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Abstract 
Subjective well-being (SWB) is a major topic of research across the social sciences. Twin and family studies 

have found that genetic factors may account for as much as 30-40% of the variance in SWB. Here, we study 

genetic contributions to SWB in a pooled sample of ~11,500 unrelated, comprehensively-genotyped Swedish 

and Dutch individuals. We apply a recently-developed method to estimate “common narrow heritability”: the 

fraction of variance in SWB that can be explained by the cumulative additive effects of genetic polymorphisms 

that are common in the population. Our estimates are 5-10% for single-question survey measures of SWB, and 

12-18% after correction for measurement error in the SWB measures. Our results suggest guarded optimism 

about the prospects of using genetic data in SWB research because, while the common narrow heritability is not 

large, the polymorphisms that contribute to it could feasibly be discovered with a sufficiently large sample of 

individuals. 
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Subjective well-being (SWB)—most commonly measured by survey questions about a 

respondent’s happiness or life satisfaction—is a major topic of research across the social 

sciences (1-2). SWB is conceptualized to include a continuous spectrum of positive feelings 

and subjective life assessments (3-5). In contrast to standard economic indicators, which 

focus on consumption of material goods, responses to SWB survey questions additionally 

convey information regarding a broad range of other determinants of well-being, including 

physical and mental health, social relationships, leisure, and subjective states such as 

emotions and mental engagement (6-7). Because SWB measures may represent a relatively 

comprehensive assessment of an individual’s feelings of well-being, much research aims to 

understand individual differences in SWB (8). Most of the literature examines social, 

economic, and psychological influences on SWB (4, 9), but there has also been recent interest 

in understanding how genetic factors influence SWB. 

To date, most of these papers on the genetics of SWB are twin or family studies (10-17). 

These studies draw indirect inferences about the contribution of genes to SWB by contrasting 

the resemblance of relatives with different degrees of environmental and genetic similarity. 

The literature concludes that a moderate share, typically 30-40%, of the cross-sectional 

variation in SWB is accounted for by variation in genes.  

Recently it has become possible to directly and inexpensively assay human genetic 

polymorphisms, segments of DNA that differ across individuals. For medical geneticists 

studying health outcomes, the availability of such data has ushered in a new era, as 

researchers are discovering an ever-increasing number of polymorphisms related to diseases 

and physical traits (18). 

So far, however, the few attempts to find genetic polymorphisms associated with SWB have 

been unsuccessful (see (19) for the earliest effort we know of). One study reported an 

association (20), but follow-up work on an augmented sample from the same data did not 

replicate the finding (21). This lack of success is not surprising, given the lessons that have 

emerged from genetics research across a range of medical and social-science traits. Among 

the central challenges for complex traits, such as height and probably even more so SWB, is 

that the heritability of these traits appears to be comprised of a huge number of tiny genetic 

effects. Consequently, large samples of individuals—several orders of magnitude larger than 
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those used to date in gene-discovery work in the social sciences—are needed for adequate 

statistical power to identify specific genetic polymorphisms (22-23). 

Nevertheless, anticipating that polymorphisms related to SWB will soon be discovered, SWB 

researchers have expressed excitement about the transformative potential of genetic data for 

social-science research (21), which complements what can be learned from twin and family 

studies (22-24). Most directly, knowing the functions of the relevant genes could shed light 

on the biological pathways that matter for SWB. If a set of polymorphisms were found to be 

sufficiently predictive, then they could be used in social science research as control variables. 

More speculatively, such polymorphisms could be used as instrumental variables (25-26), in 

effect treating the Mendelian randomization that occurs at conception as a natural experiment 

to learn about the causal effects of SWB (which may be especially credible when used in 

family samples (27); for a critical perspective, see 28). Finally, the discovery of 

polymorphisms associated with SWB could catalyze the study of how genetic sources of 

individual differences are amplified or dampened by environmental factors—and, conversely, 

how environmental effects are modulated by genetic pathways. 

For evaluating the extent to which these promises of genetic data can be realized, a critical 

question is: how much of the variation in SWB will eventually be predictable using 

molecular genetic data? In this paper, we provide novel empirical evidence on a quantity—

the “common narrow heritability,” explained below—that may help calibrate reasonable 

expectations about the answer to this question. We also discuss the inferences that can and 

cannot legitimately be drawn from this estimate as well as from heritability estimates in 

general.  For example, we scrutinize the logical coherence of invoking estimates of a trait’s 

heritability to draw conclusions about its responsiveness to environmental interventions. 

The estimates of 30-40% mentioned above likely overstate the amount of predictive power 

that can be obtained from molecular genetic data for two distinct reasons. First, the numbers 

refer to what is known as “broad heritability,” but “narrow heritability” is more germane and 

is necessarily smaller. Narrow heritability is the fraction of variance that can be accounted for 

in aggregate by the cumulative additive effects of all genetic polymorphisms. It can be 

understood as the R2 from a population regression of SWB on its best linear genetic predictor, 

i.e., a predictor in which each polymorphism enters additively, and the effect of each

polymorphism is constrained to be linear in the number of reference alleles. Broad 
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heritability, which is necessarily larger, is the fraction of variance in SWB that can be 

explained in aggregate by all genetic factors. Broad heritability can be understood as the R2 

from a population regression of SWB on its best genetic predictor, allowing not only for 

linear and additive effects but also for interactions among different polymorphisms 

(“epistasis”) and non-linear effects of specific polymorphisms (“dominance”). In a seminal 

paper drawing together evidence from various twin and family comparisons, Lykken (29) 

proposed that for SWB (along with several other traits including personality), most, if not all, 

of the genetic influences stem from higher-order epistatic interactions among genetic 

polymorphisms. Lykken called this phenomenon the “emergenesis hypothesis” (for a recent 

and related discussion, see 30). If true, then the narrow heritability of SWB is much smaller 

than its broad heritability. Several recent, large-scale, twin-family studies, including both 

twin and sibling pairs, have indeed documented evidence for the importance of both additive 

and non-additive genetic effects in explaining individual differences in SWB (14,16). 

Narrow heritability is more relevant than broad heritability for evaluating the predictive 

power that will be attainable using molecular genetic data because most interaction effects 

between polymorphisms are going to be extremely challenging to pinpoint. For genetically 

complex traits, we are not aware of a credible method for restricting the set of hypotheses 

about epistatic interactions that could be postulated. The number of possible combinations of 

polymorphisms that could be tested is therefore staggering, and this multiple hypothesis 

testing, in turn, necessitates imposing extremely stringent p-value thresholds. For a given 

sample and p-value threshold corrected for multiple testing, detecting even two 

polymorphisms whose interaction explains a given fraction of variance would require a 

sample size several orders of magnitude larger than the sample required to detect a single 

polymorphism that accounts for the same fraction of variance. As the order of the interaction 

increases, the requisite sample size quickly outstrips the number of people on the planet. 

Second, even narrow heritability is likely to overstate the fraction of variance that 

discoverable polymorphisms are likely to capture. Estimates of narrow heritability from twin-

family studies include additive variance attributable to any polymorphism, regardless of 

whether the polymorphism is common or rare among individuals. But individual 

polymorphisms related to SWB that are rare in the population—which may collectively 

contribute much of the narrow heritability—will be much more difficult to reliably detect 

than polymorphisms that are common in the population. 
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In our empirical analysis, we estimate a parameter that cannot be estimated from twin or 

family data and that is necessarily smaller than narrow heritability, namely common narrow 

heritability: the fraction of variance that can be accounted for in aggregate by the cumulative 

additive effects of genetic polymorphisms that are common in the population. To do so, we 

use a recently-developed method (31-32) called Genomic-Relatedness-Matrix Restricted 

Maximum Likelihood, or GREML. We apply GREML to SWB, pooling data from two large 

datasets, TwinGene (TG; the genotyped subsample of the Swedish Twin Registry (33)) and 

the Rotterdam Study (34), both datasets in which dense single-nucleotide polymorphism 

(SNP) genetic data have been collected. GREML has previously been used to estimate the 

common narrow heritability of height (31), intelligence (35-36), personality traits (37), 

several common diseases (38), schizophrenia (39), economic and political preferences (22), 

as well as smoking, glucose levels, and depression (40). GREML has not previously been 

applied to SWB. 

GREML estimates a heritability parameter by examining how, across pairs of individuals, 

phenotypic similarity relates to genetic similarity, after controlling for observables (in our 

case: age, sex, 20 principal components of the variance-covariance matrix of the genotypic 

data, and an indicator for dataset; see Materials and Methods). However, unlike in twin-

family studies, where expected genetic similarity (inferred from the family pedigree) is used, 

GREML proceeds by first estimating the realized genetic similarity between pairs of 

unrelated individuals using the dense SNP data. To be more precise, realized genetic 

similarity is estimated using the sample covariance matrix of the individuals’ genotypes. 

Since the genotypic data contains over half a million SNPs, this matrix is estimated very 

precisely. Because the covariance is a linear operator, the GREML method picks up the 

fraction of variance explained by the linear, additive action of the SNPs—i.e., the part of 

narrow heritability that is due to the measured polymorphisms. Hence GREML does not 

require the assumptions—about the degree of environmental and genetic resemblance 

between relatives and about the specific form of genetic effects (e.g., additive or 

dominance)—that tend to incite controversy when twin or family data is used to estimate 

narrow heritability. Because the current genotyping platforms from which our dense SNP 

data are obtained do not measure polymorphisms that are rare but do tag most of the genetic 

variation that is common in the population (41), GREML as applied to these genotypic data 

yields an estimate of common narrow heritability.  
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The key identifying assumption in GREML is that genetic similarity is uncorrelated with 

similarity in uncontrolled-for environmental factors that are exogenous to genotype (as 

defined by (42)). This assumption might be violated if the sample includes members of a 

common extended family, such as siblings or close cousins. Therefore it is standard to 

include in the sample only one individual from each family (in our case, one twin from a 

pair) and to drop individuals whose estimated genetic relatedness lies outside a small interval 

around zero. Since there is more random variation in the realized degree of genome sharing 

relative to the expected degree as the expected relatedness declines (43), uncontrolled-for 

environmental confounding factors are less likely to drive estimates that are based on realized 

relatedness among individuals whose expected relatedness is negligible. 

We measure SWB in the TG and RS samples using responses to the two items from the 

Center for Epidemiologic Studies Depression Scale (CES-D) positive affect subscale that are 

available in both studies, namely responses regarding how frequently “During the past week, 

I was happy” and “During the past week, I enjoyed life.” We refer to these questions, 

respectively, as Happy and Enjoy. Responses are elicited using a four-point Likert scale 

ranging from “Rarely or none of the time (less than 1 day)” to “Most or all of the time (5-7 

days).” Combined is a composite measure of the two variables. Because a substantial 

majority of responses to Happy and Enjoy are either in the highest-frequency category or the 

second-highest category (as is common with SWB survey measures), and because the 

software GCTA (32) that we use for the GREML analysis cannot presently handle 

multinomial variables, we converted the responses to binary variables (for details, see 

Materials and Methods). 

Results 

Table 1 reports the GREML estimates. For each sample, TG and RS, we report the fraction of 

variance explained by the measured SNPs for each of the two questions and for the combined 

SWB measure. We also report estimates with the TG and RS results pooled. In the TG 

sample, the GREML estimate for Happy is 0.10 (s.e. 0.10); for Enjoy, 0.06 (s.e. 0.10); and for 

Combined, 0.08 (s.e. 0.10). The corresponding figures in RS are 0.06 (s.e. 0.10), 0.04 (s.e. 

0.10), and 0.08 (s.e. 0.10). Figure 1 shows the estimates and standard errors for the pooled 
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sample. These estimates are of course more precise. For two out of the three SWB measures, 

Happy (h2
SNP = 0.10; s.e. 0.05), and Combined (h2

SNP = 0.09; s.e. 0.05), the estimates are 

statistically distinguishable from zero at the 5% level. 

These estimates are attenuated by measurement error in SWB. Moreover, because our 

measures of SWB are based on only two questions, the attenuation is probably more severe 

compared to what is typically observed for lengthier personality batteries. We estimated 

reliability using data on 105 SALT respondents who answered the SALT survey twice, with 

two weeks between the measurement occasions. Our estimates are 0.55 (s.e. 0.12), 0.41 (s.e. 

0.15), and 0.61 (s.e. 0.12) for Happy, Enjoy, and Combined, respectively. While there are 

also individuals in the RS study who participated in multiple waves and for whom two or 

more responses are available, these responses are at least two years apart in time, and thus 

more of the change in measured SWB is likely to reflect true changes in SWB; nonetheless, 

for completeness, we also report the RS estimates in Table 1. 

A simple adjustment for attenuation is to divide the heritability by the retest reliability. This 

adjustment assumes that any change in measured SWB between one survey occasion and the 

next is due to classical measurement error (that is uncorrelated with genotype) and not true 

change. Using this adjustment and the SALT retest reliabilities, we estimate that 18%, 12%, 

and 15% of the variance in Happy, Enjoy, and Combined would be accounted for by common 

SNPs if the SWB variables were measured without error. 

In the Supporting Information, we report results of additional analyses that examine how 

sensitive our baseline results are to the choice of relatedness thresholds and to whether 

relatedness is estimated only using SNPs available on both platforms (see Table S3 in the SI). 

Reassuringly, these estimates are very close to those in our preferred specification. We also 

attempted to compare the GREML estimates to conventional twin-based estimates, when 

both are derived from the Swedish twin sample. The twin estimates, shown in table S4, are in 

the same range as the GREML estimates, but unfortunately we cannot draw strong 

conclusions because the twin estimates are very imprecise. 
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In this paper we provide evidence on the common narrow heritability of SWB. We find that 

5-10% of the variance in responses to single-question survey measures of SWB is accounted 

for by the additive effects of the SNPs measured on presently-used genotyping platforms. A 

correction for measurement error in the SWB measures raises the point estimates to the range 

12-18%. 

We interpret our findings as indicating that the common narrow heritability is smaller than 

the typical estimates of narrow heritability from twin-family studies (although one recent, 

large-scale twin-family study estimated narrow heritability in the 10-20% range, as small as 

our estimates of narrow heritability; see (16)). A caveat to this conclusion is that the twin-

based heritability point estimates in our Swedish sample are actually lower than the GREML 

estimates. That raises the alternative possibility that our low GREML estimates are due to 

anomalously low “true” heritabilities in the data we happened to study, perhaps because the 

SWB measures that were available in our data tap into recently-experienced SWB to a greater 

extent than do multi-item dispositional measures of SWB. 

There are three reasons why we believe that our interpretation is more compelling than this 

alternative. First, the twin-based estimates that we report, which are only available from the 

Swedish sample, are sufficiently imprecise that we have little confidence in the point 

estimates. Moreover, with a retest reliability of approximately 0.5 in the SWB measure, the 

measurement-error-adjusted 95% confidence intervals would overlap comfortably with the 

consensus estimates from the literature on twin-family studies. Second, we have relatively 

more confidence in our GREML estimates, which are similar across our Swedish and Dutch 

samples. Third and relatedly, our interpretation of the data also fits with the evidence 

regarding personality, another complex behavioral trait for which epistatic interactions have 

been hypothesized to be important (29). Twin-based analyses tend to produce heritability 

estimates for personality around 30-50% (44-45), but a recent study finds evidence that a 

substantial share of the heritability of Neuroticism, Openness, and Agreeableness is due to 

non-additive factors (46). Two studies applying GREML to personality traits have been 

published to date, with results remarkably close to those reported here. One study reports 

estimates of 9 and 12% for neuroticism and extraversion (37), respectively, and another 

reports estimates in the range 4-10% for traits assessed by the Cloninger personality 

inventory (47). 

Discussion
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For SWB, the gap between the common narrow heritability we estimate and the larger 

estimates of narrow heritability from twin-family studies may imply that some of the narrow 

heritability is due to rare polymorphisms. For most traits, it is not well understood to what 

extent rare polymorphisms with substantial effects account for the heritable variation (48). 

Until very recently, rare polymorphisms were not measured on standard genotyping 

platforms, and therefore most hypotheses regarding their role are based on indirect inferences 

such as that we make here (49).   

Common narrow heritability is the quantity of most direct interest for assessing the potential 

contributions of genetic data to SWB research. Nonetheless, it may also be of interest to 

calibrate what our GREML results imply about narrow heritability, given that our GREML 

estimates do not rely on the same assumptions as the twin- and family-based estimates of 

narrow heritability. Two well-measured and widely-studied complex traits for which 

reasonably reliable heritability estimates are available are height and cognitive ability. The 

twin-based estimates tend to fall in the range 50-80% for adult intelligence (50) and 80-90% 

for height (51). These estimates provide an upper bound on the narrow heritabilities. Other 

family-member comparisons—of full biological siblings, half-siblings and parents and their 

children—suggest that the narrow heritabilities are unlikely to fall below 50% for adult 

intelligence (52) and 60% for height (53). By comparison, the one published GREML 

estimate for height is 45% (31), and GREML estimates for cognitive ability have also been 

around 45% (35-36). This evidence suggests that the common narrow heritability that we 

estimate should be adjusted upward by a factor of roughly 1.5 to recover a ballpark estimate 

of narrow heritability. 

While our empirical contribution in this paper focuses on estimating the common narrow 

heritability of SWB, we also believe it is important to highlight for SWB researchers that the 

conclusions that can be drawn from heritability estimates are more limited than is generally 

understood (for a related discussion, see (54)). Two misconceptions in particular appear to be 

widespread. First, some scholars erroneously conclude that higher heritability implies less 

variation left over to be explained by environmental factors. As the authors of the World 

Happiness Report (8) put it, twin studies are often misleadingly understood as “estimating the 

extent to which happiness depends on genetically based personality differences rather than 

differing circumstances.” However, as Jencks (42) explained, heritability comprises any 

genetic variation that ultimately contributes to phenotypic variation, regardless of the 
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pathway, and many plausible pathways are in fact mediated by environmental factors. In the 

terminology of econometrics, the population regression of SWB on all genes—for which 

heritability is the R2—is a reduced-form regression, but the structural equations describing 

the true relationship between a gene and SWB may involve many intervening environmental 

variables. While some genes may affect SWB via relatively direct physical pathways—for 

example, by affecting baseline serotonin levels or dopamine-receptor density—it also seems 

likely that many genes matter for SWB through their effects on preferences, personality, and 

abilities, which in turn influence individuals’ choices about friendships, marriage, fertility, 

and occupational choice. Consequently, some of the variance in SWB explained by genes is 

the same variance that is explained by these environmental factors. Because genetic effects 

may operate indirectly through environmental variables, the heritability of SWB does not put 

any bound on the proportion of variance that could be explained by the full set of relevant 

environmental variables. 

Second, findings of higher heritability are sometimes misinterpreted as demonstrating that 

there is less scope for interventions to increase SWB. For example, in their seminal paper, 

Lykken and Tellegen (11) conclude that “trying to be happier [may be] as futile as trying to 

be taller.” Such a claim may or may not be true, but it is in no way implied by the finding that 

SWB is heritable. The conclusion is incorrect for two distinct reasons. Related to the point 

above, some genetic effects may be mediated by modifiable environmental variables. The 

very same genotype may cause a person to grow to five feet or six feet tall, depending on 

nutritional intake. Furthermore, as Goldberger (55) pointed out, even if heritability were 

100% and the genetic effects operated entirely through mechanisms that are difficult to 

modify, there may still exist powerful environmental interventions that do not contribute to 

outcome variance in the current population. As Bang (54) emphasized in her discussion of 

genetics and SWB, a heritability estimate represents the fraction of variance explained by 

genes in a specific population at a specific point in time. Using econometric terminology, one 

set of explanatory variables (in this case, genes) having a high R2 does not rule out a large 

coefficient on another variable (an intervention), if the latter explanatory variable varies little 

across individuals in the population under study. In Goldberger’s example, the introduction 

of eyeglasses dramatically improves vision even though eyesight is highly heritable. 

To summarize what can be concluded from our findings, the magnitude of common narrow 

heritability provides useful information regarding the potential contributions of genetic data 
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for research on SWB. Because our estimates are lower than typical heritability estimates for 

SWB, our results suggest that the scope for uses of genetic data that rely on substantial 

predictive power—such as using a set of polymorphisms as control variables, instrumental 

variables, or moderators in social-science research—may be more limited than has been 

assumed. At the same time, the fact that our estimates of common narrow heritability are 

non-negligible suggests that—even if much of the broad heritability is due to epistatic 

interactions—some of the SNPs measured on existing platforms have main effects on SWB. 

Therefore, gene-discovery efforts with a large enough sample size are likely to be successful. 
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Materials and Methods 

Our study combines data from the Swedish Twin Registry (STR) and the Rotterdam Study 

(RS). STR is a large, population-based twin registry. Between 1998 and 2002, STR 

administered to twins born in 1958 or earlier a survey called the Screening Across the 

Lifespan Twin study (SALT; see (33)). A subsample of SALT was recently genotyped using 

the Illumina HumanOmniExpress BeadChip technology as part of the TwinGene project (22). 

We refer to these ~10,000 genotyped SALT respondents as the “TG” sample. TG participants 

are all born between 1911 and 1958. 

RS is a large, population-based prospective cohort study of elderly people ongoing since 

1990 in the city of Rotterdam in the Netherlands (see (34)). ~11,000 subjects in RS have been 

genotyped using the Illumina 550K and 610K arrays. RS respondents are divided into three 

cohorts, which we refer to as RS-I, RS-II, and RS-III. 

To minimize the expected relatedness of the individuals in our sample, we only included one 

twin per family in the TG sample. If only one twin from a pair had answered both survey 

questions, the individual with complete phenotypic data was included in the analysis. If both 

twins had complete phenotypic data, one of them was chosen at random. We then pooled the 

resulting sample with the RS sample and used the GCTA software to estimate the pairwise 

relatedness between all individuals in the pooled dataset. Following convention, we restricted 

the sample to individuals whose pairwise relatedness did not exceed 0.025 in absolute value. 

These restrictions brought the sample size to just below 6,000 individuals in each sample. 

Our analysis is restricted to individuals with SNP data that passed quality controls and who 

answered both questions. Results in TG are based on 627,011 SNPs; in RS, on 533,323. Due 

to incomplete overlap in the two samples, the number of SNPs in the pooled sample is larger, 

852,597. 

To convert the Happy and Enjoy to binary variables, we coded responses as “high” if they 

were the highest-frequency category and “not high” otherwise. We also constructed a 

composite measure of the two variables, which we call Combined, whose value is “high” if 

both Happy and Enjoy are high and “not high” otherwise. By generating the binary variables 

in this way, the fraction coded as high (or equivalently, not high) is made as close as possible 



12 

to one half, thereby maximizing the variance and hence statistical power. The distributions of 

SWB measures before they were binarized are given in Table S1. 

In the analyses we assume that each binary variable we observe results from the realization of 

an underlying, normally-distributed random variable for liability falling above or below some 

threshold. Table S2 in the SI Appendix reports age and sex, as well as the fraction of 

individuals coded as high for the three variables. Throughout, we control for sex, age, age 

squared, dummies for each of the three RS cohorts (TG is the omitted category), and, to 

guard against population stratification, the first 20 principal components (PCs) of the 

genotype data. 
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Figure Legends

This figure shows the GREML estimates, and 
their 95% confidence intervals, for Happy, 
Enjoy, and Combined. The sample pools the 
three Rotterdam cohorts (RS) and the Swedish 
Twin Registry TwinGene sample (TG). 



Table 1:  GREML (common narrow heritability) estimates for SWB 

Happy (“...I was happy)” Enjoy (“…I enjoyed life”) Combined 

Sample #SNPs N  h2
SNP s.e. p-value N h2

SNP s.e. p-value  N h2
SNP s.e. p-value 

TG 627,011 5,682 0.10 0.101 0.156 5,742 0.06 0.102 0.282 5,670 0.08 0.103 0.217 

RS 533,323 5,904 0.06 0.099 0.279 5,919 0.04 0.104 0.354 5,893 0.08 0.095 0.199 

Pooled 852,597 11,484 0.10 0.049 0.014 11,558 0.05 0.053 0.186 11,461 0.09 0.049 0.026 

SALT 
Retest 

0.55 0.41 0.61 

RS Retest 0.41 0.43 0.39 

Note: This table reports GREML estimates for Happy, Enjoy, and Combined. “TG” is the Swedish Twin Registry TwinGene sample. “RS” is the 
three Rotterdam cohorts pooled together. “Pooled” combines the TG and RS samples. We estimated the matrix of genetic relatedness after 
omitting one twin per pair in the Swedish data and then restricted the analyses to individuals whose relatedness did not exceed 0.025. N is the 
number of individuals used in the analyses after the relatedness threshold has been applied. In all analyses we control for sex, age, age squared, 
and the first 20 principal components of the variance-covariance matrix of the genotypic data. The p-value is from a likelihood ratio test of the 
null hypothesis that the fraction of variance explained is equal to zero. “SALT Retest” is the sample of respondents in the Screening Across the 
Lifespan Twin study who answered the survey twice (with one week between survey occasions). “RS Retest’’ is the retest correlation estimated 
using RS participants who answered the relevant questions in at least two different survey waves. These answers are at least two years apart in 
time.
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Supporting Information: 

“Molecular Genetics and Subjective Well-Being” 

This document provides additional details about data and additional analyses to 

accompany the article “Molecular Genetics and Subjective Well-Being.” 
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Table S1: Descriptive Statistics: Distribution of SWB measures 

Panel A.  Single-question SWB measures 

SWB measure Sample N 

%Rarely or 
none of the 
time (less 
than 1 day) 

%Some 
or a little 
of the 
time (1-2 
days) 

%Occasionally 
or a moderate 
amount of 
time (3-4 
days) 

%Most or 
all of the 
time (5-7 
days) 

Happy RS-I 3,842 7.0 7.7 15.9 69.5 

RS-II 2,075 4.5 11.0 22.3 62.2 

RS-III 2,992 2.9 9.8 20.3 67.1 

STR 6,675 5.1 11.0 44.9 39.0

STR+RS 15,584 5.1 10.0 30.0 55.0 

Enjoy RS-I 3,866 6.1 7.0 13.3 73.6 

RS-II 2,080 4.2 10.3 17.9 67.6 

RS-III 2,990 2.6 8.7 15.7 72.9 

STR 6,751 2.4 3.7 27.0 66.9

STR+RS 15,687 3.6 6.3 20.3 69.8 

Panel B.  Combined SWB measure 
SWB measure Sample N 0 (%) 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 
Combined RS-I 3,830 3.2 2.1 5.0 6.4 8.2 11.5 63.5 

RS-II 2,070 2.7 1.7 6.4 6.3 12.0 15.9 55.1 

RS-III 2,989 1.4 1.4 5.2 5.8 11.0 14.3 61.0 

STR 6,659 1.1 1.3 3.8 8.0 21.4 28.7 35.8 

STR+RS 15,548 1.9 1.6 4.7 6.9 14.9 20.0 50.0 

Note. This table provides summary statistics for the SWB measures used in the GREML analysis. 
RS: Rotterdam Study. STR: Swedish Twin Registry TwinGene sample.  
�
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Table S2: Descriptive Statistics: GREML and Twin Analysis Samples�

Sample N %Female 

Mean 
Age 
(s.d.) 

N Happy 
(%high) 

N Enjoy 
(%high) 

N Combined 
(%high) 

RS-I 3,878 58.6% 72.42 3,842 3,866 3,830 

(7.35) (69.5%) (73.6%) (63.5%) 

RS-II 2,085 54.3% 64.72 2,075 2,080 2,070 

(7.93) (62.2%) (67.5%) (55.1%) 

RS-III 2,993 56.3% 57.03 2,992 2,990 2,989 

(6.78) (67.0%) (72.9%) (60.1%) 

RS 8,956 56.8% 65.48 8,909 8,936 8,889 

(9.91) (67.0%) (72.0%) (60.7%) 

TG 6,767 52.6% 67.59 6,675 6,751 6,659 

(8.92) (38.9%) (66.9%) (35.8%) 

TG+RS 15,723 55.0% 66.39 15,584 15,687 15,548 

(9.35) (55.0%) (69.8%) (50.0%) 

SALT MZ 5,398 53.8% 73.85 1,952 3,308 1,781 

(5.21) (37.8%) (62.9%) (34.6%) 

SALT DZ 8,950 52.8% 74.16 3,156 5,460 2,856 

(5.21) (37.0%) (62.6%) (33.6%) 

SALT OS 5,682 50.0% 76.19 1,917 3,385 1,703 

(7.50) (35.6)% (61.2%) (31.8%) 

Note: This table provides summary statistics for the variables used in the GREML (upper panel) and 
twin-study analysis (lower panel). RS: Rotterdam Study. TG: Swedish Twin Registry’s TwinGene 
sample. SALT: Swedish Twin Registry’s Screening Across the Lifespan Twin Study sample. 
MZ: monozygotic. DZ: dizygotic same-sex pairs. OS: opposite-sex DZ pairs. The TG sample is 
the subset of the SALT sample that has been genotyped, and in the TG (but not SALT) sample, 
one twin per family has been removed. The SALT sample is restricted to twin pairs in which 
both members responded to the survey and such that the age range is the same as in the TG 
sample. “N Happy” refers to the number of observation individuals with non-missing data for 
Happy; analogously for “N Enjoy” and “N Combined.”  For Happy and Enjoy, “%high” refers to 
the fraction of individuals who chose the highest response category for the SWB question; for 
Combined, it is the fraction coded as high for both questions.��
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Table S3: Additional GREML (common narrow heritability) estimates of SWB: Only SNPs in Both Datasets & No 
Relatedness Threshold 
�

Happy (“...I was happy”) Enjoy (“…I enjoyed life”) Combined 

#SNPs N  h2
SNP s.e. p-value N  h2

SNP s.e. p-value N  h2
SNP s.e. p-value 

Only SNPs in 

Both Datasets 
283,289 11,439 0.11 0.049 0.011 11,512 0.03 0.053 0.314 11,415 0.08 0.049 0.046

No 

Relatedness 

Threshold 

852,597 15,584 0.08 0.034 0.007 15,687 0.03 0.037 0.182 15,548 0.06 0.033 0.042

Note: This table reports GREML estimates for Happy, Enjoy, and Combined for the pooled sample (combining TG and RS). We 
estimated the matrix of genetic relatedness after omitting one twin per pair in the Swedish data. In the first analysis, we restricted the 
analyses to individuals whose relatedness did not exceed 0.025 and only SNPs that were available in all datasets. In the second 
analysis, we included all individuals and all SNPs. N is the number of individuals used in the analyses after the relatedness threshold 
has been applied. In all analyses we control for sex, age, age squared, and the first 20 principal components of the variance-covariance 
matrix of the genotypic data. The p-value is from a likelihood ratio test of the null hypothesis that the fraction of variance explained is 
equal to zero.
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Table S4: Variance Decomposition: Twin Analyses in SALT 

ACE Decomposition a2 c2 e2 -2 ln L

Happy 0.04 (0.00-0.16) 0.06 (0.00-0.08) 0.91 (0.84-0.95) 24593.30

Enjoy 0.07 (0.00-0.16) 0.03 (0.00-0.11) 0.90 (0.84-0.95) 25289.21

Combined 0.03 (0.00-0.17) 0.08 (0.00-0.13) 0.89 (0.88-0.92)  23681.61

Happy 0.05 (0.00-0.15) 0.04 (0.00-0.10) 0.91 (0.85-0.96) 17652.16

Enjoy 0.08 (0.00-0.14) 0.00 (0.00-0.06) 0.92 (0.86-0.97) 18060.22

Combined 0.06 (0.00-0.17) 0.05 (0.00-0.13) 0.89 (0.83-0.95) 17047.92

Note: The upper panel reports estimates of an ACE model with same-sex and opposite-sex DZ pairs 
included. The genetic and environmental factors are assumed to be the same in men and women. 
The lower panel reports estimates from an ACE model with only same-sex pairs included. All 
models allow the threshold to vary by age and sex. The variance components are constrained to be 
the same in men and women. The SALT sample is restricted to twin pairs in which both members 
responded to the survey and such that the age range is the same as in the TG sample. The SALT 
individuals used in these twin analyses are a superset of the TG sample used in the GREML 
analyses. 



S6 
�

S5: Quality Controls 

TG 

Between December 2010 and May 2011, 10,946 Swedish Twins were genotyped by the 

SNP&SEQ Technology Platform, Uppsala, using the Illumina HumanOmniExpress BeadChip 

genotyping platform. A detailed description of the analysis to detect pedigree errors is available 

in the Supplementary Information in (1). All genetic analyses reported in the present paper are 

based on the dataset with cryptically-related respondents removed from the sample. 

RS 

Genotyping of the Rotterdam Study samples was performed in the Genetic Laboratory, 

department of Internal Medicine, Erasmus MC, Rotterdam (HuGeF) using the Illumina, 

HumanHap 550K (RS-I and RS-II) and Illumina 610K Quad (RS-III) chip.  Ethnic outliers and 

individuals with a mismatch between gender and typed X-linked markers, excess autosomal 

heterozygosity, or within-sample cryptic relatedness were removed. 

RS+TG 

In addition to the study-specific quality control filters, additional control filters were imposed to 

prevent estimating spurious heritability due to different genotyping platforms across the two 

samples or due to the presence of twins in TG. SNPs with Minor Allele Frequency (MAF) < 

0.01, missing rate > 0.05, or Hardy-Weinberg equilibrium test p-value < 0.001 were excluded. 

Individuals with less than 95% of genotyped SNPs available were dropped, as were individuals 

with missing phenotypic information. In all analyses, one twin per family in the TG sample was 

always excluded. If only one twin from a pair had answered both survey questions, the individual 

with complete phenotypic data was included in the analysis. If both twins had complete 
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phenotypic data, one of them was chosen at random for inclusion. The QC procedures resulted in 

a dataset of 627,011 SNPs for 6,767 individuals in STR; 517,635 SNPs for 3,878 individuals in 

RS-I; 498,999 SNPs for 2,085 individuals in RS-II; and 510,681 SNPs for 2,993 individuals in 

RS-III. 
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