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Summary

This paper examines the Gaussian maximum likelihood estimator (GMLE) in the
context of a general form of spatial autoregressive and moving average (ARMA) pro-
cesses with finite second moment. The ARMA processes are supposed to be causal
and invertible under the half-plane unilateral order (Whittle 1954), but not necessarily
Gaussian. We show that the GMLE is consistent. Subject to a modification to confine
the edge effect, it is also asymptotically distribution-free in the sense that the limit
distribution is normal, unbiased and with a variance depending on the autocorrelation
function only. This is an analogue of Hannan’s classic result for time series in the

context of spatial processes; see Theorem 10.8.2 of Brockwell and Davis (1991).

Keywords: ARMA spatial process, asymptotic normality, consistency, edge effect, Gaussian max-

imum likelihood estimator, martingale-difference.
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1. Introduction

Since Whittle’s pioneering work (Whittle 1954) on stationary spatial processes, the frequency-
domain methods which approximate a Gaussian likelihood by a function of a spectral density
became popular, while the Gaussian likelihood function itself was regarded intractable in both
theoretical exploration and practical implementation. Guyon (1982) and Dahlhaus and Kiinsch
(1987) established the asymptotic normality for the modified Whittle’s maximum likelihood esti-
mators for stationary spatial processes which are not necessarily Gaussian; the modifications were
adopted to control the edge effect. On the other hand, the development of time-domain methods
was dominated by the seminal work Besag (1974) who put forward an ingenious auto-normal
specification based on a conditional probability argument. Besag’s proposal effectively specifies
the inverse covariance matrix of a Gaussian process, in which the parameters are interpreted in
terms of conditional expectations.

In this paper we examine the estimator derived from maximising the Gaussian likelihood func-
tion for spatial processes, which we refer to as Gaussian maximum likelihood estimator (GMLE).
To study its asymptotic properties, we assume that the data are generated from a spatial autore-
gressive and moving average (ARMA) model defined on a lattice. Under the condition that the
process is causal and invertible according to the half-plane unilateral order (Whittle 1954), the
GMLE is consistent (Theorem 1 in §3 below). Subject to a modification to confine the edge effect,
it is also asymptotically normal and unbiased with a variance depending on the autocorrelation
function only. Thus our modified GMLE is asymptotically distribution-free. The asymptotic nor-
mality presented in Theorem 2 below may be viewed as an analogue of Hannan’s (1973) classic
result for time series in the context of spatial processes, which shows that the limit distribution
of the estimator for an ARMA process is determined by two AR models defined by the AR and
the MA forms in the original model; see Theorem 2 in §4 below and also §8.8 of Brockwell and
Davis (1991). Hannan’s proof was based on a frequency-domain argument. He proved the equiv-
alence of a Gaussian MLE and a Whittle’s estimator and established the asymptotic normality
for the latter; see also §10.8 of Brockwell and Davis (1991). Our proof largely follows the time-
domain approach of Yao and Brockwell (2005), although the proposed modified GMLE shares the
same asymptotic distribution as the modified Whittle’s estimator proposed by Guyon (1982) (see

Remark 3 below), which is also the asymptotic distribution of the modified Whittle’s estimator



proposed by Dahlhaus and Kiinsch (1986) if the underlying process is Gaussian. For purely au-
toregressive processes, our asymptotic results are the same as those derived by Tjgstheim (1978,
1983).

For a sample from a spatial model, the number of boundary points typically increases to infinity
as the sample size goes to infinity. Therefore the edge effect causes problems. This is the feature
which distinguishes high-dimensionally indexed processes from one-dimensional time series. Vari-
ous modifications to reduce the edge effect have been proposed; see Guyon (1982), Dahlhaus and
Kiinsch (1987) and §2.4 below. Both Guyon (1982) and Dahlhaus and Kiinsch (1987) adopted
a frequency-domain approach, dealing with Whittle’s estimators for stationary processes defined
on a lattice. Our approach is within the time-domain, dealing with GMLE for the coefficients of
ARMA models. Our edge effect modification can be readily performed along with the prewhiten-
ing (§2.3 below). By exploring the explicit form of these models, we are able to establish a central
limit theorem (Lemma 9 in §4 below) based on an innate martingale structure. Therefore the
regularity conditions imposed by Theorem 2 are considerably weaker than those in Guyon (1982)
and Dahlhaus and Kiinsch (1987). For example, we only require the process to have finite second
moments, and we do not impose any explicit assumptions on ergodicity and mixing. However it
remains as an open problem whether the edge effect modification is essential for the asymptotic
normality or not. See §5.1.

Although we only deal with the processes defined in the half-plane order explicitly, the asymp-
totic results may be derived for any unilaterally-ordered processes in the same manner. For the
sake of simplicity, we only present the results for spatial processes with two-dimensional indices.
The approach may be readily extended to higher-dimensional cases. In fact, such an extension is
particularly appealing in the context of spatio-temporal modelling since a practically meaningful
ARMA form can be easily formulated in that context. This is in marked contrast to the case
of two-dimensional processes for which a unilateral ordering is often an artifact which limits the
potential application. See §5.2 below.

The rest of the paper is organised as follows. In §2 we introduce spatial ARMA models and
the conditions for causality and invertibility. The consistency and asymptotic normality will be
established respectively in §3 and §4. We conclude with miscellaneous remarks in §5.

We denote by |A| the determinant of a square matrix A, and by ||a|| the Euclidean norm of

a vector a.



2. Models and estimators

2.1. Stationary spatial ARMA processes

Let Z,R,C be the integer, the real number and the complex number spaces respectively. We
always write s = (u,v) € 22 and i = (j, k) € Z%2. We define s > 0 if either u > 0 or u = 0 and
v > 0, and s = 0 if and only if both u and v are 0. A unilateral order on a two-dimensional
plane is defined as s > (or >) i if and only if s —i > (or >) 0; see Whittle (1954). This order is
often refereed as half plane order, or lexicographic order. Another popular unilateral ordering on
a two-dimensional plane is the quarter plane order. Under the quarter plane order, s > 0 if and
only if both v and v are non-negative; see Guyon (1995). Although we do not discuss explicitly
the models defined in terms of the quarter plane order in this paper, we will comment on its
properties when appropriate.
We define a spatial ARMA model as
X(s) =) biX(s—i)+e(s)+ Y aels — i), (2.1)
ieT) i€,

where {(s)} is a white noise process in the sense that they are uncorrelated with constant first
two moments 0 and o2 respectively, {b;} and {a;} are AR and MA coefficients, and both index
sets Z; and 7y contain finite number of elements in the set {s > 0}. In this paper, we consider
real-valued processes only. Since we only require index sets Z; and Zy to be subsets of {s > 0},
specification (2.1) includes both half-plane and quarter-plane ARMA models (Tjgstheim, 1978,
1983) as its special cases.

We introduce the back shift operator B = (B, B2) as follows:
BiX(s) = BIBSX (u,v) = X(u—j,v —k) = X(s —i), i=(jk) ez
For z = (21, z2), write z! = z{zé“. We define
b(z)=1-— Z bzl and a(z) =1+ Z aiz. (2.2)
i€y i€y
Then model (2.1) can be written as

b(B)X(s) = a(B)(s). (2.3)

It is well known that a bivariable polynomial can be factored into irreducible factors which

are themselves bivariable polynomials but which cannot be further factored, and these irreducible



polynomials are unique up to multiplicative constants. To avoid the ambiguity on the form of the
model, we always assume that b(z) and a(z) are mutually prime in the sense that they do not
have common irreducible factors although they may still have common roots (Goodman 1977,
Huang and Anh 1992).

The process {X(s)} defined in (2.1) is causal if it admits a purely MA representation

X(s) =¢(s) + Zl/)if-:(s —i)=¢(s) + Zkas(u,v —k)+ Z Z Yire(u —g,v —k), (2.4)
k=1

i>0 Jj=1 k=—o0
where » ;o [1i| < 0o. It is easy to see that a causal {X;} is always weakly stationary with mean
0 and the autocovariance function

W) = B{X(s+DXE)} =0 S Guntlisimi

=0 m=—o00

= 02{¢jk + Z 1/}0m1/}j,m+k + Z Z 1/}lm1/}l+j,m+k} (2'5)

m=1 I=1 m=—00
for i = (j,k) with j > 1, and y(—i) = 7(i). In the above expression, g9 = 1 and g, = 0 for
all m < 0. Furthermore, a causal process {X(s)} is strictly stationary if {¢(s)} are independent
and identically distributed; see (2.4). The lemma below presents a sufficient condition for the

causality.

Lemma 1. The process {X;} is causal if
b(z) #0forall |z1] <1land |29 =1, and 1-— Z borzs # 0 for all |zo| < 1, (2.6)
(O,k)ell
where 21, 29 € C. Furthermore, condition (2.6) implies that the coefficients {11} defined in (2.4)

decay at an exponential rate, and in particular
] < Ca?tF for all j > 0 and k, (2.7)
for some constants « € (0,1) and C' > 0.

Note (2.7) improves Goodman (1977) which showed 1, = O(a?). Condition (2.6) is not
symmetric in (21, z2). This is due to the asymmetric nature of the half-plane order under which
the causality is defined; see (2.4). The proof for the validity of (2.4) under condition (2.6)
was given in Huang and Anh (1992); see also Justice and Shanks (1973), Strintzis(1977) and
the references within. The inequality (2.7) follows from the simple argument as follows. Let

¥(z) = 1+ ;. ¢iz', where ¢{s are given in (2.4). Then ¢(z) = a(z)/b(z). Due to the continuity

4



of b(-), b(z) # 0 for all z € Ac = {(21,22) : 1 —€ < |z;| <1+ ¢, = 1,2} under condition (2.6),
where € > 0 is a constant. Thus ¢(-) is bounded on A, i.e. | > ;. ¢iz'| < oo for any z € A.. Thus

YiraIa~ Il — 0 as at least one of j and |k| — oc.

Remark 1. (i) Under condition (2.6), inequality (2.7) also holds if we replace 13, by the derivative
of 13, with respect to b; or a;. This can be justified by taking derivatives on both sides of equation
Y(z) = a(z)/b(z), followed by the same argument as above.

(ii) Condition (2.6) also ensures that the autocovariance function (-) decays at an exponential
rate, i.e. y(j, k) = O(all*I*l) as at least one of |j| and |k| — oo, where o € (0,1) is a constant.
To show this, note that for (j, k) with both j and k non-negative (other cases are similar), (2.5)

can be written as

’Y(ju k)/UQ = 1/13‘1@ + Z ¢Om¢j,m+k

m=1
oo 00 00 k-1
+ Y D Gk + Y Clkem®itgom Y Ul —mWitjk—m}-
I=1 m=0 m=0 m=1

By (2.7), all the sums on the RHS of the above expression are of the order a/**.

(iii) A partial derivative of (-) with respect to b; or a; also decays at an exponentially rate.
This may be seen through combining (i) and the argument in (ii) together.

(iv) Condition (2.6) is not necessary for the causality, which is characteristically different from
the case for one-dimensional time series; see Goodman (1977). On the other hand, a spatial
ARMA process defined in term of the quarter plane order is causal if b(z) # 0 for all |z;| < 1
and |za] < 1 (Justice and Shanks 1973). Under this condition, the autocovariance function, the
coefficients in an MA(oco) representation, and their derivatives decay exponentially fast.

(v) The process {X;} is invertible if it admits a purely AR representation

X(s)=e(s)+ Y _eiX(s—i)=c(s)+ > poauX(wv—k) +> > @ppX(u—jv—k), (28)
k=1

i>0 j=1 k=—o0
where ) . |pi| < co. It is easy to see from Lemma 1 that the invertibility is implied by the
condition
a(z) #0forall [z <1land |29 =1, and 1+ Z agrzs # 0 for all |z5] < 1. (2.9)
(0,]6)61-2

Furthermore, under this condition the coefficients {¢;; } and their partial derivatives (with respect

to b; or a;) decay at an exponential rate.



(vi) The spectral density function of {X(s)} is of the form

, w € [-m,7)? (2.10)

where i = /=1, w = (w1,w2) and e = (1, ¢™2). Under conditions (2.6) and (2.9), g(w)
is bounded away from both 0 and oo, which is the condition used in Guyon (1982). Note the
condition that g(w) is bounded away from both 0 and oo is equivalent to the condition that
a(z)b(z) # 0 for all |z;] = |22] = 1 and (21,22) € C2. Under this condition equation (2.1)
defines a weakly stationary process which, however, is not necessarily causal or invertible (Justice
and Shanks 1973). Helson and Lowdenslager (1958) shows that the necessary and sufficient
condition for a weakly stationary (but not necessarily ARMA) process { X (s)} admitting the MA
representation (2.4) with squared-summable coeflicients ¢, is that its spectral density g(-) fulfils

the condition
/ log g(w)dw > —o0. (2.11)
[777771-]2

Note that for ARMA processes, (2.11) is implied by (2.6).

2.2. Gaussian MLEs

We denote the elements of 77 and Zs in the ascending order respectively as
J1<je<---<jp and i <ip<---<liy.

Let @ = (01, ,0p4q)" = (bj,,- -+ ,bj,. a4y, ,a4,)7. We assume 6 € ©, where © C RPH? is the
parameter space. To avoid some delicate technical arguments, we assume the condition below

holds.

(C1) The parameter space © is a compact set containing the true value 6y as an

interior point. Further, for any 8 € O, conditions (2.6) and (2.9) holds.

Given observations {X (u,v),u = 1,--- ,Nj,v = 1,--- , N} from model (2.1), the Gaussian

likelihood function is of the form
1
L(0,0%) x o N|2()|71/? exp{_ﬁxw(e)*X}, (2.12)
o
where N = N1 Ny, X is an N x 1 vector consisting of the IV observations in ascending order, and
1
3(0) = ﬁVar(X),

6



which is independent of 0. The estimators which maximise (2.12) can be expressed as
0 = arg min [log{X"=(0)'X/N} + N tlog|=(0)]], 3% =X"2(6)"'X/N. (2.13)
€

Since we do not assume a special form for the distribution of £(s) and the Gaussian likelihood

is used only as a contrast function, the derived estimators could be referred to as quasi-MLEs.

2.3. Prewhitening and the innovation algorithm

Gaussian maximum likelihood estimation has been hampered by the computational burden in
calculating both the inverse and the determinant of N x N matrix 3(@). To overcome the burden,
some approximation methods have been developed by, for example, Besag (1975), and Wood and
Chan (1994). See also §7.2 of Cressie (1993). The computational difficulty has been gradually
eased by the increase of computer power. It is now feasible to compute the genuine Gaussian
likelihood functions with N in the order of thousands. As an example, we state below how the
idea of prewhitening via the innovation algorithm can be used to facilitate the computation for
Gaussian likelihood regardless whether the underlying process is stationary or not, or whether
the data are collected on a regular grid or not. Prewhitening is an old and very useful idea in
time series analysis. Effectively it is a version of the Cholesky decomposition, and it computes
the quadratic form X"3(0)"!X and the determinant |¥(8)| simultaneously. Our edge-effect
correction method, presented in §2.4 below, is based on a representation of the likelihood in terms
of prewhitening.

Denote by X(s1),---, X (sy) the N observations with the indices s; in ascending order. (The
order is not important as far as the algorithm presented below is concerned.) Let X (s1) = 0. For
1<k <N, let

~

X(sap1) = o X (s5) + - + o X (1) (2.14)

be the best linear predictor for X (sx1) based on X(si),---, X (s1) in the sense that

k
E{X (st41) — X (sp41)}* = min B{X (se1) = 3 X (50—} (2.15)
J j=1
(k)

It can be shown that the coefficients ¢, are the solutions of equations

k
k
ys) =Y W s s, 1=1, .k,
=1



and further
1 = 1 "k
r(sir1) = r(sk41.0) = 5 B{X(st1) = X (e} = 5 00(0) = D_ofv(s)). (216)
j=1

In the above expressions, y(i) = v(i;0) = E{X (s +1i)X(s)}, and 0 = (0,0). It can also be shown

that the least square property (2.15) implies that

Cov[{X(sp11) = X(sp1)} X ()] =0, 1<j <k

~ ~

Note that X (sg41) — X (Sg+1) is a linear combination of X (sg), -+, X(s1). Thus X (s1) — X (s1),

~

-, X(sny) — X(sny) are N uncorrelated random variables. Further it is easy to see from (2.14)

that X (s;) can be written as a linear combination of X (s;,) —)A((sk), <, X(s1) —)/f(sl). We write
A~ k A~
X(skr1) = ) O X (shp1-5) = X(skr15)}, k=1, N1 (2.17)
j=1

Let X = (X(s1), -+, X(sn))". Then X = A(X — X), where

0 0 0 0 0

P11 0 0 0 0

A= B P21 0 0 0
0

BN-1,N-1 Bn-1N-2 Bn-1nN-3 -+ Bn-11 O

Put X = C(X — )/i), where C = A + Iy is a lower-triangular matrix with all main diagonal

elements 1, and Iy is the N x N identity matrix. Let D = diag{r(s1), -+ ,r(sy)}. Then
1 N
%(0) = —Var(X) = CDC", and [£(6)|=[D|=][]r(s;). (2.18)
o
j=1
Hence the likelihood function defined in (2.12) can be written as
1 ~
L(6,0%) oc o M{r(s1) - r(sn)} 2 exp[—5—5 > X (s5) = X(s5))2/r(s5)]. (2.19)

The calculation of the inverse and the determinant of 3(6) is reduced to the calculation of
the coefficients [;; and 7(sp41) defined in (2.17) and (2.16) respectively, which can be easily
done recursively using the innovation algorithm below; see Proposition 5.2.2 of Brockwell and
Davis (1991). We present the algorithm in the form applicable to any (non-stationary) series

{X(s;)} with common mean 0 and auto-covariance 7y(sy,s;) = E{X(s;)X(s;)}, which reduces



to y(si — s;;0) for the stationary spatial ARMA process concerned in this paper. Note that the
algorithm is a version of Cholesky decomposition.

Innovation algorithm: Set r(s;) = v(s1,s1)/0%. Based on the cross-recursion equations

i1
Bep—j = {V(Sk41.841)/0% = BjjmiBri—iT(Si1)}/7(8j41),
i=0
k-1
r(sk+1) = 7(Sk+1vsk+1)/02_Zﬁlg,kfjr(sj-l-l)’
=0

compute the values of {B”} and {T(Sj)} in the order 511, T(SQ), ﬂgg, 521, T‘(Sg), 533, ﬂgg, ﬂgl y ?“(84), e

BN-1,N-1,BN-1, N2, , BN-11, 7(sn)-

2.4. A modified estimator

In order to establish the asymptotic normality, we propose a modified maximum likelihood esti-
mator which may be viewed as a counterpart of conditional maximum likelihood estimators for
(one-dimensional) time series processes. Our edge correction scheme depends on the way in which
the sample size tends to infinity. Condition (C2) specifies that N = Ny Ny — oo in one of three

ways.

(C2) One of the following three conditions holds,

(i) N1 — oo, and N1/Ny has a limit d € (0, 00),
(ii) N9 — oo and N7 /Ny — o0,
(111) N1 — oo and Nl/NQ — 0.

For, n1,ns — 0o and ny/Ny,ne /Ny — 0, define

{(u,v) : np <u < Np,ng <v < Np—naj if Ni/Ny — d € (0,00),
T =4 {(uv): 1<u< Ny, np <v<No—no} it N1 /Ny — oo,
{(u,v) : ny <u< Ny, 1<wv< Ny} if Ni/Ny — 0.

Write 7% = {t;,--- ,ty+} with t; < --- < ty«. Then N*/N — 1 under (C2). Based on (2.19),

the modified likelihood function is defined as
1 & -
L*(6,0%) oo™ {r(t1) - r(tn-)} 2 expl—g 5 D {X(t) — X(t))}/r(t)] (2.20)
j=1

The modified estimators, obtained from maximising the above, are denoted as 0 and 2.



3. Consistency

Theorem 1. Let {g(s)} ~ IID(0,0%) and condition (C1) hold. Then as both N; and Ny — oo,

2 Furthermore, 6 L, 0y and 7 L o2 provided condition (C2) also

oL 0y and 52 A
holds.
Proof. We only prove the consistency for 6 and 52 below. The proof for the consistency of 6 and

2 is similar and therefore omitted.

o
Note that 8 does not depend on o2; see (2.13). It follows from (2.12) and Lemma 2 below
that

1 T\ —1 1 T -1 o’
- < = 4+ .

By Lemmas 2 & 3 below, it holds that
lim sup iXTE(@)—lx < lim iXTx(oo)—lx = o2 (3.1)
Nooo N T N—oo N ' '
For any € > 0, define BNl,NQ = {|§ - 00| > 6} and B = Uklzl,kQZl{mNIZklyNQZkQBleNQ}’ For
any w € B, there exists a subsequence of { Ny, Nao}, which we still denote as { N1, Na}, for which

/0\(w) = §N1,N2 (w) — 6 € © and 0 # 6. By Lemma 4 below, we have for any ¢ > 0,
1 ~ ~
LXTB{B()) X - XTB(0)"'X] < (0.
where 7(0) = N1 327 | X2 Thus
: 1 T ) -1 : 1 T -1
limsup =X"3{0(w)}” "X = limsup —X"3(0)""X
Nooo NV Nooo NV

provided one of the above two limits exist. Now Lemma 3 and (3.1) imply P(B) = 0. Thus
0 - 0,. By Lemma 4 and (3.1) again, 62 = XTE(a)”X/N 52, [

In this paper, we assume that the observations are taken from a rectangle. Theorem 1 requires
that the two sides of the rectangle increase to infinity. In fact this assumption can be relaxed.
Theorem 1 still holds if the observations were taken over a connected region in Z2, and both
minimal length of side of the squares containing the region N; and the maximal length of side of
the squares contained in the region Ny converge to co. For general discussion on the condition of
sampling sets, we refer to Perera (2001).

We denote by by(-) and ag(-) the polynomials defined as in (2.2) with coefficients corresponding

to the true parameter vector @y, and b(-) and a(-) the polynomials corresponding to €. For

10



s = (u,v) with u > 1 and 1 < v < Ny, define

As = {(0,k): k>v} U {(j,k): j>u, —co <k < oo} (3.2)

U {(J,k): 1<j<u k>vork<—(Na—v)},

and
Ps = (01,902, " 5001, P1,— (Ng—0)5 P1,—(No—v)+1> """ » (3.3)
P15 P2,—(Na—v)s " s Pu—1,0-1)" 5
05 = (B el oy B et (3.4)
‘Pglféli)p SDS,T()er)v o 9021271),@—1)7-
We use C,C1,C5, -+ to denote positive generic constants, which may be different in different

places. In the remainder of this section, we always assume that the condition of Theorem 1 holds,

i.e. {e(s)} ~IID(0,0?) and that condition (C1) holds.

Lemma 2. For any 6 € ©, log |2(8)| > 0 and + log |X(8)| — 0.

For its proof, see Lemma 1 of Yao and Brockwell (2005).

Lemma 3. For any 6 € O,
X3(0)"'X/N £ Var{a(B)"'b(B)X(s)} > Var{e(s)} = o2,

and the equality holds if and only if 8 = 6.
Proof. Let {Y(s)} be the process defined by b(B)Y (s) = a(B)e(s) with {e(s)} ~ IID(0,1). Let
Y ={Y(s1),---,Y(sn)}". Then Var(Y) = 3(0). Let }A/(l, 1) =0, and for (u,v) > (1,1) let

v—1

}/}(u,v) = go(()z vy (u,v — k) + Z Z QOS-Z’U)Y(U —j,v—k) (3.5)
k=1 Jj=1k=—(N2—v)

be the best linear predictor of Y (u, v) based on its lagged values occurring on the RHS of the above

equation. Then it may be shown that the coefficients {go%’v)} are determined by the equations

é‘,z”wm—mz S e - gm k), (3.6)
=1 k=—(Na—v)
l:Oand1§m<v,or1§l<uand—(Ng—v)§m<v.

Let Y = {Y(s1),---,Y(sn)}". Tt follows from the same argument as in §2.3 that Y = C(Y — Y)

where C is a N x N lower-triangular matrix with all the main diagonal elements 1 (hence its

11



inverse exists), and ¥(6) = CDC” and |X(0)| = |D|, where D = diag{r(s1), -+ ,r(sn)}, and

r(s) = r(s,0) = E{}A/(u v) —Y(u,v)}2 (3.7)
v—1
= 9(0,0) = " ol y(0, k) Z Z Pl ).
k=1 Jj=1k=—(N2—v)

Since {Y'(s)} is invertible, i.e.
Y(u7 ’U) = e(u, ’U) + Z QOOICY(Z% v = + Z Z QOJ]CY —J,v— k) (38)
k=1 j=1k=—o00

it may be shown that
1 = Var{e(u,v)} <r(u,v) — 1, as min{u,v, Ny —v} — o0, (3.9)

where r is defined in (3.7).
It follows from (3.5) and (3.8) that

M = Ele(s)+ Y @iV (s—i)—Y(s)+Y(s)}? (3.10)
ieAs

= E{Z o — )Y (v —k)+ > 3 (@ — oY (u— G — k),

j=1 k=—(Nz—)
where s = (u,v), i = (j, k). Let Y be defined as in (3.18) below. It is easy to see from the second

equation in (3.10) that

M = (‘Ps - ZES)TES(G)((PS - QZS) > )‘miHH(Ps - ¢s|‘27 (311>

where A\, is the minimum eigenvalue of ¥4(0) = Var(Ys). By Lemma 5 below and condition
(2.9), Amin is uniformly (in V) bounded away from 0 (see also (2.10)). On the other hand, the

first equation in (3.10) implies that

M < 2B{Y @V (s— i)} +2E{e(s) — Y(s) + Y (s)}?

ieAs
< 2900 (Y lail)* +2{r(s) — 1} < 41(0)( Y Iwil)”
le.As iEAS

Recalling that s = (u, v), it follows from (3.11) and Lemma 1 that

~ 4~(0
Hsos - (PSH2 < M//\min < y Z S012 < C(Clu +a¥ + OéN2_U)7 (312)

TIN5 A

which converges to 0 as min(u, v, Ny — v) — oo, where o € (0,1) is a constant.

12



Now define

v—1

X(u,v) = @ékU)X (u,v — —I—Z Z wgzy)X(u—j,v — k),
k} 1 ] 1]{—7(]\[2 U)

where the coefficients ¢, are defined as in (3.5). Let X = {)A(/(sl),--- ,)?(SN)}T, then X =
C(X — X), and

1 T —1 1 T
XTB(0)'X = S(X-X)'DH(X Z{X Sm) — X(sm)}2/r(sm).  (3.13)
It follows from Lemma 1 that for any € > 0, we may choose K > 0 such that

2

Do leorX (O k) + Y lepX (=i k)| <e (3.14)

k>K j>K, or
iI<K & |k|>K

K K K
m(s) = X(u,0) =Y X (w0 —k) =Y Y X (u—jv—Fk)
k=1 j=1k=—K
v—1 u—1 v—1
m(s) =D (por — o NXwo =k +Y S (o — SN X (w—jv— k),
k=1 =1 k=—(Na—v)

and n3(s) = — > ;e 4 ©iX (s — i) with

A = {0,k): K<k<v}U{(U,k): K<j<u, —(Ny—v)<k<wv}
U{(J,k): 1<j<K,—(Na—v)<k<—-KorK<k<uv}.
By (3.14),
Blms(u,v)?} < B{Y. X (s — DI < e (3.15)
icA

On the other hand, it is easy to see from (3.10) — (3.12) that

E{WQ(S)Q} = 0—2(303 - &s)TES(OO)(QOs - QZS) < UQAmaXHQOs - ¢s|‘2 — 0, (316>

where Apax is the maximum eigenvalue of ¥4(6g). By Lemma 5 and (2.6), Apax is uniformly (in V)
bounded from the above by a finite constant. Based on (2.4) and the fact that {e(s)} ~ IID(0, o?),

we can show that for any fixed K,

Ny

- > Z m(,0)? =5 B (s)}. (3.17)

u=K+1 v=K+1

13



Note that for any fixed K, it holds almost surely that

1 N . 1 Ny No—K-1 B N +N
Nle{X(Sm) _X(Sm)}2 - N Z Z {X (u,v) _X(%U)}Q _1_0(%)‘

u=K+1 v=K+1

It follows from (3.15) — (3.17) and the Cauchy-Schwarz inequality that

From (3.14),
[E{m(s)}* — E{a(B)'0(B)X(8)}*] < e+ 2[eE{m(s)}*]"/>.

Letting K — oo, we find that
E{m(s)}* — E{a(B)"'0(B)X(s)}* = E{a(B)~'b(B)bo(B)'ao(B)e(s)} > Var{e(s)}.

The required result now follows from (3.13) and (3.9). [

Lemma 4. Let 0 € © and 0 — 6 € © as k — 0. Let € > 0 be any constant (independent of

N). Then there exists M (e) > 0 such that for all N > 1 and k > M (e),
X"2(0) 'x —x"2(0;) x| <€, xeRYand ||x|| = 1.

Proof. Let g(w, 0) be the the spectral density function defined in (2.10). Condition (C1) ensures
that g(w,-) is continuous and bounded away from both 0 and oo on ©. Hence for any ¢ > 0, it

holds for all sufficiently large k that

sup |g(w,0) — g(w, 01| < ¢

we[—m,m)?

Note that v(j,k) = f[_w )2 et Uwrthw2) g ()1 Wy, 0)dw dwy, where i = /—1. Hence

N1 N

XTE(G)y = Z Z xjkyuvﬁy(j —u, k— ’U)
Ju=1kv=1
N1 N2
= / 9(w,0) Z Z eI tho)y o=t vw2) g, duy.
[=m,m)? jau=1k,u=1
where
_ T . T
X = (ajllale)xl,NQ)lea“' 7xN1,N2) and Yy = (y117y127y1,N27y217“' 7yN1,N2) .

14



Under the additional condition ||x|| = ||y|| = 1, it holds now that

x"{Z(6) — (6x) }y|

N1 N
= | / RUCLEFCERIDIDY el thn)y, i 192) oy |

[=mm) ju—lkv—l

N1 Ny
< /[ . (‘ sz et i(jw1+kwa) + ‘ Zzyu —i(uwi +vws) )dwldng
¢ N1 N2 N1 N3

= 5/ (ZZx]k—i—ZZyw)dwldwg = 47n?¢.

—7,7) j=1k=1 u=1v=1

Lemma 5 below and condition (C1) ensure that for all § € © and N, the minimum eigenvalue of

33(0) is bounded from below by a constant K ~! > 0, where K is independent of @ and N. Hence

X{S(0) — 2(6,) x| = [xS(8){2(6) - £(6,)}2(6,) ¥

< 4n?d{|x72(0) x| [x"2(0)) x| }? < 4n2d K2
Now the lemma holds by putting € = ¢/(472K?). [

Lemma 5. Let {Y(s)} be a weakly stationary spatial process with spectral density g(w). Let

Nj be a positive integer. For s = (u,v) with u > 1 and 1 < v < N», define

Ys = {Y(u,vo—1),Y(u,v—-2),---,Y(u,1),Y(u—1,Na),Y(u—1,Ng — 1),

Y (u—1,1),Y(u—2,Ng),--- ,Y(1,1)}7, (3.18)

and X5 = Var(Yy). It holds that for any eigenvalue \ of Xg,

inf gw)<—< sup g(w). (3.19)
we[—m,m)? 47 we[—m,m)2
Proof. Let
X = (01,702, 5 T0,0—1> T1,—(Na—v)s T1,—(No—v)+1> """ s T1o—15 T2, —(Ng—v)s " > Tu—10—1)"
be an eigenvector of g corresponding to the eigenvalue A and ||x|| = 1. Let m = inf,, g(w) and

M = sup,, g(w). Since Cov{Y (u+j,v+k), Y (u,v)} = [_ e!Uwrtkw2) g (1) | wy)dwydw,, where
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i = +/—1, it holds that
2
A= X' Yx= / z:a:oke”"w2 + Z Z xjkei(jw”kw?) g(w1,ws)dwydws
[

— 2
™m)? k=1 j=1 k=—(Na—v)
2

[m, M] ></ 22:1:()/143““"2 +Z Z Tk et UL tRe2) | g dus
[

] 1k=— N2 U)

= [m, M] x 47*( Zka + Z Z x?k) = [4n*m, 47> M.

] 1 k=— N2 U)

m

Remark 2. (i) Expression (3.19) still holds if we replace (X, g) by (), g), where ¢ and X are
derivatives of g and Xg with respect to a parameter, and A is an eigenvalue of 3.
(ii) For an ARMA process, condition (2.6) implies sup, g(w) < oo and sup,, ¢(w) < oo, and

condition (2.9) implies that inf,, g(w) > 0.

4. Asymptotic normality

To state the asymptotic normality of the estimator 6 obtained from maximising (2.20), we let

{W(s)} be a spatial white noise process with mean 0 and variance 1. Define
b(B)é(s) =W(s) and a(B)n(s) = W(s). (4.1)

Let E = {6(_j1)7 6(_j2)7 U 76(_jp)7 U(_i1)7 n(_iQ)v U 77](_iq)}T7 and pUt

W(0) = {Var(¢)} L. (4.2)
Theorem 2. Let {¢(s)} ~ IID(0, 62) and conditions (C1) and (C2) hold. Then N/2( —6,) 2,
N{0, W(6y)}.

Remark 3. In the context of estimating the coefficients of ARMA models, the modified Whittle
estimator proposed by Guyon (1982) shares the same asymptotic distribution as the modified

GMLE 6, which may be seen via a similar argument as in p.386-7 of Brockwell and Davis (1991).

In the remainder of this section, we always assume that the condition of Theorem 2 holds.
Further, we only consider the case of condition (C2)(i) in the derivation below. The two other

cases can be dealt with in a similar manner. We introduce some notation first. For s € Sy, n, =
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{(w,v): 1 <u< N, 1<v < No}, let X(s) = Z(s) =0. For s € Sy, v, let X(s) = X(s), and

Z(s)=Z(s,0) = X(s)— Y bX(s—i)— Y aZ(s—1) (4.3)

i€y i€Zs
. p . q
= X(s) =) b X(s=3)— > ai, Z(s —im).
=1 m=1

Let Y = {X(t1), -+, X(tn+)}" and Z = {Z(t1,00), -+ ,Z(tn+,00)}". We write for 1 <[ <p
and 1 <m <gq

Ui(s) = Ui(s, 0) = — 22

(4.4)
It is easy to see from (4.3) that
Ufs)=aB) ' X(s—j), and Viu(s)=a(B) ' Z(s —in) = a(B)26(B)X (s —in). (4.5)

Let X1 and Uy be N* x p matrices with, respectively, X (t; — j,,) and U,,(t;, 0¢) as the (I, m)-
th element, and let X5 and Us be N* x g matrices with, respectively, X (t;—1i,,) and V,,,(t;, ¢) as the
(I,m)-th element. Write X = (&, X3) andU = (Uy,Us). Let R = diag{r(ti,0¢), - ,r(tn+,00)}",
where r(-) was defined in (3.7).

Lemma 6. For X (s) as defined in (2.14) and k= 1,--- ,p + ¢, it holds that

N*
N_1/2{ o E log 7(tm) } 20
00y, " - '

Proof. Let {Y(s)} be the same process as defined in the proof of Lemma 3. Write for s =

_l’_

N* ~
{X (tm) — X(tm)}? Or(tim)
mz_:l T(tm)Q 09k

(u,v) € I*
Vs = s(0) = {7(0,1),7(0,2), -+, 7(0,0 = 1),7(1, =(N2 = v)), 7(1, =(N2 —v) + 1),
(v =1),79(2, = (N2 =), y(u— Lo = 1)}
For ¢4 defined as in (3.5) (see also (3.4)), it follows from (3.6) that
P. =371, (4.6)

where 3g = Var(Ys) and Yy is defined as in (3.18). It follows from (3.8) that

L= 5(0,0) = > worv(0,k) =Y > oy k) (4.7)
k=1

j=1 k=—0c0

v—1 u—1 v—1
= 70,00 = > eorv(0,k) = > D ouv(i k) — $(0,0),
k=1

=1 k=—(N2—v)
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and for (I,m) € Bs={(0,m): 1 <m <v}U{(l,m): 1<l <u,—(Na—v)<m<uv},

v(l,m) = Z@omlm k) +Z Z piky(l—j,m — k) (4.8)

j=1k=—00

= Z@omlm k+z Z @iyl = jm — k) + G(1,m),

=1 k=—(Na—v)
where (s(I,m) = > 4 pi7(l — j,m — k) and As is given in (3.2). By (3.7) and (4.7), r(s) =
YI(Ps — ¢s) + 1+ (5(0,0), where g is given in (3.3). Thus

or(s) _ 0vg ~ I(ps — ps) | 9¢(0,0)
_ _ 7 9(Ps , 4
Write
Cs = CS(O) = {CS(O) 1)) CS(Oa 2)) T 7CS(07U - 1)7 Cs(la _(NQ - ’U)), Cs(lv _(N2 - U) + 1)’
: 7CS(17U_1)7CS(2>_(N2_U))>"' 7CS( U_l)}
Then (4.8) implies that @, = X 1(~, — ¢,). Together with (4.6), we have
a((;s - (Ps) 162 —1 —18Cs
—_— =3 - . .
From (4.9) and (4.6), we find that
or(s) 07 io)IN L 0% -1 8(5 0¢s(0,0)
Now by the Cauchy-Schwarz inequality,
or - ¢, 0¢s(0,0
) < {50211+ Calleall 125 = el + Callall {1l + 150201 b+ 12521, aan

where C1,C5 € (0,00) are some constants. The existence of C7 and C is guaranteed by Lemma 5

and Remark 2. Note that

Gm? < (3 e ){ X at—sm—w2}.
i€ As icAs
Since 7(-) decays at an exponential rate (Remark 1(v)), it may be shown that > . cps e a, 71—
j,m — k)? < co. Hence for some constant o € (0,1), it holds that

1¢IP < C5 Y 9} < Cu(a® +a¥ +a™27Y), (4.12)
i€As
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Note Remark 1(vi). It also holds that

1%,
00,

< Cs(a + a4+ a2 ™), (4.13)

y (3.12) and (4.11), we have that

280 < co)fale) +al0) +a() ),

where C(-) € (0,00) and a(-) € (0,1) are continuous. By Lemma 1, there exists a subset of the
sample space A with P(A) > 1—e and ||§—9H < e on A for all sufficiently large N. Therefore there
exist constants C7 € (0,00) and oy € (0,1) for which |9r(s,0)/00k|,_5 < Ci(af + af + a2 ™?)

on A. Since r(s) > 1 for all 8 € ©, it holds on the set A that

1 9 N* N1 No—no N
v
N2 |96, Zlogr(tm) ) < N1/2 Z Z af +aof+0727") (4.14)
m=1 0=0 U=ni vV=ng2

< (Npa™ + Nya2 + Njad?™m2),

C
N1/2
. i . P
which converges to 0 under condition (C2). Thus N~/ 8T Zﬁzl log T(tm)‘gzé — 0.

On the other hand,

N* A~
_ {X(tm) — X(tM)}2 or(tm)
NV 2E<m21 ()2 a6y, 02;“”)
N1 v
< ONTYE (Z s ?w v))(( O (ot + af + a2 “)>
v

< ON~1/2 Z Z af +a1+aN2 Yy —0.

u=ni v=ng

Thus the required result holds. |

Lemma 7. For k=1,--- ,p+q,

Ny {'X(tm — X (tm) + Z(tm) KX (tm) + Z(tm)} '

X(tm) — X(6m) — Z(tm) X () — Z(tm)}

* () o

Proof. We only prove that N—1/2 Z me1 X (tn) =X (bm) £ 2 (tm) X () +Z (b))} i 0, since the

7'(tm) gk ‘ 9:6

other half may be proved in a similar and simpler manner.
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It follows from (4.3) that for s = (u,v) € 7%,

Z(s) = a(B)"Ly(B)X(s)
v—1

u—1 v—1
= X(8) =) X (wo—k) =Y > opX(u—jv—k)=X(s) - oI Xs,
k=1 j=1 k=—(Na—v)

where @, is given in (3.3) and X is defined in the same way as Yy in (3.18). Since X (s) = ¢ X,

~ 2
a{X(S) + Z(S)} 28(QOS - Q/bs)T 8(()Os - Q/Es) a(‘Ps - @s) 2
E - >, < || LFs —Fs) 2.
( 90, 7 a0, 00, - cll 90, I

Note that for any symmetric matrices A1, As,
XTATA2AIX < Amax(A2) [|A1X]* < Anax(A2) Amax (A1)} |2,

where Apax(A) denotes the maximal eigenvalue of A. It follows from (4.10) that the RHS of the

above expression is not greater than

9Cs

g0, ) < Cala” +a¥ +a™27),

Clles = @sll* +11¢s 112 + 1]

see (3.12), (4.12) and (4.13). By the same argument as in the proof of Lemma 6, we may show

that

E(mi@+2@}

2
I(A < u v No—v
a0, ( )> <Cla"+a’"+« ),

0=06
where A is an event with probability close to 1. Now by the Cauchy-Schwarz inequality,

12 N (| X ) = X (6m) + Z(tm) HX (6m) + Z (b))} ?
N 2B (| r(tm) O )
N* ~
< N2y [E{X(tm) = X (tm) + Z(tm)} E(a{X(tm)Q: Z(tm)} ‘gzal(A)ﬂ i
N1 m_f\z
< C Z Z (" +a¥ +aN2)V2 .
Thus the required limit holds. |

Lemma 8. N-'/"R-uy £ o?W (6p)~ L.
Proof Within this proof, all U;(s), V;,.(s), Z(s) and r(s) are defined at 8 = 8. Let ag(z) "' =

1—Yiodiz', and by(z)/ao(z)? = 1 — 3 ;. ciz'. Then the coefficients d;j, and cj decay at an
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exponential rate (see (2.7)). It follows from (4.5) that

Ufs) = ao(B) 'X(s—j)+ ; diX (s —j; — 1) (4.15)
= bo(B) te(s — ji) ; Jldxs—Jl—l) Ui(s) + w(s),

Vin(s) = aO(B)bO(B)X(s—im):—J;Az: aX(s — iy — i) (4.16)
= aO(B)ls(s—im)—k.E; ;;(S—im—i) = Vin() + vm(s),

where Ay is defined in (3.2). By an argument similar to the one used for (3.12) we may show that

for's —ji = (p,v) and s — i = ((, 9),

E{u(s)?} < C(a* + o’ + a™2™), E{u(s)?} < C(a* + o + a™27F),
B|O(s)u(s)] < [B{O(s)*}E{m(s))] " < Clar +a”+a™ )12 < Olat 4o 4ol )2),
and
E|Vin(8)vm ()| < [E{Vin(8)*} E{vm(5)?}] " < ClaS+al 4201112 < Clall? 4ol /2 4 aNa=0)/2),

where a € (0,1) is a constant. Consequently the (I,m)-th element of UJR™'U; /N may be

expressed as

—ZUz t4)Un (ta) /7 (ta) = ZUl ta)Un (ta) /7(ta) + R, (4.17)

where E(R%;) < e for all sufficiently large N, and € > 0 is any given constant (see (4.14)).
Let bo(z) =1+ Zi>0 hiz‘, tq = (g, Bq) and j; = (ug,v;). Then

Up(t)) = eloag —ug, Ba—v) + hjre(ag —w — j, g — v — k) (4.18)

WE
WE

Il
=)

7 k=—o00

3
=

ni

= (g —w,Bag—u)+ hjre(og —wp — J, Ba — vy — k) + g (ty)
=0k

= Ui(s) +w(ty), say.

Il
o

—nq

In the above expressions, we assume that hgg = 1 and hg_j = 0 for all £ > 0. Similar to (4.17),

we may choose nj sufficiently large such that

—~ ZUl ta) U (ta) /7 (tq) = ZUZ ta) Uy, (ta) /7(ta) + Ry (4.19)
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with E(R%)? < € for any given ¢ > 0. Now since {e(s)} are independent and identically dis-

tributed, it holds that

N*

1 * -

N > Uf (ta)Ur (ta)
=1

ni n2 1 N*
= E : E : h‘jlyklh‘ijQN E e(ag —w — j1, B4 — vy —v1)e(aqg — Um — J2, B4 — Um — v2)
J1,72=0 k1,ka=-n1 d=1
n1 n1
a.s. )
g Z Z hjkhul—um+j,vz—vm+k7

j=0 k=—n1
which converges to 02Cov(§j,,&;,,) as n1 — oo. Now combining this with (4.17), (4.19) and the

fact that r(s) — 1, we have

.
% S Uilea)Un(ta)/r(ta) T 0*Cov(éy, &,
d=1

Similar results hold for other elements in U™R U /N. Thus the lemma holds. [

Lemma 9. N~Y2™R-12 25 N(0,04W(6,)71).

Proof. Within this proof, all Uj(s), Vi (s), Z(s) and r(s) are defined at 8 = 6. It follows from
(4.3) and (2.8) that Z(s) = &(s) + z(s), where z(s) = > ;c 4 »iX (s —1i) and As is defined in (3.2).
For k=1,---,N*, let

Ui = {01 (t), -+ Uplt), Vi(tn), -, Volti)},

wy, = {ui(bg), - s up(br), vn(tr), - vg(be)}7
where Uy, Vin, 1w and vy, are defined in (4.15) and (4.16). Now

1 1 & elty) +2(ty) 1 -
Tp—1 _ k k)
R GV ;(Uk ) r(ty) N2 ;Uke(tk‘)/r(tk) +op(1).

The last equality may be justified using the same argument as in the proof of Lemma 8.
Define Fj, to be the o-algebra generated by {(s) : s < ty41} for k=1,--- ,N* -1, and Fy=«

generated by {e(s) : s < tn«}. Then F_1 C F, Uge(ty) is Fr-measurable, and
E{Uge(tg)|Fr—1} = UpE{e(tr)} = 0.

Therefore {Ue(ty)} are martingale differences with respect to {Fj}. Note that r(s) > 1. For
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any € > 0 and o € RPT,

1 Al OLTUkE(tk) 2 r
— E{ (TIJ) I{|a" Uge(ty,) /r(ty)| > N2}

}—kl}

El{a ™ Uge(ty) 2 I{|a™Use(ts)] > NY2e}{I(|a"Uy| > log N) + I(|a”Uy| < log N)}|Fe_1]

IN
==
WMZ |

9 N* N*
1
(@O 1(a"Ug| > log N) + = S (@7 U PEle(ta)*T{e(t4)| > N'/%¢/log N,
k=1 k=1

<

The first sum on the RHS of the above expression is, for all sufficiently large N, smaller than

o2 X
~ Z (@™UL)?I(|a" U > K)

which converges in probability, via an argument as in the proof of Lemma 8, to an arbitrarily
small constant (by choosing K large enough but fixed). Therefore it converges to 0. In the same

vein, the second sum also converges to 0 in probability. Note that

1 o Uge(ty) 1 . » T - )

It follows from Theorem 4 on p.511 of Shiryayev (1984) that
1 D 4 -1
— a"Uge(ty)/r(t;) — N(0,0°a" W(0 a), forany a € RPTY,
5 o Vel fr(te) 2 N (60) '), for any

This leads to the required CLT. |

Proof of Theorem 2. It follows from (2.20) that

N*
M(0) = —20%log L(8,0%) = N*o?logo® + 02 logr(t; +Z{X (t;)}2/r(t;)
j=1
N* N*
Z(t X(t — Z(t;)?
= N*o?logo? +02210gr +Z Z{ ()} (t;) ’
j=1 j=1 r SJ j=1 (S])

where Z(-) is defined in (4.4). Note that 6 is the solution of the equation a%M(o”o:@ = 0. For

1 < k < p, the equality %M(G)b:@ = 0 leads to

N*
0= Z(tm,0)Ui(tm,0)/r(tm,0) + b (4.20)
m=1
N* p q
~ , R , Uity 0 o~
= ) AX () = > by, X (b —Jo) — > a1, Z (6 — i, o@}H + 05 (6 — 6g) + b,
m=1 =1 =1 m
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where

02 9 & 1% {X (tm) — X (6)}2 Or(ti)
o = (?abjkn;bgr(tm)_in; 7 (tm)? db;.
1 [ X () = X (tm) + Z(tm) H{X (b)) + Z(tm)}
N 57712::1 T(tm) aka
LX) = X(bm) = Z(tm) H{X (bm) = Z(tm)}
r(tm) ob;,. 0:57
N
"k=mZ_1 :19900 ZauoU ~is.6)) +Z (tm, 60) 83(%’:3))090+op<zvn6_ao|\>,

(4.21)
where a;, o denotes the true value of a;,, and U(s) = {Ui(s),--- ,Up(s), Vi(s), -+, V4(s)}". Simi-

larly the equation %M(G)\ =0 (1 <k <gq) leads to
ik

0=0
ol P . . I ~ . Vk(tﬂ”mOO) T n
0= {X(tm)->_ bjzX(tm—Jg)—ZaizZ(tm—lg,00)}W+np+k(0—90)+5p+k, (4.22)
m=1 (=1 (=1 m
where
e = (22 S gty - L §° X m) = R (6n)) 0t
ptk 2 day, ~— &7tm) =3 — 7(tm)? das,,
1 NZ X (tm) = X (bm) + Z(tm) O{X (bm) + Z(tm)}
2 T(tm) Oaik
m=1
LX) = X () = Z(bm) O{X (bm) = Z(tm)}
r(tm) Jai, 025’
N* N*
U (tm, 80) < , 0 (Vi(tm) ~
i = Y 20N G 0U (b —ig, 80)+ Z(tm,eo)—< +0,(N|[0—6y|)).
i le 7 (tm, 60) ; ‘ le 06 \ r(tm) /oce, )
4.23
Now it follows from (4.20) and (4.21) that
URIXO=UR'V+A™(0-0)+3, (4.24)

where 6 = (81, ,0p+q)", and A is a (p+ q) x (p + ¢) matrix with 7, as its k-th column. Note

that Y — X0y = Z and
U(ty —ig, 00)"

q
U=x- Zaibo
/=1

U(ty+ —1ig,09)"
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By (4.24), (4.20) and (4.22), we have
URUBO — 0y) =URZ + AT(0 — 6) + 6,

where Ay is a (p+ q) X (p + ¢) matrix with the sum of the last two terms on the RHS of (4.21)
as its k-th column for k = 1,--- | p, and the sum of the last two terms on the RHS of (4.23) as its

(p + k)-th column for k =1,--- ,q. Hence
N'Y2(6-60) = {URU/N-A]/N} "N V2URTZ-68) = {URU/N} ' N-V2UR Z40,(1).

The last equality follows from the fact that N—1/2§ P, 0 and A;/N L. 0. The former is
guaranteed by Lemmas 6 and 7, and the latter follows from Theorem 1 and a similar argument

as in the proof of Lemma 8. Now the theorem follows from Lemmas 8 and 9 immediately. |

5. Final remarks

5.1. Edge effect correction

So far the asymptotic normality of the estimators for stationary spatial processes has been estab-
lished via different edge-effect corrections; see Guyon (1982), Dahlhaus and Kiinsch (1987) and
also Theorem 2 above. Whether such a correction is essential or not for the asymptotic normality
of the GMLE remains as an open problem, although we would think that the answer should be
negative. However it seems to us that an edge-effect correction would be necessary to ensure that
the GMLE has the simple asymptotic distribution stated in Theorem 2 which is distribution-free.

For Gaussian processes, Guyon showed that his estimator is asymptotically efficient in a certain
sense; see p.101 of Guyon (1982). Note that in the context of estimating coefficients of a spatial
Gaussian ARMA process, Guyon’s estimator, Dahlhaus and Kiinsch’s estimator and our modified
GMLE share the same asymptotic distribution as stated in Theorem 2. However, as far as we
can see, Guyon’s efficiency does not imply that these estimators will share the same asymptotic
distribution with the genuine (Gaussian) MLE. This requires, in addition to what has been proved

in Guyon (1982), the necessary condition

0

* P
55 116) = I'(0)}

— 0,
0=0,

(NlNQ)_1/2

where [(-) denotes the log Gaussian likelihood function and [*(-) denotes the approximation from

which the estimator is derived. From the derivation in §4, the above limit seems unlikely to
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hold for, at least, our edge-effect-corrected likelihood. (Note that the Whittle likelihood for
spatial processes automatically suppresses the inhomogeneity at the boundary points up to a
non-negligible order.) It will be interesting to see the form of the asymptotic distribution of the

MLE without any edge-effect-correction, which, to our knowledge, is unknown at present.

5.2. Spatio-temporal ARMA models

A serious drawback of spatial ARMA models is the artifact due to the enforced unilateral order,
which rules out some simple and practically meaningful models from the class. (See, e.g. Besag
1974.) In fact, the half-plane ordering is only appropriate for a few applications such as line-by-
line image-scanning. Such a drawback may disappear naturally in the context of spatio-temporal
modelling. To this end, let X;(s) denote the variable at time ¢ and location s. Now the index

(t,s) is three-dimensional. Under Whittle’s half-plane unilateral order, the model
p

q
Xi(s) = Z Z briXe—o(s — 1) +eu(s) + Z Z agice—o(s — i)

(=1i€1, =1ieJ,
is legitimate for any subsets Z, and J; of 22, since X;(s) depends only on its ‘lagged’ values, &(s)
and the ‘lagged’ values of £,(s). By letting Z, and J, contain, for example, (0,0) and its four
nearest neighbours, the model is practically meaningful and can be used to model real data over
space and time. This is in marked contrast to the spatial models (2.1) in which Z; and Z5 must be
some subsets of {s > 0}. The asymptotic theory developed in this paper may be readily extended

to deal with the above model.
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