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We develop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect
can be interpreted quite generally, in either a geographical sense, or employing notions of economic
distance, or when parametric modelling arises in part from a common factor or other structure. In the
former case, observations may be regularly-spaced across one or more dimensions, as is typical with
much spatio-temporal data, or irregularly-spaced across all dimensions; both isotropic models and non-
isotropic models can be considered, and a wide variety of correlation structures. In the second case, models
involving spatial weight matrices are covered, such as “spatial autoregressive models”. The setting is
sufficiently general to potentially cover other parametric structures such as certain factor models, and
vector-valued observations, and here our preliminary asymptotic theory for parameter estimates is of
some independent value. The test statistic is based on a Gaussian pseudo-likelihood ratio, and is shown
to have an asymptotic standard normal distribution under the null hypothesis that one of the two models
is correct; this limit theory rests strongly on a central limit theorem for the Gaussian pseudo-maximum

Pseudo maximum likelihood estimation

likelihood parameter estimates. A small Monte Carlo study of finite-sample performance is included.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Spatial and spatio-temporal data are liable to exhibit corre-
lation, which will likely depend on locations of observations or
distances between them. Knowledge of locations or distances can
improve precision and is desirably employed in modelling and sta-
tistical inference. Regular spacing across a temporal dimension
is likely, but intervals between observations across geographical
space can be regular or irregular, while geographic distances be-
tween observations can be unavailable or less relevant than “eco-
nomic distances”, say. Models for regularly-spaced “lattice” data
in two or more dimensions (see e.g. Whittle, 1954) can relatively
straightforwardly extend time series ones, but statistical infer-
ence for irregularly spaced data is not well developed. For exam-
ple, for irregularly spaced observations on a continuous Gaussian
process, despite such work as Dunsmuir (1983), Matsuda and Ya-
jima (2009) and Robinson (1977), there appear to exist no satis-
factory set of regularity conditions for the central limit theorem
for parametric maximum likelihood estimates which separate out
the process generating the observations from that generating the
locations, and this is the case even in the single dimension
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irregularly-spaced time series setting, which has attracted atten-
tion over the years. Partly as a result, models of “spatial au-
toregressive” type, first developed by Cliff and Ord (1972), have
proved popular, especially in economics; these model correlations
in terms of spatial weight matrices, often linearly in observations
and unknown parameters, and possibly also in the weights, and are
relatively convenient computationally. The elements of the weight
matrices are pairwise inverse measures of distance, either eco-
nomic distances or geographic ones, where the latter might not
be Euclidean, allowing for example for natural barriers such as
rivers. The philosophy of such models is quite different from that
of spatial statistics models for observations whose argument is lo-
cation.

The diversity of possible dependence models highlights the lack
of a “generic” spatial data set, and motivates development of sta-
tistical inference that potentially covers a variety of the settings
mentioned above, rather than being limited to a single model
class. In the present paper we focus on justifying tests of non-
nested hypotheses for spatial or spatio-temporal correlation. The
rival models could be two members of the same general class,
for example two different models of autoregressive moving av-
erage type in case of regularly-spaced “lattice” data, or a Matern
and Markov model when irregularly-spaced locations are known,
or two weight matrix type models such as a “spatial autoregres-
sive” versus “spatial moving average” model, or they could be from

0304-4076/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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different classes, given that the weight matrix models can in prin-
ciple be employed in all these data settings. Nonparametric meth-
ods for estimating spatial correlation have been developed but in
general are more problematic than in the time series setting where
stationarity and regular spacing allow consistent estimation of au-
tocovariances or spectral densities despite lack of replication. We
thus focus on parametric models. Moreover the testing scenario
is between models of covariances between observations, or much
more likely, between unobservable disturbances, rather than be-
tween full statistical models.

In particular, for random variables u;,j = 1, 2, ..., we consider
the rival models
H;: Cov (uj, wy) = ogwix B), Jk=1,2,...5i=1,2, (1)
where, fori = 1, 2, 6 is an unknown p; x 1 vector, oi%) is an un-

known positive scalar, variation-free of 69, and wy (.) is a known
function of its p;-dimensional argument. Because inference will be
based on implicitly-defined extremum estimates of parameters,
the zero subscript is as usual used to denote true value. Though
observable u; are covered, we motivate our focus on (1) in the con-
text of a parametric model for the sequence of observations y;:

5 Bo) = uj,

where the f; are known functions of their arguments and possibly of
observable explanatory variables varying with j, B¢ is an unknown
q x 1 parameter vector assumed variation-free of the 6y, and u;
is, thus, unobservable, but assumed to be a random variable with
mean zero. For example, f;(y;; Bo) may represent the deviation of
yj from a linear or nonlinear regression function,

5 Bo) =y; — £z Po), (3)

where g is a known linear, partly linear or wholly nonlinear func-
tion of its arguments and z; is a vector of observable stochastic
(but exogenous) or nonstochastic explanatory variables, including
time trends in a spatio-temporal setting, or dummy variables. More
generally, f; might be nonlinear in y;, for example a parametric
Box-Cox or arcsinh transformation. Correlation and heteroscedas-
ticity in y; are thus supposed not to be fully accounted for by z;.
Given n observations on y; in (2), and writingu = (uq, ..., u,)’,
there is interest in estimating the covariance matrix E(uu’),
which has (j, k)th element Cov (uj, uk), for the sake of robust
and/or efficient inference on fy. For example, given observations
Y1, ..., Yn, the linear or nonlinear least squares estimate of By in
(3) is o/n-consistent as n — oo with a centred limiting normal
distribution under regularity conditions on g and the z;, as well
as conditions which suitably limit the extent of the correlation in
the u;, but the variance matrix in the limit distribution depends
on the covariance structure of the u;, and information on this is
needed to consistently estimate this variance matrix and thereby
provide robust inference on Sy, that is, asymptotically valid
hypothesis tests and consistent interval estimates. Further, in the
presence of dependence in the u; the least squares estimate of
Bo is generally asymptotically inefficient; efficient estimation via
generalized linear or nonlinear least squares, and thence locally
most powerful testing, will again require information on the
covariance structure of u;. The correlation in the u; is described in
terms of the n x 1 vector u even though n is regarded as increasing
in asymptotic theory because, as mentioned previously, some
spatial models are expressed in terms of one or more specified
n x n spatial weight matrices: a generic such matrix W has
zero diagonal elements and typically satisfies some normalization
restriction, e.g. that each of its rows sums to unity (though it
need not necessarily be symmetric and it may have some negative
elements). Consequently the wjj (.), and thence the elements of u
and thus y, can be n-dependent, but we suppress this feature in

=12, (2)

the notation. Of course since the u; are unobservable we would
estimate the 6j in (1) after replacing each u; by its proxy U; =
ﬁ@j;ﬁ), where B is a +/n-consistent estimate of By, such as
described above, and we suppose that, fori = 1, 2, 6, f{i% are

variation-free of 8, in (2). Given a ﬁ—consis@nt estimate B of B
in (2) we can proxy the u; by the'LTj = fj(y;; B) in estimating the
wijk (o), in the usual way.

We test between the hypotheses in (1) by tests of Cox (1961,
1962) type. Non-nested tests between structures of “spatial au-
toregressive” form have been developed by several authors, see
e.g. Anselin (1986), Burridge (2012), Burridge and Fingleton (2010),
Han and Lee (2013), Jin and Lee (2013), Kelejian (2008), Kele-
jian and Piras (2011), Piras and Lozano-Gracia (2012), but mainly
J-tests, though Jin and Lee (2013) also develop Cox tests, and
mostly focusing on the issue of testing between different spatial
weight matrix specifications. As indicated previously, our frame-
work is designed to cover not only “spatial autoregressive” mod-
els, but also others, which do not involve weight matrices, as
well as models for panel and spatio-temporal data which may or
may not employ weight matrices; parametric modelling of het-
eroscedasticity can also be embraced. Cox tests may be more
suitable than J-tests when only covariance structure is at issue.
Kelejian and Piras (2011) note that J-tests are based on whether
or not predictions based on alternative models add significantly to
the explanatory power of the null model, and show that they can-
not be used to construct a test which concerns only the structure of
the error term in SAR models. A comparison between Cox tests and
J-tests for SAR models, which includes a Monte Carlo study, can be
found in Jin and Lee (2013). Formally, our methodology can also
cover tests of nested hypotheses. An ancillary contribution of the
paper is the justification of Gaussian pseudo-likelihood parameter
estimates in a quite general setting. Our conditions do not assume
stationarity of u; but are motivated by approximate stability. In-
evitably, in view of the diversity of settings covered and the intrin-
sic issues with some of them, our conditions are high level, and
some can be hard or impossible to satisfactorily check, but we pro-
vide some discussion. It would be possible to extend our work also
to test between non-nested models for y; of type (2), for example
between two regression models alongside non-nested models for
E(uu').

The following section describes a number of models that
might feature as non-nested hypotheses. Our non-nested test is
presented in Section 3, including versions that are robust with
respect to departures from normality, and Section 4 contains
a small Monte Carlo study of finite-sample performance, with
Section 5 offering some concluding comments. Theoretical, large-
sample, justification of the test is left to Appendices. Appendix A
lists and discusses regularity conditions. Appendix B presents and
proves several theorems: our test statistic is a function of Gaussian
pseudo-maximum likelihood estimates of the parameter vectors
010 and By in (1), and the null (taken to be the hypothesis H;)
asymptotic distribution of the test statistic depends heavily on
the null asymptotic distribution of the parameter estimates, so for
these we provide consistency and asymptotic normality results
which have some novelty in our general setting and represent by
far the main technical contribution of the paper, given the breadth
of models potentially covered.

2. Spatial correlation models

We consider first observations recorded on d-dimensional
Euclidean space RY. For this purpose we introduce the location
t € R% We proceed as if we have observations u;, j = 1,...,n,
though as discussed above the u; are likely unobservable and
replaced in estimation by observable proxies. An important theme
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in the early spatial statistics literature concerned the foundations
of modelling dependence in terms of distributional behaviour, with
a debate between commencing from the joint distribution of the
datauj,j =1, ..., n(seee.g. Whittle, 1963), and from conditional
distributions (see e.g. Bartlett, 1955). In particular, the specification
of conditional distributions might not lead to a well defined joint
distribution. The Hammersley-Clifford Theorem (see Hammersley
and Clifford, unpublished manuscript, Besag, 1974) derived the
most general form possible for a joint distribution, under regularity
conditions. Both the joint distribution and conditional distribution
approaches lead to a variety of statistical models, as does that of
modelling the u;, j = 1,...,n, as a (possibly linear) filter of n
(or possibly infinitely many) independent unobservable random
variables (see e.g. Tjostheim, 1978, 1983, Whittle, 1954). Because
the rules of statistical inference we develop are based on the
Gaussian pseudo-likelihood, the (parametric) specification of
the covariance matrix is basic to our approach, with actual
distributional form not of concern. Thus our discussion will stress
covariance structure, though we will also give some space to
connections with the approaches to modelling referred to above.
Given observations at n distinct locations tq, ..., t, on a scalar
zero-mean process U (t), we make the identification U (t;) = u;,
j = 1,...,n, where unlike with time series there is no natural
ordering. However, in part motivated by the time series setting it
is natural to consider the simplifying case that U (t) is covariance
stationary, so EU (t) U (t +5s) = 002)/ (s) for some function y (s)
and unknown positive scalar ag, and all t, s € R Consider a
parameterization y (s;¢), ¢ € R™, such that y (s;¢9) = y (s) for
some ¢ € R™. Here ¢ generically represents either 6y, or 6, of
the previous section. We thus take wj (¢) = ¥ (t; — ti; ¢), which
generically represents wqj (61) or wyj (62) above, §; € RPi,i =1, 2.
When t has integer-valued components, i.e. t € 29, there
is an extension of the regularly-spaced time series setting, and
thus extensions of typical time series models can be considered,
for example, autoregressive moving averages, following Whittle
(1954). To define these, introduce L = (Lq,..., L) such that

T_u@ = U—0,1 = (h,....l) € 7% and a(L; ¢)

_ Y q d : _ N

- Z[]U:lfq“ e ldljiqud al((p)nh:]L}-?v b (L5 ¢) - l?;—r“ e
oL bi(p) T L for given non-negative integers qin, qun,
r, Tun, b = 1,...,d, and given functions a;(¢), b;(¢). Letting

e(t), t € Z% be independent and identically distributed (iid)
random variables with zero mean and variance o, under suitable
conditions on a (L; ¢) and b (L; ¢), the process U (t) generated by

a(L; o) U (t) =b(L; o) & (1),

not only generalizes the time series stationary and invertible
autoregressive moving average process to a general dimension d,
but also allows for leads as well as lags, recognizing the lack of
chronological ordering of spatial data. The y (s;0) and thus wj (6)
can be determined from (4). The model (4) potentially suffers
seriously from the curse of dimensionality. This might be alleviated
by, for example, replacing a (L; ¢), b (L; ¢) by the product forms
m_ >, (@)L, T, S by ($)L}", respectively. A
parsimonious case of (4), d = 2 with m = 1 treated in the
geography literature (see e.g. Hepple, 1976), is the first-order
quadrilateral autoregression

(11— (L' + L'+ L+L)U@® =¢(). (5)

On the other hand Haining (1978) considered the corresponding
moving average model

U= (1+¢ (L7 +L" +Li+1L))e(). (6)

Isotropy is another assumption that can produce parsimonious
models. To define this we return to the previous more general

t ezl (4)

setting of t € RY. We say U (t) is isometric if for some function
on R, y (s) = 4 (|s|), where |s| is the Euclidean distance of s from
the origin. Thus we consider parametric functions § (|s|; ¢). One
important class is the model of Matern (1986), which has various
parameterizations (see Stein, 1999, pp. 48-51), one of which is

| ) (2¢1)1/2 Is| #1
S(Isl; ¢) = 20111 (¢y) ( 92 )

1/2
X Ky, (w) , 7)

form = 2,¢ = (¢1,¢) with¢; > 0,j = 1, 2, and where X,
is the modified Bessel function of the second kind (see e.g. Grad-
shteyn and Ryzhik, 1994). Another parsimonious isotropic model
with m = 2 has

8(Isl; ¢) = exp (—Is/¢2") , (8)

where ¢ € (0, 2], ¢, > 0, (see e.g. Diggle et al., 1988, De Oliveira
et al, 1997, Stein, 1999). When ¢; = 0.5, (7) reduces to the
exponential covariance function exp (— |s/¢-|), which is identi-
cal to (8) with ¢; = 1, while as ¢; — o0, (7) converges to
exp (— (s/¢2)2 /2), but non-nested tests can choose between (7)
and (8). A number of other models, and their fitting to irregularly-
spaced data, have been considered by, e.g., Vecchia (1988), Jones
and Vecchia (1993), Handcock and Wallis (1994), Stein et al. (2004)
and Fuentes (2007).

Other examples entail one or more of the spatial weight
matrices described in the previous section. Similarly to (4), these
are most commonly expressed as a linear transformation of
unobservable iid zero-mean random variables. Denoting by ¢ an
n x 1 vector of these, we write

S(po)u=e. (9)

where the n x n matrix S (¢) has full rank for all relevant ¢, and
suppressing reference to weight matrices. Thus 2 (¢), the n x n
matrix with (j, k)th element wj, (¢), is given by

@ =S 's@". (10)

Models of this type can be natural in, for example, a network
setting. Consider first the mth order spatial autoregression
(SAR(m)), for m > 1, where

S@) =h—)_ oW, (11)
j=1

where I, is the n x n identity matrix and the W; are n x n weight
matrices. By far the most frequently treated case of (11) in the
theoretical and empirical literature is the SAR(1) (see e.g. Cliff and
Ord, 1972; Arbia, 2006). Here, W is sometimes chosen to be row-
normalized such that the elements of each row sum to 1. The
SAR(m) might be compared in non-nested testing with the spatial
moving average SMA(m), where

m -1
S(9) = (1,7 +Z¢jwj) : (12)
j=1

Both (11)and (12) are nested in

Mmg+mp -1 Mg
S(¢) = (1n+ > ¢;W;> (m—Z@-W;), (13)
j=mg+1 j=1

denoting the spatial autoregressive moving average (SARMA(m,,
my)), form, > 1, my > 1, my + m, = m. In non-nested testing,
the SARMA(m,, m,) might be compared with the SARMA(mj, m,),
where either m; > m, or my < m,, or with the SAR(m) or
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SMA(m). An alternative type of model is the matrix exponential
spatial model MESS(m), where

S (¢) = exp (— Z@-Wj) (14)
j=1

and exp(.) is the matrix exponential function,

exp(A) = Y70 A/l

this model was proposed for m = 1 by LeSage and Pace (2009). The
MESS(m) might naturally be compared in non-nested testing with
the SAR(m) as in Han and Lee (2013) or with the SMA(m). Other
S (¢) that are non-linear functions of weight matrices might also
be considered.

Advantages of the class (9) include the guaranteed non-negative
definiteness of §2 (¢) (10), the “lag” interpretation in (11)-(13),
somewhat analogous to time series models, and the possibility of
choosing weight matrices to be non-symmetric and to have some
negative elements (though often they are symmetric with non-
negative elements). However, given that the (j, k)th element wj,
of a weight matrix can represent the inverse “distance” between
agents j and k, it is noticeable that for all of the cases of (9)
presented in the previous paragraph wj (¢) does not depend only
on wj. For example, for the SMA(1), wjx (¢) depends on wj, wi,
alll = 1,...,n, while for the SAR(1) and MESS(1) it depends
on the whole weight matrix. Such outcomes can be rationalized,
but there is also a case for using a weight matrix in a simpler and
more direct way in modelling $2 (¢), which is arguably the most
basic quantity of interest, indeed under Gaussianity it uniquely
describes the distribution of u, apart from a scale factor. If we
consider a weight matrix V with rather different properties from
before, being positive definite (and thus having positive elements
on the diagonal), we might consider

wjk () = ojk (Vi @) (15)

the notation stressing the dependence of wj, (¢) ononly the (j, k)th
element vj, of V. As very simple examples, withm = 1and vy, > 0,

o (¢) = v}, ¢ >0, (16)
or
wi (9) = @', ¢ €(0,1). (17)

In both cases, wjy (¢) — 0 as vy — 0. However, we would
require that §2 (¢) is positive definite for all relevant values of ¢,
and we are unable to give sufficient conditions for this property
for either the models (16) or (17). Nevertheless, commencing
modelling from the form (15) receives some further support from
Section 4.2.2 of Besag (1974), who showed how a joint normal
distribution for us, s = 1, ..., n, with covariance matrix ag.Q (¢0)
can arise from a certain specification of each of the n (normal)
conditional distributions of the u; (rather than from (10) and (9)
with normal ¢), with likelihood-based inference depending on
positive definiteness of £2 (¢) for all relevant values of ¢.

The setup in (1) is sufficiently general to cover also multivariate
data (e.g. where n = NK, and we have N observations on a
K-dimensional vector, for fixed K and N — o0) and panel data
(wheren = NT, and either or both the cross-sectional dimension N
and the time dimension T are regarded as diverging in asymptotic
theory); in each case a variety of dependence structures is possible.

3. Non-nested tests

Cox (1961, 1962) developed log-likelihood ratio type tests
between non-nested probability densities for iid observations;
White (1982) provided asymptotic justification in that setting. Our
concern is to test between rival spatial correlation structures,

with precise distributional structure not of interest. Our tests
are based on a Gaussian pseudo-log-likelihood ratio and thus
share the robustness to non-Gaussianity property of the parameter
estimates studied in the previous section. For a known, non-
normal, parametric density for the ¢; more efficient tests would be
based on the appropriate maximum likelihood estimates. Indeed,
the same efficiency could be achieved using adaptive estimates
when the g; have density of unknown, nonparametric form (as
studied in a spatial autoregressive context by Robinson (2010)).

Our non-nested tests are based on parameter estimates of both
models in (1). Fori = 1, 2, denote by 6, aiz respectively a p; x 1
vector and a scalar, representing any admissible values of 6;g, O'l%
respectively, write p = p; + p», let £2; (6;) be the n x n matrix with
@, k)th element wjj, (6;), and define

1 19—1 0:
Sus2 (6)u,(18)

2 1 2 1
L (6, 0f) = 3 logo; + n log [$2; (6)] + oy
i

which is minus the normalized Gaussian pseudo-maximum-
likelihood based on (1), up to a constant. We do not assume
normality, but base our parameter estimates and non-nested tests
on (18). Our estimates of 6, o minimize L; (6;, o?). For given 6;,
L; (6;, 0) has a minimum

Q ©) = L (61,57 (6))
= 11oga.2 @) + x log |£2; (6)] + ! (19)
2 PV on R
where
=2 1 ro—1 1 ro—1
o; (0) = Eu 27 BG)u= Eu 7 u, (20)

writing §2; = £2; (6;). Fori = 1, 2, define R; to be a given compact
subset of R” and

6 = arg minQ; (), (21)
6;€R;
51 =70). 22)

the Gaussian pseudo-maximum-likelihood estimates of 69, o73.
From (18), (19), the Gaussian pseudo log-likelihood-ratio
statistic for comparing the models in (1) is

2 6) -0 6) = tos 221 + Lo s @)

1
~Liogl2, @)

This converges in probability to a non-zero limit under H;, where
throughout our asymptotic theory conditions on locations, which
might be regarded as stochastically generated in some situations.
Defining, fori = 1, 2,

67 =67 (0) = Eio; (6) = ofon” 'tr (27 ' 210) (23)
and

G = G ) = log (52 6)) + — log |2 (6]
i 2 i Ui mn i Wi

= 1log{c”rz} + 1 log | $2i| (24)
2 : 2n e
a centred statistic is
2 (@) - @) ~2(&0) -0 @)
a(6) 0
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This can be written, using (23), as
2 92) log tr (Q;] @) 910)
RO (e @) 20)

which can be estimated by

? ~tog (25" (@) 4 (7))

which we write as

2
0
LR = log 772)
05(61,62)
where
7561, 62) = 05 (1) u (61, 6)
with

u (61,6 = %U’ (2,1 (62) 21 (61)) .

Under H, and conditions in Appendix A, & @) —52(61.6,) =
0p (1), but under H, LR will generally have a non-zero probability
limit, indicating that LR is a basis for testing H;. In Theorem 4 of
Appendix B we justify the following large sample approximate null
distributions:

IR~ N (0,n "TM'NM"e), i=1,2,3,4, (25)
where’e, M and the Nl- are defined below and normality is assumed
for i = 1 but robustness to departures from normality is afforded
by the other choices of i, as will be explained. With level « € (0, 1),
and z, such that the probability that a standard normal variate
exceeds z, is «, it is proposed to reject H; in the direction of H,
if ILR| > (n “teM-INM~ )1/2 Zy2- In that event, as is common
practice in non-nested testing, one can switch H; and H, and if
there is a further rejection the test is deemed inconclusive. At
the end of Appendix B we mention test statistics that are slightly
simpler but valid less generally.

To define € in (25), introduce 7 = (6/,0?), % = (6/,57),
i=1,21=(7.1).T=(%.7) and

2

G(t)=——ttr (92_1-911‘), i=1,...,pi;
2
di(v) = —Lur (2,22, '21), j=1,....ps,
and then
e(f) = (Cl (T) ) L) Cpl (T) , —u (9]7 92) )
di(7),..., dy (), 1) JoF, E=e®@).

To define M in (25)denote, fori = 1,2 andj, k,I=1,...,p;,
2 = 2; (6;) = (0/06;) 2,
Qi = ik (6;) = (0/00i) $2y, (26)
Qijt = 2410 (0;) = (0/36) Lijr,

where the existence of the derivatives is assured by Assumption 8
in Appendix A. Fori = 1,2, let M; = M;(t) be the (p;+ 1) x
(pi + 1) symmetric matrix with (j, k)th element My given by

2
01 -1 -1 -1
My = —otr (271924827 248271 21)
1
1 , _
+ Etr (Q,. U (925927 2u — Qi)

of .
X (?Qf -Q]_In>>, Bhk=1,...,p; (27)

i

2

1 -1 -1
Mijpi+1 = T i (72527 '21),

i

i=1....p; Mipy+1,py41 = —5tr
R no?

Now take M; = M; (7),i = 1, 2, and

= M] 0
M = = .
(5 )

Note that M results from deriving
32

and then evaluating at 7. The second derivative terms, involving
£k, are present in some My due to imposing H; on the H, model,
but the second trace in (27) vanishes fori = 1.

To define Ny in (25), let N = N (t) be the (p +2) x (p+2)
matrix

_ (N11 Np
N (T) - (N{Z sz) )

where, for h,i = 1,2, N;; = Ny (7) is the (pp, +1) x (p; + 1)
matrix with (j, k)th element Ny given by

4

N = ——tr (27 227 2127 2u27'21)
2noj oy
Jj=1...,pn,k=1,...,p;
4
_ 1 15 -1 -1
Nhjjpir1 = 2n020" tr (2, 22, ' 21927 ')
i=1,...,pu
4
o
Npi = — Lt (7 27 212, 12,),
hi,pp+1,k 2n0’;0’,~2 ( i ik=a; 184 1)
k= 1,... , Di;
4
Ny =T (27 2127 2)
hi,pp+1,pi+1 = 211(74(74 h 194 1)-

h*i

Note that N;; = M;. Take ﬁl = N(7), and note that N1 results from
deriving

Ly oL\’
8r1 3T1
Evlon || o] [
a'l.'z a'L'z

(with E; denoting expectation under H;) with the assumption that
the u; are Gaussian, and then evaluating at T.

Our N, N3 and Ny are robust to departures from Gaussianity,
and are thus potentially less precise than N; when u is actually
Gaussian. We need to proxy the iid innovations &;, with zero mean
and variance 0120, that appear in the linear process representation
for u;,

(o]
=Y byg, j=1.2....nn=12..., (28)
s=1

described in Assumption 7 of Appendix A and discussed further
immediately afterwards. The representation (28) is central to the
proofs of Theorems 2-4 (on the limit distribution of T and the null
limit distribution of our test statistic) in Appendix B. Such a repre-
sentation follows naturally if we commence from an H; model of
form S (610) u = ¢ (cf. (9)), with &, the sth element of ¢, or a model
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of form (4). Given the functions bjs (¢1), such that bj; = bjs (610),
let the n x n matrix B (6;) have (j, s)th element bj; (61), and de-
fine the n x 1vectorg = B @)_] u. Note that for a model of form
S (610) u, we have B (6;) = S (6;)" !, and we have an exact factor-
ization £2; (8;) = B(6;1) B (6,)’. In models involving more than n,
including infinitely many, &, such as (4), B (61) B (6;)’ only approx-
imately factorizes §2; (6,), but the truncation in (28) entailed in
using€ = B (51)_1 u can be rigorously justified (given the summa-
bility properties of the bj; in Assumption 7 of Appendix A). De-
noting by bs (61) the n x 1 vector with kth element by (6,), for
i = 1,2and k = 1,...,nlet ai (t) be the (p; + 1) x 1 vector
with jth element agy (v) = — (2n02) ™' b, (61) 271 232 'be (61)
forj=1,...,p,and — (2no) ™" b (1) 2, 'b; (6y) forj = pi + 1,
and put a (t) = (a1t (), aas (7)")'; NOte that a5 (7) = ars (7).
Denote the sth element of & by &;; the & might also be used in
bootstrap versions of our tests. Define

N, = nX:aSS @) d (@) (82 — o )2

+2n Z ay (7) d; (7) 227, (29)

s,t=1;s#t

and, slightly more simply,

-~

N; = nZass(r)ass(A)(s —01)2
+26¢n Z ay (7) d, (7), (30)
s, t=1;s7#t
Ni =Y (-5 Zass @) d, (@)
s=1
Gin Z ag (7) d, (7). (31)
s, t=1;s5#t

For Gaussian &; we have E(¢ — ~ %o )% = 207, and on replacing
(82 — 52)” by 25, N3 becomes N;. Since each can be represented

as a positively-weighted sum of non-negative definite matrices, Nl,
N3, N3 and Ny are desirably guaranteed non-negative definite. Note
that unlike N7 and N4, N> and N3 are also consistency-robust to vari-
ation in the fourth moment of &;.

Note that Theorem 3 of Appendix B justifies the large sample
approximations

TN (o,n ' MTINMTY), i=1,2,3,4,

with Theorem 4 then using the delta method to justify (25).

4. Monte Carlo study of finite-sample performance

We generate designs as follows. First, we generate a random
set of 2000 pairs (rq,12) iid as (Rq, Ry), where R; and R, are
two independent random variables uniformly distributed in the
interval [0, 100]. Each pair (r1, ;) is a coordinate of the square
lattice [0, 100] x [0, 100]. We then generate samples of size n
(n < 2000), consisting of the n-nearest-neighbours to the centre
of the square lattice (i.e. the point (50, 50)). The same coordinates
are used in each Monte Carlo simulation.

We compare four alternative covariance specifications. On the
one hand, we consider SAR (1), SMA(1) and MESS(1) specifications,

e (11), (12) and (14) respectively, with m = 1, all of which
involve weight matrices. We also consider an isotropic covariance
function (8) with ¢; = 1, or equivalently (7) with ¢; = 0.5,

i.e. the exponential covariance function exp (— |s| /¢;).InTables 1,
2 and 4, we use the same parameter values for the different models
when generating spatial data according to the different designs.
On the other hand, we consider the same weight matrix W, for
the non-isotropic specifications. The weights are constructed by
the function “makeneighbors” taken from J. LeSage’s MATLAB code
(http://www.spatial-econometrics.com), which has been used
before by Han and Lee (2013) in the context of non-nested testing
of SAR vs MESS models. This function generates a row-normalized

weight matrix W; = [w,j]u , based on k nearest neighbours,

ie. wy = wu/zj 1 w; where wi = 1 if the location j is one
of the k nearest neighbours of the location i, i # j, and wU =0
otherwise. The maximum eigenvalue of Wy is 1. We chose k = 5, as
in Han and Lee (2013). These weights produce covariance matrices
satisfying Assumptions 2, 3 and 8 of Appendix A for the models
and parameter values chosen. We compare results for alternative
parameter values and weight functions in Table 3. These Monte
Carlo experiments are based on 2000 replications.

Table 1 provides a comparison of the level accuracy under
different kurtosis scenarios using the alternative estimates N;.
We provide the proportion of rejections under H; for SAR(1) and
SMA(1) specifications with parameter ¢y = 0.5 and nearest
neighbour weights with k = 5, generating innovations {ej};:]
with mean zero, variance one and varying kurtoses 0, 3 and 6,
resulting from standardized versions of normal, centred Gamma
with shape parameter 2 and scale parameter 1, and Student’s ¢
with 5 degrees of freedom, respectively. Tests based on alternative
N; behave very similarly under normality, though sometimes
there is a cost to using the robust N;, N3 and N; when they
are not needed, and more surprisingly, the test based on Nl still
works fairly well under serious leptokurtosis, and generally is best
under leptokurtic innovations. This outcome may be explainable
by the imprecision of 4th moment estimates under leptokurtosis,
in particular the 8th moment of a Gamma with shape parameter 2
is 9! and the 8th moment of Student’s t with 5 degrees of freedom
does not exist, contradicting Assumption 7 of Appendix A. Amongst
the three robust estimators, 1(14 is easiest to compute and behaves
slightly better, possibly because, unlike the other two, it uses the
information that the fourth moment is constant over observations.

Table 2 provides size and power comparisons of tests with
the SAR, SMA, MESS and EXP specifications under H; (horizon-
tal) in the direction of SAR, SMA and MESS under H, (vertical)
using Gaussian ¢; and tests based on 1(14 for sample sizes of 100,
200, 500 and 1000. We consider the SAR(1) and SMA(1) mod-
els with ¢; = 0.5 and the MESS(1) model with ¢; = 0.65
(prompted by a relationship between maximum row sums of

— ¢1W; and exp(—¢1W;) derived by LeSage and Pace (2007,
p. 193), though these only become close as ¢y — 0). The ex-
ponential isotropic model (EXP) given by (8) with ¢; = 1, is
simulated with ¢ = 1 conditional on the fixed location points,
using the lower-upper triangular decomposition of the covari-
ance matrix, as suggested by Davis (1987) and implemented with
a MATLAB routine (http://www.mathworks.com/matlabcentral/
fileexchange/27613-random-field-simulation). The normal ap-
proximation is fairly good for the larger sample sizes (500 and
1000) except when testing SAR, SMA or MESS in the direction of
EXP. The EXP likelihood under misspecification is badly behaved
and the parameter estimates often fall on boundaries in many ex-
periments. This is the case for various ¢; values we have tried. Per-
formance under H; is very good when testing EXP in the direction
of the other models. The EXP model is quite different from the oth-
ers and it is not difficult to reject this specification in the direc-
tion of non-isotropic covariances. However, it is hard to discrimi-
nate between SAR, SMA and MESS for the smaller sample sizes, and
MESS is difficult to reject in the direction of SMA even for large n.


http://www.spatial-econometrics.com
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
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Table 1
Size comparisons for alternative hypotheses and ;. Percentage of rejections with nominal 5% level.
& ~ N(0, 1), Kurtosis Excess = 0
Hi/H, SAR/SMA SAR/MESS SMA/SAR SMA/MESS
n
N; 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Ny 0.60 4.80 5.00 1.30 3.35 475 1.40 4.15 455 3.35 4,60 475
Ny 1.00 490 4.95 1.60 3.25 475 1.35 3.70 430 3.40 450 450
s 0.65 4385 4.95 1.65 3.30 4.65 1.40 4.05 455 3.20 470 475
I 0.70 4.85 495 1.75 3.40 475 1.45 425 450 3.20 455 475
g~ (2,1 - 2)/ﬁ, Kurtosis Excess = 3
n
N; 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Ny 1.05 5.25 6.35 2.10 5.90 6.70 2.55 435 4.40 3.55 4.60 470
N, 0.45 3.15 4.00 0.95 4.10 470 0.85 2.35 3.20 3.25 3.30 3.45
Ns 0.30 3.25 435 0.95 4.05 4.90 0.85 2.80 3.30 3.30 3.05 3.45
A 0.35 3.85 4.60 0.95 4.60 5.15 0.85 3.10 3.30 3.45 3.15 3.60
& ~ ts/+/5/3, Kurtosis Excess = 6
n
N; 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Ny 1.05 6.10 5.60 2.30 6.40 5.10 1.85 5.25 5.60 3.20 450 6.30
N, 0.40 3.70 3.25 1.20 3.85 3.35 0.70 3.10 2.85 2.60 2.35 3.65
N3 0.25 3.95 3.50 1.10 3.75 3.55 0.85 3.20 3.05 2.75 2.60 3.90
Ny 0.25 420 3.55 1.15 4.05 3.65 0.90 3.65 3.20 2.60 2.50 4.15
Table 2
Size and power comparison using Gaussian u; and M.
H, \ Hy n Size Power
% Rejections under H; % Rejections under H,
SAR SMA MESS EXP SAR SMA MESS EXP
100 1.45 1.40 0.90 1.12 2.70 86.15
SAR 200 2.75 2.95 3.20 23.60 8.00 99.15
500 425 3.65 470 52.80 15.65 100
1000 450 4.60 5.15 82.45 31.05 100
100 0.70 1.20 2.05 1.20 1.10 39.70
SMA 200 2.75 2.55 3.65 6.40 3.00 89.30
500 4.85 3.90 4.65 19.25 7.35 100
1000 4.95 455 5.10 35.70 13.45 100
100 2.50 3.20 1.40 3.80 5.65 6.40
MESS 200 3.80 3.10 3.60 7.85 9.15 98.55
500 470 455 4.65 19.60 21.10 100
1000 5.40 475 5.30 37.35 38.55 100
Of course, the discriminating ability of the tests depends greatly on Table3 . .
the distance between the competing models. This is illustrated in liower: % rejections under H,. Hy : MESS vs H, : SMA. Tests using Gaussian u; and
the following Monte Carlo experiments. Na.
Table 3 demonstrates how power depends on the underly- b NN, k=5 k ANN
ing processes. Testing MESS(1) against SMA(1) performs com- ANN SNN ¢1=0.5
paratively worse than the other tests in Table 2. We investigate n n
behaviour under H,, i.e. for SMA(1), with ¢; = 0.5, 0.6, 0.7, 0.8 500 1000 500 1000 500 1000
and 0.9. We also consider tests using W; computed with differ- 05 735 1345 6.95 13.45 4 7.85 14.70
ent numbers k of nearest neighbours. We also use symmetrized 0.6 970  18.90 9.05 16.50 5 7.35 13.45
nearest neighbour weights based on J. LeSage’s MATLAB routine 8-; }g-g ig-;g }?gg i??g 13 g-ég 1;-2(5)
“ . ” : _ —1/2 -1/2 . . 5 K . . .
fsym_neighbors2” for different ¢¢. It uses W; = A C A , 0.9 235 52.80 1755 36.80 20 475 5.30

.o n
with G = Y4_, p'Sw), where p € (0,1), Sy = [S%)]uq

with s&;) = 1 if location i is the £th nearest neighbour of j or
j is the £th nearest neighbour of i, and 522’;) = 0 otherwise, and

o n o (D) no~m] _ [ean]"
A = diag{> ", C ", ..., ¢V with G = |C, .

ij=1
The maximum eigenvalue of the resulting W is 1, and the corre-
sponding covariance matrices satisfy Assumptions 2, 3 and 8 of Ap-

pendix A. We took p = 0.8 and k = 5. The symmetrized nearest

neighbours are denoted as SNN and the asymmetric ones, used in
Tables 1 and 2, are denoted as ANN. Power very much depends on
W1 and ¢1.

Table 4 provides size and power for tests comparing the same

models as in Table 1 but where the u; are unobserved and tests
are based on least squares residuals #; for (3) with g (Zj; ﬂo) =
Bio + B2z, By = (Bio, B20) = (1, 1). There is some effect of
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estimating the nuisance parameters 19 and By, but it seems to
disappear as sample size increases.

As in many other circumstances a bootstrap can improve finite
sample accuracy. Aresidual naive bootstrap resampling mimics the
behaviour of the test under the null hypothesis. A random sample
with replacement {éj?‘ };:1 from {; };:1' with & = B(6;)~ 1, forms

a basis for a bootstrap resample i1* = B(@l)é*,j =1,...,n,which
imposes the restriction under the null H;. Critical values of the
asymptotically pivotal test statistic # = +/nLR/ (é’M A ‘1é)
are approximated by its bootstrap analogs, which are expected

to be more accurate than the standard normal counterparts.
Bootstrap critical values are approximated by Monte Carlo: we

m
generate m bootstrap resamples {ﬁf(l)} and the corresponding
I=1

test statistics {’7*([)};11' then H; is rejected at the o100% level
in the direction of H, when 77 > c;/z orn < c;{a/z, where

o

sizes with SAR(1) H; in the direction of SMA(1) H, with innovations
generated as a standard normal and as leptokurtic Student’s t
with 5 degrees of freedom. Here, we use only 1000 Monte Carlo
experiments and 500 resamples to approximate the bootstrap
critical values. The bootstrap tests exhibit excellent accuracy even
for n as small as 50, and even in the leptokurtic case. One can save
the trouble of computing the scale &M~ 'N,M~'¢, at the price of
worse accuracy, by implementing the bootstrap test directly on
J/NLR.

We examined sensitivity of the test to the way locations are
derived. Rather than taking the n locations as the n nearest
neighbours of the centre of the lattice (50, 50), we consider three
other cases, where locations are placed at each quadrant of the
lattice with centre (50, 50) at different proportions. That is we
consider n; nearest neighbours of the centre of each quadrant i,
i=1,2,3,4,withn = ny+n;+n3+ny. The centres of quadrants I,
I, Il and IV are (75, 75), (75, 25), (25, 25) and (24, 75), respectively.

¢t = inf[c eRt:m™! Z}”:] 1{;]*<1>zc} < a]. Table 4 provides

Figure 1 plots the locations for the three cases considered. Case
0 is the case considered in the previous simulations where the n
locations are nearest neighbours of the centre (50, 50); in Case 1,
n; =n/2,n, = n3 = n/5,and ny = n/10; in Case 2, n; = 7n/10,
and n, = n3 = nq4 = n/10; in Case 3, n; = 8n/10, n3 = n/10, and
ny = 5n/100. Table 6 reports percentage of rejections under the
null and alternative hypotheses, in each of these scenarios, when
testing SMA against SAR, using the four alternative N estimators
and with standard normal ¢;. The test is not particularly sensitive
to the different location structures. We also employed ¢; with
different kurtosis excess, as in Table 1, and again the proportions
of rejections under Hy and H, are very similar across the four cases
so the results are not displayed.

5. Final comments

In line with Table 4 of the previous section, under regularity
conditions our tests remain valid when the u; are unobservable
disturbances in a parametric model such as (2) and estimates of
the correlation and scale parameters of the u; for the H; are based
instead on residuals, as discussed in Section 1. In (2), the prelimi-
nary estimate of Sy, likely one motivated by uncorrelated and ho-
moscedastic u;, would need to be shown to be ./n-consistent in the
presence of possible correlation and heteroscedasticity, and this is
relatively straightforward to establish, especially in (3), compared
to the asymptotic theory for kernel nonparametric regression es-
timates under (28) in Robinson (2011). The rest of the verification
that the u; can be replaced by residuals is lengthy but straightfor-
ward, under standard additional conditions. Table 5 of the previous
section suggested that improved level accuracy can be achieved by
bootstrapping, and theoretical justification could be sought. It may
be of value to extend our focus on correlation to test between mod-
els that also entail different parameterization of the means of ob-
servations, for example different choices of g in (3), such as testing
between a linear and a nonlinear model or between linear models
involving non-nested selections of explanatory variables.

Table 4
Size and power using Gaussian u; and Ny. Tests based on residuals of simple linear regression.
H, \ H, n Size Power
% Rejections under Hy % Rejections under H,
SAR SMA MESS EXP SAR SMA MESS EXP
100 1.80 1.35 1.80 6.60 4.20 80.00
SAR 200 2.50 2.80 3.60 20.55 8.40 98.00
500 4.00 4.05 4.35 47.75 18.60 100
1000 4.45 4.10 4.80 61.15 33.70 100
100 1.15 0.90 1.20 3.35 1.60 35.25
SMA 200 2.80 2.70 3.15 8.00 4.05 87.60
500 4.70 3.95 3.80 17.85 7.80 99.90
1000 4.75 4.55 4.65 32.15 12.70 100
100 3.45 2.50 1.40 5.70 4.15 8.95
MESS 200 3,75 2.65 3.15 10.20 8.25 97.50
500 3.80 3.85 3.85 20.40 18.15 100
1000 4.05 5.55 4.70 36.20 37.20 100
Table 5
H; : SAR vs H, : SMA. Bootstrap and asymptotic tests. Size: % Rejections under H;.
Ej"’N(O, ]) Sj’\/tS
Bootstrap Asymptotic Bootstrap Asymptotic
n'\ 100a%
1% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
50 1.00 8.00 0.00 0.20 1.50 0.70 5.70 11.40 0.00 0.00 0.90
100 0.90 10.20 0.00 0.50 4.20 0.70 5.60 11.20 0.00 0.50 3.20
200 1.30 13.40 0.10 2.50 7.60 1.60 6.10 11.00 0.10 0.80 5.00
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Table 6

Size & Power comparisons for testing Hy : SMA versus Hy : SAR. Alternative locations with different density of points at each quadrant. Nominal 5% level. g; ~ N(0, 1).

Percentage of rejections under Hyp

n

N{ 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Ny 1.40 4.15 4.55 1.60 4.20 4.50 1.80 3.80 4.80 1.55 4.05 4.05
N, 1.35 3.70 4.30 1.45 4.20 4.35 1.70 3.85 4.65 1.45 4.15 3.90
N3 1.40 4.05 4.55 1.70 4.10 4.40 2.10 3.75 4.80 1.80 4.05 4.05
Ny 1.45 425 4.50 1.45 3.90 4.15 1.50 3.65 4.55 1.65 3.90 3.90
Percentage of rejections under H;
I% 10.8 53.2 823 12.6 50.0 78.3 11.0 54.5 80.5 11.0 53.7 81.8
N, 11.2 53.4 823 12.8 49.6 78.5 115 54.3 80.9 114 538 81.6
Ns 10.5 53.1 824 129 49.8 78.5 11.3 54.6 80.5 11.3 53.9 81.8
Ny 109 52.9 82.5 12,5 495 781 115 541 80.7 115 54.0 81.2
CASE 0 CASE 1
100 100 1 oo%@ o
N ol ¢ @9@%@ ?c%w
*Bos % o Th é o%o mw,qﬁfp
8ol 80} %%gg(@% 0B . ° % AR
BP0 o 5% ¢
tatkrge OO@%@% e & @ﬁ%
60 [ 60 [ °ogg L& (§ og@dw%°
@‘boo& 2 © gwocgg &
Y @ I
L t ®
40 40 igg@@ft% 2o, el
Q, Qg o
S 0%
20} 201 BB oy ol Sog, $F P
oY o - 0O 008
%%@@g% °
0 L L L L J 0 L L L L J
0 20 40 60 80 100 0 20 40 60 80 100
CASE 3
100 ¢ 20 100 ¢ 2588 : @%w@&o Poo B
° g & &0y %QW@
80} oo 80| g QZ&Q%;%%&%%% %%’;%%%% %‘2@ . & L0
3 O
T g% W @f% Fgggw@@%ﬁ °/‘X’ g §@°
N by o]
60 5, @ 60 - %%o%@ O?é’o@g %880%%@59 g%
S 8 %Zg@) é]‘@%@o&o o§(§ &@;oo@g éog
pT, o2
40| 40| o 59%%@ °“~’>%’ o
0880 00%3@09
8 Se 5 O
R % o o goég%" @
201 C ﬁf’%};’@;" £E
& gw®
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Fig. 1. Simulated locations for the four cases, n = 1, 000.
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Appendix A. Regularity conditions and discussion

The first five assumptions are imposed for consistency of our
parameter estimates (Theorem 1 in Appendix B).

Assumption 1. Under Hy, for all sufficiently large n, the u; have
uniformly bounded fourth moment, and, denoting by xyjun the

lim n~2

n—-oo

n
2 _
E K1jkim = 0

ik Lm=1

This condition of weak dependence with respect to fourth
cumulants holds trivially on the one hand if u; is Gaussian, and on
the other if the u; are independent. It will also hold under the linear
process assumption imposed later for the central limit theorem,
indeed there '\ | ) k3, = O (n).

For a real matrix A, denote by |A|| the spectral norm of
A, i.e. the square root of the largest eigenvalue of A’A. In view
of the Gaussian pseudo-likelihood employed, the Euclidean norm

|1A]l, = (tr(A/A))]/ ? arises naturally, and as well as the standard
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norm inequality ||AB|| < ||A]| ||B|| our proofs use the inequality

IABIl; < [IAll 1Bl - (32)

Assumption 2. Fori= 1,2
lim sup (/12 @) + |27 6)]) < o0
n—00 0;€R;

Assumption 3. Fori = 1, 2, for any 0; € R;and any n > 0, there
exists ¢ > 0 such that

lim sup
n—-oo
o ||el-—el.T H <e0eR;

H 26) — 2 (ej) H < (33)

Notice that Assumptions 2 and 3 imply that (33) holds with
2 6) — 2 (ef) replaced by 2, (6) — 2" (ej). There is in-
terest in checking Assumptions 2 and 3 under more primitive
conditions, given the specifications of the £2;. To place the as-
sumptions in perspective, for equally-spaced time series, when
H; implies stationarity £2; is a Toeplitz matrix and Assump-
tion 2 is satisfied if the (spectral density) function f (A; 6;) =
@n)™! > kelji—ki=t @ik (61 cos [x is bounded and bounded away
from zero on A € (—m, 7], uniformly in 6; € R;, while Assump-
tion 3 is satisfied by continuity of f (A; ;) in 6;. These observations
are straightforwardly extended in case of regular spatial or spatio-
temporal lattices. For irregularly-spaced data, there is less scope
for finding comprehensible sufficient conditions for Assumptions 2
and 3, because the properties of both the underlying process (de-
noted U in the Section 2) and the regime generating the observa-
tion points are generally entwined in a complicated way in the
£2; (6;). However, a combination of stationary weak dependence
in U and a degree of regularity (lack of trending in the degree of
sparseness of observations) would be expected to suffice. An ad-
vantage of Assumptions 2 and 3 is their relative simplicity. When
the H; model can be naturally factored as £2; = B,B;, where B; is
a known matrix function of 6;, Assumptions 2 and 3 (and subse-
quent assumptions) can be written in terms of B;. This is the case
in (4), where in each case a particular inversion must generally be
selected from several possibilities, as well as in models of form (9)
and (10), where B; = Si”. However, such models are readily cov-
ered also by our assumptions on §2;, whereas for some other mod-
els (e.g. (7) and (8)), though of course £2; admits a factorization for
any 6;, the factors need not have a simple closed form representa-
tion as functions of 6;.

With Qo = Qq (610),

Q-Qo=- log{ tr (227 910)/|9_1910|1/n} (34)

which is guaranteed to be non-negative by the inequality between
arithmetic and geometric means. An identifiability condition for
9]0 is:

ASSlll'ﬂption 4. 010 € Ry and for all 91 € Ry \910,

.1 _ 1/
Jim —tr (27" 210) /27210 "

where the limit is assumed to exist.

For the SAR(1) special case, write S = S(@#) = I, — W,
So = S (6y). Then (35) can be written

1 : Y
lim —tr (ss S5 s)/‘sso— ssUs| s 1 (36)
n—oo n

Since SSO_1 =1I,+ (6 — 6) W, and thus
|27 210] = |l + (60 — O) W%,
tr (sso—lso—‘/y) = tr (I + (B0 — O) W) (n + (B — O) WY),

the strict inequality in (36) holds for all & # 6, except under
some degeneracy in the limit behaviour of W. The corresponding
condition of Lee (2004) is given in his equation (4.2) as

i 1 2¢—1¢-1 _1 2 .y
lim log |0ySy Sy log|o“(0)S™'S #0, (37)
n n

n—oo

where o2 (0) =
somewhat from his. The left side of (37) can thus be written

oltr (55515()’1/5’) /n and our notation differs

: 1 —1c-1 _1 —1¢-1 _1 —1c—1¢
lim log |Sy S, log |S™'S logtr (SS; 'Sy~ S
n—oo \ n n n

1 —1c—1 ¢/

~loger (555"

n

/n
:—11m10g< tr (5555 s)/‘ssg )

Thus, our identification condition (36) is the same as (37) of Lee
(2004), except that ours indicate that the left side of his (37)
cannot be positive so “£” in (37) can be replaced by “<” (and our
presentation recognizes the elimination of og).

Denote by 65, = 0,,, a sequence of pseudo-true values under
Hl .

6, = arg min 52 62),

62€R;

1|12
= lim (log‘SSO’ S S| -
n—oo

1 s

and write Qz* = Qz (02y) , $224 = §25 (65). Define also

03, =63 (02) = ofyn”'tr (£2;,' 210) - (38)

Define, for all n and ¢ > 0, the neighbourhoods
Nog = {02 1 |62 — Ol < €},
and let My, = Ry \ My.. We have

1

—1
G2 — o = 1 10g [” (2, 2u)

tr (92_*1 Q]())

where £2,, = 2, (6,,). Because 6,, need not be constant over n,
we identify it by the condition:

W?@Wq (39)

Assumption 5. For all sufficiently large n and any n > 0, 6,, € R,
and there exists ¢ > 0 such that

-1
lim inf M
n—oobpeye | LT (92_* 910)

Our remaining assumptions are needed in asymptotic normal-
ity results for the parameter estimates (Theorems 2 and 3 in Ap-
pendix B) and for the non-nested test statistics.

|.(22;192|””] > 1.

Assumption 6. 0y, is an interior point of R; and, for all sufficiently
large n, 6, is an interior point of R,.

Assumption 7. The representation (28) holds, where & is a
sequence of iid random variables with zero mean, variance o7, and
finite eighth moment, bj; can depend on n, bj; = bjs,, and, defining

qszqsn:bjs/w}j%, j=1,....m;n=12,...;s=1,2,...,
we have
lim sup Z]cjs|+ lim supZ|cjs < 00. (40)

n— o0 1<j<n 4 n—>00 g1
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The representation (28) was previously used in a spatial context
by Robinson (2011), where its relevance was discussed. It implies
that

o0
o0 = Y bibs, Jk=1,2,....n, (41)
s=1

where Assumption 2 implies the wyj;, are uniformly bounded and
bounded away from zero, and thus

2 .
cjszl, j=1,2,...,n. (42)

M2

Il
-

S

The normalized ¢;; can be compared with moving average
weights in the stationary time series setting where ¢ = ¢j_s,
when (40) reduces to a standard weak dependence summability
condition; the eighth moment condition automatically holds under
Gaussianity and is needed only to check a Lyapunov condition,
otherwise finite fourth moments suffice. In models of the form
(9) we can choose bj; to be the (j, s)th element of S (010)" s =
1,2,...,n,and bj; = ¢ = 0,j > n + 1. More generally, the latter
equality can be satisfied if the u; are Gaussian, since they can be
represented as a linear transformation of n iid normal variables. In
particular, this is the case for Gaussian irregularly-spaced u;, with
the b, s = 1,...,n, depending on the locations as well as the
underlying continuous process U(t) described in Section 2; see
also the discussion in Robinson (2011). If the u; are non-Gaussian,
the infinite series representation is generally required to cover
models such as (4), (7) and (8); at least in the regularly spaced case
under broad conditions there exist linear representations of u; in
terms of uncorrelated and homoscedastic innovations, with these
innovations then assumed to be independent.

In much asymptotic theory for estimation of spatial weight
matrix models (9) (see e.g. Lee (2004)), two other norms are used:
the absolute row sum norm ||A|, = max; Zj ]aij] and the [
or maximum element norm [|All, = max;; |al-j|, for a matrix
A = (a;). Noting that for symmetric A, [|All < [|All, and [|A] <
lAll,, it was desirable for Theorem 1 to rely only on spectral

norm assumptions, but our central limit theorem needs ||.||, and
II.1lo- Using the definitions (26), introduce:

Assumption 8. Fori = 1,2 andj, k,Il = 1,...,p; and all suffi-
ciently large n, on an arbitrarily small neighbourhood ; of 6;,, the
elements of £2; are thrice boundedly differentiable,

i sup (12771, + ], + 2l + | 2l) <0, @3

n—)OOG

and for a positive sequence h = h,, such that either

h<cC (44)
or

h™'4+h/n— 0 asn— oo, (45)
we have

i sup (|5, + |2, + 2], < o (46)

In spatial statistics models such as (4), (7) and (8), the h
bounded case (44), where h can be chosen to be constant, is
appropriate, when (46) is implied by (43). The allowance for
(slower-than-n) divergent h (45) is motivated by spatial weight
matrix models such as (9) and (10), where, as in Lee (2004),
weight matrices are assumed to have all elements that uniformly
converge to zero as n — oo. For example in the SMA(1), see
(11), 2; = I, — 6:4W) (I, — 6;:W)’, and W is often assumed to

satisfy h[|[W|l, + W[, + W[, < C.Thus £ = 26,WW’ —
W — W’ satisfies (43) and (46), and also H.Q,]H; <n ||.Q,]||e H £2; !r
implies that supy,c, [|£2;]|, = 0 ((n/h)'/?). Notice that divergent
h is tantamount to a form of persistence, and will be reflected in
slower-than-./n convergence rates for the ;.

Denote M;, = M; (t4),i = 1, 2 and

(M, 0
M*_<O M2*>’

n n
/ 2 2\2 4 /
Ne=N@O)=n) aud E (e —0%) +200n Y ag.d,
s=1 s,t=1;s#t

where ag, = ag. (74) and the first expectation depends also on
the 4th cumulant of ¢;, reference to which is suppressed. Write

_(I,h* 0 L _(D; O
Dl_< 0 1) i=t20={4 p )

Assumption 9. The matrices

@ = lim DM,D,
n—oo

¥ = lim DN,D
n—oo

exist and are positive definite.

Appendix B. Theorems and proofs

Theorem 1. Under Assumptions 1-5 and Hy, asn — oo

71 —>p Ti0, T3 — Tox —>p 0.

Proof of Theorem 1. Write Q1* = Qm for ease of notation. The
following arguments apply for i = 1, 2 except where other-
wise specified. For ¢ > 0 define the neighbourhood W, =
{6; : 116; — 0|l < €}, and let N;. = R;\ M. Denoting P; probability
under H,

m(eM8<mQMQ<%>

Nig
<P (sup‘Ql Q,‘>1J1v1f(cl—@*))

The result follows if

inf (Q, — Q*) > 7, allsufficiently large nand any n > 0, (47)

Nie
and if

SUP ’Q, Qz) —,0, asn — oo. (48)
The left side of (48) is bounded by

1 1

—suplogo; /67 < —sup o7 — 67| /inf&].

2 R; 2 R; Ri

By the inequality (32),

1
6’2 = *tr (Q 1910

1

H‘Q 12 o 1/2”

o o 2 0

so by Assumption 2,

lim 1nfa > 0. (49)

n—oo Ri



396 M.A. Delgado, P.M. Robinson / Journal of Econometrics 187 (2015) 385-401

On the other hand, for given 6;, 52 — G has variance under H,

2 -1 2 1 - jk Im
- ”91 910”2 + - Z w{ ;" K1jkim
n N KIm=1

| A

1/2
|2 2: Kl]klm)

— ||~Q 1“2 12100 + = (
J.k,m=1

2
= 20l + (
n

by Assumptions 1 and 2 and (32), establishing pointwise conver-
gence in probability of Eiz — &iz to zero. Uniform convergence fol-

lows from compactness of R; and noting that for any 9: € R
and small enough > 0, we can choose ¢ > 0 such that for

s = [0 Ja=al| <}
Eq sup

tr ((.Ql !
6;: ||9179if H <e;0;€R;

< (Eq lulP® + tr (210))

26) - (ej)_l H = 0(nn),

IA

1/2
Z K]],dm> — 0 asn—

J.k, L, m=1

ol (e)ﬁ)_]) (und — 5210))’

X sup
0,~:| (9,-70;r " <e

by (32) and Assumptions 2 and 3. This proves (48). Next, fori = 2,
(47) is Assumption 5 in view of (39). For i = 1, by compactness R;
has a finite subcover and fixing 9} € R{\b1p, and forany ¢ > 0

inf (él - é.]*)

61: H@l 7611L H <e;601€Rq

@ - Q.

> (Qu - Qw) - sup

T -
where
Q— Q= log{tr (27"$210) /|92 1|]/n}
= %log{tr (@5'20) /25"

1
zilog{tr(!) 1910)/”‘(9 910) +

tr (27" = 25') 210
-(210 )

—Liog (14
2 % tr (25,
— 25" 2y

1 -
+ iloghn + (27!

log |.Q Q1‘r|

Denoting by ; and v; the jth eigenvalues of (2; ' — £2;;") 210 and

(27" — 21;') 214 respectively, by Assumption 2 the last expres-
sion is bounded by
Sy

1
Z ‘AJ /tr QH Qw) ton 2n j=1
n 1/2 " 1/2
=cn ' <Z |’\f|2> + (Z |Vf|2>
j=1 Jj=1

<o 2oy - 27,
=Clen -

n

where C denotes a positive generic constant and we use Assump-
tion 2, (32) and

> = e - i) 2l < 2" ~ 25}
S =l -2 2ull < o - 5[
j=1

By Assumption 3, for any n > 0 we can choose ¢ such that for all
sufficiently large n the last displayed expression is bounded by Cn,

91—9f“<8}, @—QH.In
view of (50) the proof of (47) for i = 1is completed by noting that
(34) and Assumption 4 imply that for some ¢; > 0, Q” — 0y — ot
asn — oQ.

as therefore is

uniformly on {91 : H

Theorem 2. Under Assumptions 1-9 and Hy, as n — oo,

n'?DM @ — 1) —>q N (0,07 W),

Proof of Theorem 2. We record some preliminary calculations.
Fori = 1, 2 write

Ly 2+11 12| + LI
= — 10g O; — 10, i —Uu - u.
2 080T T o BT

i

Forj=1,...,p;
_ el _ _
T log |2 = tr (£2,'$2;), 8—9119 V= —o e
Thus
dL; 1
— = ———r {27227 (i — 07 2)},
39,']' 2no
daL; 1 u'2; Ty
o2 20-2 2nc7

1 1
Fori = 1, evaluating at 6, = 649, 02 = o' and under Hj,

aLqp 1

96y 20" {Q1 21002 (ur' — 0jp210)}
aLlo ] —
907 = angr 100 (W — 0o Zw0)]

Fori = 2, evaluating at 6, = 65, 0} = o2, and under Hy,

OLa. 1, {9251 22.251 (
= — T » uu’
8921 zno_z 2% 2j; 2%

22*92*)}
*
1 _ _
= _Zno-z* tr {92*192]'*92*] (UU/ — 0'120910)} .
ILs, 1 o
= - 2 —
do3 2noy, tr {2, (u

022* ‘QZ*) }

2 (W = 070820) )

oo _ _Lﬁ’ tr {25, 25,925, 910}+ltr{9—192» }
392j anZ* 2% JH B4 m 2% x| o

Ly 0120 1
0=E— = tr {2,210} + —,
Y902~ 2nof {2 20} 202,

that is,

2

-1 %10
tr {23, 2} = 2tr
02*

{925, 201925, 210}
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o?
2 _ %10 -1
05, = ; tr {92* .Qm}.

We thus have, denoting d, = (dL1o/d1], BLZ*/arz’)/,

00
2
d, = E Qs (858t - U1o5st) ,

s,t=1

where ag. = ag (t,). Now n'/2d, has mean zero and variance
matrix N,, and we wish to show that
n'2Dd, —4 N (0,¥), asn— oo. (51)

The proof begins similarly to that of Theorem 4 of Robinson (2011),
but there a linear rather than quadratic function of the &; was
involved. Since ag, = a5, We rewrite d, as

00 00 s—1
do =) aw (2 —0oh)+2) 1(522) Y asst
s=1 s=1 t=1

= i Us, (52)
s=1

where 1 (.) is the indicator function and

s—1

Vs = (552 - 0120) Assx + 21 (S > 2) Es Zas[*gt-
t=1

For a positive integer sequence J = J,, increasing with n, write

J
dyqg = Z Us,
s=1

On proving that, for some J sequence,

d*bzd*_da

n'2Dd,, —, 0, (53)

it suffices to focus on d,q, leading to consideration of

J
) = nZDE (vsv;)D
s=1

Introduce a square matrix Z such that T = ZZ’. For large enough J,
T is positive definite under our conditions (see (55)). For a vector
¢ such that || || = 1, write

T = nE (Dd,d,,D

J
r. =n"?¢'z7'Dd,, = n'/? Z;’Z”Dvs.
s=1
Now r, has zero mean and unit variance for all n, and the property

e —>q N (0,1), asn— oo, (54)

will follow by checking the conditions of a martingale central limit
theorem, because the elements of the v, and thus the summands
of r,, are martingale differences. If also

T — N, as] — oo, (55)

the proof of (51) is completed; we omit proof of (55) as it is
straightforward given our other proofs.

The details for checking (53) and (54) differ considerably from
those of Robinson (2011), mainly because our vy is quadratic in the
&s. First, (53) follows on showing that as ] — oo,

E |n"2Dd,y|* — o. (56)

From Assumption 7 the vs are uncorrelated and the left side of (56)
is bounded by

o0
Cn Z E ||Dvsl|?, (57)

s=J+1

where, from (52)

s—1
E IDvs]* < CIDass.|I* +C1(s > 2) ) lIDage. )

t=1
S
2
C Y lIDas .
t=1

aise (t) be the (pi+1) x 1 vector with jth element as (7)
= —(2nai) b (61) 2, ' 24827 'by (61) forj = 1,...,p;, and
- (2”‘71'4)_ bl (61) 27 b (61) forj = p; + 1, and put ay (7) =
(@15 (T), azse (7)'); note that ag (T) = ag (7).

_(I,h* 0 L _ (D1 0
D1_< 0 1) i=t2Dp={4 p )

The (p + 2) x 1 vector Day, has mth element of form b;Rmb; /n,
where b; = b, (A19) and

-1 — —
Ry = —h'/? (2no120) 23 21mo2y,m=1,...,pi;

IA

1.
Rpi41 =~ (2n010) 2y
Ry s14m = —h'7% (2n02) " 250 Qomo 255, m =1, py;
Rprp = —h'/? (2"0240)71 -
Now (57) is bounded by
(o) s Cp1+p2+2 [e9) s
cn Y > IDag = = Y bR Y bebR, b
s=t1 =1 a3 s9m =1
C p1+p2+2 00
<= 3| X BiRaRb: (58)
m=1 s=J+1
since (28)i t_1 beb, | < 1211l < C by Assumption 2. De-

note by rmj, the (j, k)th element of R,. We deduce from Assump-
tion8thatforl1<m<pjand p1+2<m<p;+py+1,

Z |rmie| < Ch'72,

k
whileform=p;+1landm=p; + 1+ 2
Z |rmjk| <C.

k
The bracketed term in (58) is

o0 n n n
Z Z Z Z bjstimjkTmikbis

s=J+1 j=1 k=1 I=1

o0 n n n
¢ Z ZZZ |CJ'S| |rnv'k| [Tk | lcis|

s=j+1 j=1 k=1 I=1

Sl L INT S I

s=/+1 j=1 I=1

DI !%\Zlas

Jj=1s=]+1

C
’rmjk| = n2

IA

IA

IA

o]
< Cnmax Z || (59)
s=[+1
from Assumption 7 and elementary inequalities. Also that
assumption implies that, forj = 1, ..., n, for any sequence n, | 0
asn — oo we may choose Jj, such that >yt |G| < mn. Thus

taking ] = J, = max(J, ..., Jan), (59) < Cnn, = o (n) asn — oo.
This completes the proof of (56).
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The proof of (54) follows (see e.g. Scott (1973)) on checking a
Lyapunov type condition

J
> E 02z Do - 0 (60)
s=1
and
J
n»  (E(DvsDle,, t <5 —1) — E (Dvgw;D)) —, 0. (61)
s=1

To check (60) note first that by straightforward evaluation and the
inequality Y~ z2 < (3 |z$|)2

s—1 4

E Dagte;

t=1

S s—1 2
< C) IDag.ll* +C (Z ||Dast*||2)
t=1 t=1
s 2
c (Z ||Dam||2)
t=1

E|z7'Dus|* < ClIDas.I* + CE

IA

Now
S C p1+p2+2 s
Y IDagl < = > (biRm Y bebcR),bs
t=1 L —t t=1
C
=5 [N

Thus the left side of (60) is bounded by

C < Cdn (L) L[ !
*22”133”‘1 = anZ (ZC]25> = nﬁzl (Z|st|)
5= 5= j=

A

|
i}
HM
—
™=
o
~——
IA
1A

on applying both parts of (40) of Assumption 7 and the inequality
Y2 < (X |zs|)2, to prove (60).
To prove (61), note first that E (v,v] &, t <s— 1) is

s—1

(2070 + k) assetly, +E (87) 1(s > 2) Z (aseetlly, + Os500,) &
t=1

s—1 s—1 !
+01201 (s>2) (Z ast*8t> (Z ast*gt) )
t=1 t=1

and its expectation E (v;v}) is

s—1
4 / 4 !
(2010 + k) Gssu g, + 0761 (5 = 2) Y Ay,

t=1

Thus the Euclidean norm of the left side of (61) is bounded by

J s—1
(20D (A +44) e (62)
s=2 t=1 2
J s—1
+ ngm Z { <Z 05[*8t> (Z a“*gr> - U]O Z aSt*ast*} )
s=2 t=1 2

writing Age = dgr, 0. Since Zs D> 1A5t8[ = Z Zs 1 AstEes
the square of (62) has expectation bounded by

iS5 (S a)ef =S| Sa]
—1 \s=t+1 =1 ||s=t+1
where
J 2 2 4
Al = > b Rib, bR bebRibsb.Ri b
s=t+1 2 j.k=1 r=t+1s=t+1

C P1+P2+2< J

2
=3 > |b;Rkbr}>
k= r=t+1
C p1+p2+2
Z (Z ZZM i |cmr|>

r=t+1 I=1 m=1

I /\

Now for1 <m < pyand p; +2 <m < p; + p, + 1, on the one
hand

Z ZZ el 17iam] Imr| < CZ Z il I7iam]

r=t+1 I=1 m= =1 m=1

Ch'/? Z el
=1

A

IA

while on the other,

J n n n n
SO0 el ruml lemel < €Y el D Iriaml
=1 m=1

r=t+1 I=1 m=1

A

IA

n
Ch™"/2 " leul < Ch™/

=1

while form = p;+1andm = p;+1+2, these bounds hold without
the respective h'/? and h™'/? factors. Thus (62) = 0, (n~'/2).
To deal with (63), note that

J

2 :2 :an*ast* O-10)

s=2 t=1
s—1 t—1

J
+ Z Z Z (aSt*a;u* + asu*a;[*) Et&y

s=2 t=1 u=1

-1 ]
2 : 2 :an*ast* 010)

t=1 s=t+1

11 J
+- Z Z { Z (an*a;u* + asu*a;t*)} Et&y. (64)

t=1 u=1 (s=t+1

Now by elementary inequalities
-1 t—1 { J
t=1 u=1 {s=t+1

2 : an*asu*

s=t+1

2

n’E

/ /
(asenttly, + asu*ast*)] &ty

—_

2

2

I /\
e

2

J
> > biRibebRebub; Ribib]Riby

t=1 u=1 s=t+1r=t+1

1333 SN

IA

:N‘ .
M\
M\
M\
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x Y > lesl Iriam! Iem
l m

<Y el [rim| lemel DY el |rim| Icml
1 1 m

FEEEYE (R )
)
(SRt ()
EET (TR

t=1 s=1 j

=

M\ E]
M\

,.'
Il

1

(Xj;kkmm

l

@
Il

J
r=

x 3 el /2 (Z > el |rim] |Cmt|)
l 1 m 1
J
=< % ZZZ <Z |Cls|> |rjlm|
j l m

s=1
J
3 (2 |cmt|) 3 (2 |rjm,|) -
= m 1
Ch
< —,
n

for1 <m < p;and p;+2 < m < p;+p,+1, the penultimate step
using symmetry of Ry. Clearly form =p;+landm=p; +1+2
the bound is C/n.

Finally, for the second part of ( 64)

2 2
2 § ast*asr* 010 <C”§

t=1 s=t+1 t=1

Z : aSt*ast*

s=t+1

is b;ijtb;Rkbt/n so, since

The (j.k)th element of a..a’

St*

J ] n n
Z |b;ij[| =< C Z ZZ|CIS| |rjlm| |Cm[|

s=t+1 s=t+1 I=1 m=1
2 :} : 122 :
= C |rjlm |Cmt| <Ch / |Cmt|
=1 m=1
we have
2 2
-1
Ch 4 n
E E ast*as[* = - |Cme|
t=1 ||s=t+1 =1 \m=t

Ch &
sﬁz mm«a
m=1 t=1
This completes the proof of (51).
Next consider

2

log |2i = tr (827" $2) — tr (2,7 24827 25)

36306
82
Seaa. 5 = S T T — 7 gty
1jOYi
+ o7 22 us2
Thus
9%L;

36,063

- str{(27 2p27 " — 2927 227 Ques2 ) '}

2na
1 -1 -1 -1 .
+£tr{9i Q4 — 27 82482 -Qik}, B k=1,...,p;
9%L; 1 ) )
= ——{e ‘e w/l, j=1,...,p,
365002 2no} I O b
9%L; 1 1
= —tr |2 w/} - —.
dol  nof { ! } 20/
It is then readily seen that
32L10 82LZ
1 - = Mo, Eq = M, (65)
071007y 012007,
Now denote
9%L,
07,001 0
F=F@)=|1%0
0 0L,y
91,0075
We have
n'’N-1’M, T —t,) = n'’N;V2D7"(DM,D)D (T — 1)

—a N (0,1p42),

where, for a positive definite matrix A, A/ denotes the unique
positive definite matrix such that A'/?A'/?2 = A, By the mean value
theorem,

0=d,+FT-1),

where F is derived from the matrix F () by evaluating each row at
a possibly different T such that |T — .|| < ||T — 7.||. Thus

0=Dd, +DFDD™' (T — 1,),

and so

n'>p~' (7 — z,) = —n"/? (DFD) ' Dd,.

It may be readily verified that
D(F—F(z))D—,0, D(F(z,) —M.)D—,0

where the first step uses consistency of T and the implied
regularity of F(t), and the second entails a law of large numbers
in view of (65). Because of (51) the result readily follows.

Our next theorem justifies the feasible large sample approxima-
tions to the distribution of T:

Tt N0, 'MINMTY), i=1,2,3.

Theorem 3. Under Assumptions 1-9 and H;, and with the &;
assumed Gaussian for i = 1, asn — oo,

MM 5,1y, NNJ'—, 1o,
n'2N M @ = 1) = N (0, Ip2) »
fori=1,2,3.

The proof is lengthy but straightforward given previous results
and is thus omitted.

Theorem 4. Under Assumptions 1-9 and Hy, and with the &;
assumed Gaussian for i = 1, asn — 00,

-4 N (0,1), i=1,2,3,4. (66)

N T 1/2
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Proof of Theorem 4. Writing, as in (22), 67 = o5 (@)1 =1,2,
we have asn — oo

62 52(61, 0;
LR = log—g —log#
2% 02*
~2 2 =27 7 2
— 01,0,) —
= log (1 + 2% 202*> — log (1 + 268 o UZ*)
02* 02*
_ G305, 55(61,0) — a3,
03, 3,
6'\22 - 022* ? Eg(/@\],b\z) — 022* ?
40, [ (22) + (2% ), (67)
02* 62*

from the inequality [log (1+x) —x| < Cx? for |x| < 1. From

calculations below and since lim, , . .02, > 0, the remainder term

in (67) can be neglected. Now

E%@l,b\z) — 07, = otu @\1,/9\2) — oot (B10, 024)

which may be written

(67 — ofy) u (B10, 02:) + o7 (u @1,’9\2) — u (610, 624))
+ (67 — o7 (u (51,,9\2) — u (610, 624))

where, by the mean value theorem,

u (9\1’9\2) — u (010, O24)
P1 P2
= ZC; @) @j — b1j0) + Zdj ©) @j — 0js)
j=1 j=1

where |0 — 6. < ||§— 0. Thusas n — oo,

n'2LR — n'%e (T — 1) —,0,

where €, = e (t,). But by Assumption 8 and Theorem 2.
n'%e (T —1,) e.M7INY2n ' ANZ12 M, (7 - 1)

= ¢e.D(DM,D) ' DN}*n'2N;2M, (7 — ©,)
=4 N (0,507 'wDT'E),

where
¢ = lim De,
n—oo
and using Ny ’M,n'2 (T — 1,) >q N (0, I+2). Equivalently

n'/2el (T — 1)

(e.M N, M e,)

—>aN (0, 1),

and since it is straightforwardly verified that
D(—e.)—,0,

the result follows from Theorem 3.

Note that all elements of M, and N, are O(h~!) except
for the (p; + 1, p1 + Dth and (p + 2, p + 2)th, which are 0(1),
explaining the normalizations in Assumption 9 and indicating that
when h diverges the (j,p;y + Dth,j = 1,...,py,and (j + p1 +
1,p + 2)th,j = 1,..., p,, elements of @ and ¥ are zero. Thus
on the assumption of divergent h a somewhat simpler test statistic
can be justified. We have ¢; (T) = O,(h™"), d; () = Op(h™"), for
all j, so taking account of the normalizations involved it is relevant
that h'/%¢; (T) —, 0, h'/2d; (T) —, 0, for all j. Thus, defining

e (1) = (0, —u(61,6,),0,,,1) Joj, e =e (@),

where 0y is the k x 1 vector of zeros, we have

2—>dN(0, 1), i=1,2,3,4asn— o0

1
5 )V

when h — o00. However, the statistic in (66) is valid for both
bounded and divergent h.
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