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Abstract

How much should governments subsidize the development of new clean technologies? We use patent
citation data to investigate the relative intensity of knowledge spillovers in clean and dirty
technologies in two technological fields: energy production and transportation. We introduce a new
methodology that takes into account the whole history of patent citations to capture the indirect
knowledge spillovers generated by patents. We find that conditional on a wide range of potential
confounding factors clean patents receive on average 43% more citations than dirty patents.
Knowledge spillovers from clean technologies are comparable in scale to those observed in the IT
sector. The radical novelty of clean technologies relative to more incremental dirty inventions seems
to account for their superiority. Our results can support public support for clean R&D. They also
suggest that green policies might be able to boost economic growth through induced knowledge
spillovers.
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1 Introduction

In 2012, OECD countries spent over 3 billion euros to support the development of new clean
technologies such as renewable energy or hydrogen cars. Is this spending optimal or at least
justified? There is a consensus among economists that market mechanisms alone cannot
provide the socially optimal amount of “green” innovation because of the well-known combi-
nation of negative environmental externalities - environmental benefits are not appropriately
valued by markets - and positive knowledge externalities - innovators may not reap all of the
benefits of their innovations (Jaffe et al. (2005); Popp et al. (2009)). However, once some
mechanism is in place to internalize the environmental externality, there is no reason a priori
to implement R&D policies targeted specifically at clean technologies. Positive externali-
ties in knowledge production may be addressed by generic instruments, such as intellectual
property rights protection and tax rebates for research and development activities that ap-
ply to all industries equally! (Schneider and Goulder (1997)). Yet, in theory, subsidies to
private R&D activities should reflect the size of the external spillovers from the research
(Goulder and Schneider (1999)). Consequently, the optimal level of subsidies for clean R&D
crucially depends on the magnitude of knowledge spillovers from clean technologies, relative
to the magnitude of knowlege spillover generated by other technologies, in particular the

dirty technologies they replace (Smulders and Withagen (2012)).

In this paper we use a new dataset that includes over one million patented inventions in clean
and dirty technologies and three million citations to these patents to compare the magni-
tude of knowledge spillovers from clean and dirty technologies. We further examine potential
drivers behind the observed differences in knowledge spillovers. Our data covers two sectors

where we can clearly distinguish between clean and dirty inventions: electricity production

!For example in France all companies incurring R&D expenses are eligible to receive a research tax credit,
which covers 30% of all R&D expenses up to 100 million, and 5% above this threshold, irrespective of the
technology covered by the R&D activities.



(renewables vs. fossil fuel energy generation) and automobiles (electric cars vs. internal com-
bustion engines). Together, electricity production and ground transportation represent 40%
of global carbon emissions (IPCC, 2007) and are thus of major policy relevance. Following a
long tradition in the literature, we use patent citations to measure knowledge spillovers (Tra-
jtenberg (1990); Caballero and Jaffe (1993); Jaffe and Trajtenberg (1999); Hall et al. (2005)).
Patent documents offer a paper trail of knowledge flows as inventors are required to refer-
ence previous patents which have been useful for developing the new knowledge described
in the patent. Patent citations are not without limitations, but an important advantage
of our dataset is that it allows us to deal with most of the problems usually associated
with their use. For example, we can identify (and discard) self-citations by inventors, as
well as citations added by patent examiners, which might not capture external knowledge
spillovers. Our large sample size enables us to include patent office-by-year-by-sector fixed
effects, thereby purging the estimates of a wide variety of potential confounding factors,
including the growing number of patents issued, the rising number of citations received, and
differences in patent citation practices across patent offices, time and technological areas.
We also control for the number of past patents from the same technological field (narrowly
defined) and the individual quality of patents using various established measures of patent
value, such as the grant status and the number of countries in which a patent is filed. We
also build an alternative measure of knowledge spillovers based on Google’s PageRank al-
gorithm to capture the entire chain of citations made. This “PatentRank” index offers the
advantage of assigning a greater weight to inventions cited by inventions that are themselves

highly-cited, and so on.
We find consistent evidence that clean patents generate larger knowledge spillovers than
their dirty counterparts. All other things being equal, clean patented inventions receive

43% more citations than dirty inventions.? The gap is larger in the electricity production

2We can visualize the difference using “innovation flowers” (see 7), network diagram for a random sample



sector (49%) than in the transportation sector (35%). Interestingly, the gap between clean
and dirty technologies has been constantly increasing during the past 50 years. We show
that clean patents are not only cited more often, they are also cited by patents that are
themselves cited more often (irrespective of their technological area). When considering
our new PatentRank index, we also find strong evidence of larger spillovers from clean
technologies. Our conclusions are robust to a large number of sensitivity tests. These
include discarding citations added by patent examiners, correcting for self-citations at the
applicant level, including inventor fixed effects, looking at different subsamples and including

additional control variables.

Our paper revolves mostly around a distinction between radically clean innovations (e.g.
electric cars, wind turbines) and dirty innovations (e.g. combustion engines, coal power
plants). Yet, some inventions in the dirty category relate to energy efficiency improvements
that make the dirty technology less dirty. We identify these inventions and label these “grey”
innovations. We then compare knowledge spillovers between clean, grey and “truly dirty”
innovations. The analysis suggests a clear ranking: clean technologies exhibit significantly
higher levels of spillovers than grey technologies, which themselves outperform truly dirty

technologies.

How can we account for the larger knowledge spillovers from clean technologies? One ex-
planation stands out from our investigation: clean technologies seem to benefit from steep
learning curves associated with new technological fields. *When we control for the age of
the technology, the clean premium decreases by 14%. We also compare clean inventions
with other emerging technologies such as biotechs, I'T, nanotechnology, robot and 3D, and

find that clean patents appear much closer in terms of knowledge spillovers to these radically

of 1000 clean and 1000 dirty innovations where the edges represent citations. We can see that the green
innovation flower is larger because it includes a larger number of citation edges.

3We partially control for this by including a measure of previous patenting within the technology class
of a given patent in our regressions, but this novelty effect might not be well captured by the number of
patents.



new fields than to the dirty technologies they replace. Interestingly knowledge spillovers from
clean technologies appear comparable in scope to those in the I'T sector, which has been the
driver behind the third industrial revolution. When comparing clean, dirty and emerging
technologies to all other inventions patented in the economy, we find a clear ranking in terms
of knowledge spillovers: dirty technologies have lower knowledge spillovers than the average
invention, while clean and other emerging technologies exhibit larger knowledge spillovers.
With the exception of biotechs, all other emerging technologies (IT, nanotechnology, robots
and 3D) show larger knowledge spillovers over the average invention than clean inventions.
Taken together, these pieces of evidence suggest that the clean advantage might be a feature

of the radical novelty of the field.

In an attempt to quantify the economic value of clean knowledge spillovers, we estimate
a market valuation equation Hall et al. (2005) using firm level data on patents, citations,
R&D and firm values. We find that significant and positive effect of knowledge spillovers,

particularly knowledge spillovers from clean technologies, on the Tobin’s Q.

Our results have a number of immediate implications. Firstly, with respect to climate
change policy, our findings provide support for the idea that pollution pricing should be
complemented with specific support for clean innovation—e.g. through additional R&D
subsidies—that goes beyond standard policies in place to internalize knowledge externali-
ties. Indeed, the higher spillover effects from clean innovation compared to dirty innovations
(including “grey” energy efficiency technologies) uncovered in this paper justify higher sub-
sidies to clean R&D in a first best policy setting. Radically new clean technologies should
receive higher public support than research activities targeted at improving on the existing
dirty technologies. However, such specific support could equally be justified for a range of
other emerging areas, such as nanotechnologies or I'T. Therefore our results go some way into

supporting the recommendation by Acemoglu et al. (2012) that only clean (and not dirty)



technologies should receive R&D subsidies.*

Secondly, our results lend support to the idea that a redirection of innovation from dirty
to clean technologies reduces the net cost of environmental policies and can lead to higher
economic growth in the short run, if the benefits from higher spillovers exceed these costs.
Indeed, if the factors leading to an under-provision of knowledge are more severe for clean
technologies and if new clean technologies are induced by environmental regulation, environ-
mental policies could generate growth by unintendedly correcting a market failure that has
been hampering the economy, irrespective of the environmental problem (Neuhoff (2005)). In
fact, the presence of a market failure associated with R&D spillovers from clean innovations
is one of the possible theoretical foundations for the Porter hypothesis (Porter and Van der
Linde (1995)) according to which environmental regulations may enhance firms’ profits and
competitiveness (see Ambec et al. (2013) and Ambec and Barla (2006), for a recent review).
For example, in Mohr (2002), the existence of knowledge spillovers prevents the replace-
ment of an old polluting technology by a new, cleaner and more productive technology, as
firms have a second-mover advantage if they wait for someone else to adopt. The introduc-
tion of an environmental regulation induces firms to switch to the new, cleaner technology.
This simultaneously improves environmental quality and eventually increases productivity.
Our results however suggest that the potential growth effects of environmental policies very
much depend on the type of displacement being induced by increasing support for clean
technologies. If this leads to less investment in dirty technologies, as evidenced by Aghion
et al. (2012), there seems to be scope for medium run growth effects. If innovation in other

emerging areas is crowded out, such effects are less likely.

Our results also have implications for the modeling of climate change policy. For example,

“Interestingly, though, for a reason that is not present in their model: Acemoglu et al. (2012) do not
assume different spillovers from clean and dirty technologies. The crucial assumption on which the results
by Acemoglu et al. (2012) hold is that patents last only for one period. Greaker and Heggedal (2012) show
that it is possible to obtain similar results when relaxing this assumption if one now assumes that clean
technologies exhibit larger knowledge spillovers than dirty technologies.



Fischer and Newell (2008); Fischer et al. (2013) assess different policies for reducing carbon
dioxide emissions and promoting innovation and diffusion of renewable energy, with an ap-
plication to the electricity sector. They model R&D investments and learning-by-doing, but
assume that knowledge spillovers have the same intensity across clean and dirty technologies.
Our paper suggests that this assumption does not hold in practice and provides estimated
parameters that can be used to more precisely model the difference between clean and dirty

technologies.

Our paper relates to three main strands of the literature. First, our work draws on the
extensive empirical literature that has used patent data to analyze the determinants and the
effects of knowledge spillovers. Pioneers of patent citation data as a measure of knowledge
spillovers include Scherer (1965) and Schmookler (1966). Griliches et al. (1991); Griliches
(1992) survey this earlier literature. Since then, a large number of papers have used this
method to investigate knowledge diffusion (see, among others, Trajtenberg (1990); Caballero
and Jaffe (1993); Hall et al. (2001)). In particular, many papers have focused on the ge-
ography of knowledge spillovers (Jaffe et al. (1993); Jaffe and Trajtenberg (1996, 1999);
Thompson and Fox-Kean (2005)).

Second, in the energy literature some papers have recently attempted to compare knowl-
edge spillovers from energy technologies with those of non-energy technologies. Bjgrner and
Mackenhauer (2013) compare the spillover effects of private energy research with those of
other (non-energy) private research. They find that spillover effects of energy research may
be lower than for other types of private research. Popp and Newell (2012) use US patent ci-
tation data to compare the social value of alternative energy patents to that of other patents
filed by the same firms. They find that alternative energy patents are cited more frequently
by subsequent patents, and by a wider range of technologies, than other patents filed by the
same firms. However, none of these papers distinguishes between clean and dirty technologies

within energy technologies.



Third, our paper is closely related to the literature on the impact of environmental policies
on economic growth, which is itself rooted in the endogenous growth literature (for seminal
contributions, see Romer (1990); Aghion and Howitt (1992, 1996, 1998); Grossman and
Helpman (1991)). Smulders and De Nooij (2003) introduce a difference in spillovers from the
clean and the dirty sector into a model in which both the rate and direction of technological
change are endogenous. They discuss the implication of this difference for growth in the long
run. In a Schumpeterian growth model where new technologies are both more productive and
more environmentally-friendly, Hart (2004) shows that environmental policy can stimulate
economic growth (see also Hart (2007); Ricci (2007b), for similar types of models, and Ricci

(2007a), for a review of this literature).

The remainder of the paper is organized as follows. In the next section we present the dataset
and conduct some preliminary data exploration. In section 3, we present our empirical
strategy and discuss the results of the estimations. We investigate several characteristics
of clean technologies which might account for our findings in section 4. We discuss the

implications of our findings in the final section.

2 Data and descriptive statistics

2.1 The patent database

In order to analyze knowledge spillovers we use data from the World Patent Statistical
Database (PATSTAT), maintained by the European Patent Office (EPO). PATSTAT in-
cludes close to 70 million patent documents from 107 patent offices. We identify clean and
dirty patents using the International Patent Classification (IPC) and the European Patent
Classification (ECLA). For this purpose we rely heavily on work carried out at the OECD

and the EPO, which has recently developed a patent classification scheme for "Technologies



related to climate change mitigation and adaptation" (see Veefkind et al. (2012), for more

information on how this scheme was constructed).?

We focus on two sectors where we can precisely distinguish between clean and dirty patents:
electricity production (renewables vs. fossil fuel energy generation) and automotive (elec-
tric and hydrogen cars vs. internal combustion engines). Our paper rests primarily on
a distinction between radically clean innovations (electric cars, solar energy...) and their
dirty counterparts (gasoline-fueled cars, coal-based electricity generation...). However, an
important feature of the dirty category is that some patents included in this group aim at
improving the efficiency of dirty technologies (for example motor vehicle fuel efficiency tech-
nologies), making the dirty technology less dirty. We refer to these energy-efficiency patents
as “Grey” inventions. The list of patent classification codes used to identify clean, dirty and

grey inventions is shown in table 26.

To give a concrete example of a patent, take the patent entitled “Constant Recharging Air
and Electric Alternating Vehicle Power System” (US8701804B1, see 8). This patent, filed
in 2012 and published in 2014 is classified as B60K 6 which falls under our clean transport
category. The patent document lists the inventor, and the applicant of the invention as well
as their addresses. It also references other patents which will be useful in the making of the

invention including whether these citations were added by the examiner or not.

Given that the same invention may be patented in several countries, our level of observation
is the patent family (the set of patents covering the same invention in several countries). In
other words, we treat multiple filings of an invention as one invention and count citations by

patent family instead of individual patents. ¢ In total, our sample spans from 1950 to 20057

5This new scheme was defined with the help of experts in the field, both from within and outside the
EPO, including from the Intergovernmental Panel on Climate Change (IPCC). It brings together technologies
related to climate change that are scattered across many IPC sections and includes around 1,000 classification
entries and nearly 1,500,000 patent documents.

6 A patent family is considered clean if at least one patent within the family is clean

"We stop in 2005 to allow at least five years for patent to get cited. The majority of citations occur
during the first five years of a patent.



Table 1: Number of clean and dirty inventions by sector

Sector Clean Grey True Dirty Total

Transport 74,877 133,083 212,193 420,153
Electricity 103,659 19,827 627,590 751,076

Total 178,536 152,910 839,783 1,171,229

and includes over 1 million inventions with approximately 3 million citations made to these
inventions. A breakdown of the number of inventions in each sector can be found in table 1.

Clean inventions represent around 15% of our sample.

2.2 Citation counts as knowledge spillovers

Patent data have a number of attractive features. First, patents are available at a highly
technologically disaggregated level. This allows us to distinguish between clean and dirty
innovations in several sectors, including electricity production and transportation. In com-
parison, R&D expenditures of a car company cannot usually be broken down into clean and
dirty innovation. Third, patent documents contain citations to "prior art" as inventors are
required to reference previous patents that have been used to develop the new technology
described in the patent. Citations are a response to the legal requirement to determine
the scope of an inventor’s claim to novelty and thus represent a link to the pre-existing

knowledge upon which the invention is built. ®In other words, a citation indicates that the

8US patent law 37 C.F.R 156 establishes that ’each individual associated with the filing and prosecution
of a patent application has a duty of candour and good faith in dealing with the (US Patent) Office,
which includes a duty to disclose to the Office all information known to that individual to be material to
patentability [...| no patent will be granted on an application in connection with which fraud on the Office was
practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct’.
In contrast, the EPO has no requirement similar to the duty of candour. Rule 42 of the European Patent
Convention requires that the description in a European patent application should ’indicate the background
art which, as far as is known to the applicant, can be regarded as useful to understand the invention,
draw up the European search report and examine the European patent application, and, preferably, cite
the documents reflecting such art’. The different legal requirements of the two systems have implications
both in terms of who adds the citations and in the number of citations in the patents. For EPO patents,
it is the patent office’s examiner rather than the inventors or applicants who adds the majority of patent

10



knowledge contained in the cited document has been useful in the development of the new
knowledge laid out in the citing patent and thus represents a knowledge flow (Collins and
Wyatt (1988)). It is therefore not surprising that patent data have been widely used in
empirical studies of knowledge spillovers (Jaffe et al. (1993); Jaffe and Trajtenberg (1999);
Keller (2004); Caballero and Jaffe (1993); Jaffe and Trajtenberg (1996)).

Nevertheless, there are a few drawbacks to bear in mind. Patent citations are an incomplete
measure of knowledge flows because they only capture flows that result in a novel and
patentable technology. For this reason Griliches (1992) refers to citations as “pure knowledge
spillovers”. Since not all inventions are patented, patent citations underestimate the actual
extent of knowledge spillovers. Other channels of knowledge transfers, such as non-codified
knowledge and embodied know-how (inter-firm transfer of knowledge embodied in skilled
labor, knowledge flows between customers and suppliers, knowledge exchange at conferences
and trade fairs, etc.) are not captured by patent citations. It is however reasonable to assume
that knowledge spillovers within and outside the patent system are correlated. Furthermore,
there is a consensus that patent citations are a noisy measure of knowledge flows (Jaffe et al.
(2000)). First, citations made to patents by the same inventor (refered to as self-citations)
represent transfers of knowledge that are mostly internalized, whereas citations to patents
by other inventors are closer to the true notion of diffused spillovers. However, this problem
can be (at least partly) resolved by excluding self-citations by the inventor. Second, some
citations are added by patent examiners during the examination process (see Cockburn et al.
(2003) for an overview of the process). In a survey of inventors, Jaffe et al. (2000) show that
the influence of examiners on citations is considerable, and that inventors were fully aware of

less than one-third of the citations on their patents. Alcacer and Gittelman (2006) find that

citations. This implies that in the EPO system, inventors are more likely to be unaware of the patents that
are (ultimately) cited in their patents. However, citations in EPO patents may be less 'noisy’ than USPTO
citations, since it can be assumed that they have been scrutinised and chosen by the patent examiner, and
citing-cited patent pairs might be ’closer’ both in time and technological content than those extracted from
the USPTO [Breschi and Lissoni (2005); Michel and Bettels (2001)]

11



examiners are responsible for 63% of citations on the average patent, and that 40% of patents
have all citations added by the examiners. These types of citations might not capture pure
knowledge spillovers if the inventor was genuinely unaware of that invention.’Fortunately,
our patent data indicate whether the citations was included by the applicant or the patent
examiner. We can thus check the robustness of our results to excluding citations added
by patent examiners.!’ ' Third, inventors and applicants might be strategically referencing
prior art. Citing more prior art will make a patent more valuable in litigation, as it is
much harder to prove a patent is invalid if the patent office has already considered it and
rejected the relevant prior art [Allison et al. (2003)]. Most firms employ patent attorneys -
many of whom were formerly patent examiners - to maximise the chances of approval by the
examiner in order to avoid potential infringement and costly holdups. However, inventors
have an incentive not to cite patents unnecessarily as it may reduce their claims to novelty
and therefore affect the scope of the monopoly rights granted by the patent (Hegde and
Sampat (2009); Sampat (2005)). Moreover, not properly referencing priori art can lead to

the invalidation of the patent and is therefore a dangerous strategy. 2

90f course, if the inventor has deliberately omitted to cite a relevant invention, then citations added by
patent examiners actually capture true knowledge spillovers.

ONote that even if the citations was added by the inventor, s/he might have learnt about the cited
invention only after the development of the invention. We have no way to control for this potential isssue.

H Alcacer et al. (2009) utilise a change in the reporting of US patent data that allows to separate citations
added by the inventor and the examiners to examine the examiners’ behaviour with respect to inventor
citations. In the first case, the patent examiner might add citations that differ in nature from the inven-
tor/applicant citations (’gap-filling’). Statistically, the gap-filling scenario would bias estimates of inventor
knowledge. In the second case, the examiner might add similar citations (*tracking’). Tracking does not lead
to any bias but it may cause standard errors in statistical estimations to be inflated. This raises doubts
about patent citations as good indicators of knowledge flows. If examiner and inventor citations resemble
each other closely, this suggests that firms and inventors choose their citations with respect to potential
infrigement and holdup threats and anticipate with some error citations most likely to be added by exam-
iners. Moreover, examiners and inventors might exchange information during the application process, and
examiners themselves are prone to biases in favour of citing particular patents. Using the EPO data which
allows to identify the source of the citations since 1979, Criscuolo (2006) attempt to identify the factors that
influence whether an observed patent-to-patent citation was added by the applicant/examiner.

12¢Fajlure of a person who is involved in the preparation or prosecution of a United States patent application
to disclose material prior art can result in the patent not issuing, or if issued, being held unenforceable
or invalid. As in many instances, the issue of whether prior art is material to patentability can be quite
subjective; it is critical that inventors, assignees, and attorneys be acquainted with the obligations to disclose

12



2.3 A new measure of spillovers: PatentRank

A potential concern with citation counts is that a citation from an obscure patent is given the
same weight as a citation from a highly-cited work. Hence it is possible that some patents
receive less citations than others but are cited by patents that are themselves more influential
(i.e., more cited themselves). In particular many ground-breaking patents are modestly cited
due to the small size of the scientific community in their area at the time of the publication,

but subsequent patents are themsleves increasingly cited (Maslov and Redner (2009)).

In order to take into account the whole network of patent citations, we apply the random
surfer PageRank algorithm (Page et al. (1999)) to our patent dataset. This algorithm was
originally used by the web search engine Google to help determine the relevance or impor-
tance of a webpage. It does so by analyzing the network of hyperlinks of web pages. The
basic idea is that a webpage is considered important if many other webpages point to it,
or if many webpages point to the webpages that point to it (or both), and so on. To date,
a handful papers have applied this method to rank the importance of patent documents
(Lukach and Lukach (2007); Shaffer (2011)). The resulting PatentRank has the advantage
to readily identify patents that are modestly cited but nevertheless contain ground-breaking
results. It also normalizes the impact of patents from different areas allowing for a more

objective comparison (Maslov and Redner (2009)).

The PatentRank of a patent i is defined as the weighted sum of PatentRanks of all patents
citing ¢, where the weights depend on the number of citations made by these citing patents.
Therefore, a patent has a high rank if it is cited by many patents with a high rank, and it is
better to be cited by a patent that cites only one patent than by a patent that has a long list
of references. The PatentRank (i) of patent i is defined according to the following formula

and is computed recursively:!3

such prior art.” (Silverman (2003a)
13The process converges very quickly. In practice we use 50 iterations but the process converges after just

13



r(i) = % t(l-a) Y ;%))

JeF (i)

where N is the total number of patents, F'(i) is the set of patents that cite patent i (i.e.
patent i’s “forward citations”), and B(j) is the number of citations made by patent j (i.e.
patent j’s number of “backward” citations). The parameter «, the damping factor, is used
to avoid sink patents (i.e. patents that are never cited) because sink patents will lead to an

endless loop.!*

When constructing the PatentRank, we use the entire population of inventions and their
citations correcting for self-citations by the inventor. We give inventions that are never cited
the smallest PatentRank and rank these PatentRanks to create a PatentRank index. 1shows
that there is a positive correlation overall between the citation count and the PatentRank but
also a vast heterogeneity: many patents have few citations but a high PatentRank and vice
versa. As opposed to citation counts, PatentRank allows us to capture the network centrality
and in particular the influence of a patent. Hence, both indicators are complementary

measures of the intensity of knowledge spillovers.

2.4 Exploratory data analysis

The objective of this paper is to compare the extent of knowledge spillovers that arise from
clean and dirty innovations. As shown in table 2, aggregating both sectors together, clean
inventions receive on average 3.40 citations throughout their life time while dirty inventions

receive on average 2.30 citations. This difference is highly statistically significant (see column

a few iterations.

14The mechanism behind the ranking is equivalent to the random-surfer behavior, a person who surfs the
web by randomly clicking links on the visited pages but periodically gets bored and jumps to a random
page altogether. Therefore, when a user is on a web page, she will select one output link randomly with
probability « or will jump to other webpages with probability 1 — a. It can be understood as a Markov
process in which the states are web pages, and the transitions are all equally probable and are the links
between webpages.

14



Figure 1: Correlation between citation counts and PatentRank

1.0e-06
|

PatentRank
5.0e-07
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3). An obvious problem with this simple comparison is that clean patents are relatively
newer, and hence have had less time to be cited. The average age of clean patents (the
time between the publication year and today) is 22 years as opposed to 27 years for dirty
patents. In order to partly deal with this truncation issue, we look at the number of citations
received within the first five years of the patents’ publication (Hall et al. (2001)). The
difference between the number of citations received by clean and dirty inventions increases:
clean patents receive 74% more citations than dirty patents within their first five years.
Clean inventions also have a significantly higher PatentRank index than dirty inventions.
Looking separately at each technological field, we find that the mean number of citations
and the differences between clean and dirty patents vary across sectors. Inventions in the
transportation sector are more cited overall and have a higher PatentRank. Clean inventions
are more cited and have higher PatentRank than dirty ones in both sectors and this difference

is always significant.
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Table 2: Mean number of citations and PatentRank

Clean Dirty Diff.
All
Citations received 3.399 2.295 1.104%**
(8.256) (5.921) [0.016]
Citations received within 5-years 1.807 1.066 0.741%**
(4.754) (3.109) [0.009]
PatentRank index 2,335,270 1,020,395  414,874.3%%*
(3,019,024)  (2,813,827)  [7,354.756]
Transport
Citations received 4.275 3.215 1.060%**
(9.626) (7.185) [0.031]
Citations received within 5-years 2.572 1.651 0.920%**
(5.903) (4.174) [0.018]
PatentRank index 2,645,597 2,429,006 216,591.2%**
(3,081,718)  (3,126,471)  [12,455.71]
Electricity production
Citations received 2.800 1.839 0.961%**
(7.092) (5.091) [0.018]
Citations received within 5-years 1.281 0.767 0.514%**
(3.681) (2.312) [0.009]
PatentRank index 2,119,068 1,666,122 452,945 3%**
(2,022,871)  (2,633,157)  [8,948.939]

Notes: The first two columns report the mean values with standard deviation in parentheses.
The last column reports a t-test for the difference in means with standard error in parentheses.

*** indicates significance at 0.1% level.
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3 Econometric analysis

Results from the exploratory data analysis point to larger knowledge spillovers from clean
technologies. The results from this exploratory analysis can however be driven by some
unobserved shocks to citation patterns disproportionaly affecting clean patents. For example,
the number of citations received by patents have increased recently due to the development
of online patent search engines which facilitate identification of previous patents. Since clean
patents are on average younger, they are likely to have been disproportionately affected by
changes in the IT system. Moreover, the truncation issue is exacerbated for patents of older
vintage. Even if each patent have the same amount of time to be cited, the increase in the
universe of citing patents would increase the total number of citations made. Econometric

methods allow us to control for these potential confounding factors.

Second, the main problem we face is the fact that clean technologies are relatively newer,
which makes them intrinsically different from dirty technologies. Note that the direction of
the potential bias is not obvious. On the one hand, inventors start from a lower knowledge
base which may lead to greater opportunities for big breakthroughs and larger positive
spillovers than more mature technologies. On the other hand, the number of opportunities
to be cited is smaller for clean technologies because we only know about citations received
so far. As a result, we might be overestimating or underestimating spillovers effects from
clean patents, depending on which effect dominates. In order to make a first attempt at
controlling for this issue, we include the stock of past patents from the same technological
field (defined on the basis of 4-digit IPC code) in the regressions.!® Clearly, the stock of past
patents might not perfectly capture the level of development of the technology and we come

back to this point later.

Finally, citations might not exclusively capture knowledge flows, but also the commercial

15We also tried including higher-order polynomial terms of the past patent stock. This does not alter the
results in any way.
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value of the patent. In order to control for this problem and focus on the part of the patent’s
value that is not approriated by the inventor we include three measures of patent value: the
patent’s family size, a dummy variable indicating a “triadic” patent, and a dummy variable
indicating the grant status. Family size is the number of patent offices where the invention
has been filed. Family size has been used widely as a measure of patent value (Lanjouw and
Mody (1996); Lanjouw and Schankerman (2004); Harhoff et al. (2003)). Triadic patents are
patents which have been filed in the US, European, and Japanese patent offices. Triadic
patents have also been used extensively as a way to identify highest-value patents (Grupp
et al. (1996); Grupp (1998); Van Pottelsberghe et al. (2001); Dernis and Khan (2004); Guellec
and Van Pottelsberghe de la Potterie (2004)). The grant status of an invention indicates
whether the patent has been granted by the patent office yet and obviously indicates a higher

quality patent.

4 Results

4.1 Basic results

Results from Equation 1 can be found in table 3. The results from the econometric analysis
confirm those of the exploratory data analysis: conditional on sector, patent office, publi-
cation year, commercial value and level of technology development, clean inventions appear
to give rise to larger knowledge spillovers than dirty inventions. On average across the two
technological fields, we find that clean inventions receive between 40% and 43% more cita-
tions than dirty ones depending on the specification. The coefficient is highly statistically

significant across all models (p<0.001).16 We get the strongest effect when adding all three

16We cluster standard errors at the sector by patent office by year level. To check the robustness of the
results we cluster-bootstrap the sandard errors instead. The standard error increases slightly from .0137 to
.0146 with the associated p-value still <0.001.
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measures of value as controls, but there is little variation across specifications. Given that
these value measures all enter with a highly statistically significant coefficient, column 4 is
our preferred specification. Notably, the number of past patents is always negative and sig-
nificant, indicating that the latest patents in a field receive a decreasing number of citations
as the field grows over time.'"Results based on PatentRank confirm the results found with
citations counts. Clean inventions have a significantly higher PatentRank across all sectors.
Hence, when considering the whole citation network, knowledge spillovers from clean tech-
nologies are still larger than those generated by dirty technologies. Moreover, PatentRank
has the advantage of taking into account the possible effect of different citing behavior of
inventors citing clean and dirty patents. For instance, if inventors citing clean patents gen-
erally cite more patents than inventors citing dirty patents, this would translate into higher
citations received for clean innovations but not in higher PatentRank. Recall the Paten-
tRank normalizes the number of citations received by the number of citations made by a

citing patent.

We conducted a number of robustness checks on the basic specification. First, we use varia-
tions over our dependent variable to measure knowledge spillovers: the number of citations
received within a five-years window (table 36), the number of citations discarding citations
added by the patent examiner (table 37), and the number of citations excluding self-citations
at the applicant level on top of excluding citations at the inventor-level (table 38). Second,
we add various controls: the number of claims, the number of 3-digit IPC codes, the number
of citations made, the number of inventors, and the number of applicants (table 39). Finally,
we focus on various subsamples including patents that received at least one citations, triadic
patents, patents from the US and European patent office (table 41). None of these tests

modifies our results. The coefficient on the clean dummy variable ranges from

"Tncluding the squared stock in the regression leads to a clean invention coefficient of 0.404*** (with a
coefficient of -0.613*** for the stock and 0.028%** for the squared stock)
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Table 3: Basic results

(1) (2) 3) (4) (5) (6)
Dep. var. Citations received PatentRank
Clean invention 0.398***  (0.392%** 0.430%**  0.267FF*  0.264%** 0.292%**
(0.015) (0.015) (0.014) (0.013) (0.014) (0.014)
Number of patents -0.092*%**  _0.057*** -0.052%**  _0.031%**
(0.008) (0.007) (0.006) (0.005)
Family size 0.073%** 0.067***
(0.004) (0.003)
Triadic 0.456%** 0.241%**
(0.036) (0.025)
Granted 0.947%%* 0.491%**
(0.031) (0.021)
Patent office-by-year-by-sector yes yes yes yes yes yes
Month fixed effect yes yes yes yes yes yes
Obs. 1,149,988 1,149,988 1,149,988 1,149,988 1,149,988 1,149,988

Notes: Robust standard errors in parentheses (¥ p<0.05, ** p<0.01, *** p<0.001). The dependent variable is the total number
of citations received excluding self-citations by inventors (columns 1 to 3) and the PatentRank after 20 iterations (columns 4 to
6). All columns are estimated by fixed-effects Poisson pseudo-maximum likelihood.

In order to investigate the evolution of the relative intensity of spillovers across time, we run
our estimation for each five years period between 1950 and 2005 and plot the coefficients
obtained for clean invention along with their 95% confidence intervals in Figures 2 and 3.

We find that there has been a clear increase in the clean premium over time.

In Table 4 we present the regressions results for each technology separately. The results are
robust across both sectors, but we find some heterogeneity in the clean coefficient. Clean
inventions in the transportation sector receive 35% more citations than dirty inventions,

while the clean premium in the electricity is larger (49%).

Our strategy is to estimate a simple count data model of the type

C; = exp(BClean; +vX; + €;) (1)
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where C; is the number of citations received by invention ¢ (excluding self-citations) or the
PatentRank index associated to invention ¢, Cllean; is a dummy variable indicating whether
invention ¢ is clean, X; are controls and ¢; is the error term. Our sample is the population of
clean and dirty patents. Hence, the main coefficient of interest, &, captures the percentage
difference between the number of citations received by clean and dirty patents, all other
things being equal. Given the count data nature of the dependent variable, we estimate
Equation 1 by Poisson pseudo-maximum likelihood. We condition out the patent office-by-
year-by-sector fixed effects using the method introduced by Hausman et al. (1984), which is
the count data equivalent to the within groups estimator for OLS. ¥We include a number
of control variables to purge the estimates from as many potential confounding factors as
possible. First, as explained above, the average number of citations received and made has
been rising over time (Hall et al. (2001)). Moreover, differences in patent office practices
across time and technological areas may produce artificial differences in citations intensities.
We therefore include a full range of patent office-by-year-by-sector fixed effects. Practically
speaking, this means that we effectively compare for example clean energy patents filed at
the USPTO in 2000 with dirty energy patents filed at the USPTO that same year. To
account for seasonality effects, we also include dummy variables for each month using the

publication date. *

18This is implemented by the xtpoisson, fe command in STATA. Note that Poisson models estimated by
pseudo-maximum likelihood can deal with over-dispersion (see Silva and Tenreyro (2006)), so that negative
binomial models offer no particular advantage. In particular, we find the pseudo-fixed effects negative
binomial estimator available in stata (xtnbreg, fe) untrustable, since it does not truly conditions out the
fixed effects (only the overdispersion coefficient is assumed to vary across units - see Allison and Waterman
(2002); Greene (2007), for more information on this issue). However, as a robustness check we also estimated
Equation (1) using an unconditional negative binomial estimator with patent office, year, month and sector
dummies (including a whole range of sector by year by patent office dummies is computationally infeasible)
and find very similar results. The coefficient obtained for the clean dummy variable is 0.508***. The
standard error varies from 0.041 when we cluster at the patent office and sector level, 0.023 when we cluster
at the patent office level only and 0.093 when we cluster at the sector level only.

9Remember our unit of observation is the patent family. We use the earliest publication date within the
family as the invention publication date.
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Figure 2: The gap in knowledge spillovers between 1950 and 2005 using citations received
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Figure 3: The gap in knowledge spillovers between 1950 and 2005 using PatentRank
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Table 4: Results by sector

(1) (2) (3) (4)
Sector Transport  Electricity = Transport  Electricity
Dep. var. Citation count PatentRank
Clean invention 0.347*** 0.488*** 0.219%** 0.333%%*
(0.018) (0.023) (0.014) (0.023)
Number of patents -0.068***  _0.047***  _0.048*** -0.019%*
(0.008) (0.009) (0.006) (0.007)
Family size 0.070%*** 0.067*+* 0.062%** 0.060***
(0.008) (0.004) (0.007) (0.004)
Triadic 0.512%** 0.432%** 0.279*** 0.252%**
(0.056) (0.050) (0.045) (0.041)
Granted 1.134%** 0.725%%* 0.620%** 0.381%**
(0.034) (0.024) (0.027) (0.017)
Observations 419,959 748,918 419,959 748,918

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variables are the total number of citations received excluding self-citations by
inventors in columns 1 and 2 and the PatentRank index in columns 3 and 4. The regres-
sions are all estimated by Poisson pseudo-maximum likelihood. The sample includes in-
ventions from the transport (columns 1 and 3) and electricity (columns 2 and 4) sectors.

All columns include a patent office-by-year and month fixed effects.
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4.2 Grey innovation

Two types of innovations can reduce greenhouse gas emissions: radically new clean inno-
vations that require consumers to substitute to a different product (e.g. electric vehicles
replacing internal combustion engine propelled vehicles) or more incremental innovations
that improve the energy efficiency of current (dirty) products (for example fuel efficiency
technologies for combustion engines). We label this latter category as “grey” inventions.
From a policy point of view an important question is whether to give priority to clean or
grey innovation in order to mitigate climate change (see Aghion et al. (2012), for a further

discussion on this issue).

In the results presented thus far we have included grey innovations in the “dirty” category.
We now examine the difference in knowledge spillovers between the three categories. In
tables 5 and 6, we compare clean inventions with grey inventions (column 2), grey and truly
dirty inventions (column 3), and finally clean with truly dirty inventions only (column 4).
As a benchmark, column 1 simply reproduces the results from table4 where grey innovations
are included in the dirty category. This analysis suggests a clear ranking in citations counts
and PatentRank index: clean technologies exhibit significantly higher levels of spillovers
than grey technologies, which themselves outperform truly dirty technologies. From a policy
perspective, this result implies that radically clean technologies should receive higher public

support than incremental innovation in dirty technologies.

4.3 Heterogeneous effect of the clean premium

So far we have focused on the average effect of being a clean invention on the citation
outcome. We now investigate the heterogeneity of the clean premium across the distribution
of citations. Quantile regression techniques are not readily available for count data models,

but we bypass this issue by estimating probit models of the likelihood that a patent falls
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Table 5: Clean, Grey and True Dirty

(1) (2) (3) (4)

Sample Clean vs. Clean vs. Grey vs. Clean vs.

Grey and true Dirty Grey True Dirty True Dirty

Dep. var. Citations received
Clean/Grey invention 0.430%** 0.197%** 0.307%%* 0.5027%**
(0.014) (0.016) (0.016) (0.015)
Number of patents -0.057*** -0.051%*%*  _0.114%** -0.060***
(0.007) (0.009) (0.005) (0.007)
Family size 0.073%** 0.069*** 0.072%** 0.071%**
(0.004) (0.007) (0.004) (0.004)
Triadic 0.456%** 0.481%** 0.454%** 0.441%**
(0.036) (0.055) (0.037) (0.035)
Granted 0.947%** 0.997*** 0.977%** 0.868***
(0.031) (0.035) (0.033) (0.027)
Observations 1,149,988 326,942 978,179 1,006,996

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent vari-
able is the total number of citations received, corrected for self-citations by inventors. The sample in-
cludes clean, grey and truly dirty (column 1), clean and grey (column 2), grey and truly dirty (column 3),
and clean and truly dirty (column 4) inventions. All columns are estimated by Poisson pseudo-maximum
likelihood and include patent office-by-year and month fixed effects.
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Table 6: Clean, Grey and True Dirty

(1) (2) (3) (4)

Sample Clean vs. Clean vs. Grey vs. Clean vs.

Grey and true Dirty Grey True Dirty True Dirty

Dep. var. PatentRank index
Clean/Grey invention 0.292%** 0.121%%* 0.190*** 0.331%%*
(0.014) (0.012) (0.016) (0.015)
Number of patents -0.031*** -0.006 -0.084%** -0.029%**
(0.005) (0.008) (0.004) (0.005)
Family size 0.067*** 0.059%*** 0.065*** 0.065%**
(0.003) (0.006) (0.004) (0.003)
Triadic 0.241%** 0.278%** 0.238%** 0.240%**
(0.025) (0.045) (0.028) (0.026)
Granted 0.491%** 0.520%** 0.508%** 0.456%**
(0.021) (0.022) (0.022) (0.019)
Observations 1,149,988 326,942 978,179 1,006,996

Notes: Robust standard errors in parentheses (¥ p<0.05, ** p<0.01, *** p<0.001). The dependent
variable is the PatentRank index. The sample includes clean, grey and truly dirty (column 1), clean
and grey (column 2), grey and truly dirty (column 3), and clean and truly dirty (column 4) inventions.
All columns are estimated by Poisson pseudo-maximum likelihood and include patent office-by-year and
month fixed effects.
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Figure 4: Heterogeneity

within a given percentile of the patent citation distribution (see Chernozhukov et al. (2013)

for a discussion of this issue). We run the following model:

Prob(Cite! = 1) = a + fClean; + v X; + ¢ (2)

where Cite?; equals one if invention i receives j citations where j varies between 0 (56%
of inventions are never cited) and 479 (the most highly cited invention). Clean; and X;
are identical to the previous section. Hence the coefficient obtained for Clean; captures
the difference between clean and dirty inventions in the probability of invention ¢ to receive
j citations. Figure 4 shows the coefficient obtained for Clean; and the associated 95%
confidence interval on the number of citations received. We conclude from these results
that (i) clean inventions are always more likely to have a positive citation count than dirty
inventions at all levels of the distribution and (ii) the higher intensity of knowledge spillovers

from clean technologies is even more pronounced for most highly cited patents.
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5 Monetary value of knowledge spillovers

In order to quantify the economic value of knowledge spillovers, in particular clean knowledge
spillovers, we estimate a market valuation equation using firm-level data. Following Hall et al.
(2005), a firm’s knowledge assets are modeled as being accumulated in a continuously ongoing
innovative process in which R&D expenditures reflect innovative input, patents record the
successful innovations that can be appropriated by the firm, and citations received by the
firm’s patents (forward citations) measure the relative importance of the patents. We also
include citations made (backward citations) as in Deng (2008) as a proxy of the knowledge
flows the firm has received, which are considered an additional kind of innovative input to
direct R&D spendings on the belief that more knowledge inflows increase the firm’s knowledge
stock and may boost the firm’s R&D productivity. We extend Deng (2008)’s analysis by
further distinguishing between clean and dirty backward citations to capture knowledge

spillovers from clean and dirty technologies.

Consider Griliches (1981)’s market valuation equation

Vie = (A + BKy)° (3)

where Vj; denotes firm i’s stock market value in year ¢, A; the book value of its physical
assets, and K the knowledge assets. ¢; represents the shadow value of firms’ assets, and
the coefficient b measures the shadow value of knowledge assets relative to physical assets.

o measures the scale effects in the value function and is assumed to be one.

Taking the logarithm, we have the following estimation equation:

Vit K

log Qi =log(A,t) =10gqt+10g(1+ﬁAt) + Eit (4)

where ();; represents Tobin’s q and ¢;; are the prediction errors.
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As Deng (2008), we use the following value function to evaluate the firm’s knowledge assets

Ky = f(R&Dm BC[Tit,Wit) (5)

where R&D;;denotes the accumulated R&D spendings, BC'IT;; the accumulated backward
citations the firm has made as a proxy of the knowledge inflows received by the firm, and
w;; the accumulated idiosyncratic productivity shocks in the firm’s inventive activities. wj
is proxied by the patent / R&D ratio, weighted by the average number of forward citations
the firm’s patents receive over their entire lives (Hall et al. (2005)). This can be viewed as

the knowledge outflow made by the firm.

Taking first-order Taylor expansion of equation 6 yields

PAT, FOIT,
R&D, T par, (6)

Ky = fi x R&Dy + fo x BOITy + f3 %

where PAT;; and FCIT; are firm i’s patent stock and forward citations stock in year t

respectively. Combining equations 5 and 7 leads to

R& Dy, BCIT PAT;, FCIT

A~ TP par, TPEep, Thpar, ) ter ()

log Qi = log ¢, + log(1 + (1

The coefficient 5 represents the value of knowledge flows brought by an additional backward
citation, and % is a direct measure of the monetary value of knowledge spillovers in terms

of R&D equivalent dollar.

We further decompose BCIT}; into clean, dirty and other citations.
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R&D;
log Qit = log g; + log(1 + B, Ly

Ay
BCITiilean BC[Tgirty BC[TﬁtheT
Ba1 PAT,, + Ba2 PAT, + BZgTTu
PAT, FCIT;
B3 L+ By Dtew (8)

R& Dy, PAT

For this purpose, we combine the PATSTAT database with the ORBIS database which con-
tains firm-level information such as R&D expenses, number of employees, and total number
of assets. The analysis focuses on 10,299 firms from 2001 to 2011 for which we can match
both datasets and identify each firm’s patents along with the citations (both backward and

forward) associated to them.

We calculate the stock of R&D (patents) as the accumulated past R&D expenditures (the
number of patents) subject to an annual deprecitation rate assumed to be a constant 10%.
The stock of backward citations is measured taking into account the age of the patent and
then aggregate them over the firm’s patent portfolio each year subject to annual depreciation.
The stock of forward citations measures the relative importance of a firm’s portfolio. Given
the truncation issues associated to the tine lag in observing forward citations, we stop our
sample in 2011 and scale citations taking into account the average citations across publication
years, patent offices, sector and citation year. We finally aggregate these scaled forward
citations subject to annual depreciation. A table of descriptive statistics can be found in the

appendix.

Table 7 shows a significant positive monetary value for knowledge spillovers in column 3.
Column 4 distinguishes between clean, dirty and all other types of spillovers. We see that

knowledge spillovers from clean and other technologies are positive although less significant.
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Table 7: Estimation of Tobin’s () equation

(1) (2) (3) (4)

Dep. var. Tobin’s Q
R&D / assets 0.062*%**  0.063***  0.063*** 0.063***
(0.003)  (0.003)  (0.003)  (0.003)
Patent / R&D -0.003 -0.003 -0.003
(0.016)  (0.016)  (0.016)
Fwd citations / patent 0.020%**  0.016***  0.017***
(0.003)  (0.003)  (0.003)
Bwd citations / patent 0.007**
(0.002)
Bwd clean citations / patent 0.085*
(0.033)
Bwd dirty citations / patent 0.011
(0.033)
Bwd other citations / patent 0.006**
(0.002)
Observations 37,346 37,346 37,346 37,346

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the Tobin’s Q defined as the stock market value over the book value
of physical assets. The sample all firms All columns are estimated by OLS and include year
dummies and firm fixed effects.
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6 Drivers of the clean advantage

All our findings point to larger knowledge spillovers from clean technologies. This suggests
that clean technologies may share common characteristics which increase the magnitude of
knowledge spillovers. In the following section we explore several possible explanations for

our findings.

6.1 Localized knowledge spillovers

The existence of localized knowledge spillovers has been widely documented (see Audretsch
and Feldman (2004) for an overview). In one of the earliest papers on this subject, Jaffe
et al. (1993) show that spillovers from research to firms are more intense when the firm is
closer to the institution that generated the research. Jaffe and Trajtenberg (1996, 1999) show
that patent citations tend to occur initially between firms that are close to each other, and
later on spread to a larger geographical area and other countries. Using European patent
data, Maurseth and Verspagen (2002) show that patent citations occur more often between
regions which belong to the same country, same linguistic group and geographical proximity
(see also Peri (2005)). Similar results have been found for energy technologies (see Braun

et al. (2010); Verdolini and Galeotti (2011)).

In our case, clean technologies could generate larger knowledge spillovers than dirty tech-
nologies simply because the clean industry might be more clustered geographically than the
dirty industry. Although we do not have detailed information on the exact localization of
inventors, we do have extensive information on their country of residence. We use this in-
formation to distinguish between national (within-border) and international (cross-border)

citations. We then separately run regressions on these two sets of citation counts. 2°For

29Tn the case of collaboration, we weight each citations by the number of inventors from each country
involved in the invention. For example, three inventors working together, one in country A and two in
country B, will count as 1/3 of a citation for country A and 2/3 of a citation for country B.
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Table 8: Within vs. across-country spillovers

(1) (2) (3)

Dep. var. Citations received  Citations received  Citations received
within country across country
Clean invention 0.430%*** 0.423*** 0.247***
(0.014) (0.017) (0.019)
Number of patents -0.057*** -0.057*** -0.081%**
(0.007) (0.008) (0.006)
Family size 0.073*** 0.062%** 0.066***
(0.004) (0.003) (0.004)
Triadic 0.456*** 0.363*** 0.212%**
(0.036) (0.028) (0.040)
Granted 0.947*** 0.757*** 0.829%#*
(0.031) (0.029) (0.030)
Obs. 1,149,988 1,149,988 1,149,988

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent
variables are the total number of citations received (column 1), the total number of citations received
from the inventor’s country (column 2), the total number of citations received from all countries ex-
cept the invention’s (column 3) corrected for self-citations by inventors. All columns are estimated
by Poisson pseudo-maximum likelihood and include patent office-by-year and month fixed effects.

the PatentRank, we compute a new PatentRank on the pool of national citations and in-
ternational separately. We find that clean inventions exhibit larger national (column 2) and
international (column 3) spillovers. This suggests that clean inventor community transcend
country borders. The clean advantage is larger in terms of domestic spillovers are larger

than international ones.

6.2 Public support for R&D

With many clean technologies dependent on policy support of one form or another, the ex-
pansion of clean technologies and its spillovers could be due in part to public investment. For
instance, in 2011 OECD countries spent over 3 billion euros on R&D support to renewable
energy technologies. To control for the government spending level, we include in table 10

the government spending in clean and dirty technologies within the transport and electricity
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Table 9: Within vs. across-country spillovers

(1) (2) (3)

Dep. var. PatentRank PatentRank PatentRank

for “national” citations  for “international” citations

Clean invention 0.292%** 0.285%** 0.361%**
(0.014) (0.017) (0.013)
Number of patents  -0.031%** -0.035%** -0.042%**
(0.005) (0.006) (0.005)
Family size 0.067*** 0.062%** 0.073%**
(0.003) (0.003) (0.003)
Triadic 0.241*** 0.240** 0.331%**
(0.026) (0.020) (0.033)
Granted 0.491%** 0.435%*** 0.731%**
(0.021) (0.016) (0.028)
Obs. 1,149,088 1,149,088 1,149,088

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variables
are the PatentRank index (column 1), the PatentRank index on the pool of national citations (column 2),
and the PatentRank index on the pool of international citations (column 3). All columns are estimated by
Poisson pseudo-maximum likelihood and include patent office-by-year and month fixed effects.

sectors. Since we only have information on R&D spending for 28 countries from 1974 on-
wards, we run the baseline regression for this sample in columns 1, 3 and 5 and the include
the government spending in columns 2, 4 and 6. On average, clean inventions exhibit even
larger spillovers than dirty inventions after controlling for government spending. This effect

is driven by the electricity production sector.

Another related concern is that research in clean technologies might come disproportionately
from universities rather than private firms. If this is the case, the clean premium might come
from the fact that university patents are more highly cited and more general (Henderson et al.
(1998)). Morevoer, the incentive and reward structure within the university system induce
scientists to invest in their reputation by making research publicly available (openness of
the academic community) and make them more willing to recognize the influence of their
predecessors. We control for whether the patent was filed by a university or a firm in Table

12 with private individuals being the baseline and still find that clean inventions receive 42%
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Table 10: Government spending

(1) (2) 3) (4) (5) (6)
Sample All Transport Electricity
Dep. var. Citations received
Clean invention 0.493***  0.507*** 0.253** 0.253***  (0.483***  (.497***
(0.026)  (0.026)  (0.077) (0.079)  (0.026)  (0.026)
Government spending 0.034%** -0.001 0.032%**
(0.007) (0.033) (0.007)
Number of patents -0.007 -0.006 -0.070%F*  _0.070%** -0.006 -0.005
(0.009)  (0.009)  (0.020) (0.020)  (0.009)  (0.009)
Family size 0.067***  0.067*** 0.054*** 0.054*** 0.066*%**  0.066***
(0.004)  (0.004)  (0.012) (0.012)  (0.004)  (0.004)
Triadic 0.452%*%*  0.450%** 0.474%** 0.474%%* 0.447F%%  0.445%**
(0.046)  (0.046)  (0.093) (0.094)  (0.046)  (0.047)
Granted 0.689*** 0.688*** 0.776%** 0.776*** 0.696***  0.695%**

(0.025)  (0.025) (0.055) (0.055) (0.026)  (0.026)

Obs. 496,788 496,788 16,703 16,703 488,896 488,896

Source: International Energy Agency (2013): Energy Technology Research and Development Database (Edition:
2013). Mimas, University of Manchester

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable is the to-
tal number of citations received excluding self-citations by inventors. The sample includes clean and dirty inventions
from the transport sector (columns 3 and 4), electricity sector (columns 5 and 6) and both transport and electricity
sectors (columns 1 and 2) . All columns are estimated by Poisson pseudo-maximum likelihood and include patent
office-by-year and month fixed effects.

more citations than their dirty counterpart. Finally we run our baseline regression on the
sub-samples of university applicants, firms and individuals. Results are shown in columns 1,
2, and 3 respectively in table 13. In all three cases, clean inventions generate more spillovers

than their dirty counterparts.

Taken together, these results suggest that public support for R&D is not the driving force

behind the clean premium.

6.3 Network effects

Whether guided by “norms of science” (Merton (1957); Small and Griffith (1974)) or self-

interest including personal connections (Leopold (1973); Case and Higgins (2000)), one might
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Table 11: Government spending

(1) (2) 3) (4) (5) (6)
Sample All Transport Electricity
Dep. var. PatentRank index
Clean invention 0.345%**  (0.353***  (.153%* 0.149** 0.339** 0.347**
(0.028) (0.026) (0.052) (0.052) (0.028) (0.026)
Government spending 0.022%*** -0.020 0.021**
(0.007) (0.155) (0.006)
Number of patents 0.012 0.013 -0.040**  -0.040** 0.013 0.014
(0.008) (0.008) (0.015) (0.015) (0.008) (0.008)
Family size 0.060***  0.059***  0.057***  0.057***  0.059***  (0.059%**
(0.004)  (0.004)  (0.015)  (0.015)  (0.004)  (0.004)
Triadic 0.285%**  (0.284***  (0.391***  (0.394***  0.274%*%*%  (.273%**
(0.037) (0.037) (0.076) (0.076) (0.037) (0.037)
Granted 0.360%**  0.360***  0.534***  0.535***  (.359***  (.358%**
(0.017) (0.017) (0.032) (0.032) (0.017) (0.017)
Obs. 497,439 497,439 16,719 16,719 489,531 489,531

Source: International Energy Agency (2013): Energy Technology Research and Development Database (Edition:
2013). Mimas, University of Manchester
Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable is the
PatentRank index. The sample includes clean and dirty inventions from the transport sector (columns 3 and 4),
electricity sector (columns 5 and 6) and both transport and electricity sectors (columns 1 and 2) . All columns are
estimated by Poisson pseudo-maximum likelihood and include patent office-by-year and month fixed effects.
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Table 12: University and Firms

(1) (2) (3) (4)
Dep. var. Citations received PatentRank index
Clean invention 0.421%** 0.423*** 0.293*** 0.298***

(0.014)  (0.015)  (0.013)  (0.013)
Number of patents -0.047***  -0.050%**  -0.019%**  -0.022***
(0.006) (0.006) (0.004) (0.004)

Family size 0.070%** 0.067*** 0.063*** 0.060***
(0.003)  (0.003)  (0.003)  (0.003)

Triadic 0.450%** 0.432%** 0.237%** 0.229%**
(0.034)  (0.034)  (0.024)  (0.024)

Granted 1.005%** 0.992%** 0.561%** 0.552%**
(0.031)  (0.032)  (0.021)  (0.021)

University 0.429*** 0.276%**
(0.022) (0.014)

Firms 0.271%*** 0.206%**
(0.018) (0.011)

Obs. 826,078 826,078 826,078 826,078

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001).
The dependent variable is the total number of citations received excluding self-citations
by inventors (columns 1 and 2) and the PatentRank index (columns 3 and 4). All
columns are estimated by Poisson pseudo-maximum likelihood and include patent
office-by-year and month fixed effects.
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Table 13: University, firms, and private individuals

(1) (2) (3) (4) (5) (6)

Applicant University Firm Individual  University Firm Individual
Dep. var. Citations received PatentRank index
Clean invention 0.396%** 0.418%*** 0.459*** 0.311%** 0.290*** 0.331%**
(0.003) (0.016) (0.030) (0.016) (0.014) (0.019)
Number of patents -0.100%**  -0.041***  -0.068%**  -0.040***  -0.015%**  -0.049%**
(0.014) (0.007) (0.011) (0.006) (0.005) (0.007)
Family size 0.072%** 0.067*** 0.377%+* 0.056%** 0.060*** 0.289*#*
(0.005) (0.003) (0.042) (0.005) (0.003) (0.036)
Triadic 0.152%** 0.454*** -0.870 0.096** 0.239%*** -0.614
(0.043) (0.035) (0.613) (0.030) (0.025) (0.340)
Granted 0.775%** 1.022%%* 0.131%*** 0.411%+** 0.571+** 0.088%***
(0.047) (0.032) (0.036) (0.030) (0.022) (0.025)
Obs. 36,186 706,517 75,487 36,186 706,517 75,487

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable is the
total number of citations received excluding self-citations by inventors (columns 1 to 3) and the PatentRank index
(columns 4 to 6). The sample includes inventions which have universities (column 1 and 4), firms (column 2 and 5),
or individuals (column 3 and 6) as applicants. All columns are estimated by Poisson pseudo-maximum likelihood and
include patent office-by-year and month fixed effects.

be concerned that inventors working on clean innovation behave systematically differently
from inventors working on dirty innovations. The community of researchers working on clean
technologies could perhaps be smaller and more close-knit. Stuart and Podolny (1996) for
instance argue that there is also a strong social component to a citation. The clean premium
would then represent inventors’ networks rather than true knowledge spillovers. To address
this issue we restrict our sample to inventors who have been working both on clean and dirty
technologies and include inventor fixed effects in our baseline estimations. Our data includes
41,713 such inventors (representing 2.92% of total inventors). Results are presented in table
14. The clean premium remains significant albeit of slightly smaller magnitude. However,
this is due to the different sample as can be seen by comparing columns 1 and 2 and columns
3 and 4 respectively. We similarly introduce applicant fixed effects and the results do not

change either (see table 33 in the robustness checks section).
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Table 14: Adding inventor fixed effect

(1) (2) 3) (4)
Dep. var. Citations received PatentRank
Clean invention 0.274*** 0.336%** 0.216%** 0.259%%*

(0.007) (0.011) (0.004) (0.006)
Number of patents  -0.096***  -0.081***  _0.028%**  _0.023***
(0.004)  (0.006)  (0.002)  (0.003)

Family size 0.038%*** 0.094*+* 0.027#%* 0.077#**
(0.002) (0.006) (0.002) (0.004)
Triadic 0.866*** 0.644%** 0.598%** 0.405%**
(0.012) (0.026) (0.009) (0.015)
Granted 1.234%%%  1.008%F*F  Q.721%FF  (.572%**
(0.007) (0.011) (0.005) (0.007)
Inventor fixed effect no yes no yes
Obs. 697,192 697,192 697,192 697,192

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001).
The dependent variable is the total number of citations received excluding self-citations
by inventors. All columns are estimated by Poisson pseudo-maximum likelihood and
include patent office, sector, year and month fixed effects.

6.4 Nature of the citations

There are two important types of citations: references to patent documents that are partic-
ularly close to the new invention, which restrict the claims of the inventor, and references
related to the technological background of the new invention. Therefore citations may reflect
the similarity of inventions rather than the cumulative nature of innovation (Packalen and
Bhattacharya (2012)). To account for the heterogeneous nature of citations, we distinguish
between citations received from inventions in the same technological sector (defined using the
3-digit IPC code as assigned by the patent examiner) and citations received from inventions
in a different technological sector. 2*While the former include citations which might merely

reflect similarities between patents, the latter should be closer to true knowledge spillovers.

21 An important difference between the EPO and the USPTO systems is that in European search reports,
cited documents are classified by the patent examiner within a particular citation category according to their
relevance. When assessing the novelty of patent applications the examiner searches for earlier documents
which have the same or almost the same features as the patent concerned [Schmoch (1993)].
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Table 15: Intra vs. inter-sectoral spillovers

(1) (2) ®3)
Dep. var. Citations received  Intra-sectoral Inter-sectoral
citations citations
Clean invention 0.430*** 0.457%** 0.247%**
(0.014) (0.015) (0.019)
Number of patents -0.057*** -0.053*** -0.081***
(0.007) (0.007) (0.006)
Family size 0.073*** 0.074%** 0.066%**
(0.004) (0.004) (0.003)
Triadic 0.456*** 0.487%** 0.212%**
(0.036) (0.036) (0.040)
Granted 0.947+** 0.963*** 0.829%**
(0.031) (0.032) (0.030)
Obs. 1,149,988 1,149,988 1,149,988

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, ***
p<0.001). s. The dependent variables are the total number of citations (column 1), within
a technological field (based on IPC 3 digit code) (column 2), across technological field
(column 3) corrected for self-citations by inventors. All columns are estimated by Poisson
pseudo-maximum likelihood and include patent office-by-year and month fixed effects.

We then run our baseline regression separately on these two types of citations. Table 15 shows
that clean inventions receive more citations both within and across technological fields, sug-
gesting they do generate larger knowledge spillovers in the economy. The PatentRank index

is computed on the pool of intrasectoral and intersectoral citations separately.

6.5 Generality and Originality

Clean technologies, being relatively newer, might have more opportunities for “fundamental”
research while older dirty technologies might instead be focused on the development of new
applications. If clean technologies have more general applications, this might explain why

they receive more citations and appear to induce larger knowledge spillovers.

In the previous section, clean inventions were found to be more likely to be cited both within

or across their originating technological field. To further investigate the generality of clean
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Table 16: Intra vs. inter-sectoral spillovers

(1) (2) 3)
Dep. var. PatentRank  PatentRank  PatentRank
intra-sectoral inter-sectoral
Clean invention 0.292%%* 0.336%** 0.248%**
(0.014) (0.016) (0.016)
Number of patents — -0.031*** -0.044%** -0.160%**
(0.005) (0.006) (0.007)
Family size 0.067*** 0.067*** 0.068%**
(0.003) (0.003) (0.003)
Triadic 0.241%** 0.246*** 0.259%**
(0.026) (0.025) (0.025)
Granted 0.491%** 0.456*** 0.521%**
(0.021) (0.021) (0.017)
Obs. 1,149,988 1,149,988 1,149,988

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01,
*** p<0.001). The dependent variables are PatentRank index (column 1), Paten-
tRank index on citations within their own technological field (based on IPC 3
digit code) (column 2), and the PatentRank index on citations across across
technological field (column 3). All columns are estimated by Poisson pseudo-
maximum likelihood and include patent office-by-year and month fixed effects.
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and dirty inventions, we construct a measure of generality based on the Herfindahl index
of concentration introduced by Trajtenberg et al. (1997). It measures the extent to which
the follow-up technical advances (i.e. the citations) are spread across different technological
fields, rather than being concentrated in just a few of them (i.e., they are more likely to have
the characteristics of a General Purpose Technology, see Bresnahan and Trajtenberg (1995);

Popp and Newell (2012)). The generality of a patent is defined in the following way:

ng

Generality; =1 — Z s5; 9)
J

where s;; is the percentage of patent citations received by patent family ¢ that belong to

patent class j (definited at 3-digit IPC code), out of n; patent classes.??An originating

patent with generality approaching one receives citations that are very widely dispersed

across patent classes; a generality equal to zero corresponds to the case where all citations

fall into a single class.

Similarly, one might suspect that clean technologies are more original than their dirty coun-
terparts because they are relatively newer. We construct an originality measure using the
same approach as in equation 9 but replacing s;; by the percentage of citations made (in-
stead of received) by invention ¢ that belong to patent class j (defined again at 3-digit IPC
code).?3Thus, if a patent cites previous patents that belong to a narrow set of technologies
the originality score will be low, whereas citing patents in a wide range of fields would render

a high score.

We carry out regressions using this generality measure as a new outcome variable. Clean

technologies are significantly more general and original in the transport industry while the

22Gpecifically, we count the number of citations made by a patent and receiveD by a patent family. This
way we are only capturing citations directly made to an invention as oppose to citations made from one
patent family to another.

23These measures depend upon the classification system: a finer classification would render higher mea-
sures, and conversely for a coarser system. We use 3-digit IPC code as used in Hall et al. (2001)
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Table 17: Generality and Originality

(1) (2) (3) (4) (5) (6)
Sector All Transport  Electricity All Transport  Electricity
Dep. var. Generality measure Originality measure
Clean invention 0.008* 0.047*** -0.034%%* -0.003 0.049%** -0.054%**
(0.003) (0.003) (0.003) (0.004) (0.004) (0.003)
Number of patents -0.047***  -0.081*%**  -0.024***  -0.050***  -0.086***  -0.027***
(0.002) (0.002) (0.001) (0.002) (0.002) (0.001)
Family size 0.012%** 0.011%** 0.012%** 0.008%*** 0.007*** 0.007***
(0.001) (0.001) (0.001) (0.0004) (0.001) (0.001)
Triadic 0.035%** 0.028*** 0.046%** 0.026%** 0.017%** 0.037***
(0.003) (0.004) (0.005) (0.003) (0.003) (0.005)
Granted 0.047%** 0.053*** 0.039%** 0.024*** 0.024*** 0.022%***
(0.002) (0.002) (0.003) (0.002) (0.003) (0.002)
Observations 515,217 227,678 291,989 382,236 162,919 222538

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable is a gener-
ality measure (columns 1 to 3) and a originality measure (columns 4 to 6) based on Herfindahl index of concentration.
The sample includes patentsin the transport sectors only (colunn 2 and 5), in the electricity sector only (column 3 and
6), and in both sectors (columns 1 and 4). All columns are estimated by OLS and include patent office-by-year-by-sector
fixed effects, and month fixed effects.

opposite in true for the electricity production industry (see Table 17). ?* Adding generality
(column 2), originality (column 3) and finally both measures (column 4) as control in Table 18
confirms the finding of greater knowledge spillovers from clean inventions. Interestingly, the
coefficient is slightly smaller when adding these controls than under the baseline specification
(column 1). This suggests that these measures, particularly the generality measure, explain

(a small) part of the clean premium.

6.6 Clean technologies versus other emerging fields

Technologies that contain a high degree of new knowledge (radical innovations) are likely to

exhibit higher spillover effects than technologies that contain a low degree of new knowledge

24Note that there is a potential selection bias here, as patents that have never been cited have no generality
measure and are therefore left out of the sample.
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(incremental innovations). Clean technologies are new and rather under-developed technolo-
gies. In contrast, the dirty technologies they replace are much more mature and developed.
Therefore research in clean technologies might yield spillovers that are completely different
in scope from research in dirty technologies because they can be considered as radically new

innovations. In order to investigate this assumption, we use several strategies.

First, we control for the age of the invention’s technological field defined as the time elapsed
since the date of the first appearance of this technological field (defined at the 15-digit IPC
code ) in any patent. Results are reported in column 2 of Table 19. Controlling for the
age of the technology decreases the coefficient obtained for the clean dummy variable. In
order to account for potential non-linearities we further add squared age (column 3) and a
whole range of dummy variables for each percentile of the age distribution (column 4). This
exercise further diminishes the clean coefficient from 0.430 to 0.353, indicating that part of

the clean premium is explained by the relative novelty of the field.

Second, we compare knowledge spillovers between clean inventions in the transport and
electricity technologies to other radically new technologies, namely I'T, biotechnologies, nan-
otechnologies, robots and 3D (see Table 21). We also compare clean technologies to these
emerging technologies in terms of their generality and originality (see Table 18 and table 35
respectively). Results show that clean inventions receive 41% more citations than biotech
inventions. However, clean inventions receive significantly fewer citations than inventions in
the I'T, nanotechnology, robot and 3D industries. We find that clean inventions are less gen-
eral and less original than all new technologies apart from nanotechnologies. Taken together,
these results suggest that the relative novelty of clean technologies might explain why they
exhibit larger spillovers. Looking at the coefficients obtained for the clean invention variable,
it is interesting to note that knowledge spillovers from clean technologies appear comparable

to those in the IT sector, which has been behind the third industrial revolution.

Third, we compare the previous sample (clean transport, clean electricity, I'T, biotech, nano,
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robots and 3D) to all other inventions. Figure 5 plots the coefficient of the dirty (in black),
grey (in grey), clean (in green) and radically new technologies (in orange). Clean transport
and electricity exhibit larger spillovers than the average invention. In terms of relative rank-
ing, the clean transport and clean electricity are positioned between their dirty counterparts

and radically new technologies.

Fourth, we restrict the sample of radically new technologies (IT, biotechs, nano, robots and
3D) and compare clean and dirty inventions within these technologies. While clean inventions
within the IT and the biotechs technologies still exhibit larger knowledge spillovers, there
is no clean advantage within the nano and robot sectors. Clean inventions within the 3D

technologies even receive fewer citations.

Finally, in an attempt to find a dirty yet radically new technology, we compare knowledge
spillovers between clean electricity production technologies and carbon capture and storage
technologies (CCS) in table 25. The clean advantage disappears when considering simple
patent counts and PatentRank, suggesting it is not because they are clean that clean tech-

nologies generate larger knowledge spillovers.

7 Discussion and conclusion

In this paper we compare the relative intensity of knowledge spillovers from clean and dirty
technologies. To measure knowledge spillovers, we use a rich dataset of 3 million citations
received by over a million inventions patented in the automobile and electricity production
sectors. This analysis is crucial to answer the question of whether clean technologies warrant
higher subsidies than dirty ones. Our results unambiguously show that clean technologies
induce larger knowledge spillovers than their dirty counterparts. Moreover, we provide a
measure of the economic values of knowledge externalities of relevant clean technologies. We

find that evidence of larger monetary value associated to knowledge spillovers from clean
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Table 19: Controlling for age of technological field

(1) (2) 3) (4)
Dep. var. Citations received
Clean invention 0.410%** 0.381%** 0.363*** 0.354%***
(0.013) (0.013) (0.013) (0.013)
Number of patents -0.094%*%*  _0.052%*F*  _0.043***  -0.046***
(0.004) (0.005) (0.005) (0.005)
Family size 0.070%** 0.067*+* 0.068*** 0.068%***
(0.004) (0.003) (0.003) (0.003)
Triadic 0.448%** 0.431%** 0.406*** 0.397***
(0.035) (0.035) (0.034) (0.034)
Granted 0.939*** 0.929%** 0.917*** 0.912%**
(0.031) (0.030) (0.030) (0.030)
Age of tech field -0.177F*x0.194%F*
(0.009) (0.034)
Age of tech field "2 -0.023%**
(0.002)
Age of tech dummies no no no yes
Observations 1,149,237 1,149,237 1,149,237 1,149,237

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received, corrected for self-citations
by inventors. All columns are estimated by Poisson pseudo-maximum likelihood and in-
clude patent office-by-year and month fixed effects.
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Table 20: Controlling for age of technological field

(1) (2) (3) (4)
Dep. var. PatentRank index
Clean invention 0.283*** 0.267*** 0.257*** 0.247+**
(0.013) (0.013) (0.013) (0.012)
Number of patents -0.053***%  _0.029***  _0.023***  _0.023***
(0.003) (0.003) (0.003) (0.003)
Family size 0.065%** 0.063*** 0.063*** 0.063***
(0.003) (0.003) (0.003) (0.003)
Triadic 0.236%** 0.227%** 0.210%** 0.202%**
(0.025) (0.025) (0.025) (0.025)
Granted 0.487%** 0.480%** 0.474*** 0.470***
(0.021) (0.021) (0.020) (0.020)
Age of tech field -0.117F**  0.233%F*
(0.006) (0.014)
Age of tech field~2 -0.023***
(0.001)
Age of tech dummies no no no yes
Observations 1,149,237 1,149,237 1,149,237 1,149,237

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the PatentRank index. All columns are estimated by Poisson
pseudo-maximum likelihood and include patent office-by-year and month fixed effects.
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Table 21: Spillovers from clean and other new technologies

(1) (2) (3) (4) (5)
Baseline sector 1T Biotechs Nano Robot 3D
Dep. var. Citations received
Clean invention -0.153*%%*%  0.408**F*  _(0.337¥F*  _0.127FF*  _0.278%**
(0.029) (0.033) (0.062) (0.042) (0.036)
Number of patents -0.013 -0.160*** -0.031**F*  _0.039%*%*  _0.037*F**
(0.008) (0.014) (0.008) (0.008) (0.008)
Family size 0.020%** 0.033*** 0.063*** 0.063*** 0.062%**
(0.003) (0.005) (0.007) (0.007) (0.007)
Triadic 0.574%** 0.663*** 0.525%** 0.550%** 0.528%**
(0.057) (0.053) (0.070) (0.069) (0.068)
Granted 1.181%** 0.806*** 0.862*** 0.877*** 0.882%**
(0.065) (0.023) (0.038) (0.036) (0.037)
Observations 1,445,552 403,294 180,441 198,602 185,726

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received, corrected for self-citations by inventors.
The sample includes all clean patents (transport and electricity) and patents from the following tech-
nologies: IT (column 1), bioechs (column 2), nano (column 3), robot (column 4), and 3D (column 5).
All columns are estimated by Poisson pseudo-maximum likelihood and include patent office-by-year

and month fixed effects.
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Table 22: Spillovers from clean and other new technologies

(1) (2) (3) (4) (5)
Baseline sector IT Biotechs Nano Robot 3D
Dep. var. PatentRank index
Clean invention -0.039 0.131%**  _0.249*** -0.096* -0.120%**
(0.028) (0.023) (0.040) (0.043) (0.018)
Number of patents -0.031*%**  -0.029***  (.023*** 0.014 0.018*
(0.005) (0.006) (0.008) (0.078) (0.008)
Family size 0.017%** 0.029%**  0.052*** 0.053*** 0.052%***
(0.003) (0.004) (0.006) (0.006) (0.006)
Triadic 0.421***  (0.435%** 0.329*** 0.337*** 0.333***
(0.050) (0.042) (0.055) (0.054) (0.055)
Granted 0.604***  0.413*** 0.441*** 0.443*** 0.448***
(0.040) (0.017) (0.025) (0.025) (0.025)
Observations 1,445,552 403,294 180,441 198,602 185,726

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the PatentRank index. The sample includes all clean patents (transport and
electricity) and patents from the following technologies: IT (column 1), biotechs (column 2), nano
(column 3), robot (column 4), and 3D (column 5). All columns are estimated by Poisson pseudo-
maximum likelihood and include patent office-by-year and month fixed effects.
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Table 23: Comparing spillovers from clean and dirty within new technologies

(1) (2) (3) (4) (5)
Sector IT Biotechs Nano Robot 3D
Dep. var. Citations received
Clean invention 0.222%* 0.609** 0.313 0.677 -0.950**
(0.091)  (0.053)  (0.211)  (0.525)  (0.352)
Number of patents -0.012 -0.25T***  _0.169%** -0.051 -0.171***
(0.008)  (0.016)  (0.044)  (0.047)  (0.025)
Family size 0.020%** 0.033*** 0.109*** 0.104%**  (0.078***
(0.003)  (0.005)  (0.018)  (0.014)  (0.015)
Triadic 0.547*** 0.583*** 0.268* 0.387*** 0.255**
(0.055)  (0.056)  (0.136)  (0.113)  (0.100)
Granted 1.220%** 0.699*** 0.961*** 1.005%** 1.126%***
(0.072)  (0.031)  (0.145)  (0.053)  (0.074)
Observations 1,270,842 227,100 1,481 22,266 9,359

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received, corrected for self-citations by inven-
tors. The sample includes patents from the following technologies: IT (column 1), bioechs (column
2), nano (column 3), robot (column 4), and 3D (column 5). All columns are estimated by Poisson
pseudo-maximum likelihood and include patent office-by-year and month fixed effects.

technology. We conduct a large number of sensitivity tests and the findings are remark-
ably robust. In particular, as depicted by the innovation flowers, this result is confirmed
when using a completely novel methodology to measure knowledge spillovers that does not
only count immediate forward citations but takes into account the whole network of patent

citations.

We explore five potential explanations for our findings. First, we find no evidence that
the clean industry is more geographically clustered. Second, differential citations behaviors
among scientists involved in clean technologies cannot fully explain the clean advantage.
Third, we find no evidence that government spending cannot account for clean premium.
Fourth, we examine the generality and originality features of clean inventions. We find that

clean inventions in the automobile industry are more general (i.e. they are cited by a wider

range of technological fields) and more original. However, clean inventions in the electricity
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Table 24: Comparing spillovers from clean and dirty within new technologies

(1) (2) (3) (4) (5)
Sector 1T Biotechs Nano Robot 3D
Dep. var. PatentRank index
Clean invention 0.129* 0.422%** 0.189 0.349 0.290
(0.053) (0.067) (0.100) (0.325) (0.461)
Number of patents -0.037*** -0.074*** 0.033 -0.062**  -0.080***
(0.006) (0.005) (0.023) (0.023) (0.014)
Family size 0.017%%*  0.028%**  0.070*%**  0.088*%**  (0.056%**
(0.003) (0.004) (0.013) (0.009) (0.011)
Triadic 0.401%*%*  0.406%**  0.341%**  0.261*** 0.305%*
(0.049) (0.041) (0.070) (0.057) (0.060)
Granted 0.624***  (0.342%F*  (0.424%FF  (0.443%F*  (.571FF*

(0.044) (0.019) (0.075)  (0.042) (0.044)

Observations 1,270,842 227,100 1,481 22,266 9,359

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the PatentRank. The sample includes patents from the following technolo-
gies: IT (column 1), bioechs (column 2), nano (column 3), robot (column 4), and 3D (column 5).
All columns are estimated by Poisson pseudo-maximum likelihood and include patent office-by-
year and month fixed effects.

Table 25: Spillovers from clean and CCS technologies

(1) (2)
Dep. var. Citations received PatentRank index
Clean invention -0.083* 0.045
(0.034) (0.023)
Number of patents 0.037*** 0.057%**
(0.010) (0.010)
Family size 0.065%** 0.055%**
(0.006) (0.005)
Triadic 0.477%** 0.271%**
(0.062) (0.047)
Granted 0.681*** 0.338%**
(0.030) (0.019)
Observations 106,700 106,700

Notes: Robust standard errors, p-values in parentheses (* p<0.05, **
p<0.01, *** p<0.001). The dependent variable is the total number of ci-
tations received, corrected for self-citations by inventors. The sample in-
cludes clean electricity production inventions and CO2 Capture and Stor-
age technology. All columns are estimated by Poisson pseudo-maximum
likelihood and include patent office-by-year and month fixed effects.
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production industry are less general and less original. Finally, we compare clean inventions
to other radically new inventions such as IT, biotechnologies and nanotechnologies. We
conclude that clean inventions seem to benefit from early returns to scale and steep learning
curves. Interestingly we observe that knowledge spillovers from clean technologies appear

comparable in scope to those in the IT sector.

Our results have two important policy implications. Firstly, the larger knowledge spillovers
from clean technologies uncovered in this study justify higher subsidies for clean R&D or
specific R&D programs for clean technologies, in addition to implicit support for clean R&D
trough climate policies such as carbon taxation. Radically new clean technologies should
receive higher public support than research activities targeted at improving on the existing
dirty technologies.?> However, such specific support could equally be justified for a range of
other emerging areas, such as nanotechnologies or IT. This recommendation has been made
in the past, for instance by Hart (2008) or Acemoglu et al. (2012) but it is the first time to our
knowledge that it is substantiated by robust empirical evidence.2While a first best policy
scenario would suggest a combination of emissions pricing and R&D subsidies specifically
targeted at clean technologies, in times of tight government budgets it might be difficult to
achieve the necessary subsidy levels. There might also be concerns over governments’ ability
to channel funds to R&D projects with the highest potential either because of information
asymmetry or because of political interference. In this case our results would support a

second best policy with more stringent emission pricing and regulation that would otherwise

25Importantly, our results suggest that the relative support to clean R&D should grow over time. In-
cidentally, in a recent working paper Daubanes et al. (2013) show that gradual rise in subsidies to clean
R&D activities causes a less rapid extraction of fossil resources, because it enhances the long-run resource
productivity.

26Interestingly, statistics in OECD countries show that there is higher public R&D spending in clean
technologies than in dirty ones. A look at the International Energy Agency’s R&D expenditures data reveals
that between 2000 and 2012, OECD countries have spent 198 million euros on dirty cars and 18 billion euros
on dirty energy but 327 million euros on clean cars (65% more than dirty cars) and 25 billion euros on clean
energy (35% more than dirty energy). However, these numbers do not include subsidies to private clean
R&D, which is also warranted in a first best policy setting.
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be the case (see for example Gerlagh et al. (2009); Hart (2008); Kverndokk et al. (2004);
Kverndokk and Rosendahl (2007)).

Secondly, our results lend support to the idea that a redirection of innovation from dirty to
clean technologies induced by environmental or climate policies can lead to higher growth
in the short and medium run. This can happen if the larger spillover effects from clean
technologies exceed any negative growth effects from more stringent regulation. Our results
however suggest that the potential growth effects of environmental policies very much depend
on the type of displacement being induced by increasing support for clean technologies. If
clean innovation crowds out dirty innovation, as shown by Aghion et al. (2012) for the
transport industry, there is scope for medium run growth effects. If innovation in other
emerging areas is crowded out, such effects are less likely. At any rate, one should keep in
mind that higher spillovers are only a necessary but not a sufficient condition for growth

effects from green policies.

Our work can be extended in several directions. First, it would be interesting to investigate
how knowledge spillovers affect firms’ decisions to invest in radical innovation (clean technolo-
gies) or in incremental innovation (less dirty technologies), and how they respond to R&D
subsidies targeted at clean technologies. Second, an interesting direction is to understand
the spatial pattern of knowledge diffusion for clean technologies, including the transfer of
knowledge across borders, in particular between developed and developing countries. Third,
we could use micro data to estimate the impact of knowledge spillovers from clean and dirty
technologies on firms’ productivity. These parameters are crucial to empirically validate the

potential impact of green policies on economic growth.
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Appendix

Robustness Checks

Five years window

As in section 2.4 we look at the number of citations received within a five-year window to at

least partially overcome the truncation bias that is due to the fact that we observe citations
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Figure 7: Innovation Flowers

(a) Dirty

Notes: The figures visualize innovation spillovoers. We draw a random sample of

1000 dirty and 1000 clean innovations corresponding to the nodes in the figures.
The edges correspond to backwards citations. An interactive version is under
http://www.eeclab.org.uk /forcedirect arx.html?tojson dirlinks0 1995 15 1000 0.json

and http://www.eeclab.org.uk/forcedirect arx.html?tojson dirlinksO 1995 15 1000 2.json.
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Table 26: Patent classification codes - Transport

CLEAN
B60K 1 Arrangement or mounting of electrical propulsion units
B60K 6 Arrangement or mounting of hybrid propulsion systems comprising
electric motors and internal combustion
B60L 3 Electric devices on electrically-propelled vehicles for safety purposes:
Monitoring operating variables e.g. speed, deceleration, power consumption
B60L 7 Dynamic electric regenerative braking
B60L 11 Electric propulsion with power supplied within the vehicle
B60L 15 Methods, circuits, or devices for controlling the traction-motor speed
of electrically-propelled vehicles
B60R 16 Electric or fluid circuits specially adapted for vehicles and not otherwise provided for
B60S 5 Supplying batteries to, or removing batteries form
B60W 10 Conjoint control of vehicles sub-units of different type or different function
B60W 20 Control systems specially adapted for hybrid vehicles
HO1M Fuel cells
GREY
F02M 39/71 Fuel injection apparatus
F02M 3/02-05 Idling devices for carburettors preventing flow of idling fue
F02M 23 Apparatus for adding secondary air to fuel-air mixture
F02M 25 Engine-pertinent apparatus for adding non-fuel substances or small quantities
of secondary fuel to combustion-air, main fuel, or fuel-air mixture
F02D 41 Electric control of supply of combustion mixture or its constituents
F02B 47/06 Methods of operating engines involving adding non-fuel substances or
anti-knock agents to combustion air, fule, or fuel-air mixtures of engines,
the substances including non-airborne oxygen
DIRTY
F02B Internal-combustion piston engines; combustion engines in genera
F02D Controlling combustion engines
FO2F Cylinders, pistons, or casings for combustion engines;
arragement of sealings in combustion engines
F02M Supplying combustion engines with combustiles mixtures or constituents thereof
FO02N Starting of combustion engines
FO2P Ignition (other than compression ignition) for internal-combustion engines
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Table 27: Patent classification codes - Electricity Production

CLEAN

Y02E10
Y02E30
E02B9/08
F03B13/10-26

Energy generation through renewable energy sources

Energy generation of nuclear origin

Tide or wave power plants

Submerged units incorporating electric generators or motors characterized

by using wave or tide energy

F03D Wind motors

F03G4 Devices for producing mechanical power from geothermal energy

F03G6 Devices for producing mechanical power from solar energy

F03G7/05 Ocean thermal energy conversion

F24J2 Use of solar heat, e.g. solar heat collectors

F24J3/08 Production or use of heat, not derived from combustion using geothermal heat

F26B3/28 Drying solid materials or objects by processes involving the application of
heat by radiation, e.g. from the sun

GREY

YO02E50 Technologies for the production of fuel of non-fossil origin

Y02E20/10 Combined combustion

Y02E20/12 Heat utilisation in combustion or incineration of waste

Y02E20/14 Combined heat and power generation

Y02E20/16 Combined cycle power plant, or combined cycle gas turbine

Y02E20/18 Integrated gasification combined cycle

Y02E20,/30 Technologies for a more efficient combustion or heat usage

Y02E20/32 Direct C02 mitigation

Y02E20,/34 Indirect C02 mitigation, by acting on non C02 directly related matters of
the process, more efficient use of fuels

Y02E20/36 Heat recovery other than air pre-heating

DIRTY

C10G1 Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid
carbonaceous or similar materials, e.g. wood, coal, oil-sand, or the like BO3B

C10L1 Fuel

C10J Production of fuel gases by carburetting air or other gases

E02B Hydraulic engineering

FO1K Steam engine plans; steam accumulators; engine plants not otherwise provided for;
engines using special working fluids or cycles

F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply
in air-breathing jet-propulsion plants

F22 Steam generation

F23 Combustion apparatus; combustion processes

F24J Production or use of heat not otherwise provided for

F27 Furnaces; kilns; ovens; retorts

F28 Heat exchange in general 67



Table 28: Patent classification codes - Radically New Technologies

3D
HO4N 13 Stereoscopic television systems
1T
G06 Computing; Calculating; Counting
GI10L Speech Analysis or Synthesis; Speech Recognition; Speech or Voice Processing; Speech or Audio Coding or |
G11C Static Stores

Data Processing Systems or Methods; Specially Adapted for Administrative, Commercial, Financial,
(not GO6Q) Managerial, Supervisory or Forecasting purposes; Systems or Methods Specially Adapted for Administrative
Commercial, Financial, Managerial, Supervisory or Forecasting purposes, not otherwise provided for

Biotechs
Co7G Compounds of unknown constitution
CO7K Peptides
C12M Apparatus for Enzymology or Microbiology
C12N Micro-organisms or enzymes; compositions thereof
C12P Fermentation or Enzyme-using Processes to Synthesise a desired chemical

compound or composition or to separate optical isomers from a racemic mixture
C12Q Measuring or Testing Processes Involving Enzymes or Micro-Organisms;
Compositions or test papers therefor; Processes of preparing such compositions;
Condition responsive control in microbiological or enzymological processes
C12R Processes using micro-organisms
(not A61K) Preparations for Medical, Dental, or Toilet Purposes

Nano

B&2 Nano-technology

Robot

B25J 9 Programme-controlled manipulators
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Table 29: Clean, Grey and true Dirty - Transport

(1) (2) (3) (4)

Sample Clean vs. Clean vs. Grey vs. Clean vs.

Grey and true Dirty Grey True Dirty True Dirty

Dep. var. Citations received
Clean/Grey invention 0.347%%* 0.118%** 0.304*** 0.481%**
(0.018) (0.020) (0.017) (0.022)
Number of patents -0.068%** -0.144%*%*  -0.109%** -0.082%**
(0.009) (0.010) (0.009) (0.009)
Family size 0.070%** 0.070*** 0.081*** 0.065%**
(0.008) (0.011) (0.010) (0.007)
Triadic 0.521%** 0.483*** 0.474%%* 0.488%**
(0.056) (0.071) (0.059) (0.055)
Granted 1.134%** 1.122%%* 1.173%%* 1.046%**
(0.034) (0.041) (0.036) (0.032)
Observations 419,959 207,524 345,313 287,469

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean, grey and truly dirty (column 1), clean and grey (column 2), grey and truly dirty
(column 3), and clean and truly dirty (column 4) inventions all in the transport sector. All columns

are estimated by Poisson pseudo-maximum likelihood and include patent office-by-year and month fixed
effects.
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Table 30: Clean, Grey and true Dirty - Transport

(1) (2) (3) (4)
Sample Clean vs. Clean vs. Grey vs. Clean vs.
Grey and true Dirty Grey True Dirty True Dirty
Dep. var. PatentRank index
Clean/Grey invention 0.219%** 0.090%** 0.169%** 0.2927%**
(0.014) (0.014) (0.017) (0.018)
Number of patents -0.048*** -0.075%*F*  _0.088*** -0.053***
(0.006) (0.006) (0.006) (0.005)
Family size 0.062%+* 0.059%** 0.074%+* 0.057*+*
(0.007) (0.010) (0.007) (0.006)
Triadic 0.279%** 0.281%** 0.219%** 0.284***
(0.046) (0.057) (0.040) (0.046)
Granted 0.620%** 0.599%** 0.637*** 0.588***
(0.027) (0.027) (0.029) (0.024)
Observations 419,959 207,524 345,313 287,469

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is PatentRank index. The sample includes clean, grey and truly dirty (column 1), clean
and grey (column 2), grey and truly dirty (column 3), and clean and truly dirty (column 4) inventions all
in the transport sector. All columns are estimated by Poisson pseudo-maximum likelihood and include
patent office-by-year and month fixed effects.
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Table 31:

Clean, Grey and true Dirty - Electricity

(1) (2) (3) (4)
Sample Clean vs. Clean vs. Grey vs. Clean vs.
Grey and true Dirty Grey True Dirty True Dirty
Dep. var. Citations received
Clean/Grey invention 0.488*** 0.188%** 0.262%** 0.499%**
(0.023) (0.032) (0.019) (0.023)
Number of patents -0.047#%* 0.042%** -0.114%%* -0.044%**
(0.009) (0.011) (0.007) (0.009)
Family size 0.067*** 0.070%*** 0.066*** 0.067***
(0.004) (0.004) (0.004) (0.004)
Triadic 0.432%** 0.416%** 0.396%** 0.438%**
(0.050) (0.051) (0.046) (0.050)
Granted 0.725%** 0.660*** 0.738*** 0.727*%*
(0.024) (0.029) (0.026) (0.025)
Observations 748,918 120,752 647,541 733,859

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean, grey and truly dirty (column 1), clean and grey (column 2), grey and truly dirty
(column 3), and clean and truly dirty (column 4) inventions all in the electricity production sector.
All columns are estimated by Poisson pseudo-maximum likelihood and include patent office-by-year and

month fixed effects.
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Table 32: Clean, Grey and true Dirty - Electricity
(1) (2) (3) (4)
Sample Clean vs. Clean vs. Grey vs. Clean vs.
Grey and true Dirty Grey True Dirty True Dirty
Dep. var. PatentRank index
Clean/Grey invention 0.333%*x* 0.046 0.287#%* 0.342%**
(0.023) (0.028) (0.013) (0.023)
Number of patents -0.019%*** 0.062%F*%  -0.073*** -0.015*
(0.007) (0.010) (0.004) (0.007)
Family size 0.060%** 0.058*** 0.061*** 0.061***
(0.004) (0.003) (0.004) (0.005)
Triadic 0.252%** 0.228%*** 0.226*** 0.256***
(0.000) (0.038) (0.037) (0.042)
Granted 0.381%** 0.331%%* 0.393%** 0.382%**
(0.017) (0.018) (0.018) (0.017)
Observations 748,918 120,752 647,541 733,859

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the PatentRank index. The sample includes clean, grey and truly dirty (column 1),
clean and grey (column 2), grey and truly dirty (column 3), and clean and truly dirty (column 4) in-
ventions all in the electricity production sector. All columns are estimated by Poisson pseudo-maximum
likelihood and include patent office-by-year and month fixed effects.

Table 33: Applicant fixed effect

(1) (2) 3) (4)
Dep. var. Citations received PatentRank
Clean invention 0.400%** 0.380%**  (0.274***  (.272%**
(0.019) (0.040) (0.017) (0.027)
Number of patents -0.038***  -0.067*** -0.002 -0.024***
(0.008) (0.010) (0.007) (0.008)
Family size 0.091%** 0.100%** 0.082%**  (.085%**
(0.007) (0.011) (0.006) (0.009)
Triadic 0.461%** 0.444%**  (0.250%**  (0.254%**
(0.056) (0.089) (0.042) (0.056)
Granted 1.022%** 1.000%**  0.562%*%*  (.574%**
(0.033) (0.046) (0.024) (0.025)
Applicant fixed effect no yes no yes
Observations 435,584 435,584 435,584 435,584

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). All
columns are estimated by Poisson pseudo-maximum likelihood and include year, month,
and category fixed effects.
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Table 34: Comparing the generality of clean and other new technologiess

(1) (2) (3) (4) (5)
Sector IT Biotechs Nano Robot 3D
Dep. var. Originality measure

Clean invention -0.050%**  -0.059*** 0.009 -0.130%**  -0.184%**

(0.004)  (0.004)  (0.018)  (0.004)  (0.006)
Number of patents -0.070%**  -0.033***  -0.049***  _0.051*%**  _0.051***
(0.002)  (0.002)  (0.002)  (0.002)  (0.002)

Family size 0.003%%%  0.002%%*  0.005%%*  0.005%%F  0.005%**
(0.0004)  (0.0003)  (0.001) (0.001) (0.001)

Triadic 0.010%%* 0.005 0.014%%%  0.015%%F  0.014%*
(0.002) (0.002) (0.005) (0.004) (0.004)

Granted 0.020%%* 0.003  0.020%FF  0.027FFF  0.027%%*

(0.002) (0.003) (0.003) (0.003) (0.003)

Observations 520,978 155,701 59,651 67,115 62,559

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent
variable is the originality measure. The sample includes all clean inventions (automobile and elec-
tricity production sectors) and inventions from the following technologies: IT (column 1), biotechs
(column 2), nano (column 3), robot (column 4), and 3D (column 5). All columns are estimated by
OLS and include patent office-by-year and month fixed effects.

for only a portion of the life of an invention, with the duration of that portion varying across

patent cohorts (see Table 36). The coefficients obtained for the clean dummy barely change.

Discarding citations

We discard citations added by patent examiners in Table 37.2’By restricting the citation
counts to the ones made by the applicant only, we address the concern that patent citations
added by examiners might not capture actual knowledge spillovers. The results obtained
when all sectors are pooled together barely change but the only noticeable difference is
that the clean dummy is no longer significant on the fuel sector when citations added by
examiners are excluded. Jaffe and Trajtenberg (1999)) find that patent assigned to the same

firm are more likely to cite each other. We therefore correct for self-citations at the level of

2"Note that we restrict the sample to patent offices for which distinction between citation added by patent
examiner or applicant is made.
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Table 35: Comparing the generality of clean and other new technologiess

(1) (2) (3) (4) (5)
Sector IT Biotechs Nano Robot 3D
Dep. var. Generality measure

Clean invention -0.047%%*  .0.052%** 0.009 -0.126%**  -0.204%**

(0.004)  (0.004)  (0.022)  (0.004)  (0.006)
Number of patents -0.063***  -0.034***  -0.048%**  _0.050%**  -0.050***
(0.002)  (0.002)  (0.003)  (0.003)  (0.003)

Family size 0.004%%%  0.003%**  0.008%%*  0.008%FF  0.008%**
(0.0005)  (0.0003)  (0.001) (0.001) (0.001)

Triadic 0.013%F%  0.016%%  0.0220%F  0.023%%%  (.020%%*
(0.002) (0.003) (0.005) (0.005) (0.004)

Granted 0.022%F%  0.022%%%  0.041%FF  0.038%FF  (.039%**

(0.002) (0.002) (0.003) (0.003) (0.003)

Observations 723,257 207,073 94,437 103,972 98,461

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent
variable is the generality measure. The sample includes all clean patents (automobile and electric-
ity production sectors) and patents from the following technologies: IT (column 1), biotechs (column
2), nano (column 3), robot (column 4), and 3D (column 5). All columns are estimated by OLS and
include patent office-by-year and month fixed effects.

the applicant (the firm or the individual who filed the patent) rather than at the level of

individual inventors in Table 38. The results don’t change qualitatively.

Additional controls

We add a number of additional controls variables for patent quality in Table 39. The claims
specify the components of the patent invention and hence represent the scope of the inven-
tion (Lanjouw and Schankerman (1999)). This information is only available in our patent
database for a limited number of patent offices, implying that our sample size is significantly
reduced. For this reason we do not include the number of claims in our baseline regressions,
but overall the results barely change (coefficient on clean = 0.403***). The number of IPC3
codes is added in order to control for the fact that certain inventions belong to multiple IPC

codes. These inventions are likely to be more general and therefore more cited. This effect
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Table 36: Five-year window

(1) (2) 3) (4) () (6)
Sector All Transport Electricity All Transport  Electricity
Dep. var. Citations received within 5-year window  PatentRank within 5-year window
Clean invention 0.382%** 0.284*** 0.474%** 0.210%** 0.140%** 0.248%***
(0.021) (0.025) (0.034) (0.015) (0.014) (0.026)
Number of patents -0.038***  -0.055%** -0.023* -0.038%**  _(.059%** -0.022**
(0.008) (0.001) (0.010) (0.005) (0.006) (0.007)
Family size 0.075%** 0.070%** 0.063*** 0.069*** 0.062%** 0.059%**
(0.003) (0.001) (0.007) (0.003) (0.008) (0.006)
Triadic 0.508%** 0.557#%* 0.515%** 0.306%** 0.354%%* 0.346%**
(0.043) (0.070) (0.068) (0.003) (0.053) (0.053)
Granted 1.005%** 1.181%** 0.756%** 0.581%** 0.693*** 0.473%**
(0.040) (0.054) (0.035) (0.024) (0.036) (0.022)
Observations 1,162,220 419,959 748,918 1,162,220 419,959 748,918

Notes: Robust standard errors in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable is the total
number of citations received within a five-year period after the publication year, corrected for self-citations by inventors
(columns 1 to 3) and the PatentRank index on the sample of citations within five years (columns 4 to 6). The sample in-
cludes patents which have cited clean or dirty technologies in the automobile sector (columns 2 and 4), electricity sector
(columns 3 and 6), and both (colunns 1 and 4). All columns are estimated by Poisson pseudo-maximum likelihood and
include patent office-by-year-by-sector fixed effects, and month fixed effects.

5



'$109J0 PoxY
YIUOW pue ‘S109JJ9 PaXY I10)09s-£q-1eak-£q-001jo Juared opnyoul pue pooyleyl] wnuwrxew-opnosd uossioq £q pajyeurrse are suwniod [y ‘( pue T suunjod) yjoq ut ‘(9 pue ¢
summn[od) 10399s uoronpoid 110111090 ‘(F pue g SUWN[0D) 10109S J[IGOWOINE 9] Ul $9130]0UYDd) AP 10 UBI[O PIIId oARY YOIYm sjuated sepnjoul sjdures ayJ, ‘o[qe[leA®R oIe
Jourwrexo juojed oty 1o juedridde oY) Aq poppe oI SUOIIRIID ISTI9YM UO UOIJRULIOJUI oY) UYIIYM I0] saorjo juajed sepnourl A[uo ojdures oy J, (9 0}  swn[0d) siourwexs juajyed
oY) £q opeur sauo 9Y) SUIPN[OXd SUOIYeId Jo o[dures ay) UO XopUIl JueYIuajeJ oY) pue (g 0} T SUWN[0D) SIOJUSAUL AQ SUOIJRIIO-J[9S 10J PIISIIOD pue sioururexsd juoajed oy Aq
opeu SuOI1RID SUIPN[OXS ‘PIATSII SUOITRIID JO I9QUINU [B10) oY) SI o[qeLIeA 1uapuadop oY T, "(100°0>d 4yy ‘T0°0>d 4y ‘C0°0>d ) sosoyjuared Ul SI01I0 pIRpPURIS ISNAOY S§IION

S16°'S¥ L 0S6°61% 02%C9T°T ST6'STL 056617  0TC'TIT‘T SUOTYRATOS )
(210°0) (600°0) (L00°0) (1£0°0) (ge00) (¢20°0)
+xxG0T°0 xxL60°0  4x%00T°0 wk 10T T wikPOT T PP pojueLy)
(1T0°0) (600°0) (800°0) (990°0) (¥90°0) (zv0°0)
++x860°0 w4x6F0°0  4x%0L0°0 £xx¥95°0 £xxL€G°0  44491C°0 OIpeLI],
(100°0) (z00°0) (100°0) (¥00°0) (L00°0) (€00°0)
+xx800°0 wxxlT00  4xxC10°0 +xx090°0 +xx0L0°0 540200 oz1s A[rure
(£00°0) (€00°0) (z00°0) (110°0) (110°0) (800°0)
***%H©©| ***@HOOu ***@HOO| 200°0 ***®MO©| 0T10°0- mﬁaouﬁg JO IequinN
(600°0) (110°0) (600°0) (920°0) (gz0°0) (810°0)
*xx980°0 €100 #7070 #xx6G9°0 #xxC8G°0 4447090 UOTJUOAUT UR[)
H@QMEGNQ ugwuﬁm %@ @@UU@ mgompmﬁo .ﬁou@ N@@QM &Eﬁﬁpﬁ@uﬁ& H@QMEQNQ pﬁ@aﬁ& \m@ U@ﬁ@ﬁ mﬁoﬁdﬁu AONQ U@ﬁ@owh mﬁoﬁdﬁo ‘IRA .Q@Q
AYIOL19907H jrodsuedy, v AOLI09[H j1odsuedy, v 103094
(9) (¢) 2 (€) (2) (1)

A[uo spuponddp Aq opewt suoelIr) )¢ dqry,

76



'S109J0 POXI [JUOW PU® ‘S}09Je Paxy I10309s-£q-1eak-£q-001jj0 juayed opnpoul pue pooyI[eyl] wnwixew-opnasd U0sSIOJ A PaIeUWIISS 9Ie SUWN[0d [y
(7 pue T suunjoo) yjoq ur ‘(9 pur ¢ summ[od) 10309s uorponpord £11011909[6 ‘(f puR g SUWN[OD) 10409 S[IOWOINE 9] UT $9130[0UYDI) ALIIP IO URS[D PIIID 9ARY YOIYm sjuajed sapn[oul
odures ayJ, (9 0} § swnjod) [ead] juerdde oY) je SUOIIR)ID-J[oS SUIPN[IXS SuOIYeId Jo ojdures oY) UO Xopul Yueyjuajed oy} pue (g o} T suwnjod) [pad] juesridde oy} Je suoIIeIID
-J[9S 10] PaIO9II0d ‘POATSdDI SUOIIRIID JO IoquInu [ej0) 8y SI o[qerres juapuadep o, (100°0>d sxs ‘T00>d 44 ‘G0°0>d 4) sosoyjuared ur sonfea-d ‘sI0I1I0 pIepuels 1SNqOY :SIION

GEV'IIC 11291 clL8'1ey ete s TT1L°29T1 TL8'1ey SUOTYRAINS( Q)
(€10°0) (€10°0) (010°0) (220°0) (610°0) (910°0)
*xx391°0 +xkxGVG 0 +xx 1060 *xx88¢°0 +xx07G°0 *xx947°0 pajuerd)
(610°0) (610°0) (€10°0) (0£0°0) (6£0°0) (¥20°0)
++GET0 w4x80T°0  sxxPIT0 V120 #5+090°0  xx4813°0 orpeLdy,
(200°0) (€00°0) (200°0) (€00°0) (€00°0) (€00°0)
+%+0€0°0 +4+8€0°0  5x4£€0°0 +%x8€0°0 wx970°0 ks P00 oz1s A[rureq
(¥00°0) (¥00°0) (€00°0) (L00°0) (L00°0) (200°0)
._HOOO NOOO ﬂDOOO ***Nﬁool ***Omcol ***OﬁOO| mpﬁ@uﬁ& mo H@@ESZ
(010°0) (110°0) (L00°0) (910°0) (220°0) (€10°0)
+%+GGT°0 w4x19T°0 5547910 +%+0G€°0 xx1CE°0 44489270 TOT)USAUT RS
[oAo] guedridde e SuoIjeIID-}[os I0J PAJISLIOD XopUl yureyjuajed  [oa9] juedijdde je SUOI)RIIO-J[9S I0] PIJISLIOD PIAISIAI SUOIYRILY) ‘rea da(g
AY1011900TH jrodsuedy, v AY10119007H jrodsuedy, v 1030904
(9) (¢) §2) (€) (2) (1)

[0A9] yuedr[dde Je SuOIyR)ID-J[0S SUIPN[OXH ¢ S[(R],

7



Table 39: Additional controls

(1) (2) (3) (4) (5) (6)
Dep. var. Citations received
Clean invention 0.404%** 0.432%** 0.427%** 0.432%** 0.428%** 0.432%**
(0.015) (0.014)  (0.015)  (0.014) (0.014) (0.015)
Number of patents -0.032***  -0.020%**  -0.005*** -0.049***  _0.057*** -0.013
(0.005)  (0.008)  (0.006)  (0.007)  (0.007) (0.007)
Family size 0.033*** 0.065%** 0.061*** 0.062%** 0.056%** 0.013***
(0.002)  (0.004)  (0.003)  (0.003)  (0.004) (0.003)
Triadic 0.239%** 0.464%** 0.281%** 0.401%** 0.447%** 0.229%**
(0.012)  (0.042)  (0.022)  (0.029)  (0.034)  (0.019)
Granted 0.750%** 0.938*** 0.922%** 0.894*** 0.941%** 0.855%**
(0.025)  (0.000)  (0.028)  (0.030)  (0.030) (0.028)
# claims 0.010%**
(0.0004)
#1PC 3 0.103%** 0.092%**
(0.013) (0.005)
# inventors 0.321%%* 0.341%%*
(0.014) (0.167)
# citations made 0.018%** 0.017%**
(0.001) (0.001)
# applicants 0.009***  -0.008%**
(0.0010)  (0.001)
Obs. 175,298 1,161,160 865,607 1,161,160 1,161,160

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The dependent variable
is the total number of citations received, excluding self-citations by the inventor (columns 1 to 3) and the Paten-
tRank index on the sample of citations excluding self-citations by the inventor (colums 4 to 6). The sample includes
clean or dirty technologies in the automobile and electricity production sectors. All columns are estimated by Pois-
son pseudo-maximum likelihood and include patent office-by-year-by-sector fixed effects, and month fixed effects.
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add the number of inventors and still find that clean inventions are

however does not appear to downplay the clean advantage in terms of spillovers. Finally, we

In Table 41 we look at different subsamples. We start by restricting the sample to patents
that received at least one citation. Given that a large fraction of patents (69%) are never

cited, spillovers from clean technologies might be biased if there are disproportionately more



Table 40: Additional controls

(1) (2) (3) (4) (5) (6)

Dep. var. PatentRank index

Clean invention 0.230%%  (0.205%FF  0.204%FF  .204%F*  (.201FFF  (.208%%*
(0.009)  (0.014)  (0.013) (0.014) (0.014) (0.013)

Number of patents ~ -0.0002  -0.005  -0.022%%* _0.027%%*  _0.031%**  0.003%**
(0.002)  (0.005)  (0.004) (0.005) (0.005) (0.004)
Family size 0.021%%%  0.061%FF  0.023%%%  0.059%¥*  0.058%%%  0.023%%*
(0.001)  (0.003)  (0.002) (0.003) (0.003) (0.002)
Triadic 0.120%%%  0.244%F% 0 138%FF . 193%FF  0.236%F%  0.095%**
(0.005)  (0.030)  (0.017) (0.022) (0.026) (0.014)
Granted 0.3367%%%  0.484%FF  QBITHF  0462FFF  0.488%FFF  0.475FF*

(0.016) (0.021) (0.018) (0.019) (0.021) (0.017)
# claims 0.004***

(0.0002)
# IPC 3 0.077%** 0.062%**
(0.007) (0.003)
# inventors 0.216*** 0.238***
(0.009) (0.010)
# citations made 0.014*** 0.012%**
(0.001) (0.001)
# applicants 0.006*** -0.008
(0.002)  (0.001)

Obs. 175,298 1,161,160 865,607 1,161,160 1,161,160

Notes: Robust standard errors, p-values in parentheses (¥ p<0.05, ** p<0.01, *** p<0.001). The dependent
variable is the PatentRank index on the sample of citations received, excluding self-citations by the inventor. The
sample includes clean or dirty technologies in the automobile and electricity production sectors. All columns are
estimated by Poisson pseudo-maximum likelihood and include patent office-by-year-by-sector fixed effects, and
month fixed effects
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Table 41: Different subsamples

(1) (2) 3) (4)
Sample Nnozero triadic US patent office  EU patent office
Dep. var. Citations received
Clean invention 0.321*** 0.387*** 0.429%** 0.491%**
(0.012) (0.019) (0.019) (0.050)
Number of patents -0.045%**  -0.041*** -0.054*** -0.010
(0.005) (0.008) (0.009) (0.019)
Family size 0.056*** 0.021%** 0.049%** 0.048%***
(0.002) (0.002) (0.003) (0.011)
Triadic 0.365*** 0.134%** 0.447%**
(0.022) (0.021) (0.048)
Granted 0.625*** 0.663*** 0.957*** 0.641%+*
(0.025) (0.045) (0.069) (0.045)
Observations 514,865 45,129 134,664 10,248

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, excluding self-citations by the inventor The
sample includes (i) patents that receive at least one citation in column 1; (ii) triadic patents (filed at
EPO, USPTO and JPO) in column 2; (iii) patents first filed in the US patent office only in column
3; (iv) patents first filed in the European patent office only in column 4. All columns are estimated
by Poisson pseudo-maximum likelihood and include patent office-by-year-by-sector fixed effects, and

month fixed effects.

dirty patents that are never cited. We also look at highly valuable inventions by focusing
on triadic patents (i.e., patents that have been filed at the USPTO, the EPO and the Japan
Patent Office, see above). This can give us some insight into whether the clean advantage
is still present for the upper part of the distribution. In addition, we restrict our sample to

patents filed at the US patent office and at the European Patent Office. None of these tests

modify our main finding (coefficient on clean between 0.319*** and 0.469%***).
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Table 42: Different subsamples

(1) (2) (3) (4)
Sample NoZero triadic US patent office  EU patent office
Dep. var. PatentRank index
Clean invention 0.173%**  (0.212%** 0.254%** 0.340%**
(0.008) (0.009) (0.014) (0.032)
Number of patents -0.013*** -0.003 -0.016%** -0.007
(0.002) (0.003) (0.004) (0.008)
Family size 0.039%** 0.007*** 0.031%** 0.038***
(0.002) (0.001) (0.002) (0.003)
Triadic 0.164%** 0.070%** 0.234%**
(0.013) (0.010) (0.023)
Granted 0.249%**  (0.294%** 0.573%** 0.337%**
(0.016) (0.024) (0.040) (0.026)
Observations 514,865 45,129 134,664 10,248

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the PatentRank index on the sample of citations received, corrected for self-
citations by inventors. The sample includes (i) patents that receive at least one citation in column
1; (ii) triadic patents (filed at EPO, USPTO and JPO) in column 2; (iii) patents first filed in the US
patent office only in column 3; (iv) patents first filed in the European patent office only in column 4.
All columns are estimated by Poisson pseudo-maximum likelihood and include patent office-by-year-
by-sector fixed effects, and month fixed effects.
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Firm-level descriptives

Table 43: Descriptive Statistics

’ \ Mean \ Median \ Min Max \ Std. Dev. ‘
Market Value ($M) 3.064 0.204 0.000001 | 512 14.3
Total assets (M) 6.960 0.308 0.0000001 | 2560 64.4
Profits/Losses (M) 0.401 0.027 0 83.4 1.946
Operating revenue 3088484 | 275426.5 | O 4.22e+08 | 1.35e+07
Number of employees 9514.376 | 1261 0 2200000 41489.24
Tobin’s Q 1.173 0.687 0.032 16.338 1.573
R&D stock ($M) 0.239 5251.681 | 0 51 1.638
Patent stock 179.456 | 6.952 0 51,000,000 | 1,376.09
Backward citation stock 1,200.256 | 28.074 0 430,778.7 | 9,608.387
Forward citation stock 771.999 14.624 0 432,158.4 | 7,241.235
R&D stock / Total assets 0.236 0.024 0 209.654 1.920
Patent stock / R&D 0.020 0.001 0 48.808 0.427
Fwd citation stock / Patent stock 4.355 2 0 480 8.146
Bwd citation stock / Patent stock 7.156 4.457 0 137 9.516
Clean bwd citation stock / Patent stock | 0.086 0 0 40.472 0.799
Dirty bwd citation stock / Patent stock | 0.187 0 0 36.507 0.962
Other bwd citation stock / Patent stock | 6.883 4.149 0 137 9.325
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