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1.1 Introduction: Voting Power and Power Indices

Many organizations have systems of governance by voting that are designed to give
different amounts of influence over decision making to different members. For example the joint
stock company gives each shareholder a number of votesin proportion to his or her ownership of
ordinary stock; the shareholder body is designed to be a democratic decision-making group with
each share having equal influence but with individual shareholders having different numbers of
shares to reflect their relative capital contributions. Many international economic organizations
have been designed on a similar principle, each country being entitled to a number of votes based
on itsfinancia contribution, the most prominent examples being the Bretton Woods institutions:
the International Monetary Fund and World Bank. Federal political bodies which use the principle
of weighted voting where the weights reflect populations rather than contributions include the
European Union Council of Ministers and the US Presidential Electoral College, where the

individual states votes are cast as blocs of different sizes.

As general voting systems, considered in the abstract without reference to their different
contexts, these are all formally similar and can be classed as weighted voting games. They contain
considerable analytical interest because, when we consider their practical implications, by studying
all theoretically possible voting outcomes, and how individual members' votes relate to them, then
it turns out that the resulting distribution of power is often different from what the designers
intended. On the other hand, it is almost always assumed, by writers analysing the distribution of
votes, that the power of a member is the same as his or her share of the votes. For example, it is

often the case in discussions of the IMF, that a member with five percent of the votesis described
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as possessing five percent of the voting power, or that the United States with aimost 18 percent of
the votes, thereby has 18 percent of the voting power. Y et the proportion of decisions that may -
at least theoretically - be taken by vote in which the member who has five percent may be pivotal
in determining the outcome may not actually be five percent at al, and the votes of the United
States may in fact be capable of being decisive in more or less than 18 percent of cases. Therefore

it is untrue to claim that their respective shares of the total voting power are 5% and 18%.

A simple example that illustrates the point clearly isthat of a company with three
shareholders, two having 49 percent of the shares each and the third with 2 percent. It is not
useful to describe these figures as shares of the power each has in running the company because if
the decision rule requires a simple majority of more than 50 percent of the votes, then any two
shareholders are required to support amation for it to pass. Any shareholder can win by
combining with one other and therefore the one with 2 percent has exactly the same power as one
with 49 percent. Therefore by considering all possible voting outcomes it becomes clear that each
shareholder has equal power despite the disparity in their votes. Many such examples can be
constructed or found in the real world, in which the distribution of power among members of a
weighted voting body - a member's power being his or her ability to join coalitions of others
which do not have the required majority and make them winning - is not at all the same asthe

distribution of votes.

Another, well known, example is the original Council of the European Economic
Community. Between 1958 and 1972 it had six member countries and used a system of qualified

majority voting that allocated 4 votes each to France, West Germany and Italy, 2 votes each to
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Belgium and the Netherlands and one vote to Luxembourg. From these figures one might assume
that the smaller countries would have a disproportionately large amount of power. For example,
L uxembourg, with 5.88 percent of the votes and less than 0.2 percent of the population, had 25
percent as many votes as West Germany with only 0.57% of its population; Luxembourg had one
vote for 310,000 people while West Germany had one vote for every 13,572,500, suggesting that
Luxemburgers were 43.78 times more powerful than Germans. In fact, however, since the number
of votes required for adecision was fixed at 12, L uxembourg's one vote could never make any
difference: it was impossible for it to add its vote to those of any losing group of other countries
with precisely 11 votes and therefore its formal voting power was precisely zero. Thisisan
extreme case, but areal one, which illustrates the analytical importance of looking at the possible
outcomes of aweighted majority vote, as well as the nominal voting strengths, in considering
voting power. The same point arises aso in the context of the corporation when we study the
power of large stockholders. Obvioudly if there is a mgjority shareholder he or she has al the
voting power and none of the other shareholders has any voting power at all. However, it iswell
known that if the largest shareholder has a very substantial minority holding his or her vote will
often be decisive in a proxy ballot or fully attended company meeting, even to the extent that he
or she could be said to have working control of the corporation, if his or her voting power were
sufficiently large. For example, it isamost universally accepted by writers who have studied
corporate ownership and control that a single 20 percent shareholder faced with many small

shareholdersis very powerful indeed. This power is certainly not reflected in the number of its
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shares and may in fact be very close to that of a majority shareholder. Although necessarily strictly

less than 100 percent, it may be extremely closeto it.

The question has been studied by the use of power indices as measures of the ability of
members to influence voting outcomes. As a branch of co-operative game theory the field of
power indices may be thought to date from the publication of the seminal paper by Shapley and
Shubik in 1954, athough if it is construed more generally than part of game theory, voting power
analysis is much older. However it has failed to achieve wide acceptance due to ambiguity due to
different indices yielding different results for the same data. This has meant that the field has
remained at the frontier for aimost fifty years. See Shapley and Shubik (1954), Banzhaf (1965),
Coleman (1971), Dubey and Shapley (1979), Lucas (1983), Straffin (1994), Owen (1995),
Felsenthal and Machover (1998). Good surveys are provided by Felsenthal and Machover (1998),

Lucas (1983) and Straffin (1994).

This paper is mostly concerned with the computation of the so called classical power
indices, proposed by Shapley and Shubik (1954) and by Banzhaf (1965) — the latter was in fact
originally proposed by Penrose in 1946 in a paper that was for long overlooked - both of which
have been widely applied. (I will give some consideration also to the indices proposed by Coleman
which have certain similarities to the Banzhaf indices but also some important differences.) The
difficulty of computing the indices, especialy when the number of membersislarge, has been a

major factor limiting the use of the technique as a means of studying real institutions. Both indices
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are based on a common idea that a member's power rests on how often he or she can add his or
her votes to those of alosing coalition so that it wins, but they differ in the way that such
coalitions are counted. In consegquence, where both indices have been used to analyse the same
voting body, they have been found to give different results. This has meant that in the absence of
any objective evidence on the actual distribution of power, it has not been possible either to test
the power indices approach or to establish the respective utility of the indices. This question is not
addressed in the present paper; however, see Leech (2002b) for a discussion of it and some

evidence.

! See Felsenthal and Machover (1998) for the history of the measurement of voting power.
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1.2 Power Indices: Notation and Definitions

| consider aweighted majority game of voting in alegidature with n members or players
represented by aset N = {1, 2, . .., n} whose voting weights are wi, Wy, ..., W, . The combined
voting weight of all members of a coalition represented by asubset T, T I N, will be denoted by

the function w(T), where w(T) = é. Wi
iTT

The decision rule is defined in terms of a quota, g, by which a coalition of players
represented by subset T iswinning if w(T) = qand losing if w(T) <g. (It is customary to require
g > w(N)/2 to ensure a unique decision and hence that the voting game is a proper game, athough
thisis not actually essential to the definition of power and the use of power indices — see Coleman
(1971).) The weights and the quota are real numbersin general; although in many applications
and textbook examples they are integers, thisis not essential to the theory, although it may be

relevant to certain methods of computation.

| will sometimes use the notation {q; wi, W, . .., Wy} to represent the voting body. Note
there is one decision rule with one set of weights. In some applicationsit is necessary to
generaise this: for example the system of qualified majority voting in the EU council agreed at
Niceisformally atriple-maority rule in which three conditions must be satisfied in terms of
weighted votes, population and number of member countries. Also in some legislatures different
types of decisions require different majorities — some may require a smple majority, some a
supermajority (for example the IMF and World Bank boards of governors require a 50% majority

for some decisions and a 85% majority for others) — so that power varies according to the kind of
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issue being decided. | am not going into these matters here, since they are complications that are

non-essentia from the point of view of computation.

A power index is an n-vector whose elements measure the respective ability of each player
to determine the outcome of a genera vote. The index for each player is defined in terms of the
relative number of times that player can influence the decision by transferring his or her voting
weight to a coalition which islosing without him but wins with him. Thisis referred to as a swing.
Formally aswing for player i can be defined as a pair of subsets, (T;, T; + {i}) such that T; is

losing, but T; + {i} iswinning. In terms of voting weight, Tiisaswing if g - w; = w(T;) <.

The power index for player i is defined as the relative frequency of swingsfor i with
respect to a coalition model where, in some sense, each possible coalition is treated equally. If
coalitions are regarded as being formed randomly (and equally likely in some sense) then the index
isaprobability. The two indices, however, employ different probability models and are

mathematically distinct.

The Shapley-Shubik index is the probability that i swings (or is"pivota™ in the
terminology of Shapley and Shubik) if al orderings of players are equaly likely. Thus, given a
particular swing for a member, the index is the number of orderings of both the members of the
coalition T; and the players not in T; relative to the number of orderings of the set of all players N:
every reordering is counted separately. The index is the probability of a swing for the player

within this probability model.
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For a given swing for player i, the number of orderings of the members of the subset T;
and its complement (apart from player i), N-T;-{i}, is t!(n-t-1)! wheret isthe number of
members of T; and n is the total number of players, members of N. The total number of swings for

i defined in thisway for this coalition model is é t'(n- t- 1)!. Theindex, f;, isthisnumber asa

T

proportion of the number of orderings of all playersin N,

t(n- t- 1!
n! '

f.=a (1)

If all orderings are equiprobable, it is the probability of a swing.

The Banzhaf index, on the other hand, treats al coalitions T; as equiprobable, players
being arranged in no particular order. A member's power index is then the number of swings
expressed as a fraction of either the total number of coalitions (measuring the probability of a
swing), or of the total number of swingsfor al players (measuring the player’ s relative capacity to

swing).

The number of swingsforiish; = A 1. The two versions of the index are defined by

Ti
expressing this number over different denominators. The Non-Normalized Banzhaf index (or
Banzhaf Swing Probability), bi', uses the number of coalitions which do not includei , 2™, the

number of subsets of N—{i}, as denominator, and therefore it can be written as:

b'= g 1/2*% = hy/2"™* (2)

T.
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The Normalized Banzhaf Index, b;, uses the total number of swingsfor all players as the

denominator to measure relative voting power among players:

b = hi Sh;, (3)

or dternatively, b; = b;'/ Soy (Therefore in the discussion of computation of the Banzhaf index it

isonly necessary to consider the details of computing the swing probability version, (2), or find

the numbers of swings. Both approaches are followed.)

Both the normalized indices sum to unity over players: af =1 andd@ b, =1

The Coleman indices require, in addition, the number of winning coalitions, w = a 1, for
S

al S1 N wherew(S) =q. Thisimposes an extra computing requirement but enables us to
calculate the three indices:

. w
Power of the voting body to Act: A= > 4.
Power of member i to Prevent Action:  PPA, :E (5)
W
Power of member i to Initiate Action:  PIA, = znhi (6.)
- W
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Neither (5) nor (6) have meaningful normalized versions, since they are both linear
transformations of b;' and therefore normalizing would reduce them both to b;. It is unnecessary
to calculate the Coleman indices when the game is one with a simple mgjority since then (5) and

(6) are equal to (2).

10



Dennis Leech

1.3 The Uses of Power Indices

A power index provides a method of finding the a priori distribution of voting power in a
given voting body, that is, how much influence each member has, either absolutely or relatively to
the other players. It isimportant to understand the limitations of the approach. It does not provide
adescription of the disposition of actual power. That would depend on the preferences of the
members and the range of issues over which decisions are taken, which would introduce the need
to give different coditions differently in the measure of power. A priori voting power isan
element in actua power and therefore a useful analysis, based on idealized assumptions, that is
informative but limited, rather in the same way as in many other areas of economics. The model of
perfect competition does not provide a full account of any real industry but is nevertheless a
useful analytical tool. Another exampleis a price index which uses fixed weights: it isatruism
that this givesis an inaccurate measure of inflation, but since thisiswell understood and no other
index is necessarily better, that does not prevent its widespread use in the real world. There are
many other smilar examples. A priori voting power analysisis useful because it tells us about the

power implications of the legidature itsalf in a pure sense.

Power indices have an important use in the design of voting systems. When a constitution
or ruleis being framed, involving weighted voting, it is necessary to determine the quota and the
distribution of weights. The practice of doing thisis not well developed (asis evident from the
problems surrounding the Nice Intergovernmental Council) and a priori power indices are a

potentially useful technique to help in this. The framers of the rule can state explicitly what the

11
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powers of the members ought to be — for example the members of the EU might agree that the
weights should be such as to give equal power to all citizens of each member state - and then the
weights and quota can be chosen so that the power indices correspond. Thus the computational
problem isinverted: the power indices are the givens and the weights are the outputs to be
determined. This is a much more formidable computational problem than finding the power
indices, and our understanding of it is not yet well developed. Thisis sometimes referred to in the

context of power indices as “the inverse problem”.

The case for using power indices to design decision making systems is much less open to
guestion than their use in measuring actual power, because the issue is normative rather than
positive. In designing a voting system with given properties, the question to be answered is what
the weights and quota should be, rather than what the power implications of a particular
institutional arrangement are. In this case it is not appropriate to take account of preferences and
the likelihood of different coalitions being formed since such informal information would not
normally be built into aformal rule or constitution. A voting system for an expanding European
Union would need to treat each member state formally as a sovereign and independent actor free
to determine its own policies and alliances. Therefore a priori voting power, based on treating
each voting coalition as equally likely, would be a natural approach. | discuss some aspects of this

computation problem below.

12
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2.1 Computation Methods for Finite Games

Several methods are available to compute the indices, and they are described in turn in the
following sections. The different algorithms vary alot in their approach and in their computing
requirements. None is universally ideal and for each its advantages and limitations are considered.
Two dimensions of algorithmic complexity are of supreme importance: running time (time
complexity) and memory requirements (space complexity). Other dimensions of the complexity of
an algorithm include its ease of implementation, its input requirements, and so on. It isaso
necessary to consider the suitability of the agorithm for a particular use, in particular the “inverse

problem”.

The direct application of the definitions, embodied in equations (1) to (6), that | have
called the Direct Enumeration method described in the next section. It is the simplest algorithm
but not suitable for games with a large number of players (greater than about 30). For larger

games other methods have had to be devised. These are described in the sections below as

follows.
Section Method
2.2 Direct Enumeration.
2.3 Monte Carlo simulation due to Mann and Shapley (1960).
24 Generating Functions, due to Mann and Shapley (1962).

13
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25 Multilinear Extensions Approximation methods, due to Owen (1972, 19754).

2.6 Modified MLE Approximation, proposed in Leech (2002a).

14
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2.2 Direct Enumeration

The smplest method is to compute the indices directly from their definitions. This requires
the use of an agorithm to find each subset of players exactly once (via a search which finds each
corner of a hypercube exactly once, known as a Hamilton walk; for example that in Nijenhuis and

Wilf (1983) that | have used.).
For each (proper) subset it finds al swings and updates expressions (1) and (2) repeatedly.
That is, foreach S| N, it evaluatesw(S) = é_ w;, which requires n operations, summing over
iT s
al n players taking account of whether each is amember of S or not.
For eachi = 1, nit testsfor a swing and updates as follows.
If il N-Sand q—w; =w(S)<qthen
setfi=f;+s(n-s-1)!/n! (for the Shapley-Shubik index), and
set h; = h; + 1and also h = h + 1 (for the Banzhaf index). (Alternatively by'=b;'+2"".)
If w(S) = qthen

set w=w+1 (for the Coleman indices).

Then move to the next subset S and repeat. When all subsets have been searched the

indices (1) to (6) are found.

15
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The number of subsetsof N is2". ? ? erefore,? ? valuating the indices for each player has
time complexity of order 2" since computation time doubles each time n increases by 1. Despite
this severe limitation, however, experience with it showsthat it is a practical method to analyse
QMYV in the European Council with up to 27 members. (It has been used in Felsenthal and
Machover (2001), Leech (forthcoming) and others.). However it isnot at all feasible for

something like the States game in the US presidential Electoral College which has 51 members.

One advantage of this direct approach isthat it can be applied not only to evaluating
power indices for smple games but it can also easily be adapted to find Shapley values, Banzhaf
values (and other value concepts for cooperative games which associate a characteristic function

to each coalition).

The advantages of Direct Enumeration are its simplicity, its generality in that it can be
used for any problem, that its results are exact and its modest storage needs. The disadvantage is

its exponential time complexity that severely limits its application to small-n games.

16
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2.3 Monte Carlo Simulation

The earliest method proposed for computing power indices for large games was Monte
Carlo ssimulation, described in Mann and Shapley (1960). The impetus for this was their need to
compute Shapley-Shubik indices for the US presidential electoral college states game (which then

had n = 50).

from arandom sample of coalitions. Suppose a codlition, T, is selected by randomly sampling the
players. Define arandom variable for each player, X, equal to 1 if it isaswing for player i, and O

if itisnot. Then,

E(X) = by' and E(

th(n- 1- t)! . . »
0 X)=1i, , wheret isthe number of playersin the codlition,

and the corresponding variances are

t(n- 1- t)!

Var(X)=by (1-b) and Var(=—

X) =f i(l-f i)-

Now take a sequence of m independent drawings, X, . . ., Xm, With corresponding coalition
S-ZGS, ...,

The power indices are estimated by

~ & tl(n-1-t)!
f o lgueeroy

1
T m nl e i m J
Fl =1

17
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with variances

Var(fi)z%'fi) and Va(ﬁi'):%_bi), forali=1,...,n

The variances approach zero as m increases without limit.

This description is basic and ignores important details of how the samples are to be taken,
which have a great impact on the method's effectiveness. (It is what Mann and Shapley call the
Type 0 method.) Efficiency improvements are possible allowing better accuracy with given
computing time. Thereis alarge literature on simulation methods which | am not going to discuss

here.

The advantages of this approach are its simplicity, its modest data storage requirements.
Its disadvantage is that it is not exact. However the approximation errors can be substantially
reduced with the use of greater computing power to increase the sample sizes used. Also the
much greater use that is made of simulation methods generally now suggestsit is a better method

today than it wasin 1960.

18
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2.4 Generating Functions

The method of generating functions was first proposed by Mann and Shapley in
1962 from a suggestion by David G. Cantor. They used it to find the Shapley-Shubik indices
exactly for the problem they had previously solved approximately by Monte Carlo smulation, the

States game with n=50. Despite this it has not been widely used in applied studies subsequently.

The method of generating functionsis an exact procedure avoiding the problem of
exponentia time complexity that limits the direct enumeration method and therefore it can be
applied to larger games. However it is not without limitations. Its storage requirements can be
very substantial, both in terms of integer sizes and array dimensions. (Thus this method trades off
one form of complexity for another.) It also has the limitation (not shared by any other of the

algorithms) that it can only be applied to games with integer weights and quota.

Accounts of the method can be found in Brams and Affuso (1976), Lucas (1983) and
Lambert (1988). Lambert also gave alisting of a computer program and applied it to the US
Electoral College. There are several implementations of it on the on-line web sites referred to
below. The study by Brams and Affuso was the first to apply it to the Banzhaf and Coleman

indices. A recent contribution is that by Bilbao et al. (2000).

19
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Computing the Banzhaf and Coleman Indices using Generating Functions

Consider first the Banzhaf and Coleman indices. We must find the number of swings for
each member and the number of winning coalitions. This requires first finding the number of

codlitions, S, S1 N, of each size of w(S).

The number of possible occurrences of coalitions of each size can be found by using the

generating function:

F(x)=0O[L+x") (7)

j=

where x is avariable that has no significance of its own in the sense of measuring something, but

whose role is to define the coefficients, which have an important meaning.
Equation (7) is apolynomial of degree w(N), which may be written in generd as,
o w(N) i
i(x)=a _, ax (8)

whose coefficients g are equal to the number of coalitions with total weight equal toj. That is,

is equal to the number of subsets S, such that w(S) =j, forj=0, 1, 2, ..., w(N).

Obviously &= 1 aways, because there is only one subset with w(S) =0, the empty set.

Henceforth, | will use the notation w to represent w(N) for brevity. Now the question arises of

how to evaluate the coefficientsin (8) from (7).

20
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The coefficients g can be found numerically by building up the generating function (7) by

successive multiplications. This givesriseto asmplerule,

Thus, '(x)= 6 @+x"),
=
= [l+x"‘"] 6(1+ x"“),
2
Y
= [1+ X" +x "2 +xW1+W2] O@a+x"), et
j=3

L et the successive polynomials inside the square brackets be denoted, in general,

1+af% +a% + .. +a"x"

at ther" stage, wherer =1, 2, .., n. Obviously, al™ = a forall j. Then f (x) can bebilt up

recursively asfollows.
. -
! (x):é_+a(11)x+...+ a&)xwa O (1+ xW‘)
j=2

A

§+a§2)x +o+ asf)xwg O (1+ x"‘”)

F3

1+ &%+ ... +a"x".

21
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Therefore, these coefficients can be found from this by the following recursion. Let
a” =0foral j 0 (both positive and negative values of j) and with a =1. The coefficients are

updated according to the rule:
-1 -1

forj =w,...,s, , and a” =a"? otherwise, where s, =w({1 2,3 ..., r}). After niterations, this

gives the required coefficients, g, equal to the number of coalitions with weight j.

There is no need to store two arrays containing both the a” and & values; one array, &,

can be used if the updating rule is applied in reverse order. This can be amgjor consideration
when w is very large. The storage requirements are less if one is computing the Banzhaf indices
only, and not the Coleman indices, because only the swings are needed, and therefore the

dimension of ais at most g. However the Coleman indices require the number of winning

[o]

w
coditions, w=a - that necessitates finding a; to a, .

The coefficients g can be used to find the number of swings for each member, i, which

depends also on the member’ s weight, w;. This can be found by finding, for each j, such that g —

w; <j <, the number, C;, of coditions not containing i , then summing over j.

22
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The coefficients ¢ can be obtained by dividing the generating function (8) by the factor

@@+ x"). Thus, writing
f(x) =@+cx+ex+.+cx J+x")=1+ax+..a,x",
where v=w - w,, givestherule:

C, =3g-¢., for j=1,2,...,V, (10.)

where a coefficient with a negative subscript is zero.

Then the number of swings for member i, h,, is

This process is then repeated for each member i and the indices are calculated in the usua way.

23
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Example Voting Body { 9,11 234, 6},
The generating function is:
()= @+ e )+ Jor x Jo+ x Ju+ x7)

Thisis built up recursively as follows.

Step # Function
0 1
...... 1+ x
2 1+ 2X + X°
3 1+ 2X + 2x% + 2x° + x*
4 1+2X+2Xx2 +3x3 +3x* +2x° +2x° + X’
5 1+ 2X+ 2X% +3X% +4x* +4x° +4x° +4x7 +3x% +2x° + 2x° + x*
6 1+ 2X + 2x% +3X% + 4x* + 4x> +5x° + 6X’ +5x® +5%° + 6X"°

+ 55X+ 4X2 +4xE +3xM + 2X° + 2% + XV

Inthisexamplen=6,q=9, w=17.

Therule (9) isthen:

a.Er) =a.Er-l) + (r- )]

—w, !

r=1..,6 j=1..17

whose operation can be seen from the following table

24
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Table 1. The evolution of the array a=a™

0

_‘
I

OO (NO|U|AR|WINF|O E

=
NS

=
N

=
w

l_\
>

=
(6]

=
D

O|O|O|0|0|0|O|O|O|0|0|0|O0|O|0|0|0|F

O|OO|0|0|0|O|OC|O|0|0|0|O|O|O|O0|F |- Ll ]
O|OO0|0|0|O|OC|O|0|0 |0 |O(OC(O|F|N|F N
O|OO0O|0|0|O|OC(O|0|0|O|O(FPININ|IN|F N | W
O|OOO|0|O|OCCIOO|IFRPININIW(WIN|IN|F Wb
OO OIOC|I0|IO|IFRININW|IA|A|ARRWININ|F O
RININW|A OO OO IBRIWININ(F [e2R1ep}

=
~

The number of winning coditions W = 5+6+5+4+4+3+2+2+1 = 32.
The number of swings for each member, i, is h. . Thisis found from the number of coalitions with
weight j which do not includei, c;, obtained from (10): ¢, =g - ¢, ,,,

These values arein Table 2.
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Table 2. Number of swingsfor eachi andj.

The table shows the c coefficients. Swings are in bold

i =1 2 3 4 5 6
i 3, w=|1 1 2 3 4 6
0 1 1 1 1 1 1 1
1 2 1 1 2 2 2 2
2 2 1 1 1 2 2 2
3 3 2 2 1 2 3 3
4 4 2 2 3 2 3 4
5 4 2 2 3 2 2 4
6 5 3 3 2 3 3 4
7 6 3 3 3 4 3 4
8 5 2 2 3 3 2 3
9 5 3 3 2 2 3 2
10 6 3 3 3 2 3 2
11 5 2 2 3 2 2 1
12 4 2 2 1 2 1 0
13 4 2 2 1 2 1 0
14 3 1 1 2 1 0 0
15 2 1 1 1 0 0 0
16 2 1 1 0 0 0 0
17 1 0 0 0 0 0 0
h ah=52]2 2 6 10 10 22
by’ 0.0625 |0.0625 |0.1875 |0.3125 |0.3125 |0.6875
b, 0.003846 | 0.03846 | 0.11538 | 0.19231 | 0.19231 | 0.42308

w=32; PTA =32/64=0.5; PPA; = PIA; = by
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Computing the Shapley-Shubik Index using Generating Functions

The index is computed using the generating function,
A W
'(x)=0 (1+ X 'y) (11)
Fl
which has two arguments, x and y, to allow for the fact that this index requires the size of each

coalition in terms both of number of players and number of votes.

This function (11) can be written in genera as,

g & »
(xy)=aa dijJyk

F0k=0

where di, is the number of coalitions with k members who have combined voting weight j. The

(w+1)(n+1) matrix D (= D) is computed iteratively by the rule, for D,

N _ 1) (r-1)
di, = dy” + diy ks

where, as before, a negative subscript implies that the coefficient is zero.

The index for player i isfound by calculating the number of swings with k members with

votes equal to |, G, using the rule, derived in the same way as before,

(12.)
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Then the index (1) is obtained from the expression,

Blki(n- 1- k) %*
i = JK0-1-K) ac,
i n! ]

k=0 i=9-w;

Then (12) and (13) are repeated for each player.
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Example {4, 1,2, 3} n=3, g=4.

Table 3. The Build up of the Array D™ =D

r=1 r=2 r=3

The indices are obtained from D by first finding the C matrices using (12) which are shown in
Table 4.

From the table, and expression (13), these are:
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17 1
=1 = =
3() 6

|
Doy =

|
Bi+1+0+2%0+0+1) =
3 3

ol
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Table 4 The C matrices for each player
Swingsin bold

i=1 i=2 i=3

The method of Generating Functions, whether the version for the Banzhaf (and Coleman)
or for the Shapley-Shubik indices, is efficient in terms of computing time. Its time complexity is
linear in n and therefore it is a feasible method for games where the number of playersislarger

than can be handled by direct enumeration. However it is very demanding in storage which may
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limit its use for large games and perhaps it should be regarded as an appropriate method for small

and medium sized games (as Lucas (1983) suggested).

It makes substantial storage demands in two ways. First it requires alarge array to store
the frequencies of the coalitions of different sizes. For the Banzhaf indices a one-dimensional
array, a, of size q (and for the Coleman indices this becomes w+1), and for the Shapley-Shubik
indices atwo-dimensional array, D, of size (gq+1)(n+1). This can be a significant determinant of
complexity when the weights are large integers. For example the IMF board of governors (studied
in Leech (2002c)) has n=178, w = 2,118,076 and q = 1,059,039 for ordinary decisions or

0=1,800,365 for decisions requiring a special majority of 85% of the voting weight.

Secondly, some of the integers can become very large. The number of coalitions of sizej is
of the order of 2" - that is, O(2") - and the number of swingsis of O(2""). This means that when
nislarge some of the integers, including the elements of the arrays, can be of this order of
magnitude. For the IMF this means the swings are integers of the order of 2'”". This far exceeds
the maximum size of integer that 32- bit computers can handle with total accuracy. However
neither of these problems is insurmountable in this particular case, given modern computing

power.

The storage requirement are likely to affect the algorithm's suitability for the "inverse
problem" of finding the appropriate weights given the power indices. This procedure requires
iteratively updating the weights and recomputing the indices each time and comparing them with

their target values to a chosen accuracy. Thisin turn means that the weights must be in units that
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make this possible. Therefore if they are constrained to being integers, and we seek maximum
accuracy, some of them must be very large. This problem will increase the more the inequality

between the desired powers.
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2.5 Multilinear Extensions Approximation Algorithms

Owen introduced methods for large games based on the multilinear extension of the game
and approximation methods which use the central limit theorem to get approximations to
expressions (1) and (2). The key references are Owen (1972, 1975a). | will describe the approach
to the Shapley-Shubik and Banzhaf indices; its application to find the Coleman indicesis

straightforward.

Expression (1) for the Shapley-Shubik index can be rewritten by noting that the term

ingde the summation is a beta function:

tHn-t- 1) _

B(t+1, n-t) = o

OX'(L- 0™ dx (14)

The integrand on the RHS of (14), x'(1-x)™"*, can be regarded as the probability that the (random)
subset T; appears, when x is the probability that any member joins T; , assumed constant and

independent for al playersj,j | N-{i}.

Summing this expression over all swings gives the probability of aswing for i. Let us call
this probability fi(x):

i) =8 xaxm (15.)

Integrating x out of (15) gives the Shapley-Shubik index, because, substituting (14) into

(1) gives:

1
\

1
fi=a ogx'@- x""tdx = A X(2-x)"™] dx
?: Qx(1-x) Q [?7 (I-x)"]
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1
\

= Q fi(x) dx . (16.)

Expression (15) is equal to the Banzhaf index when x=1/2.

Expression (15) is the multilinear extension of the game and it can be used to compute the
indices for small n games. But it means evaluating a function whose size doubles every time a new
player is added. Thus this method, too, like direct enumeration, suffers from exponential time
complexity. Widgren (1994) reports that the exact multilinear extensions approach did not prove
computationally feasible for a game with 19 members and Owen’s MLE approximation method

had to be used instead.

We can evaluate f; approximately using a suitable approximation for the probability fi(x).
In large games with many small weights, and no very large weights, this can be done with

reasonable accuracy using suitable probabilistic voting assumptions and the normal distribution.

The probability of aswing fi(x) can be approximated using the following probabilistic-
voting model. Assuming each player j ? i votes the same way asi with probability x,
independently of the others, defines arandom variable, v; with the following dichotomous
distribution:
Pr(vi=w;) =X, Pr(v;=0) =1-x, Pr(v; ?w;andv;?0)=0.
The random variable v; can be interpreted as the number of votes cast by player |, at random, on
the same side as those of player i. Itsfirst two moments are:

E(v;) = xw;, Var(v) = x(1-x)w;?, al j.
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The total number of votes cast by players| in the same way as that of player i isarandom variable

Vi(x) = é_ v; . Itis useful to define a sum-of-squares function: let this be h(T) = é_ w2,
iTN-{@ i1 T

Then vi(x) has an approximate normal distribution with moments:
E(vi(x)) = xw(N-{i}) = m(x), say, and
Var(vi(x)) = x(1-x) h(N-{i}) = si(x).
Then the required probability,

fi(x) = Prlg-w; = vi(x) <d, (17)

can be obtained approximately using the normal distribution function, F (.) by evaluating the
expression:

Q' rri(x) Q' rri(x)' Wi
s ) TS0 )

fix) =F( (18.)

The Shapley-Shubik index in (16) is approximated by numerically integrating out x in (18)
using a quadrature routine (such as Patterson (1968) which | have used). The Banzhaf index is

obtained by setting x = 0.5 in (18), since then (15), for which (18) is an approximation, reduces to

).

These methods have linear complexity. The calculations for the Shapley-Shubik index and
the Non-Normalised Banzhaf index for a player depend on the number of playersn only in the
data input and calculation of the statistics w(N) and h(N) (which need only be done once since

they are common to all players) because neither (18) nor its numerical integral (16) depend on n.
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The Normalised Banzhaf indices require the normalizing constant which necessitates that all n

indices are found.

These methods for both indices have been used in a number of studies, for example

Owen (1975a, 1975b), Leech (1988, 1992), Widgren (1994) and others. But their

accuracy depends on the validity of the normal approximation. In some real world weighted
voting bodies the approximation is not good and consequent computation errors may be
substantial because of afailure of the central limit theorem due to concentration of the voting
weightsin the hands of afew. Examples of this have recently been reported by Leech (2002a) and

Widgren (2000).
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2.6 Modified MLE Approximation for Large Finite Games

For games where n istoo large for exact methods to be feasible, and where the
distribution of weightsis highly skewed, we can combine the essential features of both the Direct
Enumeration and Multilinear Extensions A pproximation approaches. The genera procedureis as

follows.

The players are ordered by their weight representing their respective number of votes, so
that
w; = w4 for all i. The players are divided into two subsets. major players with the largest weight,
M ={1,2,.. ,m} and minor playersN - M. The value of m hereis chosen for computational
convenience, along atradeoff between accuracy and efficiency. A genera rule would beto

choose m as large as possible while computing time is not too great.

The agorithm searches all subsets of M. Given a particular subset, Si M, it then
evaluates the approximate conditional swing probability for each player making Owen’s standard
assumptions about random voting by minor players only, conditional on S. The probability of the
swing is then obtained as the product of the probability of the formation of S, by random voting
by major players, and that of the conditional swing. The index is obtained by summing these joint
probabilities over al the subsets. There are two cases to consider: (1) player i isamajor player,

i1 M;(2)iisa minor player,il N- M.
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(1) Major Players

It is necessary to search over all subsets of M which do not include player i; any subset of
which i isamember cannnot define a swing and the swing probability associated with it is
definitionally zero. For each such subset consider the probability of its forming and the probability

of itsbeing a swing for i.

Suppose Sisasubset of M - {i}. We let the swing probability be fi(x) as before. This can

be written as:

fi(x) = Pr(swing for i) = é_ Pr(S)Pr(swing for i|S)

Defining the conditiona probability of a swing given S as the function gi(S, x), and the probability

of selecting S randomly by the function p(s, m-1, x), we can write:

fi) =a ps m-1,x)g(S, x).

The first factor inside the summation is;
p(s, m-1, x) = x(1-x)™*,
To find the second factor, define the random variable:

Vi) = a v,

iTN-M
where v, is as before, to represent the random number of votes cast by the minor players.
So, E(vi(X)) = xw(N-M) = m(x),
and Var(vi(x)) = x(1-x)h(N-M) = s;(x)>.

Using these moments and the normal approximation to the distribution of vi(x), we can obtain the
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required probability as

6i(S, x) = Prlq - w(S) -wi = vi(x) <q - w(S)]

= F(q- Wész);)rn(x)) _ F(q- W(S)S- (\:\(/)| - rri(X) ) (19)

Therefore, we can write

fi) = & x(0™g(S x). (20.)

st M-{i}

The required index is then:

f=Q f0d=q [ & ™" g(S x]dx

st M-{i}

= & § XS N 1)

si M-{i}
which can be found by searching over all subsets of M-{i}, integrating out x by numerical
quadrature at each subset then summing. The Banzhaf index b'; is obtained from (20) on setting

x=0.5 instead of integrating it out, then summing to give b’ = f;(0.5).

The summation in expression (20) above is over all subsets of M-{i}, but it is clear that
operationaly we can search over all subsets of M since any set which includesi has a zero
probability of aswing for i. Writing g(S,x) = 0 for al Swherei | S, and as expression (19)
whereil Sthen we can rewrite (20) and (21) as.

fi) =& x(@)™"g(S, x), (22.)

sl M

40



Dennis Leech

f= 8§ xW™g(S N, (23)
Si M

and the Banzhaf index

b'= & 0.5™g(S,0.5) = f,(0.5). (24.)

Sl M
It is therefore possible to compute the indices for both major and minor playersin asingle search

over the subsets of M.

(2) Minor Players

Now the computation of the indices for the smaller players, i | N-M, isdescribed. The
subset S can now be considered to be any subset of M. Since we are now treating the votes of all
m major players as random (not just m-1 of them), the probability of the subset Sis:

Pr(S) = p(s, m, X) = x(1-x)™".
The behavior of the minor players other than i is described by arandom variable

yi(x) = a v; which has an approximate normal distribution with moments:
iT N- M-{i}

m(x) = xw(N-M-{i})
and si(X)* = x(1-x)h(N-M-{i}).
Hence we can evaluate the conditional swing probability gi(S, x) which now can be written as
9IS, x) = Prlg - w(S) - wi = yi(x) < q - w(S)],
approximately by the normal probability in expression (19) after making the required notational
substitutions.

Writing
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fi)=a p(sm, x)g(S, x), (25.)

Si M
the Shapley-Shubik index is found again by quadrature, then summing,

=8 § P mx) oS x) dx (26)

and the Banzhaf index by setting x=0.5, then summing,

b'= & 0.5"g(S,0.5) = f,(0.5). (27)

sl M

within the same subset search as before, ST M.

These agorithms require a search over all subsets S of M, in order to find (20), therefore
the calculations have to be repeated 2™ times. Expression (19) does not depend on either m or n
once the statistics w(N-M) and h(N-M) have been evaluated, requiring O(n) operations, and these

are common to all players. Therefore the indices have complexity exponentia in m and linear in n.

These agorithms have proved to be very successful for large games. Leech (2002¢) has
n=178 and in Leech (2001, 2002b) there are numerous cases of company voting games with
n>400. These applications have required only a moderate choice of m. The obvious rule for
choosing the value of misthat it should be large enough to ensure accuracy without being too

large to prevent all subsets of M to be enumerated in a reasonable computing time.
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3 Methods for Oceanic Games

An oceanic game is alimiting case of alarge game in which the number of playersis
allowed to become infinite. Here there are two types of players. a finite number of "atomic"
players whose weights are finite, and an infinite number of "non-atomic" players whose weights
areinfinitesmally small. The Shapley-Shubik indices for such games were first analysed in
Shapley and Shapiro (1978) and later the Banzhaf indices were discussed in Dubey and Shapley
(1979). | describe the computation of such games here for completeness. | have reported indices
for such gamesin several papers on shareholder control of companies, for example Leech (2001,

2002b).

In an oceanic game there are a finite number, m, of major players with fixed voting
weights, and a very large number, n-m, (in the limit an "ocean™ of minor players) with very small
weights. Then as n goes to infinity it can be shown that the Shapley-Shubik index for major player
i converges on the value:

fi= 8 Cwa- u™du i=1,..,m (28)
Si M,
whereM ={1, 2, .., m} isthe set of mgor players, M; =M - {i}, and
a=median(0, (g-w(S))/(1-w(M)), 1), b = median(0, (g-w(S)-w:)/(1-w(M)),1). Expression (28) is
not difficult to evaluate, requiring only a minor extension of the modified MLE approximation

algorithm. If mis small we can perform a Hamilton search over the m-dimensional hypercube and

evaluate the integral for each S, and sum.
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If mislarger this may not be feasible and therefore it becomes necessary to partition the
finite players into two groups for computational convenience and use an approach based on
expression (21) with suitable changes to the limits of integration. For example, in the corporate
control problems analysed in Leech (2001 and 2002b) for 444 British companies, the oceanic
games defined had between 12 and 56 finite players, with a median of 27, due to data limitations.
In al but avery few of these cases it would have been impossible to choose M equal to the set of
finite players. Therefore | set M={1, 2, 3, 4, 5}, m =5, with the remaining finite players modelled

by the probabilistic voting assumptions.

Banzhaf indices for oceanic games were studied by Dubey and Shapley (1979) who
showed that under suitable conditions they can be obtained as the Banzhaf indices for the
modified, finite game consisting only of the major players M with weightswy, ws, . ., Wy and a
modified quota q- (1 - w(M))/2. Thisresult depends on the quota g (that is, in the original
game). For certain values of g the power indices are zero in the limit (the so-called "pitfall” points
where the number of minor-player swings become so numerous that the Banzhaf indices for major
players go to zero). However, where there is a simple majority rule, with g always equal to
w(N)/2, this problem does not arise. Any algorithm for Banzhaf indices of finite games can be
used. In the corporate control examples | used M equal to al the finite players and the modified

MLE agorithm.
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4 Determining Weights: the "Inverse Problem"

In designing a system of weighted voting, weights ought to be allocated to membersin
such away asto bring about the desired distribution of voting power. Thisissueis discussed in
Nurmi (1981). Power indices enable this to be done numerically by means of an iterative process
by which the weights are successively updated. Starting with an initial guess, the power indices
are reca culated each time the weights are modified until they achieve preassigned values. In this
section | describe the approach. The notation assumes that the power indices used are the
normalised Banzhaf indices but the method can be applied to othersif desired. It assumes the
power indices are normalised but it would be desirable to be able to relax this restriction. An
iterative procedure similar to the one described here was proposed in Laruelle and Widgren

(1998).

The values required for the power indices are fixed as a design property of the voting
system. For example one criterion that has been suggested should be used for international
organisations is the equalisation of voting power among citizens of different countries. This has
been suggested as a basic principle for reweighting the votes in the EU Council of Ministers by
Felsenthal and Machover (2000, 2001), Laruelle and Widgren (1998) and Leech (forthcoming). In
Leech (2002c) | have used the criterion of equalising power in the governing body of the IMF to

members IMF quotas (mainly based on financia contributions to the organisation).

Let it be required that member i should possess a voting power of t;, where é_ t.=1. The

problem is to find weights that have associated power indices, b; , such that b; = t;, for al i.
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Denote the required power, the weights and corresponding power indices, as functions of the

weights, by the n-vectorst, w and b(w).

Now we can compute the power indices for given weights and compare them with their
desired values. Any suitable power indices algorithm can be used for this: | have used the
modified MLE approximation method with the IMF governors and the direct enumeration method
with the EU Council. Using a suitable updating rule to change the weights provides an iterative
algorithm which should converge to the desired power distribution to an accuracy defined by a

suitable stopping rule.

Let the weights after p iterations be denoted by the vector w®; the initial guessisw®©.
The corresponding power indices are the vectors of functions b(w®). The iterative procedure can

then be written in terms of an updating rule:
WP = Wl 4| (t - b(w®) (29.)

for some appropriate scalar | >0. More generally we might replace the scalar | with amatrix , but

in my work | have only used the simple formulation described here and found it adequate.

If the iterative procedure (29) converges to a vector, w*, then that is taken to be the
desired weight vector, since then: w*=w* + | (t - b(w*)) and t = b(w*). Convergence can be
defined in terms of ameasure of the distance between b(w®) and t and a stopping criterion. The

simple sum of squares measure é_ ®® - t,)? with a suitable stopping criterion has been found to
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work well. My experience is that accuracy of convergence varies according to the game. The

algorithmisillustrated in Figure 1.

This agorithm is not unproblematical since the indices are not real numbers, but rational
numbers, and in general therefore the distance between b(w®) and t has alower bound
determined theoretically as a property of the game. More importantly, the existence of voting
paradoxes in the relationships between weights and indices (described by Felsenthal and
Machover (1998)), points to the relationship between w and b being possibly not continuous. This

suggests that the weights w* computed may not be unique.

For the 15-member EU with the Nice Treaty triple-majority decision rule (the game
labelled N15 in Felsenthal and Machover (2001)), the algorithm was found to converge to an
accuracy, in terms of this stopping criterion, of the order of 10°®, but it was not possible to get full
convergence using a smaller value. For N27 it easily converged with respect to a stopping rule of
the order of 10™° but no smaller. The power indices were computed exactly using the direct
enumeration program ipnice (used by Felsenthal and Machover (2001) and Leech (forthcoming)).
In my work on the IMF Board of Governors, reported in Leech (2002c), the same iterative
algorithm was used to compute fair weights for the International Monetary Fund Board of
Governors with n=178. But in this case the power indices were calculated using a different
program suitable for large n (which implements the modified MLE approximation agorithm); the
accuracy achieved in terms of the sum of squares stopping rule was at least 10", There are

indications therefore that the iterative algorithm for solving the "inverse problem” works better for
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larger n. This might be due to the fact that the mapping from b (w) is closer to being a continuous

onein this case.
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Figure 1:Flowchart of an Iterative Alzgonthm to Determine Weights

Input Data:

Targets 1,
Initial Weights w_i=1ln

¥

Calculate Power Indices:

. Pz Biw, W, .., W)

Test Conversence:

Tes
Is b, - thee ¥ i7 S10p

Update Weishts:

wo=w+rl-p)i=ln
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Table 5 shows the results of applying the iterative procedure to the choice of weightsin
the IMF Governors. Asis to be expected, the resulting weights are very different for the two
majority requirements g. For ordinary decisions, the voting weight of the United States should be
reduced to under15 percent, and the voting weight of the other member countries increased
dightly .in order to achieve the levels of voting power given in the appendix to the IMF Annual
Report for 1999: United States 17.55, Japan 6.3, Germany 6.15, etc. However for 85% special
majority decisions, in order to achieve these values for the power index, the weight of the United
States would have to be increased to almost 70 percent and those of all other countries reduced

substantially.
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Table5 Fair Weightsin the IMF Board of Governors

Banzhaf Weight w;*
Power b; g=50% q=85%

USA 1755 14.06 69.78
Japan 6.30 6,53 220
Germany 6.15 6.38 216
France 508 527 182
UK 508 527 1.82
Italy 334 348 1.23
Saudi 331 345 121
Canada 3.02 315 111
Russia 282 294 104
Netherlands 245 256 0.91
China 222 232 0.82
India 197 206 0.73

Switzerland 1.64 1.72 0.61
Australia 1.54 161 057

Belgium 1.48 154 055
Spain 1.45 152 0.54
Brazil 1.45 151 054
Venezuela 1.27 1.32 047
Mexico 1.23 1.29 0.46
Sweden 1.14 1.19 043

Argentina 101 106 0.38
Indonesia 099 104 0.37
Austria 090 094 033

Table 6 shows the results of applying the iterative algorithm to compute the fair weights
for QMV in the European Council under the Nice rules when n=15. Column (4) shows the power
indices for the Nice weights in columns (1) and (3). The targets are in column (5) and the

resulting weights in column (6). The only member countries whose weights change substantially
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are Germany and Spain: Germany’ s weight has now increased to 15.12 and Spain’s reduced to

9.34 percent of the votes. The conclusion is that the Nice weights are surprisingly close to being

fair.
Table 6 Fair Voting Weights under the Nice Treaty with n=15
N15 0:=169 0:=62%
1 2 @w? (4 bw®) ()t (6) w* (7)

Weight Country Weight% BzlIndex% vPop% Fair Weight%  Pop%
29  Germany 12.24 12.11 13.97 15.12 21.858
29 UK 12.24 11.99 11.87 12.06 15.786
29  France 12.24 11.99 11.84 12.05 15.711
29 ltaly 12.24 11.99 11.70 11.99 15.350
27  Spain 11.39 11.11 9.68 9.34 10.496
13  Netherlands 5.49 5.50 6.12 5.98 4.199
12 Greece 5.06 5.16 5.00 4.64 2.806
12 Belgium 5.06 5.16 4.93 4.61 2721
12 Portugal 5.06 5.16 4.87 4.58 2.659
10  Sweden 4.22 4.30 4.59 4.47 2.359
10 Austria 4.22 4.30 4.38 441 2.153

7  Denmark 2.95 3.09 3.55 3.22 1.416

7  Finland 2.95 3.09 3.50 3.20 1.375

7  Irdand 2.95 3.09 2.98 3.03 0.998

4  Luxembourg 1.69 1.96 1.01 1.29 0.114
237 100.00 100.00 100.00 100.00 100.00

Bz: Banzhaf; g,= the threshold in terms of weighted votes, g, = the population condition.
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5 Conclusion

This paper has described five agorithms for computing the Banzhaf and Shapley-Shubik
power indices for finite voting games and compared their advantages and disadvantages for the
analysis of different voting situations. It is hoped that the better availability of computer
algorithms will stimulate more empirical research aimed at giving a better understanding of the

analysis of voting power.

It has also discussed the somewhat harder problem of computing the weights with the
property that the power indices are equal to certain given predetermined values. This problem is

intimately related to the use of power indices as an aid to the design of voting systems.
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Some Web Links

There are some good websites about power indices. These are a few interesting and useful sites.

An interesting on-line power indices calculator by Kazuo Morota and Y ashuaki Oisho,
Department of Mathematical Engineering and Information Physics, The University of Tokyo.
http://www.misojiro.t.u-tokyo.ac.j p/~tomomi/cgi-bin/vpower/index-e.cgi (generating functions).

The Voting Power and Power Index Website, Antti Pgjala, University of Turku,
http://powerslave.val.utu.fi/. Lots of information about power indices including on-line
computation (for small games, =20, direct enumeration method).

Thomas Brauninger and Koenig's computer programme 0P
http://www.uni-konstanz.de/FuF/V erwiss/koenig/l OP.html (direct enumeration).

European Voting Games website by Jesus Maria Bilbao and Carmen Herrero which contains
much information about the EU, voting power analysis, papers, computing and many links.
http://www.esi 2.us.es/~mbilbao/eugames.htm

The Banzhaf Power Index Calculator, http://www.math.temple.edu/~cow/bpi.html
An on-line calculator from Temple University. (generating functions)

The mathematics of voting power: an introduction to Banzhaf power indices, by Bjern K.
Alsberg. http://pcf1.chembio.ntnu.no/~bka/div/M AKT/Powerweb.htm

Banzhaf Power Index by Mark Livingston, http://www.cs.unc.edu/~livingst/Banzhaf/ Much
information about the Banzhaf index and links (uses the Monte Carlo method).

Voting Power Project at LSE
http://www.lse.ac.uk/Depts/cpnss/projects/vp.html
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