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Abstract

In this paper we estimate the sorting effects of university degree class on initial labor market
outcomes using a regression discontinuity design that exploits institutional rules governing
the award of degrees. Consistent with anecdotal evidence, we find sizeable and significant
effects for Upper Second degrees and positive but smaller effects for First Class degrees on
wages. In additional results we explore differences across groups and find evidence
consistent with a simple model of statistical discrimination on the basis of gender and types
of degree programmes. When we split the sample by ability, we find that the signaling effects
are similar in the high ability group but stronger for Upper Second degrees in the lower
ability group. The evidence points to the importance of sorting in the high skills labor market.
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1 Introduction

In this paper we estimate the sorting (signaling or screening) effects of university degree
class on labor market outcomes. As we explain below, the degree classification is a system of
categorizing performance on university degree programmes in the United Kingdom (UK). The
importance of the system is highlighted by the sizeable fraction of employers who report using
the classification in hiring decisions and by universities that use degree class to screen applicants
to postgraduate programmes. However, it is not obvious that the classification system is useful
because degree transcripts provide more information about applicant quality. Finding any effect
would suggest the presence of sorting in the skill market.

Using survey and administrative data from the London School of Economics and Political
Science (LSE), we find significant effects of degree class on initial labor market outcomes.
An Upper Second earns 7 percent higher wages compared to a Lower Second while a First
Class earns 3 percent higher wages compared to an Upper Second. However we find no
significant effects on the extensive margin of employment. These results are robust to a battery
of specification checks and suggestive of sorting in the high skills labor market.

In additional results we explore differences across groups and find evidence consistent
with a simple model of statistical discrimination on the basis of gender and types of degree
programmes. Males, quantitative degrees and degrees with less course choices appear to display
larger signaling effects. When we split the sample by ability, we find that signaling effects are
similar in the high ability group but stronger for Upper Second degrees in the lower ability
group.

Identifying the sorting effects of degree class is complicated by the fact that a naive compari-
son of, say, students who received a First Class with students who received an Upper Second
could be biased by the differing ability composition of the two groups. In this paper, we adopt
a regression discontinuity design (RD) that exploits institutional rules governing the award
of degree class on the basis of marks received on courses taken. This amounts to comparing
students who barely made and barely missed a degree class within a narrow window of the
marks received. We argue that this generates quasi-experimental variation needed for clean

identification of degree class effects.

1.1 Related Literature

Our paper is related to several strands of literature. Broadly, the signaling theory of education
suggests that education provides a signal of unobserved worker productivity (Spence 1973).
In the simplest model there is no productive role of education in human capital acquisition
although this consideration does not alter the basic predictions of the theory: high ability
types choose more education to separate themselves from low ability types (Riley 1979).

Notice that both the Becker (1964) theory of human capital and signaling theories predict



a positive correlation between ability and education. Thus discriminating between the two
theories has proven challenging empirically (Weiss 1995). Complementing the signaling theories
are screening models where employers take actions to separate workers into ability groups
(Stiglitz 1975, Wolpin 1977). We follow Weiss (1995) in collectively describing these classes of
signaling and screening theories as sorting models.

Empirical testing of sorting models has proceeded in two ways. Indirect evidence comes in
the form of changes in the human capital investment decisions of one ability group from changes
in the decisions made in other groups. Compulsory schooling laws for primary education that
affect higher education groups (Lang and Kropp 1986) or tertiary enrolment changes that affect
the high school margin (Bedard 2001) are seen as consistent with the signaling value of education
but not human capital theories. More direct evidence imagines a randomized experiment where
randomly selected individuals from the same ability group get treated with an educational signal.
Tyler, Murnane, and Willet (2002) mimic this experiment by exploiting differences in passing
standards for the GED diploma across US states. Their finding of significant effects for white
males stands in contrast to Clark and Martorell (2010) who find no effects for receiving the high
school diploma.

For tertiary education the early literature looked at the credential effects associated the
completion of college degrees (Layard and Psacharopoulos 1974). Hungerford and Solon
(1987), Belman and Heywood (1991) and Jaeger and Page (1996) include dummy variables for
college completion in Mincer (1974) regressions and interpret the significant effects of college
completion as signals of underlying correlates of productivity. In papers most closely related
to ours, Di Pietro (2010), Ireland, Naylor, Smith, and Telhaj (2009) and McKnight, Naylor,
and Smith (2007) examine the signaling effects of degree classification for students in the UK.
Notably Di Pietro (2010) adopts a regression discontinuity design using final year marks and
finds no effect on employment. We get similar results and extend the analysis by looking at
wage differences. Ireland, Naylor, Smith, and Telhaj (2009) use OLS regressions and find 4 and
5 percent returns to First Class and Upper Second degrees respectively. Their sample consists of
a much larger dataset of UK students across many universities and years but does not have the
course history information we have to construct finer comparison groups.

The rest of the paper is organized as follows. In Section 2 we discuss the institutional setting,
in Section 3 we explore the data sources and empirical strategy, in Section 4 we present our
results and specification checks. Section 5 explores heterogeneity across programmes and ability

groups. Finally, in Section 6 we conclude.



2 Institutional Setting

2.1 University Description

Our data comes from the London School of Economics and Political Science (LSE). LSE
is a top ranked public research university located in London, UK, specializing in the social
sciences. LSE offers a range of degree programmes and admission is highly competitive. In
2012, LSE students came top for employability in the Sunday Times University Guide with over
three quarters of students in employment or further studies six months after graduating. Our

results thus speak to the high end of the skills market within a selective tertiary institution.’

2.2 UK Degree Classification

The degree classification system in the UK is a grading scheme for degrees. The highest
distinction for an undergraduate is the First Class honors followed by the Upper Second, Lower
Second, Third Class and Pass degrees. While all universities in the UK follow this classification
scheme, each university has the power and discretion to apply its own standards and rules to
determine the distribution of degrees. The system has been applied in other countries including
Australia, Canada, India and many Commonwealth nations. In the US, a system of grade
point averages (GPA) and Latin Honors performs the similar purpose of classifying degrees. In
principle, this implies that our results apply to a broad range of countries.> Anecdotal evidence
points to the increasing importance of degree class in hiring decisions. One report points to
75 percent of employers in 2012 requiring at least an Upper Second degree as minimum entry

requirement especially for competitive jobs—this compares to 52 percent in 2004.

2.3 LSE Degree Classification Rules

To construct our identification strategy, we exploit a unique feature of the rules governing
the award of degree class. Undergraduates in the LSE take nine courses over three years. Every
course is graded out of 100 marks and fixed thresholds are used to map the marks to degree
class. As shown in Table B.1, a First Class Honors degree requires 5 marks of 70 or above or 4
marks of 70 or above with aggregate marks of at least 590. This mapping from course marks to

final degree class applies to all departments and years.*

ISee LSE website http://www2.lse.ac.uk/intranet/CareersAndVacancies/
graduateDestinations/6monthson.aspx.

2See  wikipedia http://en.wikipedia.org/wiki/British_undergraduate_degree_
classification and http://en.wikipedia.org/wiki/Latin_honors. The GPA is usually a
scale from 0 to 4 with one decimal accuracy and is a finer measure of performance than the UK system. There have
been calls to scrap the UK system in favor of a US-style points system, the Guardian, July 9th 2012.

3See the Daily Telegraph, July 4th 2012 and the Guardian, July 4th 2012.

4Four courses are taken each year, however only the average of the best three courses in the first year
counts towards final classification. Undergraduate law students are an exception and follow a different set of
rules. We exclude them from all analyses. Full details of the classification system is available online at http:
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We exploit the discontinuous relationship between degree class and marks received on the
fourth highest mark in a regression discontinuity design (RD). Our strategy is intuitive and
amounts to comparing otherwise similar students who differ only in a critical course mark which
determines their final degree class. To be specific, let us consider the award of a First Class
degree which depends on the receipt of at least four first class marks. This suggests that the
fourth highest mark for any student plays a critical role in determining the degree class. A
student whose fourth highest mark is larger than 70 is much more likely to obtain a First Class
degree than a student whose mark just missed 70, everything else equal. This can be seen clearly
in Figure 1 which plots the fraction of students who receive a First Class degree against their
fourth highest mark received. There is a clear jump in the probability of receiving a First Class
after the 70-mark threshold. A similar story can be seen in the award of an Upper Second degree
at the 60-mark threshold. To summarize, the fourth highest mark plays the role of the assignment
variable in our RD strategy.

In reality, we employ a fuzzy RD design because there are complications to the rules. As
shown in Table B.1 there is an aggregate mark requirement. Additionally, a failed course
results in a downgrade in degree class.” These caveats do not threaten our research design
because they are not applied on a case-by-case basis but are applied impartially at the department
level.® Nevertheless it moves us away from a sharp RD design. We explore in detail the first-
stage relationship between degree class and fourth highest mark in Section 4.1 and show that
the relevant complier population is sizeable so that our results generalize to the larger LSE

population.

3 Data and Empirical Strategy

3.1 Students’ Demographics and Course History

From student records we obtain age, gender, nationality and country of domicile information.
Course history includes information on degree programme, courses taken and grades awarded,
and eventual degree classification. Table 1 reports the descriptive statistics of the variables used
in our analysis. We have 5,912 students in the population from 2005-2010 of which 2,649 are
included in the DLHE survey (described in detail below). Columns (1) and (4) report the mean
and standard deviations of variables for surveyed and non-surveyed students, respectively, while
column (5) reports the difference. Surveyed students are less likely to be female, more likely

to be UK nationals, more likely to receive an Upper Second and less likely to receive a Lower

//www.lse.ac.uk/resources/calendar/academicRegulations/BA-BScDegrees.htm.
SFailed courses can be retaken up to three times and the better grade is used in calculating final degree class.
We control for any failed or retaken courses in our estimation. Students can appeal on specific courses, but this
does not worry us. First, appeals are difficult and rarely successful. Second, a student does not usually know before
the completion of their degree which course is critical in determining their class.
®There could still be a concern if departments can upgrade students who appeal in their final degree classification.
But this would not retroactively change grades on courses taken and reinforces the need to use a fuzzy RD design.
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Second.

To implement our empirical strategy, we further split the surveyed students into two samples.
The First Class sample consists of students who received either a First Class or an Upper Second
and the Upper Second sample consists of students who received either an Upper Second or
Lower Second. This provides two discontinuities that we examine separately and narrows
our comparisons to students who are on either side of each threshold. In Table 1 First Class,
Upper Second and Lower Second are dummy variables for the degree classes. Among all
surveyed students, the majority of 60 percent received an Upper Second with the remaining 40
percent roughly evenly split between First Class and Lower Second. 1[4th MARK > 70| and
1[4th MARK > 60] are dummy variables equal to one if the fourth highest mark is no less than
70 or 60 respectively.’

One shortcoming of this database is that we do not have measures of a student’s pre-university
ability. For a typical UK student this might include his GCSE and A-level results. Although
admissions to LSE programmes require A-level or equivalent results, this data is not collected
centrally but is administered at the department level. While controlling for ability is unnecessary
in our identification strategy it would be useful for improving precision and interesting to check
our results against different ability groups.® We take some steps to redress this shortcoming.
First in all our regressions we control for department x year interactions. More directly we use
the admissions offers made at the programme level as a measure of student ability. In Table B.3
we classify degree programmes into groups based on A-level requirements. The most stringent
programmes require A *AA grades followed by AAA, AAB and ABB respectively. We also code
a dummy variable indicating A-level mathematics’ requirements for admissions.’ Section 5

presents results exploring heterogeneity over these programme attributes.

3.2 Destination of Leavers from Higher Education Survey

The DLHE survey is a national survey of students who have recently graduated from a
university in the UK. This survey is conducted twice a year to find out employment circumstances
of students six months after graduation.'” Due to the frequency of the survey and its statutory
nature, LSE oversees the survey and reports the results to HESA (Higher Education Statistics
Authority). The survey is sent by email and responded to online and in theory includes all

students including non-domiciled and non-UK nationals. In practice response rates are higher

"We split the sample because anecdotes suggest that the Upper Second threshold may be more important. It
also allows a cleaner non-parametric identification strategy around the two discontinuities. We dropped Third Class
and below because they constituted less than 5 percent of the population. Including them among the Lower Second
population does not change results.

8 As noted in Lee and Lemieux (2010) an RD design mimics a natural experiment close to the discontinuity.
Hence there should be no need for additional controls except to improve precision of estimates.

Results in (McKnight, Naylor, and Smith 2007) suggest that controlling for degree programme reduces the
importance of pre-university academic results.

10The surveys are conducted from November to March for the “January” survey, and from April to June for the
“April” survey.



for domiciled and UK nationals.'! The survey provides us with data from 2005-2010. Our
key variables of interest are industry and employment status. Industry is coded in four digit
SIC codes, although we aggregate to two digits for merging with LFS data (see Section 3.3).
Employment status is a dummy variable equal to one if a graduate is employed in full-time work.
Self-employed, freelance and voluntary work is coded as zero along with the unemployed or
unable to work.'?

Table 1 shows that 85 percent of students who responded are employed within six months
of graduation. More than one-third of students are employed in the finance industry although
this varies slightly across the degree classes. Given the importance of the finance industry, we
construct a dummy variable for employment in finance and look at results excluding the finance
industry.

Because the survey is conducted six months after graduation, we interpret our analysis as
applying to first jobs. Although we do not observe previous job experience and cannot control
for this in our analysis, 98 percent of our students were younger than 21 years of age when
they started their degrees. Thus, any work experience is unlikely to have been in permanent
employment. Also, we cannot follow students over longer periods of employment to examine
the dynamic effects of degrees. While these are limitations of our data, we do not see these as
limitations of our analysis: according to the employer learning and statistical discrimination
models (Altonji and Pierret 2001), any sorting effect from degree class should be most relevant
in the first job.

Another concern is that employment six months after graduation may have been secured
before the final degree class is known. Anecdotes suggest that students start Summer internships,
work experience and job applications prior to graduation.'® While this may explain the insignif-
icant effects we find on employment, it cannot explain the results on wages. Furthermore, if
degree class has no effect for those students who have secured employment, our results would

underestimate the full effects for the students who have not.

3.3 Labor Force Survey

We merge wage data from the LFS into the DLHE survey at the industry x year X gender
level. We calculate mean log hourly wages for each industry x year x gender cell unconditional
on skills or experience. One concern with this approach is that mean wages are not representative
of the earnings facing undergraduates. To address this concern we also calculate mean log wages
conditional on university and three experience levels. To match the labor market prospects of
undergraduates we chose 1, 3 and 5 years of potential experience. To ensure that the finance
industry is not driving our results, we look at wages for the sub-sample of students not employed

in finance.

"Formally, LSE is required to reach a response rate of 80 percent for UK nationals and 50 percent for others.
12 An annual salary question is included but response is voluntary and had too many missing values.
13 Although many employers may offer jobs conditional on the final degree class.
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This gives us five different measures of industry wages—overall mean, university with 1, 3
and 5 years of experience and overall mean for non-finance industries. Our preferred measure is
the overall mean because it provides a clean measure of the industry’s “rank” compared to other
industries. In any case the five measures are highly correlated with pairwise correlations never
less than 0.8. Table 1 shows that the mean log wage is 2.45 which is roughly .£11.60 per hour in
2005.£. As expected, industry wages increase in years of experience.

Using industry wages implies that we do not have within-industry variation in outcomes. To
the extent that within-industry comparisons matter, our results will not be representative of the
true effects of degrees. We acknowledge that this is an imperfect measure and are cautious in
interpreting our results as effects on industry not individual wages.'* Table B.2 shows the top 15
industries ranked by total share of employment. Even accounting for the large share in finance,
there is substantial distribution in employment across industries—of the 84 two-digit SIC codes,

66 are represented in our data.

3.4 Empirical Strategy

Our unit of observation is a student. For each student we observe his degree classification
and his course grades. In particular, we observe his fourth highest mark out of nine courses
taken over three years of the degree. As described in Section 2.3, institutional rules imply that
the fourth highest mark is critical in determining his degree class. When the fourth highest
mark crosses the 70-mark or 60-mark cutoff, there is a discontinuous jump in the probability of
receiving a First Class and Upper Second respectively. In Section 4.4 we show that including
the other marks as controls does not change our results.

Identification in an RD setup requires two assumptions (Lee and Lemieux 2010). First,
agents cannot precisely manipulate the assignment variable. Second, apart from the treatment—in
this case degree class—all other observables and unobservables vary continuously across the
threshold. The first assumption cannot directly be tested although institutional knowledge and
the McCrary test provide supporting evidence. These are discussed in Section 4.2. The second
assumption can be tested using data on observables once the assignment variable has been
controlled for flexibly. Flexible control of the assignment variable can be done in several ways.
A parametric function such as a high order polynomial is parsimonious but is found to be quite
sensitive to polynomial order (Angrist and Pischke 2009). A non-parametric approach observes
that a regression discontinuity can be thought of as a kernel regression at a boundary point
(Imbens and Lemieux 2008). This motivates the use of local regressions with various kernels
and bandwidths (Fan and Gijbels 1996, Li and Racine 2007)."

In our benchmark specification we use the simplest non-parametric local linear regression

14The lack of a more direct wage measure is an issue for other studies in the literature as well (Di Pietro 2010,
McKnight, Naylor, and Smith 2007).

SRegression discontinuity was introduced by Thistlethwaite and Campbell (1960) and formalized in the
language of treatment effects by Hahn, Todd, and van der Klaauw (2001).
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with a rectangular bandwidth of 5 marks above and below the cutoff (Imbens and Wooldridge
2009). This means we include the fourth mark linearly and interacted with the dummy variable as
additional controls. In specification checks we vary the bandwidth and try polynomial functions
to flexibly control for the fourth mark. As discussed in Section 4.4 these specification checks
produce consistent results. The non-deterministic relationship between fourth highest mark and
degree class means that in practice we employ a fuzzy RD design. This uses the fourth highest
mark as an instrument for degree class.'®

In theory, identification in an RD setup comes in the limit as we approach the discontinuity
asymptotically (Hahn, Todd, and van der Klaauw 2001). In practice, this requires sufficient
data around the boundary points—as we get closer to the discontinuity estimates tend to get less
precise because we have fewer data. Furthermore, when the assignment variable is discrete
by construction, there is the additional complication that we cannot approach the boundary
infinitesimally.'” In this paper, we choose the 5 mark bandwidth as a reasonable starting point
and accept that some of the identification necessarily comes from marks away from the boundary.
We follow Lee and Card (2008) in correcting standard errors for the discrete structure of our
assignment variable by clustering on marks throughout.

We can write the first-stage equation as:

() CLASS;
=00 + 611[4th MARK > cutoff]; + 5 (4th MARK; — cutoff)+
63 <4th 1\4141(1(Z — CutOff) X 1[4th MARK > cutoff]i + X154 -+ u;

where CLASS is either First Class or Upper Second and the cutoff is 70 or 60 respectively.
1[4th MARK > cutoft] is a dummy variable for the fourth mark crossing the cutoff and our
instrument for the potentially endogenous degree class. X is a vector of covariates including
female dummies, age and age squared, dummies for being a UK national, dummies for having
resat or failed any course, 15 dummies for department, 5 year dummies and 75 dummies for
department X year interactions.

We can use the predicted degree class from our first-stage regression in our second-stage

equation:

) Y; =By + B1CLASS; + B2(4th MARK; — cutoff)+
63 (4th MARKZ — cutoff) X 1[4th MARK > CutOff]i + XZB4 + €

where Y are various labor market outcomes including employment status, employment in finance

16The close connection between fuzzy RD and instrumental variables is noted in Lee and Lemieux (2010),
Imbens and Lemieux (2008) and Imbens and Wooldridge (2009). Instead of the usual exclusion restrictions,
however, we require the continuity assumption and non-manipulation of the assignment variable.

7This is also a problem facing designs where age in years or months is the assignment variable, e.g. Carpenter
and Dobkin (2009).



industry and five measures of industry wages.

4 Results

4.1 First-Stage and Reduced Form Regressions

In this section we look at estimates of the first-stage Equation (1) and the reduced form

regressions:

3) Y: =70 + 71 1[4th MARK > cutoff]; + ~,(4th MARK; — cutoff)+
v3(4th MARK; — cutoff) x 1[4th MARK > cutoff]; + X;v4 + v

where Y are the various labor market outcomes. Table 2, column (1) reports the first-stage
results for the First Class discontinuity (panel A) and Upper Second discontinuity (panel B).
Both first-stage F-statistics are above the rule-of-thumb threshold of 10 and mitigates any
concerns about weak instruments (Stock, Wright, and Yogo 2002).'® In order to better interpret
the first-stage, we can look at the relationship between fourth highest mark and degree class
without controlling for any covariates. This also allows us to do a simple count of the complier
population in LSE (Angrist, Imbens, and Rubin 1996, Imbens and Angrist 1994). In Figure 2
the schematic shows the breakdown of students into compliers, always takers and never takers
around the discontinuity. For instance, always takers are students who receive a First Class
regardless of their fourth highest mark, while compliers are students who receiver a First Class
because their fourth highest mark crosses the threshold. The breakdown suggests that the
complier population is sizeable at 87 percent. This is expected because the institutional rules are
strictly followed and supports the validity of our results to the rest of the LSE population.
Columns (2) to (8) regress the outcome variables on the excluded instrument always control-
ling for covariates. In panel A, the small magnitudes and insignificant results suggest that the
First Class may not be important in labor market outcomes. The larger and significant results for
Upper Second in panel B are consistent with the idea that an Upper Second is important as a

signal or screening device for employers.

4.2 Randomization Checks and McCrary Test

As discussed in Section 3.4, identification in an RD setup requires continuity in the observ-
ables (and unobservables) across the threshold as well as non-manipulation of the assignment
variable. To test for continuity in the observables, we regress each covariate on the treatment
dummy in Table 3, columns (1) to (5). Apart from age in the First Class sample and gender

in the Upper Second sample, the results are consistent with the lack of discontinuity in the

18The sample size varies over outcome variables but we confirmed that the first-stage and other results are not
sensitive to these sample differences.



observables. The apparent discontinuity in age and gender does not worry us because these are
non-manipulable attributes (Holland 1986). In other words, there is less concern that agents
could have taken actions to manipulate these attributes around the discontinuity to improve their
degree class. This would be the case if we saw discontinuities in the students who resat or failed
any courses.

To test for the manipulation of the assignment variable itself, McCrary (2008) suggests using
the frequency count as the dependent variable in the RD setup. The idea is that manipulation of
the assignment variable should result in bunching of individuals at the cutoff. In the education
literature, this was shown to be an important invalidation of the RD approach (see for e.g.
Urquiola and Verhoogen (2009)). In our case, we should see a jump in the number of students
at the threshold of 70 or 60 marks. In column (6) of Table 3 we perform the McCrary test and
find large and (in the case of the Upper Second threshold) significant jumps in the number of
students. Prima facie this might suggest that students are manipulating their marks in order to
receive better degrees.

We argue that this bunching is not the result of manipulation but is a consequence of
institutional features. Figure 3 plots the histogram of the fourth, fifth and highest marks. In
every case there is a clear bunching of marks at 60 and 70 even for the highest mark which
is not critical for eventual degree class. This is because exam graders actively avoid giving
borderline marks (i.e. 59 or 69) and either round up or down.'” One may still worry that students
who received 58 or 68 may appeal to have their script re-graded. From discussions with staff,
the appeals process is arduous and rarely successful. Nonetheless we follow the literature in
dealing with the potential manipulation of marks by excluding the threshold in specification
checks reported in Section 4.4 (see for e.g. Almond and Doyle (2011)). This does not change

our results.

4.3 Effects of Degree Class on Labor Market Outcomes

Table 4 reports the results for the effects of receiving a First Class degree compared with an
Upper Second. In panel A, we compare average differences in outcomes without controlling for
any covariates. There are no differences in employment in general or in the finance industry
specifically. However, there are significant differences in industry wages. Using our preferred
measure of mean industry log wages, a First Class receives 7 percent higher wages. Panel B
includes covariates to allow for closer comparisons of students. This corresponds to Equation (2).
The employment outcomes remain insignificant while the wage coefficients halve but remain
significant. Finally in panel C, we instrument for First Class using a dummy variable for the
fourth highest mark, as in Equation (1). Although the difference in industry mean wages remains

significant at 5 percent, the conditional experience measures are insignificant suggesting that the

9In LSE, exams are taken anonymously and each script is graded by one internal and one external examiner.
Having graded each script separately, graders convene to deliberate on the final mark.
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wage differences for a First Class are not sizeable.

Table 5 reports the same specifications as Table 4 but for the Upper Second degree. Sur-
prisingly, there are no differences in average outcomes across students without controlling for
covariates in panel A. This is because of inter-departmental comparisons we are making in
the absence of department fixed effects. Once we control for covariates including department
by year fixed effects in panel B we observe that an Upper Second receives 4 percent higher
wages than a Lower Second. An Upper Second also has a 7 percentage point (20 percent) higher
probability of working in finance. Using the threshold dummy variable 1[4th MARK > 60] as
an instrument for Upper Second, panel C reveals that the returns are significant and sizeable at 7
percent for mean wages and 12 percentage points (37 percent) for finance industry employment.

To interpret these results we translate the percentage differences to pounds. Using our
preferred measure of wages in the specification in column (3) we find that a First Class and

Upper Second are worth around .£1,000 and £2,040 per annum respectively in current money.>’

4.4 Specification Checks

Here we conduct a battery of specification tests for our benchmark models given in panels
C of Table 4 and Table 5. In Table 6 we report checks for the First Class degree while Table 7
reports the same for Upper Second. Row (1) reports the benchmark results for convenience.
Rows (2) to (10) report results using different bandwidth sizes (our benchmark is a 5-mark
bandwidth) and rows (11) to (14) report specifications using parametric polynomial controls. In
rows (14) and (15) we include controls for the sum of marks and other marks separately to show
that our results are not driven by omission of other course grades. In row (16) we address the
concern that our results misrepresent students who are not domiciled in UK by looking only
at domiciled students. In row (17) we deal with the worry that bunching of marks around the
threshold reflects manipulation.

Employment outcomes appear to be sensitive to bandwidth choice. For the First Class some
specifications even suggest a negative effect on employment, e.g. rows (3) and (4). Likewise
for the Upper Second degree, employment overall and in finance does not display a consistent
pattern across specifications. To be conservative we interpret this as suggesting that the extensive
margin is not affected by degree class. This may be due to the limited variation we have in
employment and requires further investigation in future work. It also accords with the earlier
findings in Di Pietro (2010) who did not find significant effects on employment. In the following
sections we focus on the industry wage outcomes.

We find more consistent results for our preferred outcome of industry mean wages. Looking
at industry means for First Class degrees, we find effects significant at 5 percent ranging from

2.5 to 6.8 percent with the benchmark result of 3.3 percent. For Upper Second, the range is 5.7

20 Assuming a 40 hour week for 52 weeks for a full time worker using 23 percent CPI inflation from 2005-2012.
First Class: exp(2.473) x 40 x 52 x 1.23 x 0.033. Upper Second: exp(2.418) x 40 x 52 x 1.23 x 0.071.
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to 13 percent with the benchmark of 7.1 percent.

5 Additional Results

5.1 Statistical Discrimination by Gender and Degree Programmes

The theories of statistical discrimination are closely related to signaling and screening
theories. In this section we explore differences in degree class across groups and explain this
in the context of a simple model of statistical discrimination. Table 8 splits the sample by
gender and estimates separate effects for males and females. We find that First Class effects are
significant and positive for males at 6 percent (£ 1,780 a year) but insignificant and basically
zero for females.”! Upper Second effects are larger in magnitude for males but imprecisely
estimated for both.Table 9 splits the sample by degree programmes. Using information on the
math entry requirements, we distinguish between programmes which required at least A-level in
maths and those which do not (see Table B.3). We interpret this as a measure of how quantitative
the programmes are. For both First Class and Upper Second, quantitative programmes display
larger and significant effects. Finally, in Table 10 we split the programmes by the number of
course options available to students. This measure is weighted by department size because larger
departments may mechanically offer more options. We interpret this measure as capturing how
heterogenous the transcripts are across programmes and thus how noisy the degree class signal
is. Programmes with less heterogenous transcripts may provide less noisy signals of ability. We
find that there are no significant differences for First Class, but for Upper Second, programmes
which have less course choices have larger and significant effects.

In Appendix Section A we present a simple model of statistical discrimination to rationalize
these findings. Employers observe group characteristics and discriminate on the basis of ability
distributions across groups. In our context, a First Class or Upper Second degree has a stronger
effect if a student belongs to a group that has higher expected ability, higher variance in abilities
or lower variance in the noise associated with the degree class signal.”> Table B.4 provides
summary statistics for the three group definitions we have used. We can explain the stronger
effects for males and quantitative programmes as resulting from the higher mean and variances
of these groups. Our interpretation of the number of course options available on programmes as
a measure of the noise in the signal is supported by the smaller variance in the Upper Second
sample for programmes with less options but does not explain the First Class sample.

These findings are suggestive of statistical discrimination but there could be alternative
explanations. First, we are cutting the sample quite finely and these results may simply be

statistical artifacts. Second, there may still be unobservable characteristics correlated with these

2! Assuming a 40 hour week for 52 weeks for a full time worker using 23 percent CPI inflation from 2005-2012,
exp(2.454) x 40 x 52 x 1.23 x 0.06.

22Both First Class and Upper Second are positive signals because we are always comparing to the next lower
class.
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group characteristics that employers observe but not the econometrician. Our results would then
reflect selection rather than statistical discrimination.?® Third, there may be non-statistical forms
of discrimination that generate these patterns.

Furthermore, these differences may not persist. The literature on employer learning argues
that any signal used in initial labor market outcomes attenuates over time as employers discover
more about ability (Altonji and Pierret 2001). An interesting research topic would be to follow
students over the course of their careers to see if these group differences do, in fact, become less

important.

5.2 Heterogeneity Across Ability Groups

As noted in Section 3 one shortcoming of our data is that we do not observe measures of
pre-university ability. To redress this, we split programmes by their A-level entry requirements,
as shown in Table B.3. There are four types of requirements measuring the grades that are
needed on A-level courses with A*AA being the highest followed by AAA, AAB and ABB. A
few points are worth noting. First, LSE is a selective school so these A-level grades reflect the
upper-end of the national distribution and there may be little difference between the abilities of
the ABB and A*AA students. Second, these grades reflect the typical offer made and there may
be heterogeneity even within a programme on the actual entry grades.”* Third, the choice of
programme is an endogenous decision and this programme-level measure of ability does not
distinguish between innate or acquired differences (Arcidiacono 2004).

In Table 11 we report the results of splitting our sample by ability, with high ability defined
as programmes with A*AA or AAA entry requirements.” For the high ability group in panel
A we see that the First Class and Upper Second effects are similar—4.5 percent vs 5.3 percent
returns to a First Class. In panel B, the returns to an Upper Second are large and significant at
7.9 percent but the First Class coefficient is negative albeit imprecisely estimated.

If we are measuring ability correctly, these results are interesting and add to the literature
on employer learning and statistical discrimination. The fact that the returns to a First Class
or Upper Second are similar in the high ability group is consistent with Arcidiacono, Bayer,
and Hizmo (2010) who find that ability is revealed directly for high ability compared to lower
ability groups. There are two differences, however. First, they define all college graduates as

high ability while we split college students further and find differences even within a relatively

23The difference between statistical discrimination and selection is that in the former, employers and econome-
tricians both do not observe underlying ability and make inferences on the basis of observable factors (Weiss 1995).
With selection bias, employers observe characteristics that are not observed by the econometrician and thus statisti-
cal estimates are biased by these omitted factors. In principle, the RD strategy should mitigate selection effects
because we are comparing students who are close to the discontinuity.

24This is a particular issue in LSE with a large fraction of overseas students who may not have taken A-
levels.There are entry requirements based on the international baccalaureate and these map directly into A-level
grades.

23Table B.5 shows the correlation across the programme-level measures we have used. It shows that the variables
are not perfectly correlated and are thus unlikely to be capturing the same underlying measure.
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skill-homogenous group. Second, whereas they find that ability is revealed perfectly for high
ability types, here we find significant albeit modest returns to degree class. If productivity were
revealed perfectly for the high ability group we should find no First Class or Upper Second
effects at all.

Our finding that the Upper Second matters but not the First Class for the lower ability group
presents a puzzle. Going back to the simple model of statistical discrimination, an explanation
could be that the First Class is a noisier signal than the Upper Second for the lower ability group.
While we do not have a full explanation here, we think that this is an interesting area for future

research.

6 Conclusion

In this paper we estimate the sorting effects of university degree class on initial labor market
outcomes using a regression discontinuity design that exploits institutional rules governing the
award of degrees. Consistent with anecdotal evidence, we find sizeable and significant effects
for Upper Second degrees and positive but smaller effects for First Class degrees on wages—we
find that a First Class and Upper Second are worth around £1,000 and £2,040 per annum
respectively. However, we do not find significant effects on the extensive margin of employment.
These results generally survive a battery of specification checks.

In additional results we explore differences across groups and find some evidence of statistical
discrimination on the basis of gender and types of degree programmes. We find that signaling
effects are stronger for males, quantitative degree programmes and programmes with less course
choices. We interpret these findings using a simple model of statistical discrimination. When
we split the sample by ability, we find that the signaling effects are similar in the high ability
group but stronger for Upper Second degrees in the lower ability group. We do not have a full
explanation of the differences across ability groups and propose that this is an area of interest
for future research.

Overall, the evidence points to the importance of sorting in the high skills labor market. It
would be interesting to study how these effects on initial labor market outcomes change over

time as employers learn more about workers.
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Table 1: Descriptive Statistics

Surveyed
Upper
No. of First Class Second Not Difference
obs Total sample sample surveyed (-4
(1 2 (3) (C)] ®)
Number of observations 5912 2649 1136 1406 3263
Female 5912 0.453 0.448 0.476 0.510 -0.0576%**
Age 5912 22.06 22.03 22.06 22.10 -0.0358
UK national 5912 0.604 0.586 0.656 0.416 0.187%%#%*
Resat any course 5912 0.104 0.0317 0.132 0.105 -0.00131
Failed any course 5912 0.0615 0.0238 0.0782 0.0631 -0.00160
First Class 5912 0.234 0.387 0 0.249 -0.0154
Upper Second 5912 0.573 0.613 0.720 0.530 0.0431#%*
Lower Second 5912 0.193 0 0.280 0.221 -0.0277**
4th highest mark 5912 65.10 68.63 61.31 65.08 0.0148
1(4th mark > 70) 5912 0.242 0.406 0 0.253 -0.0106
1(4th mark > 60) 5912 0.834 1 0.770 0.806 0.02727%%*
Employed 2649 0.849 0.864 0.832
Finance industry 2244 0.381 0.420 0.318
Industry mean log wages
(2005¢£)
Industry mean 2244 2.454 2.473 2.418

(0.239) (0.228) (0.246)

College with 1 year
experience 2244 2.142 2.155 2.113

(0.184) (0.179) (0.190)

College with 3 years
experience 2244 2.338 2.350 2.311

(0.179) (0.175) (0.186)

College with 5 years
experience 2244 2.481 2.495 2.452

(0.186) (0.181) (0.192)

Industry mean excluding
finance industry 1389 2.378 2.398 2.351

(0.233) (0.221) (0.238)

Notes: This table shows means and standard deviations in brackets where applicable. Surveyed students are
respondents to the Destination of Leavers from Higher Education (DLHE) survey conducted six months after a student
graduates. Students who were not in the survey are included for comparison. The First Class sample includes surveyed
students who received either a First Class or Upper Second degree and whose fourth highest mark is within 5 marks of
70. The Upper Second sample includes surveyed students who received either an Upper Second or Lower Second
degree and whose fourth highest mark is within 5 marks of 60. First Class, Upper Second and Lower Second are
dummy variables for degree class. 4th highest mark is the fourth highest mark received by the student among all full-
unit equivalent courses taken. /(4th mark > 70) and 1(4th mark > 60) are dummy variables for the fourth highest mark
being at least 70 or 60, respectively. Employed is an indicator for whether a student is in employment 6 months after
graduation. Self-employment, voluntary work and further studies are not considered employment. Finance industry is
an indicator for working in the finance industry. Industry mean log wages are measures of hourly wages in two-digit
SIC industry x year x gender cells. Two-digit SIC industry wage data is taken from the Labor Force Survey and
rebased to 2005£.
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Table 2: First Stage and Reduced Form Regressions of Labor Market Outcomes
on Instruments for First Class and Upper Second Degrees

)] @)
Panel A: First Class discontinuity
First Class  Employed

1(4th mark > 70) 0.677%** 0.0074

0.12) (0.034)
Observations 1,136 1,136
R-squared 0.803 0.205
First-stage F-stat 29.2
Panel B: Upper Second discontinuity

Upper

Second Employed
1(4th mark > 60) 0.677%** -0.024

(0.078) (0.030)
Observations 1,406 1,406
R-squared 0.722 0.103
First-stage F-stat 74.8

3

Finance
industry
0.0066
(0.054)
978
0.255

Finance
industry

0.080
(0.050)
1,168
0.203

“ (&) Q) @) ®)
Industry mean log wages
College College College
with 1 with 3 with 5 Industry
Industry year years years mean excl.
mean experience experience experience finance
0.022 0.014 0.0091 0.012 0.035
(0.014) (0.013) (0.012) (0.011) (0.023)
978 978 978 978 567
0.606 0.437 0.405 0.466 0.496
Industry mean log wages
College College College
with 1 with 3 with 5 Industry
Industry year years years mean excl.
mean experience experience experience finance
0.048%* 0.036%* 0.046** 0.032%* 0.042%
(0.020) (0.015) (0.016) (0.016) (0.019)
1,168 1,168 1,168 1,168 796
0.484 0.353 0.321 0.368 0.405

Notes: *#* ** * gionificant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. Each cell reports a different
regression. All regressions are estimated by OLS. All regressions include female dummies, age and age squared, dummies for
being a UK national, dummies for having resat or failed any course, 15 dummies for department, 5 year dummies and 75 dummies
for department x year interactions. Column (1) reports the first-stage regression of degree class on an indicator for marks crossing
the relevant cutoff. The first stage F-stat for excluded instruments is reported in the last row of each panel.
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Table 3: Testing the Randomization of Instruments Around the First Class and
Upper Second Discontinuities

@ @ 3 “@ (&) ©®
No. of
UK Resat any Failed any  students in
Female Age national course course each mark
Panel A: First Class discontinuity
1(4th mark > 70) -0.00069 -0.16* 0.012 -0.00072 -0.0088 62.8
(0.055) 0.071) (0.060) (0.022) (0.011) (40.0)
Observations 1136 1136 1136 1136 1136 1136

Panel B: Upper Second discontinuity

1(4th mark > 60) 0.10%* 0.12 -0.031 0.041 0.0022 80.8%*
(0.036) (0.38) (0.066) (0.054) (0.064) (31.9)
Observations 1406 1406 1406 1406 1406 1406

Notes: *** ** * gionificant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. Each cell
reports a different regression. All regressions are estimated by OLS. All regressions include covariates, 15
dummies for department, 5 year dummies and 75 dummies for department X year interactions.
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Table 4: The Effects of Obtaining a First Class Degree Compared to an Upper
Second Degree on Labor Market Outcomes

(€] @ 3 “@ () ©) ()
Industry mean log wages
College College
College with 3 with 5 Industry
Finance Industry with 1 year years years mean excl.
Employed industry mean experience  experience  experience finance

Panel A: OLS without any covariates

First Class 0.019 0.069 0.070%%* 0.062%3#* 0.061%*#* 0.062%*:* 0.077%#%:*
(0.023) (0.042) (0.015) (0.013) (0.012) (0.013) (0.020)

Observations 1136 978 978 978 978 978 567

Panel B: OLS

First Class -0.022 0.013 0.0373%:#:* 0.033%#s%* 0.035%%%* 0.030%%** 0.052%%#%*
(0.019) (0.035) (0.0068) (0.0074) (0.0081) (0.0072) (0.013)

Observations 1136 978 978 978 978 978 567

Panel C: RD

First Class 0.011 0.0099 0.033%#:* 0.021 0.014 0.018 0.054 %
(0.045) (0.074) (0.016) (0.015) (0.015) (0.014) (0.024)

Observations 1136 978 978 978 978 978 567

Notes: *** ** * sjonificant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. Each cell reports a
different regression. All regressions include female dummies, age and age squared, dummies for being a UK national,
dummies for having resat or failed any course, 15 dummies for department, 5 year dummies and 75 dummies for
department x year interactions. See notes to Table 1 for descriptions of variables.
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Table 5: The Effects of Obtaining an Upper Second Degree Compared to a
Lower Second Degree on Labor Market Outcomes

(€] @ 3 “@ () ©) ()
Industry mean log wages
College College
College with 3 with 5 Industry
Finance Industry with 1 year years years mean excl.
Employed industry mean experience  experience  experience finance

Panel A: OLS without any covariates

Upper Second -0.0040 0.029 0.020 0.0011 0.0014 0.0050 -0.0066
(0.015) (0.022) (0.011) (0.013) (0.015) (0.012) (0.015)

Observations 1406 1168 1168 1168 1168 1168 796

Panel B: OLS

Upper Second 0.027 0.069%* 0.040%:#:* 0.025%:* 0.027%* 0.028%:* 0.028%:
(0.015) (0.030) (0.0085) (0.010) (0.010) (0.010) (0.010)

Observations 1406 1168 1168 1168 1168 1168 796

Panel C: RD

Upper Second -0.035 0.12%* 0.07 1 %#%* 0.0527%%* 0.067%%** 0.048%* 0.063**
(0.043) (0.058) (0.024) (0.019) (0.019) (0.019) (0.026)

Observations 1406 1168 1168 1168 1168 1168 796

Notes: *** ** * sjonificant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. Each cell reports a
different regression. All regressions include female dummies, age and age squared, dummies for being a UK national,
dummies for having resat or failed any course, 15 dummies for department, 5 year dummies and 75 dummies for
department x year interactions. See notes to Table 1 for descriptions of variables.
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Table 6: Specification Checks for First Class Degree

(1) Benchmark
(2) 1 mark above
and below disc.

(3) 2 marks above
and below disc.

(4) 3 marks above
and below disc.

(5) 4 marks above
and below disc.

(6) 6 marks above
and below disc.

(7) 7 marks above
and below disc.

(8) 8 marks above
and below disc.

(9) 9 marks above
and below disc.

(10) 10 marks above

and below disc.

(11)  2nd order polynomial

(12)  3rd order polynomial

(13)  4th order polynomial

(14)  5th order polynomial

Employed
0.011
(0.045)
1136
0.033
(0.12)
310
0.15
(0.28)
537
-0.16%*
(0.065)
730
(0.026)
906
-0.017
(0.030)
1346
-0.012
(0.028)
1552
-0.022
(0.024)
1742
-0.025
(0.024)
1894
-0.018
(0.025)
2048
0.0093
(0.037)
1136
-0.0057
(0.063)
1136
-0.13 %%
(0.029)
1136
-0.086*
(0.045)
1136

Finance
industry
0.0099
(0.074)
978
0.19
0.21)
270
0.73*
(0.40)
469
0.25%
(0.14)
629
0.2] %%
(0.057)
774
0.0091
(0.053)
1147
-0.0096
(0.037)
1322
0.0048
(0.037)
1478
0.038
(0.043)
1602
0.011
(0.043)
1735
0.054
(0.055)
978
0.11
(0.13)
978
0.20%*
(0.093)
978
0.025
(0.14)
978

Industry mean log wages

Industry
mean

0.033%*
(0.016)
978
0.018
(0.058)
270
0.20%
0.11)
469
0.0427%
(0.019)
629
0.068%
0.017)
774
0.0445
0.011)
1147
0.025%
(0.013)
1322
0.038#*
0.013)
1478
0.051##*
(0.0089)
1602
0.056%*
(0.0073)
1735
0.043%
0.013)
978
0.049+%
(0.026)
978
0.051%
(0.029)
978
-0.0019
(0.033)
978

College
with 1
year

experience

0.021
(0.015)
978
0.016
(0.050)
270
0.014
(0.080)
469
0.010
(0.017)
629
0.050%*
(0.015)
774
0.03 1
(0.011)
1147
0.015
(0.012)
1322
0.032%*
(0.013)
1478
0.045%#*
(0.010)
1602
0.049 %%
(0.0082)
1735
0.033%**
(0.013)
978
0.032
(0.030)
978
0.029
(0.034)
978
-0.026
(0.047)
978

College
with 3
years

experience

0.014
(0.015)
978
0.023
(0.052)
270
0.037
(0.091)
469
0.014
(0.017)
629
0.038%**
(0.015)
774
0.031%**
(0.013)
1147
0.015
(0.012)
1322
0.032%*
(0.013)
1478
0.046%**
(0.010)
1602
0.050%**
(0.0087)
1735
0.026%*
(0.013)
978
0.016
(0.029)
978
0.015
(0.033)
978
-0.036
(0.044)
978

College
with 5
years

experience

0.018
0.014)
978
0.0058
(0.052)
270
0.049
(0.085)
469
0.0063
0.021)
629
0.047%
0.014)
774
0.027#%
(0.0099)
1147
0.012
(0.010)
1322
0.029%*
0.013)
1478
0.044 %%
0.011)
1602
0.047%%
(0.0088)
1735
0.030%*
0.012)
978
0.032
(0.027)
978
0.026
(0.032)
978
-0.024
(0.040)
978

Industry
mean excl.
finance

0.054%
(0.024)
567
0.12
(0.12)
150
0.21
(1.00)
252
0.0089
0.071)
345
0.046*
(0.027)
426
0.074%5
(0.021)
671
0.054%5
(0.018)
790
0.061%#*
0.017)
884
0.071%#*
(0.013)
953
0.080%*
(0.015)
1045
0.058%*
(0.024)
567
0.010
(0.033)
567
0.011
(0.037)
567
-0.0072
(0.060)
567

(Continued)
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Industry mean log wages
College College College

with 1 with 3 with 5 Industry
Finance Industry year years years mean excl.
Employed industry mean experience  experience experience finance
(14)  Including controls 0.0095 0.0096 0.032%%* 0.020 0.013 0.017 0.052%%*
for sum of marks (0.044) (0.073) (0.015) (0.015) (0.015) (0.013) (0.022)
1136 978 978 978 978 978 567
(15)  Including controls 0.011 0.021 0.034%* 0.024 0.017 0.020 0.0517%%*
for other marks (0.045) (0.073) (0.015) (0.015) (0.015) (0.014) (0.023)
1136 978 978 978 978 978 567
(16) UK domicile sample -0.015 0.14 0.031 0.047%%* 0.035% 0.039%* -0.0072
(0.063) (0.094) (0.025) (0.021) (0.020) (0.019) (0.040)
701 585 585 585 585 585 367
(17)  Excluding marks -0.0016 0.0078 0.048%** 0.035%* 0.036%** 0.028%** 0.078%**
around disc. (0.062) (0.094) (0.011) (0.014) (0.012) (0.012) (0.017)
922 791 791 791 791 791 462

Notes: *** ** * significant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. This table reports specification
checks of the benchmark model in Table 4, panel C. Each cell reports a different regression where the coefficients on First Class
are reported in the first lines, standard errors in brackets and number of observations in the third lines.
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Table 7: Specification Checks for Upper Second Degree

Industry mean log wages

College College College
with 1 with 3 with 5 Industry
Finance Industry year years years mean excl.
Employed industry mean experience  experience  experience finance
(1)  Benchmark -0.035 0.12%* 0.07 1% 0.0527%%* 0.067%#** 0.048%* 0.063%*
(0.043) (0.058) (0.024) (0.019) (0.019) (0.019) (0.026)
1406 1168 1168 1168 1168 1168 796
(2) 1 mark above -0.0041 0.0056 0.095%* 0.046 0.063 0.042 0.197%#*
and below disc. (0.10) 0.12) (0.047) (0.042) (0.042) (0.041) (0.053)
374 310 310 310 310 310 211
(3) 2 marks above -0.14%* 0.022 0.054 -0.017 0.0076 -0.016 0.14
and below disc. (0.070) (0.088) (0.053) (0.037) (0.044) (0.034) (0.096)
665 546 546 546 546 546 367
(4) 3 marks above -0.11%* -0.014 0.082%#* 0.043 0.064** 0.044 0.11%+*
and below disc. (0.063) (0.079) (0.031) (0.028) (0.028) (0.029) (0.048)
922 759 759 759 759 759 517
(5) 4 marks above -0.029 0.068 0.093%:#* 0.061%** 0.075%%* 0.065%* 0.100%%*
and below disc. (0.060) (0.074) (0.035) (0.031) (0.030) (0.031) (0.030)
1160 954 954 954 954 954 648
(6) 6 marks above -0.018 0.13%* 0.080%** 0.059%** 0.072%** 0.054%** 0.067**
and below disc. (0.038) (0.064) (0.030) (0.025) (0.025) (0.024) (0.028)
1582 1310 1310 1310 1310 1310 877
(7) 7 marks above -0.0016 0.086 0.084##* 0.056%+* 0.066%*** 0.052%#* 0.072%%*
and below disc. (0.032) (0.060) (0.026) (0.021) (0.021) (0.020) (0.023)
1750 1448 1448 1448 1448 1448 962
(8) 8 marks above -0.030 0.11%%* 0.064** 0.042°* 0.051%* 0.038* 0.035
and below disc. (0.035) (0.056) (0.028) (0.022) (0.023) (0.021) (0.039)
1925 1602 1602 1602 1602 1602 1047
(9) 9 marks above -0.011 0.095%* 0.057%** 0.033 0.045%* 0.033* 0.033
and below disc. (0.037) (0.054) (0.026) (0.021) (0.021) (0.020) (0.032)
1964 1637 1637 1637 1637 1637 1069
(10) 10 marks above -0.014 0.055 0.047* 0.021 0.030 0.021 0.024
and below disc. (0.032) (0.058) (0.024) (0.021) (0.022) (0.020) (0.027)
2003 1672 1672 1672 1672 1672 1092
(11)  2nd order polynomial -0.024 0.081 0.084##* 0.061%%** 0.076%** 0.055%** 0.078%*
(0.041) (0.075) (0.026) (0.018) (0.019) (0.017) (0.025)
1406 1168 1168 1168 1168 1168 796
(12)  3rd order polynomial 0.0060 -0.040 0.12%#* 0.090%* Q.11 %% 0.080%#* 0.14%%
(0.053) (0.076) (0.033) (0.023) (0.026) (0.024) (0.028)
1406 1168 1168 1168 1168 1168 796
(13)  4th order polynomial -0.036 -0.11 0.12%#* 0.071%* 0.095%%* 0.063* 0.16%#*
(0.066) (0.10) (0.046) (0.033) (0.033) (0.035) (0.042)
1406 1168 1168 1168 1168 1168 796
(14)  5th order polynomial -0.035 -0.17 0.13%#* 0.069%** 0.10%#* 0.053 0.18%#*
(0.067) (0.10) (0.045) (0.033) (0.035) (0.033) (0.047)
1406 1168 1168 1168 1168 1168 796
(Continued)
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(14

15)

(16)

an

Including controls
for sum of marks

Including controls
for other marks

UK domicile sample

Excluding marks
around disc.

Employed
-0.037
(0.042)

1406
-0.043
(0.051)

1406
-0.083*
(0.042)

974
-0.036
(0.040)

1182

Finance
industry
0.11*
(0.059)
1168
0.12%
(0.060)
1168
0.033
(0.059)
792
0.2] %
(0.033)
978

Industry mean log wages

Industry
mean

0.065%*
(0.026)
1168
0.071%%%
(0.026)
1168
0.09 1%
(0.023)
792
0.077#%%
(0.022)
978

College College College
with 1 with 3 with 5
year years years
experience  experience  experience

0.047%%  0.063%F%  (.043%*
(0.020) (0.020) (0.020)
1168 1168 1168
0.052%%%  0.067%5F  0.046%*
(0.020) (0.020) (0.020)
1168 1168 1168
0.076%+  0.087%%F  0.064%+*
(0.021) (0.023) (0.022)
792 792 792
0.055%+%  0.068%%*  (.056%+*
(0.015) (0.014) (0.017)
978 978 978

Industry
mean excl.
finance

0.060%*
(0.027)
796
0.062%*
(0.027)
796
0.10%**
(0.032)
574
0.055%
(0.029)
654

Notes: *#%, ** * significant at the 1, 5 and 10 percent level. Standard errors are clustered by marks. This table reports
specification checks of the benchmark model in Table 5, panel C. Each cell reports a different regression where the coefficients
on Upper Second are reported in the first lines, standard errors in brackets and number of observations in the third lines.
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Table 8: RD Estimates by Gender

() @ 3) @) 5)
College College
College with 3 with 5 Industry
Industry with 1 year years years mean excl.
mean experience  experience  experience finance
Panel A: First Class Degree
Male
First Class 0.0597%%*%* 0.048%** 0.048%** 0.048*** 0.054
(0.013) (0.013) (0.013) (0.013) (0.050)
Observations 549 549 549 549 290
Female
First Class -0.022 -0.032 -0.032 -0.028 -0.034
(0.029) (0.024) (0.023) (0.022) (0.057)
Observations 429 429 429 429 277

Panel B: Upper Second Degree

Male

Upper Second 0.084 0.081 0.089* 0.077 0.082
(0.059) (0.050) (0.049) (0.050) (0.060)

Observations 618 618 618 618 397

Female

Upper Second 0.052 0.034 0.036 0.029 0.062
(0.042) (0.041) (0.037) (0.038) (0.075)

Observations 550 550 550 550 399

Notes: *** *% * sjonificant at the 1, 5 and 10 percent level. Standard errors are clustered
by marks
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Table 9: RD Estimates by Programme Admissions Math Requirements

1 2 (3) (C)) 5
College College
College with 3 with 5 Industry
Industry with 1 year years years mean excl.
mean experience  experience  experience finance

Panel A: First Class Degree

At least A level maths

First Class 0.063%3#:* 0.045%* 0.039%:* 0.039 0.12%%:*
(0.015) (0.021) (0.019) (0.024) (0.047)
Observations 576 576 576 576 259

No math requirement

First Class 0.038 0.0022 -0.0023 0.0029 0.034
(0.036) (0.038) (0.041) (0.037) (0.031)
Observations 402 402 402 402 308

Panel B: Upper Second Degree
At least A level maths

Upper Second 0.15%#:* 0.1 %% 0. 12 0.09 ] 3% 0.17*
(0.051) (0.030) (0.031) (0.028) (0.10)
Observations 550 550 550 550 304

No math requirement

Upper Second -0.0042 -0.011 0.0049 -0.0036 -0.0066
(0.042) (0.032) (0.031) (0.036) (0.031)
Observations 618 618 618 618 492

Notes: ***, ** * gjgnificant at the 1, 5 and 10 percent level. Standard errors are clustered
by marks.
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Table 10: RD Estimates by Number of Course Options

1 2 (3) (C)) 5
College College
College with 3 with 5 Industry
Industry with 1 year years years mean excl.
mean experience  experience  experience finance

Panel A: First Class Degree

Degree programme has less course choices than median

First Class 0.024 0.0092 -0.0046 -0.000027 0.055
(0.066) (0.047) (0.047) (0.046) (0.082)
Observations 458 458 458 458 288

Degree programme has more course choices than median

First Class 0.043 0.027 0.026 0.026 0.071*
(0.030) (0.022) (0.021) (0.022) (0.041)
Observations 520 520 520 520 279

Panel B: Upper Second Degree

Degree programme has less course choices than median

Upper Second 0.12%%%* 0.086%** 0.10%** 0.084%** 0.093%**
(0.038) (0.032) (0.032) (0.035) (0.037)

Observations 633 633 633 633 463

Degree programme has more course choices than median

Upper Second 0.0034 0.021 0.036 0.014 -0.027
(0.023) (0.023) (0.024) (0.023) (0.032)
Observations 535 535 535 535 333

Notes: *** ** * sjgnificant at the 1, 5 and 10 percent level. Standard errors are clustered by marks.
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Table 11: RD Estimates by Ability Groups

1) @ 3) @) 5)
College College
College with 3 with 5 Industry
Industry with 1 year years years mean excl.
mean experience  experience  experience finance
Panel A: Higher ability, A*AA or AAA requirements for A levels or equivalent
First Class 0.045%** 0.032%%* 0.0317%* 0.030%* 0.063**
(0.015) (0.015) (0.014) (0.015) (0.024)
Observations 748 748 748 748 414
Upper Second 0.053* 0.035 0.052%* 0.028 0.048
(0.028) (0.023) (0.024) (0.020) (0.035)
Observations 770 770 770 770 487

Panel B: Lower ability, AAB or ABB requirements for A levels or equivalent

First Class -0.033 -0.036 -0.068 -0.051 0.018
(0.091) (0.063) (0.062) (0.062) (0.098)
Observations 230 230 230 230 153
Upper Second 0.079%* 0.074 %% 0.088##* 0.073%%* 0.057
(0.031) (0.024) (0.021) (0.027) (0.045)
Observations 398 398 398 398 309

Notes: *** ** * gignificant at the 1, 5 and 10 percent level. Standard errors are clustered
by marks.
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Figure 1: Expected Degree Classification and Fourth Highest Marks

(a) Expected First Class degree, 10 marks above and below 70
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(b) Expected Upper Second degree, 10 marks above and below 60
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Figure 2: Counting Compliers

(a) Schematic
Assignment variable is above

threshold
0 1
0 Never ta1.<ers * | Never takers
Compliers
Degree Class

Always takers

1 Always takers i
+ Compliers

(b) First Class sample (N = 1,136)
4th highest mark is above 70

0 1
0 652 44 Always Takers = 3%
23/(23+652)
First Class Never Takers = 10%
1 23 417 44/(44+417)
Compliers = 87 %

(c) Upper Second sample (N = 1,406)
4th highest mark is above 60

0 1
0 307 87 Always Takers = 5%
Upper 16/(16+307)
Second Never Takers = 8%
1 16 996 87/(87+996)
Compliers = 87%

33



Figure 3: Histogram of Marks

(a) Fourth highest marks
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Figure 4: Expected Industry Mean Log Wages on Fourth Highest Marks

(a) 10 marks above and below 70
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Appendices

A Simple Model of Statistical Discrimination

Statistical discrimination is closely related to signaling and screening theories of education
(Phelps 1972, Arrow 1973, Aigner and Cain 1977). In statistical discrimination, employers
differentiate across otherwise identical workers on the basis of observable group membership,
for e.g. race or gender. More recent versions of these models introduce the dynamics of learning
(Farber and Gibbons 1996, Lange 2007, Altonji and Pierret 2001, Arcidiacono, Bayer, and
Hizmo 2010).

In this section we interpret a simple model of statistical discrimination in the context of the
signaling value of degree class. Our exposition follows Aigner and Cain (1977) and Belman and
Heywood (1991) (see also Hungerford and Solon (1987) and Jaeger and Page (1996)).

Suppose employers observe a noisy signal of student ability—in our case the signal is the

fourth highest mark and resulting degree class. That is, the employer observes
y=q+u

where y is the fourth highest mark, ¢ is unobserved ability and « is a normally distributed mean
zero random variable uncorrelated with ¢. Students know their own ability but employers only
see y and know that ¢ is distributed with mean ¢ and some variance o,. Therefore, employers

solve a signal extraction problem:

Elgly] = (1 =7)g+y

which is a regression of ¢ on y where linearity follows from the normality assumption. The

regression coefficient can be written as:

Oq

7:0q+0u

where o, is the variance of the noise term.

Additionally, employers observe a student’s group—in our case gender and type of degree

programme. Now suppose there are two groups, A and B, with means and variances ¢4, ¢, o

and o®. For any observed signal y, the difference in predicted ability between groups is:

Elqly, Al — Elqly, B =(1 = v")g" + vy — 1 = +")7" = 1"y
= - Q-+ w—-aH(* ")

This formula gives us three predictions that we corroborate with the data. Given vy,
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Elgly, A] — Elqly, B] > 0,if
1L.¢*—q% >0
2. 0 —of >0andy > g
3. 0 —oB <0andy > q.

In the data we interpret y as the fourth highest mark so ¢ = E/[y|. The total variance can be
calculated as o, = 0,0, but we do not observe o, or o, separately. Because we do not observe
o, we cannot recover the exact importance of each factor in determining group differences. Our
application of the model to the data should necessarily be interpreted loosely. When we translate
the predictions to the data, at any given mark and degree class, a student from group A has a

higher predicted ability than an otherwise identical student from group B if group A has:
1. higher expected abilities;
2. higher variance in abilities and y is a positive signal;
3. lower variance in the noise term and y is a positive signal.

In our context, a positive signal is receipt of the higher degree class. Both First Class and
Upper Second are positive signals because we are always comparing to the next lower class. As
discussed in Section 5.1 we define groups by gender and degree programmes and find results

supportive of this simple model statistical discrimination.
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Table B.1: Mapping From Course Marks to Final Degree Class

Final degree class Course grade requirements
First Class Honors 5 marks of 70 or above or

4 marks of 70 or above and aggregate marks of at least 590
Upper Second Class 5 marks of 60 or above or

4 marks of 60 or above and aggregate marks of at least 515
Lower Second Class 5 marks of 50 or above or

4 marks of 50 or above and aggregate marks of at least 440

Notes: Institutional rules governing award of degree class taken from
http://www.lse.ac.uk/resources/calendar/academicRegulations/BA-BScDegrees.htm
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Table B.2: Top 15 Industries Ranked by Total Share of Employment

Share of employment

Lower
Industry mean Second
log wages First Upper and
Industry (LFS, SIC two-digit) (2005£) Total Class Second below
financial ex insurance and pension 2.58 38.10 47.90 36.28 31.00
legal and accounting activities 2.52 16.22 21.21 14.43 15.15
public admin, defence, social sec 2.35 7.44 5.85 8.52 6.29
head offices; management consultanc 2.51 6.51 8.04 6.23 5.36
insurance, reinsurance and pension 2.45 4.55 4.75 3.79 6.53
education 2.36 3.88 2.01 4.97 3.03
advertising and market research 2.48 2.01 1.10 2.37 2.10
security & investigation activities 1.99 1.74 0.37 2.05 2.56
office admin, support and other 2.15 1.52 0.18 1.58 3.03
retail trade, except vehicles 1.88 1.47 0.73 1.58 2.10
auxiliary to financial and insuranc 2.55 1.34 1.46 1.50 0.70
other prof, scientific and technica 222 1.07 0.73 1.26 0.93
publishing activities 2.40 0.85 0.37 0.87 1.40
employment activities 2.24 0.80 0.18 1.18 0.47
human health activities 2.24 0.80 0.18 0.87 1.40

Notes: This table shows the industry mean log wages for all skills and experience groups. Industries are ranked
by total share of employment.
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Table B.3: A-Level Admissions Requirements for Degree Programmes

More than
median
No. of no. of Math A-level
department programme students options required  requirements

BSc in Accounting and

Accounting Finance 367 1 0 AAA
BA in Anthropology and

Anthropology Law 20 0 0 AAB

Anthropology BA in Social Anthropology 26 0 0 AAB

Anthropology BSc in Social Anthropology 63 0 0 AAB

Economic History BSc in Economic History 72 0 0 AAB
BSc in Economic History

Economic History with Economics 8 0 1 AAB
BSc in Economics and

Economic History Economic History 30 0 1 AAB
BSc in Econometrics and

Economics Mathematical Economics 23 0 1 A*AA

Economics BSc in Economics 510 1 1 A*AA
BSc in Economics with

Economics Economic History 11 0 1 A*AA
BSc in Human Resource

Employment Relations and  Management and

Organisational Behaviour Employment Relations 32 0 0 AAB
BSc in Industrial Relations

Employment Relations and  and Human Resource

Organisational Behaviour Management 7 0 0 AAB

Geography & Environment BA in Geography 65 0 0 AAB
BSc in Environmental

Geography & Environment  Policy 12 0 0 AAB
BSc in Environmental

Geography & Environment  Policy with Economics 12 0 1 AAB
BSc in Geography and

Geography & Environment  Population Studies 2 0 0 AAB
BSc in Geography with

Geography & Environment Economics 53 0 1 AAB

Government BSc in Government 68 1 0 AAA
BSc in Government and

Government Economics 96 1 1 AAA
BSc in Government and

Government History 48 0 0 AAA

International History BA in History 89 1 0 AAA
BSc in International

International History Relations and History 60 0 0 AAA
BSc in International

International Relations Relations 132 1 0 AAA

Management Science BSc in Management

Group Sciences 78 0 1 AAB

Managerial Economics and

Strategy Group BSc in Management 132 0 1 AAB
BSc in Mathematics and

Mathematics Economics 126 0 1 A*AA

Philosophy BA in Philosophy 2 0 0 AAA

Philosophy BSc in Philosophy 5 0 0 AAA
BSc in Philosophy and

Philosophy Economics 70 0 1 AAA
BSc in Philosophy, Logic

Philosophy and Scientific Method 30 0 0 AAA

Social Policy BSc in Population Studies 1 0 0 ABB

Social Policy BSc in Social Policy 21 0 0 ABB
BSc in Social Policy and

Social Policy Administration 5 0 0 ABB
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BSc in Social Policy and

Social Policy Criminology 11 0 0 ABB
BSc in Social Policy and

Social Policy Economics 11 0 1 ABB
BSc in Social Policy and

Social Policy Government 2 0 0 ABB
BSc in Social Policy and

Social Policy Sociology 11 0 0 ABB
BSc in Social Policy with

Social Policy Government 20 0 0 ABB
BSc in Social Policy with

Social Policy Social Psychology 1 0 0 ABB
BSc in Social Policy,
Criminal Justice and

Social Policy Psychology 10 0 0 ABB

Sociology BSc in Sociology 77 0 0 ABB

Statistics BSc in Actuarial Science 137 0 1 AAA
BSc in Business

Statistics Mathematics and Statistics 93 0 1 AAA

Notes: Admissions requirements for degree programmes. Taken from
http://www?2.1se.ac.uk/study/undergraduate/degreeProgrammes2013/degreeProgrammes2013.aspx. More than median
number of options indicates whether a degree programme has more than the student-weighted median number of
course choices offered to students. This offers a raw measure of how diverse the transcripts are across programmes.
Math required is a dummy variable for whether the programme requires A-level maths for admissions. This is a
measure of how quantitative the programme is. A-level requirements display the typical grades required for entry into
the programme and is an indicator of the minimum student ability.
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Table B.4: Summary Statistics by Groups

First Class Sample Upper Second Sample
4th Mark 4th Mark 4th Mark 4th Mark
mean S.D. mean S.D.
By gender
Male 67.56 6.00 62.33 4.47
Female 66.60 5.40 62.32 4.32
By math requirements
At least A level maths 68.74 6.57 62.33 4.75
No math requirement 65.39 4.07 62.32 4.06
By number of course choices
Less choices than median 67.08 6.21 62.26 4.27
More choices than median 67.18 5.23 62.40 4.54

Notes: This table shows summary statistics by gender and programme characteristics.
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Table B.5: Correlations Between Programme Level Measures

A-level
More than score
median no. Math A*AA or
Mean  of options required AAA
More than median no. of
options 0.47 1.00
Math required 0.52 -0.09 1.00
A-level score A¥*AA or AAA 0.70 0.62 0.14 1.00

Notes: Each variable is a programme-level dummy variable described in detail in the
main text. This table shows mean and correlations weighted by number of students.
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