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MAXIMAL EQUILATERAL SETS

KONRAD J. SWANEPOEL AND RAFAEL VILLA

ABSTRACT. A subset of a normed space X is called equilateral if the distance between any
two points is the same. Let m(X) be the smallest possible size of an equilateral subset
of X maximal with respect to inclusion. We first observe that Petty’s construction of a
d-dimensional X of any finite dimension d > 4 with m(X) = 4 can be generalised to give
m(X @1 R) = 4 for any X of dimension at least 2 which has a smooth point on its unit sphere.
By a construction involving Hadamard matrices we then show that for any set I', m(¢,(I"))
is finite and bounded above by a function of p, for all 1 < p < 2. Also, for all p € [1,0)
and d € N there exists ¢ = ¢(p,d) > 1 such that m(X) < d + 1 for all d-dimensional X with
Banach-Mazur distance less than ¢ from KZ. Using Brouwer’s fixed-point theorem we show
that m(X) < d+1 for all d-dimensional X with Banach-Mazur distance less than 3/2 from £2,.
A graph-theoretical argument furthermore shows that m(¢%) = d + 1.

The above results lead us to conjecture that m(X) < 1+ dim X for all finite-dimensional
normed spaces X.

1. INTRODUCTION

Vector spaces in this paper are over the field R of real numbers. Write [d] := {1,2,...,d}
for any d € N and (‘g) ={ACV: |A| =k} for any set V and k € N. Consider d-dimensional
vectors to be functions x : [d] — R denoted using the superscript notation = (2, ..., z(®).
Similarly, write & = (2(™),cr for any function «: I' — R. Write o for zero vectors and zero
functions. For any v € I, let e, denote the indicator function of {v}, i.e., ey(y) = 1 and
e, (0) =0forall § € T'\ {7}. Given a = (aV,...,a®) € R? and b € X with X any vector
space, define the Kronecker product or tensor product a ® b by (a(l)b, el a(d)b) e X4,

Let X denote a real normed vector space with norm ||-|| = ||-||x. We also use space or
normed space to refer to such spaces. We will use the multiplicative Banach-Mazur distance
between two normed spaces X and Y of the same finite dimension, denoted by dpy(X,Y) and
defined to be the infimum of all ¢ > 1 such that

lz||lx < ||[Tx|y < c||z||x forallxe X

for some invertible linear transformation T': X — Y.
Let I' be any set. For p € [1,00) let £,(I") denote the Banach space of all functions : I' — R

such that >°, .p|z(™|P < co with norm ||z|, = (32,,cr|z™|P) VP Let {5 (I") denote the Banach
space of all bounded scalar-valued functions on T’ with norm ||z« := sup,cp|z™]. As usual,
for any p € [1,00] we write ¢, for the sequence spaces ¢,(N) and Eg for ¢,([d]). If X and Y
are two normed spaces, their £,-sum X @, Y is defined to be the direct sum X @© Y with
norm ||(x,y)|lp := ||(|lz| x,|y|ly)||p- Denote the sphere and ball in X with center ¢ € X and
radius r > 0 by

S(e,r)=Sx(e,r):={xeX: ||x—c|=r}

2010 Mathematics Subject Classification. Primary 46B04; Secondary 46B20, 52A21, 52C17.

Key words and phrases. equilateral set, equilateral simplex, equidistant points, Brouwer’s fixed point
theorem.

Parts of this paper were written while the first author was at the Chemnitz University of Technology, and
also during a visit to the Discrete Analysis Programme at the Newton Institute in Cambridge in May 2011.



MAXIMAL EQUILATERAL SETS 2

and
B(e,r) = Bx(e,r):={x e X : | —c| <r},

respectively. See [6] for further background on the geometry of Banach spaces.

Definition 1. A subset A C X is A-equilateral if || — y|| = X for all {z,y} € (’3) A set
A C X is equilateral if A is A-equilateral for some A > 0. An equilateral set A C X is maximal

if there does not exist an equilateral set A" C X with A G A’.

It is clear that a A-equilateral set is a maximal equilateral set if and only if it does not lie on a
sphere of radius A. Also, A is A-equilateral if and only if the balls B(e, A/2), ¢ € A, are pairwise
touching. It follows (as observed by Petty [11] and P. S. Soltan [15]) by a result of Danzer and
Griinbaum [3] that an equilateral set in a d-dimensional normed space has cardinality at most
2¢ with equality only if the unit ball is an affine cube, that is, only if the space is isometric to
¢2 . and in that case only if the set consists of all the vertices of some ¢ -ball. For a survey on
equilateral sets, see [17]. See also [18] for recent results on the existence of large equilateral sets
in finite-dimensional spaces. This paper will be exclusively concerned with maximal equilateral
sets.

Definition 2. Let m(X) denote the minimum cardinality of a maximal equilateral set in the
normed space X.

It follows from the above-mentioned result of Danzer and Griinbaum that m(X) < 27 if
dim X = d.

We first dispose of the 2-dimensional case. By a simple continuity argument, any set of two
points in a normed space of dimension at least 2 can be extended to an equilateral set of size 3.
It is also possible to find a maximal equilateral set of size 3 in any 2-dimensional X. In fact,
if X is not isometric to 2, then by [3], any equilateral set has cardinality < 4, which implies
that any equilateral set of size 3 is already maximal. Furthermore, by [3] the only equilateral
sets of size 4 consist of the vertices of an £5°-ball, so any equilateral set of size 3 not consisting
of three vertices of an ¢5°-ball (such sets exist by extending an appropriate equilateral set of 2
points), is maximal. It follows that m(X) = 3 for all 2-dimensional X.

Now suppose that the dimension of X is at least 3. Using a topological result, Petty
[11] showed that any equilateral set of size 3 in X can be extended to one of size 4. He
also constructed, for each dimension d > 3, a d-dimensional normed space with a maximal
equilateral set of size 4. Below (Proposition 9) we modify his example to show for instance
that E‘f and /; also have this property.

A simple linear algebra argument shows that m(¢4) = d + 1. Brass [2] and Dekster [4]
independently showed that if dpy(X,€%) < 1+ 1/(d+ 1), then m(X) > d+ 1 (see also [17,
Theorem 8]). By a theorem of Schiitte [13] (as pointed out by Smyth [14]) if dpn (X, ¢4) <
141/(d+1) then m(X) < d+ 1. In particular, using dBM(Eg, td) = dl'/P=1/2] (see for instance
[6]) it follows that

. 1 1 1+o0(1
m(td) =d+1 if )];—5 Sdln(d)' (1)

Even though ¢ has an equilateral set of size 2¢, it turns out to have a maximal equilateral

set of size d + 1. More generally, we show the following:

Theorem 3. If dpy(X,¢4) < 3/2, then m(X) < d+ 1. In addition, m({%) = d + 1.

Theorem 3 will follow from Proposition 10 in Section 3 and Proposition 12 in Section 4.
A similar result holds for the fg spaces, 1 < p < o0.

Theorem 4. For allp € [1,00) and alld € N, m({%) <d+ 1.
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Range of p C(p) | do(p) Proof
1 2
1< p<0806/2) 5 5 | 4 |Proposition 19
log 2
1 2
p= M 6 4 Proposition 19
log 2
log(5/2) log 3 .
— —— =~ 1. Prop. 2 h =(2,2
log 2 <p< log 2 58 8 6 rop. 23 with (k1, k2) = (2,2)
log 3 log(13/4) .
<p< ————=x=1.70 12 10 | Prop. 23 with (k1,k2) = (2,4
log 2 IS log 2 rop with (K1, k2) = (2,4)
log(13/4 1 2
log(13/4) __108(7/2) _ ;g 16 | 14 | Prop. 23 with (k1, ko) = (4,4)
log 2 log 2

log(7/2) <p< log(29/8)
log2 —° = log2
log(29/8) epe log(15/4)

~ 1.86 24 22 | Prop. 23 with (ki, k2) = (4,8)

~ 1.907 32 30 | Prop. 23 with (ki, k2) = (8,8)

log 2 log 2
log(15/4 log(91/24
log(15/4) _ 108024 4 005 49 | 38 | Prop. 23 with (kr, ks) = (8,12)
log 2 log 2
log(91,/24 log (2
log(91/24) _ | 108(23/6) 4 039 | 4s | 46 | Prop. 23 with (kr, ky) = (12,12)
log 2 log 2

TABLE 1. Values of C(p) and dy(p) in Theorem 6

Theorem 5. For each p € (1,00) and d > 3 there exists ¢ = ¢(p,d) > 1 such that m(X) < d+1
for any d-dimensional X with dgy(X, Eg) <ec.

Theorems 4 and 5 will be proved in Section 5. Our main result is a surprising property of
¢y, where 1 < p < 2. It gives many examples of finite and infinite dimensional spaces with
finite maximal equilateral sets. These examples are essentially different from Petty’s example
alluded to above (which we also generalise in Proposition 9 below).

Theorem 6. For each p € [1,2) there exist C = C(p) € N and dy = do(p) € N such that
m(fg) < C for any d > dy, and in fact, for any (finite or infinite dimensional) normed space
X and any q € [1,00), also m(ﬁg By X) <C.

When p — 2, we have C(p) = O(1/(2 — p)) and do(p) = O(1/(2 — p)). Upper bounds are

log(23/6))
log 2 :

given in Table 1 for all p € [1,
In particular, we obtain the following surprising corollary.

Corollary 7. For any set I' and any p € [1,2), m({,(I")) is bounded above by a constant
depending only on p.
The asymptotic bounds on C(p) and dy(p) for p — 2 in the above theorem are close to
optimal, as (1) implies that
1

1
0 =9 pn) ™ %0 =2 (5 e )

Theorem 6 and Corollary 7 will be proved in Section 6 below.
We do not know of any d-dimensional space X for which m(X) > d+1. The above theorems
give some evidence for the following conjecture:
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Conjecture 8. For any d-dimensional normed space X, m(X) < d+ 1.

2. A GENERALISATION OF PETTY’S EXAMPLE

Petty [11] showed that m (¢4 @1 R) = 4 for all d > 2. In his argument ¢4 can in fact be
replaced by any, not necessarily finite-dimensional, normed space which has a smooth point
on its unit sphere, that is, a point where the norm is Gateaux differentiable, or equivalently,
a point on the unit sphere which has only one supporting hyperplane [6, 12]. By a classical
theorem of Mazur [10] any separable normed space enjoys this property [12, Theorem 10].

Proposition 9. Let X be a normed space of dimension at least 2 with a morm which has a
smooth point on its unit sphere. Then m(X &1 R) = 4.

Proof. Since X @1 R is at least 3-dimensional, m(X @1 R) > 4 by Petty’s theorem mentioned
in Section 1. For the upper bound, let w € X be a smooth point on the unit sphere of X.
Let A := {(o,1),(0,-1),(u,0),(—u,0)}. Then A is a 2-equilateral set in X @; R. If there
exists a point (x,7) € X @1 R at distance 2 to each point in A, then it easily follows that
r=0, |z =1 and ||z + u|| = 2. Then +@, +u and £z + Lu are all unit vectors in X and
by convexity the unit ball of the subspace Y of X generated by w and « is the parallelogram
with vertices +u and +a. In particular, the unit ball of Y has more than one supporting line
at u, and so by the Hahn-Banach theorem, the unit ball of X has more than one supporting
hyperplane at u. O

As special cases, m(f1) = m(¢{) = 4 for d > 3. However, if T' is an uncountable set, then
it is well known that no point on the unit sphere of ¢1(I") is smooth. (This can be seen as
follows: Let w € ¢1(I") have norm 1. Then w: I' — R has countable support U C T', say.
Choose any ¢ € I' \ U. Then ||u £ ;|1 = 2 and the intersection of the unit ball of ¢;(I") with
the subspace generated by w and e; is the parallelogram with vertices +u« and +e;, as in the
proof of Proposition 9.) Nevertheless, Theorem 6 gives the upper bound m(¢;(I")) < 5 for any
set I.

3. APPLYING BROUWER’S FIXED POINT THEOREM

Proposition 10. If dgn (X, (%) < 3/2, then there exists a mazimal equilateral set with d + 1
elements. As a consequence, m(X) < d+ 1.

Proof. As preparation for the proof, we first exhibit a 2-equilateral set A of d + 1 points in £
such that S(o,1) is the unique sphere (of any radius) that passes through A. For i € [d + 1]
and n € [d], let

-1 ifn=71,
pl(n) =140 ifn>i,
1 ifn <y,

and set A = {p1,...,pa+1}. Suppose that A C S(z,r) for some x € X and r > 0. Then for
each n € [d], |z 4+ 1| < 7, hence |2(™| <7 —1 and r > 1. If we can show that r = 1, we
would also get * = 0. Suppose for the sake of contradiction that r > 1.

We first show that « = (r — 1,7 — 1,...,7 — 1). If not, let m be the smallest index such
that (™) # r — 1. Then for all n < m, |z —pﬁ,ﬁf)| =|r—1-1| < r, and for n > m,
| () —p%)\ = || < r—1. Tt follows that 7 = |2 — pm|lec = [£™ +1|. Thus ™ = —1+7,
which contradicts [#(™| < r — 1 and the choice of m. Therefore, x = (r — 1,7 —1,...,7 — 1).

Since r = || — Pg+1lloc = |r — 1 — 1] < 7, we have obtained a contradiction. Therefore, A

lies on a unique sphere. As this sphere has radius 1, A is maximal equilateral. This shows that
m(d) <d+1.
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We now prove the general result. Let D := dpp(X,¢%) < 3/2, and assume without loss of
generality that X = (R, ||-||) such that

|| < ||z]s0 < D|||| for all € RZ. (2)
We will prove that m(X) < d + 1 by finding a perturbation of the above set A that will be
maximal equilateral in X. We use Brouwer’s fixed-point theorem as in [2] and [18]. Consider
the space ]R([d;l])

for the coordinate of z € R("3") indexed by {i,j}. Given z € I := [0, 1]<[d;1]) - ]RW;H),
define d + 1 points p1(2),...,par1(z) € R? as follows. For i € [d+ 1] and n € [d], let

of vectors indexed by unordered pairs of elements from [d + 1]. Write 217}

-1 if n =1,
p(z):={0 if n >, (3)
1+ 23 ifn <
Define the mapping ¢ : I — I by setting
P (2) = [pi(2) = Pi(2) oo — [Pi(2) — pi(2)]l = 2+ 217} — |Ipi(2) — p;(2)]|
for each {i,j} € ([dgl]). Then by (2), ¢1%7}(2) > 0 and

Pl (2) < pi(2) = pj(2)]loo — %III%(Z) —pj (2

- (1—11)) (24 209 < <1—§> 2+1)=1.

Thus ¢ is well-defined. It is clearly continuous, and so has a fixed point zg € I by Brouwer’s
theorem:

v i . d+1
2+ 257 — ||pi(20) — pj(20)| = 287 for all {i,j} € ([ 2 ]>.

Therefore, {p1(20),...,Pd+1(20)} is 2-equilateral in X.

From now on, write p; for p;(z9). Suppose that {pi,...p4+1} is not maximal equilateral.
Then there exists & € X such that || — p;|| = 2 for each ¢ € [d + 1]. We first show that all
|£(™)| < 2, then that all (™ > 1, and then obtain a contradiction.

By (2),
2 <||z — pillco < 2D for each i € [d+ 1].

In particular, |2 — p&n)] = |2 4 1| < 2D, which gives (™ < 2D — 1 < 2 for all n € [d].
Also, \az(”) - pfﬁzl\ < 2D, that is, |w(”) —-1- zén’nﬂ}\ < 2D, which gives
2™ > 142" —2p > 2,

It follows that |2(™| < 2 for all n € [d].
Next let m be the smallest index such that (™ < 1. For all n < m,

and
2 —pﬁ,’f) <2—-(1+ zén’m}) =1- z({)n’m} <1,
hence |z(™ — pgg)| < 1. For all n > m, |z — pgf)] = |£™| < 2. Tt follows that 2 <

|2 — pmlloe = |2™ +1|. However, (™ 4+ 1 < 2 by assumption and (™ +1 > —2+ 1, so we
obtain a contradiction.
It follows that (™ > 1 for all n € [d]. Then |z — pgl)1| = |z —1 - zé"’d+1}| < 1 since

1<z <2and0< zén’dﬂ} < 1. It follows that || — pgi1]lec < 1, a contradiction. O
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4. USING GRAPHS

In their studies of neighbourly axis-parallel boxes, Zaks [19] and Alon [1] modelled a cer-
tain geometric problem as a problem about covering a complete graph by complete bipartite
subgraphs. We use the same technique when showing that an arbitrary equilateral set of at
most d points in % can be extended to a larger equilateral set. Our proof in fact shows that
any collection of at most d pairwise touching, axis-parallel boxes in R? can be extended to a
pairwise touching collection of d + 1 axis-parallel boxes.

The graph-theoretical result needed is the following simple lemma which states in particular
that if the edges of a complete graph on k vertices are covered by at least k complete bipartite
subgraphs G, then for each GG; we may choose one of its two parts such that the chosen parts
cover all k vertices. For technical reasons we have to allow one, but not more than one, of the
classes of the complete bipartite subgraphs to be empty. Thus we define the join of A, B C [k]
tobe AV B :={{a,b} : a € A,b € B} whenever AN B = and AU B # 0.

Lemma 11. Let d > k > 1 be integers. For each n € [d] let A% AL C [k] be given such
that A2 N AL = () and A% U AL # 0. Suppose that |U,,c (AO v Al) = ([S]). Then there exist
01,...,0q4 € {0,1} such that AT U---U A = [Kk].

Proof. We use induction on k € N. The case k = 1 is trivial, so we assume that £ > 2 and
that the theorem holds for k — 1. If for each j € [k], some A% v Al equals () v {5}, take oy,
such that A% = {j} for each of these n. Then choose all remaining o, arbitrarily to obtain
the required covering of [k].

Thus assume without loss of generality that (} V {k} does not occur as a A2 v AL. Without
loss of generality, {1,k} € AV A} (note k > 2). Thus k € AJ? for some o4 € {0,1}. Set
BY = A%\ {k} and B} := AL\ {k} for each n € [d — 1]. Then U, cy_y(BYV BY) = (*31).
Since all A% v Al are different from () v {k}, we still have BY U B} 7é (), so we may apply the
induction hypothesw to obtain BJ", n € [d— 1], with union [k — 1]. Together with AJ? we have
obtained the required covering of [k] O

Proposition 12. m(¢4) > d + 1.

Proof. We show that any l-equilateral set {p1,...,pp} C ¢% of size at most k& < d can be
extended. Without loss of generality, k > 1.

Since |p§n) - pgn)\ < 1 for all {7,j} € (U;]) and n € [d], we may assume after a suitable
translation that all p; € [0,1]%. For each n € [d], define AY := {i: pz(»n) = 0} and Al =
{i: pgn = 1}. Again by making a suitable translation we may assume that each A% U Al # (.

Since {p1,...,pr} is l-equilateral, each {i,j} € ([g]) is in some A v AL n € [d]. Indeed,
since ||p; — Pjlloo = 1, there exists an n € [d] with |p£”) p§”)| = 1. Since 0 < pz(. ),pg.n) <1,
it follows that { (n ),p] } = {0,1}, which gives {i,j} € A% v AL

By Lemma 11 A7* U--- U A%* = [k] for some 01,...,04 € {0,1}. Define ¢ = (1,1,...,1) —
(01,...,04). We show that for each i € [k], ||[p; — qlloc = 1. Since q € [0,1]¢, ||p; — qlloo < 1.
There exists n € [d] such that i € AJ", i.e., pgn) = op. It follows that |p§n) —q™| =1, which
gives ||pi — qllo = 1. O

5. A CALCULATION

Convexity of the function x — |x|P for p > 1 readily implies the following lemma.

Lemma 13. For any p € [1,00) and X > 0 the function f(z) = |z + AP — |z|P, z € R,
increasing, and strictly increasing if p > 1.



MAXIMAL EQUILATERAL SETS 7

Proposition 14. For any p € (1,00) and d > 3, the 2V/P _equilateral set of standard unit
vectors S ={e; : i € [d]} in Eg can be extended in exactly two ways to equilateral sets S U {p}

and SU{q}. Furthermore, |p — q||, > 2/P.

Proof. Let p be equidistant to all points of S, say ||p — e;||, = ¢ for all i € [d] where ¢ > 0 is
fixed. Then [p@ P — |p(®) — 1P = ||| — ¢F for all i. By Lemma 13, pM =...=p@ je. pis
a multiple of j := (1,1,...,1) € R%
Suppose now p = xj satisfies |p — e;|, = 2'/7 for all i € [d]. Tt follows that

|z — 117 + (d — 1)|z|P = 2. (4)
Consider the function f(x) = |x — 1|P + (d — 1)|x|P. It is easily checked that f has a unique
minimum at a point xg € (0,1) and is strictly decreasing on (—o00,xo) and strictly increasing
on (zg,00). Since f(—=1) =2 +d—1> 2 and f(0) =1 and f(1) =d — 1 > 2, equation (4)
has a unique negative solution z = —p € (—1,0) and a unique positive solution z = A € (0, 1].
We have to show that ||—uj — Ajl, > 27, that is, A + u > (2/d)/P. Since X is a solution to
(4), it follows that 2 = (1 — A\)P + (d — 1)A? < 1+ dAP, hence A > (1/d)"/P. Tt remains to show
that g > (21/7 — 1)/d"/?. Suppose to the contrary that

1

i< 26/;/;1. (5)

Since z = —p is a solution of (4),
=1+ w’+(d=1p”
<=+ @17 by (5),
hence
(2P —141)P — 2P —1)P < (u+ 1) — 2.

By Lemma 13, 21/ — 1 < p, which contradicts (5). O

Proof of Theorem 4. We have already observed in Section 1 that m(X) = 3 for any two-dimen-
sional X, so we may assume that d > 3. We have also observed in Section 2 that m(¢¢) = 4
for all d > 3, so we may assume that p € (1,00). Then the theorem follows from Proposi-
tion 14. [l

Proposition 15. Let 1 <p < oo, d >3,0<¢e < (2d—4)"Y® Y and R = (1 + %E)l/p.
Suppose that X = (R4, ||-||) is given such that

|z|| < ||zll, < Rl|z|| for all x € RY,

for all i € [d), —= < pY < 0 for all i,j € [d] with j < i, and p¥ = 0 for all i,j € [d

with j > 1.

Then X has a \-equilateral set {p1,...,pq}, where A = (24 (d — 2)5p)1/p, such that p@ 1
]

Proof. Let B,y > 0 be arbitrary (to be fixed later). For i € [d] define p;: r(?) - Rd by
setting for each n € [d],

Amitifn <,

p"(z) =S~ ifn=i,

0 if n > .

That is,
pi(z) = (03, N 0,.000).
Let I = [O,ﬂ]([g]) and define ¢: I — I by

Pl (z) = 14 209 — |Ipi(2) = p;(2)||  for each {i,j} € <[§)'
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It is clear that ¢ is continuous. We next show that ¢ is well defined if R, 8, and 7 are chosen
appropriately. Let z € I. Then 0 < 207} < 8 for all {i,j} € ([g]). We first bound ||p;(z) —
p;(z)||p. Without loss of generality, i < j. Then

i—1
Ipi(2) = i@l = Y|t — 2P o |y 4 20

k=1
j—1
+ Z | ARTH Py AP
k=i+1
<(i= DB+ (y+ 2N 4+ (=1 =087 + 47
= (j = 2)8" + 7" + (y+ 2y (6)
and
Ipi(2) = pi(2)[[5 > " + (v + 2 H7hP. (7)
Thus

Pl (2) > 14 209} — ((j = 2)87 + 7 + (7 + 210h)P) 1p

Let f(z) =14z — ((j —2)8° +° + (v + 2))"/? for 0 < 2 < 8. Then

1

+ )P 7
"z)=1- 4l > > 0.

P <<j—2>/3p+fyp+<v+x>p
It follows that f is strictly increasing, which gives that
o9 (2) 2 f(=090) 2 f(0) = 1= (G- D8 +207)
>1— ((d—2)8" +2+7)"".

If we require that
(d=2)pP +2¢P =1 (8)
then 47} (2) > 0 for all z € I.
Also,

i,j 6] 1
tp{ 7]}(z) <14 Ut Esz(z) —pi(2)llp
o 1 .. l/p
< Gy L (p {i.ihyp )
<1l+z R(W +(y+= )>

Let g(z) =142 — %(’y”—i—(’y#—x)p)l/” for 0 <z < . Then

1
AR 2 e
() =1— — (T2 1- = >0.
g(@) R <7P+ (fy+w)P> " TR

Therefore, g is strictly increasing, which gives that
o . 1 1
(p{w}(z) < g(z{m}) <g(B)=1+p8- E(,yp + (v + ﬂ)p) /P_
In order to conclude that go{i’j }(z) < 3, it is sufficient to require that

Y+ (v +B)P > RP. (9)

Suppose for the moment that we can find 5, > 0 such that (8) and (9) are satisfied. Then
p: I — I is well defined, and by Brouwer’s fixed point theorem ¢ has a fixed point, that is,
for some zy € I we have p(zy) = zp, which implies that {p;(2z9): i € [d]} is 1-equilateral.
Since p(l)(zo) = —~, we have to scale each p;(z9) by —v. Set v = 1/X and § = ve. Then

)
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{—=(1/y)pi(z0) : i € [d]} is A-equilateral, the requirement (8) becomes the definition of A,
namely
(d—2)el +2 =\
and the requirement (9) becomes
1+ (1+¢)P
24 (d—2)er —
It remains to verify (10) given that 0 < & < (2(d —2))"Y®~1) and RP =1 + %5. Since
(d—2)eP = (d —2)eP e < g/2
and e < 27V < 1 it is sufficient to show that

£(e) ::1+(1+e)p—<1+p_15) (2+5) =0

RP. (10)

2 2

for all e € [0,1]. A calculation gives that f(0) =0, f(0) = 1/2, f"(¢) = p(p — 1)(1 +&)P~2 —
(p—1)/2, f"(0)=(p—3)(p—1) >0and f’(1) = pT_l(pQP_l —1) > 0. Thus f” is monotone
and positive at the endpoints of [0, 1], hence positive on the whole [0, 1], and it follows that f’
is positive on [0, 1] and f(g) > 0 for all € € [0, 1]. O
Proof of Theorem 5. Suppose that the theorem is false. Then for some fixed p € (1,00) and
d > 3 and for all ¢ > 1, there exists a d-dimensional X such that dpy(X, Eg) < ¢ and
m(X) > d+ 2. Choose a sequence X,, = (R?, [ll(ny) such that m(X,,) > d+ 2 and

1 1/p
]l < llzllp < <1 + n> ]|y for all x € R

If n is sufficiently large, in particular if

2(2d — 4)1/ (=1
n > )
p—1

and if we choose ¢ = 2/(n(p — 1)), then 1/n = (p—1)e/2 and € < (d — 2)~ P~V and we may
apply Proposition 15 to obtain an equilateral set {p;(n) : i € [d]} in X, such that pl(.l) (n)=1
for all 7 € [d] and —¢ < pgj)(n) <0 for all 4,5 € [d], i # j. Since m(X,,) > d + 2, there exist
points pgt+1(n), pa+2(n) € X, such that {p;(n): ¢ € [d + 2|} is equilateral. By passing to a
subsequence we may assume without loss of generality that pgi1(n) — p and pgia(n) — ¢q

as n — oo. Since p;(n) — e; and dBM(Xn,Eg) — 1 as n — oo, it follows that {eq,...,eq4,p,q}
is equilateral in 62. This contradicts Proposition 14. ([l

6. A CONSTRUCTION WITH HADAMARD MATRICES

In [16] Hadamard matrices were used to construct equilateral sets in Eg of cardinality greater
than d + 1, for all p € (1,2) and sufficiently large d depending on p. The construction used
here is a more involved version of this idea. Before introducing the properties of Hadamard
matrices that will be needed, we first consider a special case to illustrate the construction.

Lemma 16. Let 1 < p < 2. For each )\ € [21_1/p,21/p] there exist linearly independent unit
vectors w,v € 03 such that ||u + v, = |lu —v[, = A.

Proof. Let u = (o, ) and v = (—f,«) where o, > 0 and o + 8 = 1. Then ||u £ v|) =
|+ B8P+ |a— B[P, which ranges from 2 when o = 0 and 8 = 1, to 2" when o = = 2-1/». [

Lemma 17 (Monotonicity lemma). Let w and v be linearly independent unit vectors in a
strictly convex 2-dimensional normed space. Let p # o be any point such that u is between ﬁp

and v on the boundary of the unit ball. Then ||p —ul| < ||p — v|.
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For a proof, see [9, Proposition 31]. For non-strictly convex norms the above lemma still holds
with a non-strict inequality. On the other hand, the following corollary of the monotonicity
lemma is false when the norm is not strictly convex, as easy examples show.

Lemma 18. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional
normed space. Suppose that x is such that ||z — u| = ||z + u| and ||z — v| = ||z + v
Then x = o.

Proof. Without loss of generality, * = au + Sv with «, 8 > 0. If  # o, then by Lemma 17,

|z — vl <[l +ul| = [z —-u| <o+,
a contradiction. O
Proposition 19. Let X be any normed space, d > 4, q € [1,00), and 1 <p < %. Then
m(ég @y X)<5. Ifp= loifgéz), then m(fg By X) <6.

Proof. Consider the following subset of EZ Dy X = (ﬁé Dp 65_4) ®q X:

Y

90000
© 0000

)

Y

Y )

Y

)

) }-

By setting A = (2°t1 —3)1/P| the set S becomes 2!T1/P-equilateral. We show that S is maximal
equilateral if p < log(5/2)/log?2 and can be uniquely extended if p = log(5/2)/ log 2.

Suppose that (a1, a9, a3, ag, @, y) has distance 21+1/P t6 each point in S. Then (a1, a0, a3)
has the same distance in Eg to the points

(17 17 1)? (L _17 _1)7 (_17 17 _1)’ (_L _17 1)5

)
);
)
)

[a—
O = =
> O O OO

Y )

which gives

[(e; a2) = (1, Dlp = [[(e1; 2) = (=1, =Dl
and

[(ea; a2) = (1, =Dlp = [[(e1; @2) = (=1, D|p-
It follows (from Lemma 18 if p > 1) that (a1,a2) = (0,0). Thus |as — 1| = |ag + 1|, which
gives ag = 0 and 3 + |au4|P = |ag — A|P. By Lemma 13, the function f(z) =3 + |z|P — |z — AP
is increasing (strictly increasing if p > 1). Since f(aq) =0 and f(—\) =2PT1(3-2P) >0 (>0
if p=1), it follows that ay < —A. Then by assumption,

21+1/p = H(07 07 07 a47w7 y) - (17 17 17070’ O>H
P p\a/p a /e
= (3 loul? + oI + 1)
> (34 AP)/P =21+,

and equality holds throughout, which implies that a4y = —A, * = o0 and y = o. Also, by
assumption, 2P = /(0,0,0, -\, 0,0) — (0,0,0,\,0,0)|| = 2)\, which implies p = 1°1g0(§é2).
Therefore, S is a maximal equilateral set unless p = lolgo(g/f), and then S U{(0,0,0,—X\,0,0)}
is maximal. O

An n x n matrix H is called a Hadamard matriz of order n if each entry equals +1 and
HHT = nl. Tt is well known [8, Chapter 18] that if an Hadamard matrix of order n exists,
then n =1, n = 2 or n is divisible by 4. It is conjectured that there exist Hadamard matrices
of all orders divisible by 4. This is known for all multiples of 4 up to 664 [7]. The next lemma
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summarises the only results (all well known) on the existence of Hadamard matrices that we
will use.

Lemma 20.

(1) There exist Hadamard matrices of orders 1, 2, 4, 8, 12.

(2) Let x > 1. The interval (x,2z) contains the order of some Hadamard matriz iff = ¢
(1,2, 4}.

(3) Let H(x) be the largest order n of an Hadamard matriz with n < x. Then

xh_}n;OH(m)/m =1.

Proof. (1) is well-known.

(2) Given Hadamard matrices H; of order n; and Hs of order ng, the Kronecker product
H, ® Hy is an Hadamard matrix of order ning [8, Chapter 18]. Starting with the (essentially
unique) Hadamard matrices of orders 2 and 12, we obtain Hadamard matrices of orders 2* and
6 - 2 for all k > 1. This is sufficient to cover every interval (x,2x) except for (1,2), (2,4) and
(4,8).

(3) The Paley construction [8, Chapter 18] gives an Hadamard matrix of order ¢ + 1 for
any prime power ¢ = 3 (mod 4). By the prime number theorem for arithmetic progressions
[5] the number of primes less than x that are congruent to 3 modulo 4 is (1 + o(1))z/(21nx).
This implies that the largest such prime less than z is > (1 + o(1))z, which gives H(x)/z — 1
as T — 00. (]

An Hadamard matrix is normalised if its first column are all +1s. Note that any Hadamard
matrix can be normalised by multiplying each row by its first entry. If

1 h
1 ho
H=1| .
1 h,
is a normalised Hadamard matrix we say that {hy,...,h,} C R""!is a Hadamard simplex.

In the sequel we repeatedly use the fact that each h; has n — 1 coordinates, each £1, and
that any two h; differ in exactly n/2 coordinates. In particular, the distance between any two
vertices of an Hadamard simplex in Eg_l equals n!/P21=1/P and all vertices lie on a sphere with
centre o and radius (n — 1)'/?. The next lemma shows in particular (by taking X = R) that
an Hadamard simplex cannot lie on any other sphere of E;}_l if pe[1,00).

Lemma 21. Let {hy,...,h,} C R"! be an Hadamard simplez, p € [1,00), X a normed space
and u € X. Suppose that
n — 1 summands
e N—
(T1,...,@p—1) €EX Bp - Dp X
has the same distance to each point of {h; ®@u: i € [n]} C X @p-- - ®p X. Then ||z, — u| =
lzi + ul|| for alli € [n].

Proof. Let h; = [hj1,hi2, ..., hin—1] for i € [n]. We may assume without loss of generality
that hy = [-1,—1,...,—1]. Since x = (@1, x2,...,T,_1) is equidistant to all h; ® u, there
exists D > 0 such that Z;L:_llﬂwj — h; ju||P = DP for each i € [n]. Subtract the first of these
equations from the others to obtain the system

hy — hy |21 — wl|P — |le1 + u|?
hs — hy |22 — u|P — ||lzg 4 w|/P 0
. . = | (11)

[an}

O 3 I Y o ) I [
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The Hadamard matrix H is invertible. If we subtract the first row from all the other rows, the
resulting matrix

1 o
0 hy—h
0 h,—h

is still invertible. It follows that (11) has the unique solution
le; —ullf —||lz; +u|P =0 forall jen—1]. O

Lemma 22. Let {hy,...,h,} C R""! be an Hadamard simplex and p € [1,00). Let uw and v be
linearly independent unit vectors in a strictly convex 2-dimensional normed space X. Suppose
that

n — 1 summands
—_—~
r=(T1,...,Tp1) EXBp---Dp X
has the same distance in the p-norm to each point of {h; @w : i € [n]}, and the same distance
to each point of {h; ® v : i € [n]}. Then ¢ = o.
Proof. Combine Lemmas 18 and 21. (]

Proposition 23. Let p € [1,2), q € [1,00), and X any normed space. Let ky,ks € N be such
that there exist Hadamard matrices of orders k1 and ko and such that

1 1
2ol =4 = g 2P 12
< i + " < (12)
(1-2P)2-2r" 1 < (1-2"P)— L 1 (13)
ki | ko
and (1 —-27P)(2 -2 < — 4+ (1—-2"P)— (14)
kq ko'

Then m (4 &g X) < 2(k1 + ko) for all d > 2(ky + k2 — 1).
Proof. 1t is sufficient to construct an equilateral set S of cardinality 2(k; + k2) in 52(k1+k2 b
that does not lie on any sphere. Then (S@® {o})® {0} will be maximal equilateral in Eg Be X =
<€;<k1+k2_1) Dp 52‘2(’“““2‘1)) @®q X for any ¢ € [1,00).
Let a1, g, A1, A2 € R (to be fixed later) such that
1,09 > 0 and 21 1/p < )\1 )\2 21/p (15)

By Lemma 16 there exist unit vectors uy, us, v1, v € €?> such that {u;,v;} is linearly indepen-
dent and |lu; £ v;|l, = \; for i = 1,2. Let {g; : i € [k1]} C Elgl_l and {h; : i € [ko]} C f’”‘l

be Hadamard simplices. Consider the following subsets of Kzz,(kﬁkrl) R ®p £p 2(k1—1) Op R D,
K?,(kQ_l):

St ={(-a1, kfl/pgi @ui, 0, o) : i€ [ki]},

SE={( a1, kyPg;i0v,, 0, 0) : i€k},

Sy ={( 0, 0, —ay, ky /Phi @ uy) : i € [ka]},

Sy={( o, o, a3, ky /hi®’02):z€[kzg]}.

We would like to choose o, az, A1, A2 so as to make S = S] U ST usS, U Sj equilateral and
non-spherical. Note that then |S| = 2(k1 + k2), since all the points will be distinct.
The pth power of the distance between points
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e in the same set Sf[ equals

ki 1 ki1 1
Moy |lP = 2L Zop — 9p
2 k:lH illp 2 k1 ’

e in the same set S;E similarly equals ’“2—2%21” = 2or—1

e in S| and Sfr equals
1 1
(200)° + (ky = D)l F o5 = (2on) + (1 - =) AL,
kl kl
e in S, and S similarly equals (2a2)? + (1 — é))\g ,
e in S, USfr and Sy US;r equals

ki1 —1 ko —1 1 1
of + i +ab + " :a€+a§+2—(k—l+k—2).
For S to be equilateral, we therefore need
1 1
(2a1)P + (1 - f)xf — o7l (2a0)P + (1 - —)Ag = or-1 (16)
]{71 k2
and
P P 1 1 p—1
a1+a2+2—(—+—>:2 . (17)
k1 ko

The set S will lie on some sphere iff some (3, x,~,y) is equidistant to S. This implies that x is
equidistant to all k;l/pgi ® w1 and also equidistant to all k:;l/pgi ®v1. By Lemma 22, x = o.
Similarly, y = 0. Then |—a; — | = |a1 — S|, which gives § = 0. Similarly, ¥ = 0. Thus S can
only lie on a sphere with centre o and radius (of + (k1 — 1)/k1)Y/? = (ab + (ky — 1)/k2)'/?.
Therefore, for .S not to lie on a sphere, we need

1
T
It turns out that the hypotheses (12), (13), (14) are sufficient for the three simultaneous
equations (16) and (17) to have a solution in oy, a2, A1, A2 given the constraints (15) and (18).
This can be seen as follows. First use (16) to eliminate o and ag from (15), (17) and (18),
and set 21 = (1 — 7-)A] and 22 = (1 — 75)A] to obtain that the simultaneous solvability of
(15), (16), (17) and (18) is equivalent to the existence of x1, x5 € R such that

1
af =~ # 05— (18)
1

1 1
x1+$2:2p(3_2p*1_k7_k7>7 (19)
1 2

1 1
Pl - )< <2(1- = 20
( kl)_xl_ ( k1>’ ( )

1 1
=11 - )<y <2(1 - — 21
( kg)_x2_ ( k‘g)’ ( )
Ty, 9 < 2P (22)
and x; —xg # 2P .1 (23)

1 2 [

Geometrically, it is sufficient to show that the line ¢ in the zjzo-plane with equation (19)
intersects the interior of the rectangle R with bottom-left corner a = 2P~1(1 — k:%’ 1— 1) and

top-right corner .
o= (min{2 % 2(1 - ) fomin{r1.2(1- 1)},
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Indeed, if ¢ intersects the interior of R then it intersects R in infinitely many points, among
which one can be chosen that satisfies (23). That ¢ intersects the interior of R is equivalent to
a lying below /¢:

2p—1<1 . kll) + 2p—1<1 - kt) <P (3 _orl kll - ]{;12> (24)

and b lying above £:

2(3 - 2071 —kll ;2) < min{2r~! 2(1—]:1)}+mm{2p Lo(1- kl?)} (25)

Inequality (24) is equivalent to the second inequality in (12).
Inequality (25) can be split into four simultaneous inequalities:

1
2P(3 —

2p(3—2p1—]:1—]:2) 2(1_131)”(1_1{;12) (25a)
3o~ 1—-—7—-k2><<2p Ly ot (25b)
T é)<(u-)+%1 (25¢)

%)

1
<oy 2(1 - —) (25d)
ko
Each of (25a) and (25b) is equivalent to the first inequality in (12). Inequality (25¢) is equiv-
alent to (13) and (25d) is equivalent to (14).
It follows that aq, ag, A1, As can be chosen so that S is equilateral and non-spherical. O

1

2 (3
W@—Wl

(5-2

)

Proof of Theorem 6. By Lemma 20 the interval (2/(4 — 27),4/(4 — 2P)) contains the order of
some Hadamard matrix except if 2/(4 — 2P) € {1,2,4}. Therefore, unless

6{1 log 3 log(7/2)}

"log2’ log2

if we let k1 = ko = k be the order of such an Hadamard matrix, conditions (12), (13) and (14)
are satisfied, and Proposition 23 gives a maximal equilateral set of size C'(p) = 2(k1 + k2) = 4k
in all dimensions at least do(p) = 2(k1 + ko — 1) = 4k — 2.

Asymptotically when p — 2, we may choose k to be the largest order of an Hadamard matrix
such that £ < 4/(4 —2P). Then by Lemma 20, 4k < 16/(4 — 2P) ~ 4/((2 — p) In2), which gives
the required asymptotic upper bounds for C(p) and dy(p).

The exceptional case p = 1 has already been dealt with in Proposition 19. For p = log 3/ log 2
we may use (ki1, ko) = (2,4) in Proposition 23 and for p = log(7/2)/log 2 we may use (k1, ka) =
(4,8). This covers the existence of C(p) and dy(p) for all p € [1,2).

The last column of Table 1 indicates how each line in that table is obtained: Proposition 19

covers the case 1 < p < %, and in the remaining cases Proposition 23 is applied with
Hadamard matrices of various orders k; and ks. O

Proof of Corollary 7. Let p € [1,2) and let T be any set. If ' is infinite, then by Theorem 6
where X is chosen to be £,(I') and g = p, m(ﬁg ®)p £,(I')) < C(p) for large enough d. However,

since I is infinite, Kg @) (") is isometrically isomorphic to £,(I").
For the remaining case where I' is finite, it is sufficient to bound m(fg) for all d. Again
by Theorem 6 where X is chosen to be the zero space, m(fg) < C(p) for all d > dy(p). For

d < dy(p), we apply the Danzer-Griinbaum-Petty-Soltan result to obtain m(fg) < 2do(p),
Thus for fixed p € [1,2), we have found an upper bound to m(¢,(I")) uniform over all . O
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