n
n

s=1

ass (τ) a′

ss (τ)
ε2

s −σ 2
1

2
+ 2n

n
s,t=1;s≠t

ast (τ) a′

st (τ)ε2
sε2

t , (29)

and, slightly more simply,

N3 = n
n

s=1

ass (τ) a′

ss (τ)
ε2

s −σ 2
1

2
+ 2σ 4

1 n
n

s,t=1;s≠t

ast (τ) a′

st (τ) , (30)

N4 =

n
s=1

ε2
s −σ 2

1

2 n
s=1

ass (τ) a′

ss (τ)

+ 2σ 4
1 n

n
s,t=1;s≠t

ast (τ) a′

st (τ) . (31)

For Gaussian εs we have E(ε2
s − σ 2

10)
2

= 2σ 4
10, and on replacingε2

s −σ 2
1

2 by 2σ 4
1 ,N3 becomesN1. Since each can be represented

as a positively-weighted sumof non-negative definitematrices,N1,N2,N3 andN4 are desirably guaranteed non-negative definite. Note
that unlikeN1 andN4,N2 andN3 are also consistency-robust to vari-
ation in the fourth moment of εs.

Note that Theorem 3 of Appendix B justifies the large sample
approximationsτ ≃ N


τ , n−1M−1NiM−1 , i = 1, 2, 3, 4,

with Theorem 4 then using the delta method to justify (25).

4. Monte Carlo study of finite-sample performance

We generate designs as follows. First, we generate a random
set of 2000 pairs (r1, r2) iid as (R1, R2), where R1 and R2 are
two independent random variables uniformly distributed in the
interval [0, 100]. Each pair (r1, r2) is a coordinate of the square
lattice [0, 100] × [0, 100]. We then generate samples of size n
(n < 2000), consisting of the n-nearest-neighbours to the centre
of the square lattice (i.e. the point (50, 50)). The same coordinates
are used in each Monte Carlo simulation.

We compare four alternative covariance specifications. On the
one hand, we consider SAR (1), SMA(1) andMESS(1) specifications,
i.e (11), (12) and (14) respectively, with m = 1, all of which
involve weight matrices. We also consider an isotropic covariance
function (8) with φ1 = 1, or equivalently (7) with φ1 = 0.5,
i.e. the exponential covariance function exp (− |s| /φ2). In Tables 1,
2 and 4, we use the same parameter values for the differentmodels
when generating spatial data according to the different designs.
On the other hand, we consider the same weight matrix W1 for
the non-isotropic specifications. The weights are constructed by
the function ‘‘makeneighbors’’ taken from J. LeSage’sMATLAB code
(http://www.spatial-econometrics.com), which has been used
before by Han and Lee (2013) in the context of non-nested testing
of SAR vs MESS models. This function generates a row-normalized
weight matrix W1 =


wij
n
i,j=1 based on k nearest neighbours,

i.e. wij = w∗

ij/
n

j=1 w∗

ij where w∗

ij = 1 if the location j is one
of the k nearest neighbours of the location i, i ≠ j, and w∗

ij = 0
otherwise. Themaximumeigenvalue ofW1 is 1.We chose k = 5, as
in Han and Lee (2013). These weights produce covariancematrices
satisfying Assumptions 2, 3 and 8 of Appendix A for the models
and parameter values chosen. We compare results for alternative
parameter values and weight functions in Table 3. These Monte
Carlo experiments are based on 2000 replications.

Table 1 provides a comparison of the level accuracy under
different kurtosis scenarios using the alternative estimates Ni.
We provide the proportion of rejections under H1 for SAR(1) and
SMA(1) specifications with parameter φ1 = 0.5 and nearest
neighbour weights with k = 5, generating innovations


εj
n
j=1

with mean zero, variance one and varying kurtoses 0, 3 and 6,
resulting from standardized versions of normal, centred Gamma
with shape parameter 2 and scale parameter 1, and Student’s t
with 5 degrees of freedom, respectively. Tests based on alternativeNi behave very similarly under normality, though sometimes
there is a cost to using the robust N2, N3 and N4 when they
are not needed, and more surprisingly, the test based on N̂1 still
works fairly well under serious leptokurtosis, and generally is best
under leptokurtic innovations. This outcome may be explainable
by the imprecision of 4th moment estimates under leptokurtosis,
in particular the 8th moment of a Gamma with shape parameter 2
is 9! and the 8th moment of Student’s t with 5 degrees of freedom
does not exist, contradictingAssumption 7 of Appendix A. Amongst
the three robust estimators, N̂4 is easiest to compute and behaves
slightly better, possibly because, unlike the other two, it uses the
information that the fourthmoment is constant over observations.

Table 2 provides size and power comparisons of tests with
the SAR, SMA, MESS and EXP specifications under H1 (horizon-
tal) in the direction of SAR, SMA and MESS under H2 (vertical)
using Gaussian εj and tests based on N̂4 for sample sizes of 100,
200, 500 and 1000. We consider the SAR(1) and SMA(1) mod-
els with φ1 = 0.5 and the MESS(1) model with φ1 = 0.65
(prompted by a relationship between maximum row sums of
In − φ1W1 and exp(−φ1W1) derived by LeSage and Pace (2007,
p. 193), though these only become close as φ1 → 0). The ex-
ponential isotropic model (EXP) given by (8) with φ1 = 1, is
simulated with φ2 = 1 conditional on the fixed location points,
using the lower–upper triangular decomposition of the covari-
ance matrix, as suggested by Davis (1987) and implemented with
a MATLAB routine (http://www.mathworks.com/matlabcentral/
fileexchange/27613-random-field-simulation). The normal ap-
proximation is fairly good for the larger sample sizes (500 and
1000) except when testing SAR, SMA or MESS in the direction of
EXP. The EXP likelihood under misspecification is badly behaved
and the parameter estimates often fall on boundaries in many ex-
periments. This is the case for various φ1 values we have tried. Per-
formance under H1 is very good when testing EXP in the direction
of the other models. The EXPmodel is quite different from the oth-
ers and it is not difficult to reject this specification in the direc-
tion of non-isotropic covariances. However, it is hard to discrimi-
nate between SAR, SMA andMESS for the smaller sample sizes, and
MESS is difficult to reject in the direction of SMA even for large n.

http://www.spatial-econometrics.com
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation


M.A. Delgado, P.M. Robinson / Journal of Econometrics 187 (2015) 385–401 391
Table 1
Size comparisons for alternative hypotheses and N̂i . Percentage of rejections with nominal 5% level.

εj ∼ N(0, 1), Kurtosis Excess = 0

H1/H2 SAR/SMA SAR/MESS SMA/SAR SMA/MESS

n

N̂i 100 500 1000 100 500 1000 100 500 1000 100 500 1000
N̂1 0.60 4.80 5.00 1.30 3.35 4.75 1.40 4.15 4.55 3.35 4.60 4.75
N̂2 1.00 4.90 4.95 1.60 3.25 4.75 1.35 3.70 4.30 3.40 4.50 4.50
N̂3 0.65 4.85 4.95 1.65 3.30 4.65 1.40 4.05 4.55 3.20 4.70 4.75
N̂4 0.70 4.85 4.95 1.75 3.40 4.75 1.45 4.25 4.50 3.20 4.55 4.75

εj ∼ (Γ (2, 1) − 2)/
√
2, Kurtosis Excess = 3

n

N̂i 100 500 1000 100 500 1000 100 500 1000 100 500 1000
N̂1 1.05 5.25 6.35 2.10 5.90 6.70 2.55 4.35 4.40 3.55 4.60 4.70
N̂2 0.45 3.15 4.00 0.95 4.10 4.70 0.85 2.35 3.20 3.25 3.30 3.45
N̂3 0.30 3.25 4.35 0.95 4.05 4.90 0.85 2.80 3.30 3.30 3.05 3.45
N̂4 0.35 3.85 4.60 0.95 4.60 5.15 0.85 3.10 3.30 3.45 3.15 3.60

εj ∼ t5/
√
5/3, Kurtosis Excess = 6

n

N̂i 100 500 1000 100 500 1000 100 500 1000 100 500 1000
N̂1 1.05 6.10 5.60 2.30 6.40 5.10 1.85 5.25 5.60 3.20 4.50 6.30
N̂2 0.40 3.70 3.25 1.20 3.85 3.35 0.70 3.10 2.85 2.60 2.35 3.65
N̂3 0.25 3.95 3.50 1.10 3.75 3.55 0.85 3.20 3.05 2.75 2.60 3.90
N̂4 0.25 4.20 3.55 1.15 4.05 3.65 0.90 3.65 3.20 2.60 2.50 4.15
Table 2
Size and power comparison using Gaussian uj and N̂4 .

H2 \ H1 n Size Power
% Rejections under H1 % Rejections under H2

SAR SMA MESS EXP SAR SMA MESS EXP

100 1.45 1.40 0.90 1.12 2.70 86.15
SAR 200 2.75 2.95 3.20 23.60 8.00 99.15

500 4.25 3.65 4.70 52.80 15.65 100
1000 4.50 4.60 5.15 82.45 31.05 100

100 0.70 1.20 2.05 1.20 1.10 39.70
SMA 200 2.75 2.55 3.65 6.40 3.00 89.30

500 4.85 3.90 4.65 19.25 7.35 100
1000 4.95 4.55 5.10 35.70 13.45 100

100 2.50 3.20 1.40 3.80 5.65 6.40
MESS 200 3.80 3.10 3.60 7.85 9.15 98.55

500 4.70 4.55 4.65 19.60 21.10 100
1000 5.40 4.75 5.30 37.35 38.55 100
Of course, the discriminating ability of the tests depends greatly on
the distance between the competing models. This is illustrated in
the following Monte Carlo experiments.

Table 3 demonstrates how power depends on the underly-
ing processes. Testing MESS(1) against SMA(1) performs com-
paratively worse than the other tests in Table 2. We investigate
behaviour under H2, i.e. for SMA(1), with φ1 = 0.5, 0.6, 0.7, 0.8
and 0.9. We also consider tests using W1 computed with differ-
ent numbers k of nearest neighbours. We also use symmetrized
nearest neighbour weights based on J. LeSage’s MATLAB routine
‘‘fsym_neighbors2’’ for different φ1. It uses W1 = A−1/2CkA−1/2,

with Ck =
k

ℓ=1 ρℓS(ℓ), where ρ ∈ (0, 1), S(ℓ) =


s(i,j)(ℓ)

n
i,j=1

with s(i,j)(ℓ) = 1 if location i is the ℓth nearest neighbour of j or

j is the ℓth nearest neighbour of i, and s(i,j)(ℓ) = 0 otherwise, and

A = diag
n

i=1 C
(1,i)
k , . . . ,

n
i=1 C

(n,i)
k


with Ck =


C (i,j)
k

n
i,j=1

.

The maximum eigenvalue of the resulting W1 is 1, and the corre-
sponding covariancematrices satisfy Assumptions 2, 3 and 8 of Ap-
pendix A. We took ρ = 0.8 and k = 5. The symmetrized nearest
Table 3
Power: % rejections under H2 . H1 : MESS vs H2 : SMA. Tests using Gaussian uj and
N̂4 .

φ1 NN , k = 5 k ANN
ANN SNN φ1 = 0.5
n n
500 1000 500 1000 500 1000

0.5 7.35 13.45 6.95 13.45 4 7.85 14.70
0.6 9.70 18.90 9.05 16.50 5 7.35 13.45
0.7 12.9 28.15 12.05 25.95 6 9.25 11.65
0.8 19.0 40.75 15.45 31.10 10 6.65 7.60
0.9 23.5 52.80 17.55 36.80 20 4.75 5.30

neighbours are denoted as SNN and the asymmetric ones, used in
Tables 1 and 2, are denoted as ANN . Power very much depends on
W1 and φ1.

Table 4 provides size and power for tests comparing the same
models as in Table 1 but where the uj are unobserved and tests
are based on least squares residuals ûj for (3) with g


zj; β0


=

β10 + β20zj, β ′

0 = (β10, β20) = (1, 1). There is some effect of
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estimating the nuisance parameters β10 and β20, but it seems to
disappear as sample size increases.

As in many other circumstances a bootstrap can improve finite
sample accuracy. A residual naive bootstrap resamplingmimics the
behaviour of the test under the null hypothesis. A random sample
with replacement


ε̂∗

j

n
j=1

from

ε̂j
n
j=1, with ε̂ = B(θ̂1)−1û, forms

a basis for a bootstrap resample û∗
= B(θ̂1)ε̂∗, j = 1, . . . , n, which

imposes the restriction under the null H1. Critical values of the
asymptotically pivotal test statistic η̂ =

√
nLR/


ê′M̂−1N̂4M̂−1ê


are approximated by its bootstrap analogs, which are expected
to be more accurate than the standard normal counterparts.
Bootstrap critical values are approximated by Monte Carlo: we

generate m bootstrap resamples

û∗(l)
j

m
l=1

and the corresponding

test statistics

η̂∗(l)

m
l=1, then H1 is rejected at the α100% level

in the direction of H2 when η̂ ≥ c∗

α/2 or η̂ ≤ c∗

1−α/2, where

c∗
α = inf


c ∈ R+

: m−1m
l=1 1{η̂∗(l)≥c} ≤ α


. Table 4 provides

sizeswith SAR(1)H1 in the direction of SMA(1)H2 with innovations
generated as a standard normal and as leptokurtic Student’s t
with 5 degrees of freedom. Here, we use only 1000 Monte Carlo
experiments and 500 resamples to approximate the bootstrap
critical values. The bootstrap tests exhibit excellent accuracy even
for n as small as 50, and even in the leptokurtic case. One can save
the trouble of computing the scale ê′M̂−1N̂4M̂−1ê, at the price of
worse accuracy, by implementing the bootstrap test directly on√
nLR.
We examined sensitivity of the test to the way locations are

derived. Rather than taking the n locations as the n nearest
neighbours of the centre of the lattice (50, 50), we consider three
other cases, where locations are placed at each quadrant of the
lattice with centre (50, 50) at different proportions. That is we
consider ni nearest neighbours of the centre of each quadrant i,
i = 1, 2, 3, 4,with n = n1+n2+n3+n4. The centres of quadrants I,
II, III and IV are (75, 75), (75, 25), (25, 25) and (24, 75), respectively.
Figure 1 plots the locations for the three cases considered. Case
0 is the case considered in the previous simulations where the n
locations are nearest neighbours of the centre (50, 50); in Case 1,
n1 = n/2, n2 = n3 = n/5, and n4 = n/10; in Case 2, n1 = 7n/10,
and n2 = n3 = n4 = n/10; in Case 3, n1 = 8n/10, n3 = n/10, and
n4 = 5n/100. Table 6 reports percentage of rejections under the
null and alternative hypotheses, in each of these scenarios, when
testing SMA against SAR, using the four alternative N estimators
and with standard normal εj. The test is not particularly sensitive
to the different location structures. We also employed εj with
different kurtosis excess, as in Table 1, and again the proportions
of rejections under H0 and H1 are very similar across the four cases
so the results are not displayed.

5. Final comments

In line with Table 4 of the previous section, under regularity
conditions our tests remain valid when the uj are unobservable
disturbances in a parametric model such as (2) and estimates of
the correlation and scale parameters of the uj for the Hi are based
instead on residuals, as discussed in Section 1. In (2), the prelimi-
nary estimate of β0, likely one motivated by uncorrelated and ho-
moscedastic uj, would need to be shown to be

√
n-consistent in the

presence of possible correlation and heteroscedasticity, and this is
relatively straightforward to establish, especially in (3), compared
to the asymptotic theory for kernel nonparametric regression es-
timates under (28) in Robinson (2011). The rest of the verification
that the uj can be replaced by residuals is lengthy but straightfor-
ward, under standard additional conditions. Table 5 of the previous
section suggested that improved level accuracy can be achieved by
bootstrapping, and theoretical justification could be sought. It may
be of value to extend our focus on correlation to test betweenmod-
els that also entail different parameterization of the means of ob-
servations, for example different choices of g in (3), such as testing
between a linear and a nonlinear model or between linear models
involving non-nested selections of explanatory variables.
Table 4
Size and power using Gaussian uj and N̂4 . Tests based on residuals of simple linear regression.

H2 \ H1 n Size Power
% Rejections under H1 % Rejections under H2

SAR SMA MESS EXP SAR SMA MESS EXP

100 1.80 1.35 1.80 6.60 4.20 80.00
SAR 200 2.50 2.80 3.60 20.55 8.40 98.00

500 4.00 4.05 4.35 47.75 18.60 100
1000 4.45 4.10 4.80 61.15 33.70 100

100 1.15 0.90 1.20 3.35 1.60 35.25
SMA 200 2.80 2.70 3.15 8.00 4.05 87.60

500 4.70 3.95 3.80 17.85 7.80 99.90
1000 4.75 4.55 4.65 32.15 12.70 100

100 3.45 2.50 1.40 5.70 4.15 8.95
MESS 200 3,75 2.65 3.15 10.20 8.25 97.50

500 3.80 3.85 3.85 20.40 18.15 100
1000 4.05 5.55 4.70 36.20 37.20 100
Table 5
H1 : SAR vs H2 : SMA. Bootstrap and asymptotic tests. Size: % Rejections under H1 .

εj ∼ N(0, 1) εj ∼ t5
Bootstrap Asymptotic Bootstrap Asymptotic
n \ 100α%
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 1.00 5.10 8.00 0.00 0.20 1.50 0.70 5.70 11.40 0.00 0.00 0.90
100 0.90 5.50 10.20 0.00 0.50 4.20 0.70 5.60 11.20 0.00 0.50 3.20
200 1.30 6.70 13.40 0.10 2.50 7.60 1.60 6.10 11.00 0.10 0.80 5.00
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Table 6
Size & Power comparisons for testing H0 : SMA versus H1 : SAR. Alternative locations with different density of points at each quadrant. Nominal 5% level. εj ∼ N(0, 1).

Percentage of rejections under H0

n
N̂i 100 500 1000 100 500 1000 100 500 1000 100 500 1000
N̂1 1.40 4.15 4.55 1.60 4.20 4.50 1.80 3.80 4.80 1.55 4.05 4.05
N̂2 1.35 3.70 4.30 1.45 4.20 4.35 1.70 3.85 4.65 1.45 4.15 3.90
N̂3 1.40 4.05 4.55 1.70 4.10 4.40 2.10 3.75 4.80 1.80 4.05 4.05
N̂4 1.45 4.25 4.50 1.45 3.90 4.15 1.50 3.65 4.55 1.65 3.90 3.90

Percentage of rejections under H1

N̂1 10.8 53.2 82.3 12.6 50.0 78.3 11.0 54.5 80.5 11.0 53.7 81.8
N̂2 11.2 53.4 82.3 12.8 49.6 78.5 11.5 54.3 80.9 11.4 53.8 81.6
N̂3 10.5 53.1 82.4 12.9 49.8 78.5 11.3 54.6 80.5 11.3 53.9 81.8
N̂4 10.9 52.9 82.5 12.5 49.5 78.1 11.5 54.1 80.7 11.5 54.0 81.2
Fig. 1. Simulated locations for the four cases, n = 1, 000.
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Appendix A. Regularity conditions and discussion

The first five assumptions are imposed for consistency of our
parameter estimates (Theorem 1 in Appendix B).

Assumption 1. Under H1, for all sufficiently large n, the uj have
uniformly bounded fourth moment, and, denoting by κ1jklm the
fourth cumulant of uj, uk, ul, um,

lim
n→∞

n−2
n

j,k,l,m=1

κ2
1jklm = 0.

This condition of weak dependence with respect to fourth
cumulants holds trivially on the one hand if uj is Gaussian, and on
the other if the uj are independent. It will also hold under the linear
process assumption imposed later for the central limit theorem,
indeed there

n
j,k,l,m=1 κ2

1jklm = O (n).
For a real matrix A, denote by ∥A∥ the spectral norm of

A, i.e. the square root of the largest eigenvalue of A′A. In view
of the Gaussian pseudo-likelihood employed, the Euclidean norm
∥A∥2 =


tr(A′A)

1/2 arises naturally, and as well as the standard
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norm inequality ∥AB∥ ≤ ∥A∥ ∥B∥ our proofs use the inequality

∥AB∥2 ≤ ∥A∥2 ∥B∥ . (32)

Assumption 2. For i = 1, 2

lim
n→∞

sup
θi∈Ri


∥Ωi (θi)∥ +

Ω−1
i (θi)

 < ∞.

Assumption 3. For i = 1, 2, for any θ
Ď
i ∈ Ri and any η > 0, there

exists ε > 0 such that

lim
n→∞

sup
θi:
θi−θ

Ď
i

<ε;θi∈Ri

Ωi (θi) − Ωi


θ
Ď
i

 < η. (33)

Notice that Assumptions 2 and 3 imply that (33) holds with
Ωi (θi) − Ωi


θ
Ď
i


replaced by Ω−1

i (θi) − Ω−1
i


θ
Ď
i


. There is in-

terest in checking Assumptions 2 and 3 under more primitive
conditions, given the specifications of the Ωi. To place the as-
sumptions in perspective, for equally-spaced time series, when
Hi implies stationarity Ωi is a Toeplitz matrix and Assump-
tion 2 is satisfied if the (spectral density) function f (λ; θi) =

(2π)−1
j,k:|j−k|=l ωijk (θi) cos lλ is bounded and bounded away

from zero on λ ∈ (−π, π], uniformly in θi ∈ Ri, while Assump-
tion 3 is satisfied by continuity of f (λ; θi) in θi. These observations
are straightforwardly extended in case of regular spatial or spatio-
temporal lattices. For irregularly-spaced data, there is less scope
for finding comprehensible sufficient conditions for Assumptions 2
and 3, because the properties of both the underlying process (de-
noted U in the Section 2) and the regime generating the observa-
tion points are generally entwined in a complicated way in the
Ωi (θi). However, a combination of stationary weak dependence
in U and a degree of regularity (lack of trending in the degree of
sparseness of observations) would be expected to suffice. An ad-
vantage of Assumptions 2 and 3 is their relative simplicity. When
the Hi model can be naturally factored as Ωi = BiB

′

i , where Bi is
a known matrix function of θi, Assumptions 2 and 3 (and subse-
quent assumptions) can be written in terms of Bi. This is the case
in (4), where in each case a particular inversion must generally be
selected from several possibilities, as well as in models of form (9)
and (10), where Bi = S−1

i . However, such models are readily cov-
ered also by our assumptions on Ωi, whereas for some other mod-
els (e.g. (7) and (8)), though of course Ωi admits a factorization for
any θi, the factors need not have a simple closed form representa-
tion as functions of θi.

With Q̃10 = Q̃1 (θ10),

Q̃1 − Q̃10 =
1
2
log


1
n
tr

Ω−1

1 Ω10

/
Ω−1

1 Ω10
1/n , (34)

which is guaranteed to be non-negative by the inequality between
arithmetic and geometric means. An identifiability condition for
θ10 is:

Assumption 4. θ10 ∈ R1 and for all θ1 ∈ R1 \ θ10,

lim
n→∞

1
n
tr

Ω−1

1 Ω10

/
Ω−1

1 Ω10
1/n > 1, (35)

where the limit is assumed to exist.

For the SAR(1) special case, write S = S (θ) = In − θW ,
S0 = S (θ0). Then (35) can be written

lim
n→∞

1
n
tr

SS−1

0 S−1′

0 S ′

SS−1
0 S−1′

0 S ′

1/n > 1. (36)
Since SS−1
0 = In + (θ0 − θ)W , and thusΩ−1

1 Ω10
 = |In + (θ0 − θ)W |

2,

tr

SS−1

0 S−1′

0 S ′


= tr (In + (θ0 − θ)W ) (In + (θ0 − θ)W )′


,

the strict inequality in (36) holds for all θ ≠ θ0 except under
some degeneracy in the limit behaviour of W . The corresponding
condition of Lee (2004) is given in his equation (4.2) as

lim
n→∞


1
n
log

σ 2
0 S

−1
0 S−1′

0

− 1
n
log

σ 2 (θ) S−1S−1′
 ≠ 0, (37)

where σ 2 (θ) = σ 2
0 tr


SS−1

0 S−1′

0 S ′


/n and our notation differs

somewhat from his. The left side of (37) can thus be written

lim
n→∞


1
n
log

S−1
0 S−1′

0

− 1
n
log

S−1S−1′
− 1

n
log tr


SS−1

0 S−1′

0 S ′


= lim

n→∞


log

SS−1
0 S−1′

0 S ′

1/2 −
1
n
log tr


SS−1

0 S−1′

0 S ′


= − lim

n→∞
log


1
n
tr

SS−1

0 S−1′

0 S ′

SS−1
0 S−1′

0 S ′

1/n .

Thus, our identification condition (36) is the same as (37) of Lee
(2004), except that ours indicate that the left side of his (37)
cannot be positive so ‘‘≠’’ in (37) can be replaced by ‘‘<’’ (and our
presentation recognizes the elimination of σ 2

0 ).
Denote by θ2∗ = θ2∗n a sequence of pseudo-true values under

H1:

θ2∗ = arg
θ2∈R2

minQ2 (θ2) ,

and write Q̃2∗ = Q̃2 (θ2∗) , Ω2∗ = Ω2 (θ2∗). Define also

σ 2
2∗ = σ̃ 2

2 (θ2∗) = σ 2
10n

−1tr

Ω−1

2∗ Ω10

. (38)

Define, for all n and ε > 0, the neighbourhoods
N2ε = {θ2 : ∥θ2 − θ2∗∥ < ε},
and let N̄2ε = R2 \ N2ε . We have

Q̃2 − Q̃2∗ =
1
2
log


tr

Ω−1

2 Ω10


tr

Ω−1

2∗ Ω10
 Ω−1

2∗ Ω2
1/n (39)

where Ω2∗ = Ω2 (θ2∗). Because θ2∗ need not be constant over n,
we identify it by the condition:

Assumption 5. For all sufficiently large n and any η > 0, θ2∗ ∈ R2
and there exists ε > 0 such that

lim
n→∞

inf
θ2∈N̄2ε


tr

Ω−1

2 Ω10


tr

Ω−1

2∗ Ω10
 Ω−1

2∗ Ω2
1/n > 1.

Our remaining assumptions are needed in asymptotic normal-
ity results for the parameter estimates (Theorems 2 and 3 in Ap-
pendix B) and for the non-nested test statistics.

Assumption 6. θ10 is an interior point of R1 and, for all sufficiently
large n, θ2∗ is an interior point of R2.

Assumption 7. The representation (28) holds, where εs is a
sequence of iid randomvariableswith zeromean, variance σ 2

10, and
finite eighth moment, bjs can depend on n, bjs = bjsn, and, defining

cjs = cjsn = bjs/ω
1/2
1jj0, j = 1, . . . , n; n = 1, 2, . . . ; s = 1, 2, . . . ,

we have

lim
n→∞

sup
1≤j≤n

∞
s=1

cjs+ lim
n→∞

sup
s≥1

n
j=1

cjs < ∞. (40)
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The representation (28)was previously used in a spatial context
by Robinson (2011), where its relevance was discussed. It implies
that

ω1jk0 =

∞
s=1

bjsbks, j, k = 1, 2, . . . , n, (41)

where Assumption 2 implies the ω1jj∗ are uniformly bounded and
bounded away from zero, and thus

∞
s=1

c2js = 1, j = 1, 2, . . . , n. (42)

The normalized cjs can be compared with moving average
weights in the stationary time series setting where cjs = cj−s,
when (40) reduces to a standard weak dependence summability
condition; the eighthmoment condition automatically holds under
Gaussianity and is needed only to check a Lyapunov condition,
otherwise finite fourth moments suffice. In models of the form
(9) we can choose bjs to be the (j, s)th element of S (θ10)

−1, s =

1, 2, . . . , n, and bjs = cjs = 0, j ≥ n + 1. More generally, the latter
equality can be satisfied if the uj are Gaussian, since they can be
represented as a linear transformation of n iid normal variables. In
particular, this is the case for Gaussian irregularly-spaced uj, with
the bjs, s = 1, . . . , n, depending on the locations as well as the
underlying continuous process U(t) described in Section 2; see
also the discussion in Robinson (2011). If the uj are non-Gaussian,
the infinite series representation is generally required to cover
models such as (4), (7) and (8); at least in the regularly spaced case
under broad conditions there exist linear representations of us in
terms of uncorrelated and homoscedastic innovations, with these
innovations then assumed to be independent.

In much asymptotic theory for estimation of spatial weight
matrix models (9) (see e.g. Lee (2004)), two other norms are used:
the absolute row sum norm ∥A∥r = maxi


j

aij and the l∞
or maximum element norm ∥A∥e = maxi,j

aij, for a matrix
A =


aij

. Noting that for symmetric A, ∥A∥ ≤ ∥A∥r and ∥A∥ ≤

∥A∥e, it was desirable for Theorem 1 to rely only on spectral
norm assumptions, but our central limit theorem needs ∥.∥r and
∥.∥e. Using the definitions (26), introduce:

Assumption 8. For i = 1, 2 and j, k, l = 1, . . . , pi and all suffi-
ciently large n, on an arbitrarily small neighbourhood Ni of θi∗, the
elements of Ωi are thrice boundedly differentiable,

lim
n→∞

sup
θi∈Ni

Ω−1
i


r +

Ωij

r +

Ωijk

r +

Ωijkl

r


< ∞, (43)

and for a positive sequence h = hn such that either

h ≤ C (44)

or

h−1
+ h/n → 0 as n → ∞, (45)

we have

lim
n→∞

sup
θi∈Ni

h
Ωij


e +

Ωijk

e +

Ωijkl

e


< ∞, (46)

In spatial statistics models such as (4), (7) and (8), the h
bounded case (44), where h can be chosen to be constant, is
appropriate, when (46) is implied by (43). The allowance for
(slower-than-n) divergent h (45) is motivated by spatial weight
matrix models such as (9) and (10), where, as in Lee (2004),
weight matrices are assumed to have all elements that uniformly
converge to zero as n → ∞. For example in the SMA(1), see
(11), Ωi = (In − θi1W ) (In − θi1W )′, and W is often assumed to
satisfy h ∥W∥e + ∥W∥r +
W ′


r ≤ C . Thus Ωi1 = 2θi1WW ′

−

W − W ′ satisfies (43) and (46), and also
Ωij

2
2 ≤ n

Ωij

e

Ωij

r

implies that supθi∈Ri

Ωij

2 = O


(n/h)1/2


. Notice that divergent

h is tantamount to a form of persistence, and will be reflected in
slower-than-

√
n convergence rates for theθi.

Denote Mi∗ = Mi (τ∗), i = 1, 2 and

M∗ =


M1∗ 0
0 M2∗


,

N∗ = N (θ∗) = n
n

s=1

ass∗a′

ss∗E

ε2
s − σ 2

10

2
+ 2σ 4

10n
n

s,t=1;s≠t

ast∗a′

st∗,

where ast∗ = ast∗ (τ∗) and the first expectation depends also on
the 4th cumulant of εj, reference to which is suppressed. Write

Di =


Ipih

1/2 0
0 1


, i = 1, 2, D =


D1 0
0 D2


.

Assumption 9. The matrices

Φ = lim
n→∞

DM∗D,

Ψ = lim
n→∞

DN∗D

exist and are positive definite.

Appendix B. Theorems and proofs

Theorem 1. Under Assumptions 1–5 and H1, as n → ∞τ1 →p τ10, τ2 − τ2∗ →p 0.

Proof of Theorem 1. Write Q̃1∗ = Q̃10 for ease of notation. The
following arguments apply for i = 1, 2 except where other-
wise specified. For ε > 0 define the neighbourhood Niε =

{θi : ∥θi − θi∗∥ < ε}, and let N̄iε = Ri\Niε . Denoting P1 probability
under H1

P1
θi ∈ N̄iε


≤ P1


inf
N̄iε

Qi ≤ Qi∗


≤ P1


sup
Ri

Qi − Q̃i

 ≥ inf
N̄iε


Q̃i − Q̃i∗


.

The result follows if

inf
N̄iε


Q̃i − Q̃i∗


> η, all sufficiently large n and any η > 0, (47)

and if

sup
Ri

Qi − Q̃i

→p 0, as n → ∞. (48)

The left side of (48) is bounded by

1
2
sup
Ri

log σ 2
i /σ̃

2
i ≤

1
2
sup
Ri

σ 2
i − σ̃ 2

i

 / inf
Ri

σ̃ 2
i .

By the inequality (32),

σ̃ 2
i =

1
n
tr

Ω−1

i Ω10


=
1
n

Ω−1/2
i Ω

1/2
10

2
2

≥

Ω1/2
i

−2 1
n

Ω1/2
10

2
2

≥ ∥Ωi∥
−1
Ω−1

10

−1
,

so by Assumption 2,

lim
n→∞

inf
Ri

σ̃ 2
i > 0. (49)
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On the other hand, for given θi, σ 2
i − σ̃ 2

i has variance under H1

2
n2

Ω−1
i Ω10

2
2 +

1
n2

n
j,k,l,m=1

ω
jk
i ωlm

i κ1jklm

≤
2
n2

Ω−1
i

2
2 ∥Ω10∥

2
+

1
n2

Ω−1
i

4
2

n
j,k,l,m=1

κ2
1jklm

1/2

≤
2
n

∥Ω10∥
2
+


1
n2

n
j,k,l,m=1

κ2
1jklm

1/2
 → 0 as n → ∞

by Assumptions 1 and 2 and (32), establishing pointwise conver-
gence in probability of σ 2

i − σ̃ 2
i to zero. Uniform convergence fol-

lows from compactness of Ri and noting that for any θ
Ď
i ∈ Ri

and small enough η > 0, we can choose ε > 0 such that for
NiĎη =


θi :

θi − θ
Ď
i

 < ε


E1 sup
θi:
θi−θ

Ď
i

<ε;θi∈Ri

tr Ωi (θi)
−1

− Ωi


θ
Ď
i

−1
 

uu′
− Ω10


≤

E1 ∥u∥2

+ tr (Ω10)


× sup
θi:
θi−θ

Ď
i

<ε

Ωi (θi)
−1

− Ωi


θ
Ď
i

−1
 = O(ηn),

by (32) and Assumptions 2 and 3. This proves (48). Next, for i = 2,
(47) is Assumption 5 in view of (39). For i = 1, by compactness Ri

has a finite subcover and fixing θ
Ď
1 ∈ R1�θ10, and for any ε > 0

inf
θ1:
θ1−θ

Ď
1

<ε;θ1∈R1


Q̃1 − Q̃1∗


≥


Q̃1Ď − Q̃1∗


− sup

θ1:
θ1−θ

Ď
1

<ε;θ1∈R1

Q̃1 − Q̃1Ď

 , (50)

where

Q̃1 − Q̃1Ď =
1
2
log


tr

Ω−1

1 Ω10

/
Ω−1

1

1/n
−

1
2
log


tr

Ω−1

1Ď Ω10

/
Ω−1

1Ď

1/n
=

1
2
log


tr

Ω−1

1 Ω10

/tr

Ω−1

1Ď Ω10


+
1
2n

log
Ω−1

1 Ω1Ď


=
1
2
log


1 +

tr


Ω−1
1 − Ω−1

1Ď


Ω10


tr

Ω−1

1Ď Ω10
 

+
1
2n

log
In +


Ω−1

1 − Ω−1
1Ď


Ω1Ď

 .
Denoting by λj and νj the jth eigenvalues of


Ω−1

1 − Ω−1
1Ď


Ω10 and

Ω−1
1 − Ω−1

1Ď


Ω1Ď respectively, by Assumption 2 the last expres-

sion is bounded by

1
2

 n
j=1

λj



tr

Ω−1

1Ď Ω10

+

1
2n

n
j=1

νj


≤ Cn−1/2




n
j=1

λj
21/2

+


n

j=1

νj
21/2


≤ Cn−1/2

Ω−1
1 − Ω−1

1Ď


2

≤ C
Ω1 − Ω1Ď

 ,
where C denotes a positive generic constant and we use Assump-
tion 2, (32) and
n

j=1

λ2
j =

Ω−1
1 − Ω−1

1Ď


Ω10

2
2

≤
Ω−1

1 − Ω−1
1Ď

2
2
,

n
j=1

ν2
j =

Ω−1
1 − Ω−1

1Ď


Ω1Ď

2
2

≤
Ω−1

1 − Ω−1
1Ď

2
2
.

By Assumption 3, for any η > 0 we can choose ε such that for all
sufficiently large n the last displayed expression is bounded by Cη,
uniformly on


θ1 :

θ1 − θ
Ď
1

 < ε

, as therefore is

Q̃1 − Q̃1Ď

. In
view of (50) the proof of (47) for i = 1 is completed by noting that
(34) and Assumption 4 imply that for some cĎ > 0, Q̃1Ď − Q̃1∗ → cĎ
as n → ∞.

Theorem 2. Under Assumptions 1–9 and H1, as n → ∞,

n1/2D−1 (τ − τ∗) →d N

0, Φ−1Ψ Φ−1 .

Proof of Theorem 2. We record some preliminary calculations.
For i = 1, 2 write

Li =
1
2
log σ 2

i +
1
2n

log |Ωi| +
1

2nσ 2
i
u′Ω−1

i u.

For j = 1, . . . , pi,

∂

∂θij
log |Ωi| = tr


Ω−1

i Ωij

,

∂

∂θij
Ω−1

i = −Ω−1
i ΩijΩ

−1
i .

Thus
∂Li
∂θij

= −
1

2nσ 2
i
tr

Ω−1

i ΩijΩ
−1
i


uu′

− σ 2
i Ωi


,

∂Li
∂σ 2

i
=

1
2σ 2

i
−

u′Ω−1
i u

2nσ 4
i

.

For i = 1, evaluating at θ1 = θ10, σ 2
1 = σ 2

10 and under H1,

∂L10
∂θ1j

= −
1

2nσ 2
10

tr

Ω−1

10 Ω1j0Ω
−1
10


uu′

− σ 2
10Ω10


,

∂L10
∂σ 2

1
= −

1
2nσ 4

10
tr

Ω−1

10


uu′

− σ 2
10Ω10


.

For i = 2, evaluating at θ2 = θ2∗, σ 2
2 = σ 2

2∗ and under H1,

∂L2∗
∂θ2j

= −
1

2nσ 2
2∗

tr

Ω−1

2∗ Ω2j∗Ω
−1
2∗


uu′

− σ 2
2∗Ω2∗


= −

1
2nσ 2
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tr

Ω−1

2∗ Ω2j∗Ω
−1
2∗


uu′

− σ 2
10Ω10


,

∂L2∗
∂σ 2

2
= −

1
2nσ 4

2∗
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
Ω−1
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
uu′

− σ 2
2∗Ω2∗


= −

1
2nσ 4

2∗
tr

Ω−1

2∗


uu′

− σ 2
10Ω10


,

since

0 = E1
∂L2∗
∂θ2j

= −
σ 2
10

2nσ 2
2∗

tr

Ω−1

2∗ Ω2j∗Ω
−1
2∗ Ω10


+

1
2n

tr

Ω−1

2∗ Ω2j∗

,

0 = E1
∂L2∗
∂σ 2

2
= −

σ 2
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2nσ 4
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tr

Ω−1

2∗ Ω10


+
1

2σ 2
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,

that is,

tr

Ω−1

2∗ Ω2j∗


=
σ 2
10

σ 2
2∗

tr

Ω−1

2∗ Ω2j∗Ω
−1
2∗ Ω10


,
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σ 2
2∗ =

σ 2
10

n
tr

Ω−1

2∗ Ω10

.

We thus have, denoting d∗ =

∂L10/∂τ ′

1, ∂L2∗/∂τ ′

2

′,
d∗ =

∞
s,t=1

ast∗

εsεt − σ 2

10δst

,

where ast∗ = ast (τ∗). Now n1/2d∗ has mean zero and variance
matrix N∗, and we wish to show that

n1/2Dd∗ →d N (0, Ψ ) , as n → ∞. (51)

The proof begins similarly to that of Theorem 4 of Robinson (2011),
but there a linear rather than quadratic function of the εi was
involved. Since ast∗ = ats∗, we rewrite d∗ as

d∗ =

∞
s=1

ass∗

ε2
s − σ 2

10


+ 2

∞
s=1

1 (s ≥ 2)
s−1
t=1

ast∗εsεt

=

∞
s=1

vs, (52)

where 1 (.) is the indicator function and

vs =

ε2
s − σ 2

10


ass∗ + 21 (s ≥ 2) εs

s−1
t=1

ast∗εt .

For a positive integer sequence J = Jn, increasing with n, write

d∗a =

J
s=1

vs, d∗b = d∗ − d∗a.

On proving that, for some J sequence,

n1/2Dd∗b →p 0, (53)

it suffices to focus on d∗a, leading to consideration of

T = nE

Dd∗ad′

∗aD


= n
J

s=1

DE

vsv

′

s


D.

Introduce a square matrix Z such that T = ZZ ′. For large enough J ,
T is positive definite under our conditions (see (55)). For a vector
ζ such that ∥ζ∥ = 1, write

r∗ = n1/2ζ ′Z−1Dd∗a = n1/2
J

s=1

ζ ′Z−1Dvs.

Now r∗ has zero mean and unit variance for all n, and the property

r∗ →d N (0, 1) , as n → ∞, (54)

will follow by checking the conditions of a martingale central limit
theorem, because the elements of the vk, and thus the summands
of r∗, are martingale differences. If also

T → N∗ as J → ∞, (55)

the proof of (51) is completed; we omit proof of (55) as it is
straightforward given our other proofs.

The details for checking (53) and (54) differ considerably from
those of Robinson (2011), mainly because our vk is quadratic in the
εs. First, (53) follows on showing that as J → ∞,

E
n1/2Dd∗b

2 → 0. (56)

From Assumption 7 the vs are uncorrelated and the left side of (56)
is bounded by

Cn
∞

s=J+1

E ∥Dvs∥
2 , (57)
where, from (52)

E ∥Dvs∥
2

≤ C ∥Dass∗∥2
+ C1 (s ≥ 2)

s−1
t=1

∥Dast∗∥2

≤ C
s

t=1

∥Dast∗∥2 .

aist (τ ) be the (pi + 1) × 1 vector with jth element aijst (τ )

= −

2nσ 2

i

−1 b′
s (θ1) Ω−1

i ΩijΩ
−1
i bt (θ1) for j = 1, . . . , pi, and

−

2nσ 4

i

−1 b′
s (θ1) Ω−1

i bt (θ1) for j = pi + 1, and put ast (τ ) =

(a1st (τ )′ , a2st (τ )′)′; note that ast (τ ) = ats (τ ).

Di =


Ipih

1/2 0
0 1


, i = 1, 2, D =


D1 0
0 D2


.

The (p + 2)×1 vector Dast∗ hasmth element of form b′
sRmbt/n,

where bs = bs (θ10) and
Rm = −h1/2


2nσ 2

10

−1
Ω−1

10 Ω1m0Ω
−1
10 , m = 1, . . . , p1;

Rp1+1 = −

2nσ 4

10

−1
Ω−1

10 ;

Rp1+1+m = −h1/2

2nσ 2

20

−1
Ω−1

20 Ω2m0Ω
−1
20 , m = 1, . . . , p2;

Rp+2 = −h1/2

2nσ 4

20

−1
Ω−1

20 .
Now (57) is bounded by

Cn
∞

s=J+1

s
t=1

∥Dast∗∥2
≤

C
n

p1+p2+2
m=1

∞
s=J+1

b′

sRm

s
t=1

btb′

tR
′

mbs

≤
C
n

p1+p2+2
m=1


∞

s=J+1

b′

sRmR′

mbs


, (58)

since (28) implies
s

t=1 btb
′
t

 ≤ ∥Ω1∥ ≤ C by Assumption 2. De-
note by rmjk the (j, k)th element of Rm. We deduce from Assump-
tion 8 that for 1 ≤ m ≤ p1 and p1 + 2 ≤ m ≤ p1 + p2 + 1,rmjk

 ≤
C

h1/2
,


k

rmjk
 ≤ Ch1/2,

while form = p1 + 1 andm = p1 + 1 + 2
k

rmjk
 ≤ C .

The bracketed term in (58) is
∞

s=J+1

n
j=1

n
k=1

n
l=1

bjsrmjkrmlkbls

≤ C
∞

s=J+1

n
j=1

n
k=1

n
l=1

cjs rmjk
 |rmlk| |cls|

≤ C
∞

s=J+1

n
j=1

n
l=1


max

k

rmjk
 cjs  n

k=1

|rmlk|


|cls|

≤ C
n

j=1

∞
s=J+1

cjs n
l=1

|cls|

≤ Cnmax
j

∞
s=J+1

cjs (59)

from Assumption 7 and elementary inequalities. Also that
assumption implies that, for j = 1, . . . , n, for any sequence ηn ↓ 0
as n → ∞ we may choose Jjn such that


∞

s=Jjn+1

cjs < ηn. Thus
taking J = Jn = max(J1n, . . . , Jnn), (59) ≤ Cnηn = o (n) as n → ∞.
This completes the proof of (56).
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The proof of (54) follows (see e.g. Scott (1973)) on checking a
Lyapunov type condition

J
s=1

E
n1/2Z−1Dvs

4 → 0 (60)

and

n
J

s=1


E

Dvsv

′

sD |εt , t ≤ s − 1

− E


Dvsv

′

sD


→p 0. (61)

To check (60) note first that by straightforward evaluation and the
inequality


z2s ≤


|zs|
2

E
Z−1Dvs

4 ≤ C ∥Dass∗∥4
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 s−1
t=1

Dast∗εt


4

≤ C
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+ C


s−1
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2

≤ C


s

t=1
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2

.
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s
t=1
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≤

C
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m=1


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s
t=1

btbtR′

mbs



≤
C
n2

∥bs∥2 .

Thus the left side of (60) is bounded by

C
n2

J
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≤

C
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
n

j=1
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≤
C
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
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≤
C
n2

n
j=1


J

s=1

cjs ≤
C
n

on applying both parts of (40) of Assumption 7 and the inequality
z2s ≤


|zs|
2, to prove (60).

To prove (61), note first that E

vsv

′
s |εt , t ≤ s − 1


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
2σ 4
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
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
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
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
εt
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,

and its expectation E

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s


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
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
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ss∗ + σ 4
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st∗.

Thus the Euclidean norm of the left side of (61) is bounded by
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s
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(62)

+ nσ 2
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2

, (63)
writingAst =ast∗a′
ss∗. Since

J
s=2
s−1

t=1 Astεt =
J−1

t=1
J

s=t+1 Astεt ,
the square of (62) has expectation bounded by
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
2

2

≤ Cn2
J−1
t=1

 J
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2

,

where J
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
2
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=
1
n4

p1+p2+2
j,k=1

J
r=t+1

J
s=t+1

b′

rRjbrb′
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′
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′
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.

Now for 1 ≤ m ≤ p1 and p1 + 2 ≤ m ≤ p1 + p2 + 1, on the one
hand

J
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n
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n

l=1

n
m=1

|clt | |rklm|
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while on the other,
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while form = p1+1 andm = p1+1+2, these bounds holdwithout
the respective h1/2 and h−1/2 factors. Thus (62) = Op


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
.

To deal with (63), note that
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
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+
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
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=
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
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
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Now by elementary inequalities

n2E
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≤
C
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×
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≤
Ch
n

,

for 1 ≤ m ≤ p1 and p1+2 ≤ m ≤ p1+p2+1, the penultimate step
using symmetry of Rk. Clearly form = p1 + 1 andm = p1 + 1 + 2
the bound is C/n.

Finally, for the second part of (64),

n2E
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2

.

The (j.k)th element of ast∗a′
st∗ is b′

sRjbtb′
sRkbt/n2 so, since

J
s=t+1

b′

sRjbt
 ≤ C

J
s=t+1

n
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n
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we have

n2
J−1
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≤
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.

This completes the proof of (51).
Next consider

∂2

∂θij∂θik
log |Ωi| = tr


Ω−1

i Ωijk

− tr


Ω−1

i ΩikΩ
−1
i Ωij


,

∂2
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i ΩikΩ

−1
i ΩijΩ

−1
i − Ω−1

i ΩijkΩ
−1
i

+ Ω−1
i ΩijΩ

−1
i ΩikΩ

−1
i .

Thus

∂2Li
∂θij∂θik
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+
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i Ωik


, j, k = 1, . . . , pi,

∂2Li
∂θij∂σ 2

i
=

1
2nσ 4

i
tr

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i ΩijΩ
−1
i uu′


, j = 1, . . . , pi,

∂2Li
∂σ 4

i
=
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nσ 6

i
tr
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−
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It is then readily seen that

E1
∂2L10

∂τ1∂∂τ ′

1
= M10, E1

∂2L2∗
∂τ2∂∂τ ′

2
= M2∗. (65)

Now denote

F = F(τ ) =


∂2L1

∂τ1∂∂τ ′

1
0

0
∂2L2

∂τ2∂∂τ ′

2

 .

We have

n1/2N−1/2
∗

M∗ (τ − τ∗) = n1/2N−1/2
∗

D−1 (DM∗D)D−1 (τ − τ∗)

→d N

0, Ip+2


,

where, for a positive definite matrix A, A1/2 denotes the unique
positive definite matrix such that A1/2A1/2

= A. By the mean value
theorem,

0 = d∗ +F (τ − τ∗) ,

whereF is derived from the matrix F(τ ) by evaluating each row at
a possibly different τ such that ∥τ − τ∗∥ ≤ ∥τ − τ∗∥. Thus

0 = Dd∗ + DFDD−1 (τ − τ∗) ,

and so

n1/2D−1 (τ − τ∗) = −n1/2 DFD−1
Dd∗.

It may be readily verified that

D
F − F(τ∗)


D→p 0, D (F(τ∗) − M∗)D→p 0,

where the first step uses consistency of τ and the implied
regularity of F(τ ), and the second entails a law of large numbers
in view of (65). Because of (51) the result readily follows.

Our next theorem justifies the feasible large sample approxima-
tions to the distribution ofτ :τ − τ∗ ≃ N


0, n−1M−1NiM−1 , i = 1, 2, 3.

Theorem 3. Under Assumptions 1–9 and H1, and with the εs
assumed Gaussian for i = 1, as n → ∞,MM−1

∗
→p Ip+2, NiN−1

∗
→p Ip+2,

n1/2N−1/2
i

M (τ − τ∗) →d N

0, Ip+2


,

for i = 1, 2, 3.

The proof is lengthy but straightforward given previous results
and is thus omitted.

Theorem 4. Under Assumptions 1–9 and H1, and with the εs
assumed Gaussian for i = 1, as n → ∞,

LR
n−1e′M−1NiM−1e1/2 →d N (0, 1) , i = 1, 2, 3, 4. (66)
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Proof of Theorem 4. Writing, as in (22), σ̂ 2
2 = σ 2

2

θi, i = 1, 2,
we have as n → ∞

LR = log
σ̂ 2
2

σ 2
2∗

− log
σ 2

2(
θ1,θ2)
σ 2
2∗

= log

1 +

σ̂ 2
2 − σ 2

2∗

σ 2
2∗


− log


1 +

σ 2
2(
θ1,θ2) − σ 2

2∗

σ 2
2∗


=
σ 2
2 − σ 2

2∗

σ 2
2∗

−
σ 2

2(
θ1,θ2) − σ 2

2∗

σ 2
2∗

+Op

σ 2
2 − σ 2

2∗

σ 2
2∗

2

+


σ 2

2(
θ1,θ2) − σ 2

2∗

σ 2
2∗

2
, (67)

from the inequality |log (1 + x) − x| ≤ Cx2 for |x| < 1. From
calculations below and since limn→∞

σ 2
2∗ > 0, the remainder term

in (67) can be neglected. Now

σ 2
2(
θ1,θ2) − σ 2

2∗ = σ 2
1 u
θ1,θ2− σ 2

10u (θ10, θ2∗) ,

which may be writtenσ 2
1 − σ 2

10


u (θ10, θ2∗) + σ 2

10


u
θ1,θ2− u (θ10, θ2∗)


+
σ 2

1 − σ 2
10

 
u
θ1,θ2− u (θ10, θ2∗)


,

where, by the mean value theorem,

u
θ1,θ2− u (θ10, θ2∗)

=

p1
j=1

cj

θ
 θ1j − θ1j0


+

p2
j=1

dj

θ
 θ2j − θ2j∗


,

where
θ − θ∗

 ≤
θ − θ

. Thus as n → ∞,

n1/2LR − n1/2e′

∗
(τ − τ∗) →p 0,

where e′
∗

= e (τ∗). But by Assumption 8 and Theorem 2.

n1/2e′

∗
(τ − τ∗) = e′

∗
M−1

∗
N1/2

∗
n1/2N−1/2

∗
M∗ (τ − τ∗)

= e′

∗
D (DM∗D)−1 DN1/2

∗
n1/2N−1/2

∗
M∗ (τ − τ∗)

→d N

0, ζ ′Φ−1Ψ Φ−1ζ


,

where

ζ = lim
n→∞

De∗

and using N−1/2
∗ M∗n1/2 (τ − τ∗) →d N


0, Ip+2


. Equivalently

n1/2e′
∗
(τ − τ∗)

e′
∗
M−1

∗ N∗M−1
∗ e∗

1/2 →d N (0, 1) ,

and since it is straightforwardly verified that

D (e − e∗) →p 0,

the result follows from Theorem 3.
Note that all elements of M∗ and N∗ are O(h−1) except

for the (p1 + 1, p1 + 1)th and (p + 2, p + 2)th, which are O(1),
explaining the normalizations in Assumption 9 and indicating that
when h diverges the (j, p1 + 1)th, j = 1, . . . , p1, and (j + p1 +

1, p + 2)th, j = 1, . . . , p2, elements of Φ and Ψ are zero. Thus
on the assumption of divergent h a somewhat simpler test statistic
can be justified. We have cj (τ) = Op(h−1), dj (τ) = Op(h−1), for
all j, so taking account of the normalizations involved it is relevant
that h1/2cj (τ) →p 0, h1/2dj (τ) →p 0, for all j. Thus, defining

e− (τ ) =

0′

p1 , −u (θ1, θ2) , 0′

p2 , 1
′

/σ 2
2 , e− = e− (τ) ,
where 0k is the k × 1 vector of zeros, we have

LR
ne′

−
M−1NiM−1e−

1/2 →d N (0, 1) , i = 1, 2, 3, 4 as n → ∞

when h → ∞. However, the statistic in (66) is valid for both
bounded and divergent h.
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