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Abstract

Strong consistency and asymptotic normality of the Gaussian pseudo-maximum
likelihood estimate of the parameters in a wide class of ARCH(oc0) processes
are established. We require the ARCH weights to decay at least hyperbolically,
with a faster rate needed for the central limit theorem than for the law of large
numbers. Various rates are illustrated in examples of particular parameteriza-

tions in which our conditions are shown to be satisfied.
AMS 2000 subject classification. Primary 62M10; secondary 62F12.

Key words and phrases. ARCH(co) models, pseudo-maximum likelihood

estimation, asymptotic inference.

*The first author’s research was supported by a Leverhulme Trust Personal Research Professorship
and ESRC Grants R000238212 and R000239936. We thank the Associate Editor and referees for a
number of helpful comments that have led to a considerable improvement in the paper, and Fabrizio

Tacone for help with the numerical calculations referred to in Section 3.



1. INTRODUCTION

ARCH(o0) processes comprise a wide class of models for conditional heteroscedas-

ticity in time series. Consider, for t € Z = {0, £1, ...}, the equations

Ty = O&y, (1)
Uf = Wwo + Z wijf—ﬁ (2)
j=1
where
wo > 0,1, >0(j > 1), Zw0]<oo (3)

and {e;} is a sequence of independent 1dentlcally distributed (i.i.d.) unobservable
real-valued random variables. Any strictly stationary solution z; to (1) and (2) will
be called an ARCH(o0) process. We consider a parametric version, in which we know

functions 1;(¢) of the r x 1 vector ¢, for r < oo, such that for some unknown ¢,

%’(Co) = %j, J= L (4)

Also, wg is unknown and x; is unobservable but we observe

Yt = pho + Tt (5)

for some unknown .

ARCH(o0) processes, extending the ARCH(m), m < oo, process of Engle (1982)
and the GARCH(n,m) process of Bollerslev (1986), were considered by Robinson
(1991) as a class of parametric alternatives in testing for serial independence of y;.
Empirical evidence of Whistler (1990), Ding, Granger and Engle (1993) has suggested
the possibility of long memory autocorrelation in the squares of financial data. Taking
(contrary to the first requirement in (3)) wy = 0, such long memory in z? driven by
(1) and (2) was considered by Robinson (1991), the 1y; being the autoregressive
weights of a fractionally integrated process, implying Z;’il Yg; = 1; see also Ding
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and Granger (1996). For such ¢;, and the same objective function as was employed
to generate the tests of Robinson (1991), Koulikov (2003) established asymptotic
statistical properties of estimates of (,. On the other hand, under our assumption
wo > 0, Giraitis, Kokoszka and Leipus (2000) found that such 1); are inconsistent
with covariance stationarity of x;, which holds when Z]oil th; < 1. Finite variance
of x; implies summability of coefficients of a linear moving average in martingale
differences representation of x?; see Zaffaroni (2004). In this paper we do not assume
finite variance of x;, but rather that z; has a finite fractional moment of degree
less than 2. The first requirement in (3) was shown by Kazakevicius and Leipus
(2002) to be necessary for existence of an x; satisfying (1) and (2). The intermediate
requirement in (3) is sufficient but not necessary for a.s. positivity of o2, and is
imposed here to facilitate a clearer focus on 9,; which decay, possibly slowly, but
never vanish.

We wish to estimate the (r +2) x 1 vector 6y = (wo, 19, ()’ on the basis of observa-
tions y;, t = 1,...,T, the prime denoting transposition. The case when p, is known,
e.g. poy =0, is covered by a simplified version of our treatment. If the y; are instead
unobserved regression errors then p, = 0 but we would need to replace z; by residu-
als in what follows; the details of this extension would be relatively straightforward.
Another relatively straightforward extension would cover simultaneous estimation of
regression parameters, wy and (,, after replacing p, by a more general parametric
function; as in (1), (2) and (5), efficiency gain is afforded by simultaneous estimation.

Under stronger restrictions than ) 72, 1; < 1, Giraitis and Robinson (2001) con-
sidered discrete-frequency Whittle estimation of ,,, based on the squared observations
y? (with p, known to be zero), this being asymptotically equivalent to constrained
least squares regression of y? on the y? ., s > 0, a method employed in special cases
of (2) by Engle (1982) and Bollerslev (1986). In these the spectral density of y?,

when it exists, has a convenient closed form. This property, along with availability



of the fast Fourier transform, makes discrete-frequency Whittle based on the y? a
computationally attractive option for point estimation, even in very long financial
time series. However it has a number of disadvantages, as discussed by Giraitis and
Robinson (2001): it is not only asymptotically inefficient under Gaussian ¢;, but never
asymptotically efficient; it requires finiteness of fourth moments of y; for consistency
and of eighth moments for asymptotic normality, which are sometimes considered
unacceptable for financial data; its limit covariance matrix is relatively complicated
to estimate; it is less well motivated in ARCH models than in stochastic volatility
and nonlinear moving average models such as those of Taylor (1986), Robinson and
Zaffaroni (1997, 1998), Harvey (1998), Breidt et al (1998), Zaffaroni (2003), where the
actual likelihood is computationally relatively intractable, whilst Whittle estimation
also plays a less special role in the short-memory-in-y? ARCH models of Giraitis and
Robinson (2001) than in the long-memory-in-y? models of the previous five references,
where it entails automatic ‘compensation’ for possible lack of square-integrability of
the spectrum of y2. Mikosch and Straumann (2002) have shown that a finite fourth
moment is necessary for consistency of Whittle estimates, and that convergence rates
are slowed by fat tails in &;.

For Gaussian ¢, a widely-used approximate maximum likelihood estimate is defined

as follows. Denote by 6 = (w, i, (") any admissible value of 6y and define

ry(p) = yt—u,

o2(0) = w+2w Qa2 (u

for t € Z, and

51(0) = w+ Y v (Qaf (w1t > 2),



for ¢t > 1, where 1(.) denotes the indicator function. Define also

w(0) = % 0)

1) 2
0) +Ino;
Qr(f) = T_IZQt(Q),

Or = arg Igleiél Qr(0), 9T = arg To}leiél QT(9)>

2
q.(0) = 2 (1) +Ing%0), 1<t<T,

Qr(6) =T 4(0),

where O is a prescribed compact subset of R"*2. The quantities with over-bar are
introduced due to y; being unobservable for ¢ < 0; 9T is uncomputable. Because
we do not assume Gaussianity in the asymptotic theory, we refer to Or as a pseudo-
maximum likelihood estimate (PMLE).

We establish strong consistency of 07 and asymptotic normality of T: (9T — 00),
as T — oo, for a class of 1;(¢) sequences. In case of the first property this is
accomplished by first showing strong consistency of 01 and then that 07 — 67 — 0,
a.s. In case of the second we likewise first show it for 7' (éT — 90> and then show
that 07 — Op = op(T_%), but the latter property, and thus the asymptotic normality
of T%(éT — 0p), is achieved only under a restricted set of possible (, values, and this
seems of practical concern in relation to some popular choices of the zﬂj((’ ). These
results are presented in the following section, along with a description of regularity
conditions and partial proof details. The structure of the proof is similar in several
respects to earlier ones for the GARCH case of (2), especially that of Berkes, Horvath
and Kokoszka (2003). Sections 3 and 4 apply the results to particular parametric

models.
2. ASSUMPTIONS AND MAIN RESULTS

Our assumptions are as follows.



Assumption A(q), ¢ > 2. The &; are i.i.d. random variables with Fey = 0, Ee2 = 1,

E |eo|? < 0o and probability density function f(e) satisfying

7&) =0 (LM l") ) ase o,
for b > —1 and a function L that is slowly varying at the origin.

Assumption B. There exist wr,wy, iy, iy Such that 0 < wp < wy < 00, —00 <
pr < py < 00, and a compact set T € R" such that © = [wr,wy] X [, puy] X T.
Assumption C. 0, is an interior point of ©.

Assumption D. For all j > 1,

lnfy;(¢) > 0; (6)
sup,(¢) < Kj=%71 for some d > 0; (7)
cer

oy < Kby, for1<k<j, (8)

where K throughout denotes a generic, positive constant.
Assumption E.  There exists a strictly stationary and ergodic solution x; to (1)
and (2), and for some

pe((d+1)7"1), (9)

with d as in Assumption D, we have
E|zo|* < 0. (10)
Assumption F(I). For all j > 1, ;(C) has continuous kth derivative on Y such

that, with C; denoting the i-th element of (,

‘ 9*;(C)
aC,, - 0C,

forall m>0and all i, =1,....,7, h=1,....k, k <.

< Ky,(Q)'" (11)




Assumption G. For each ¢ € Y there exist integers j; = j;((), i = 1,...,r, such that
1< 1(0) < < jo(C) < 00 and

where
-
Vi30f€) = (0, 0D} 0800 = 220
Assumption H. There exists
d L 12
0> BY (12)
such that
oy < KjTH, (13)
and (10) holds for
p € (4/(2do + 3),1). (14)

Assumption A(q) allows some asymmetry in &;, but implies the less primitive condi-
tion (which does not even require existence of a density) employed in a similar context
by Berkes, Horvath and Kokoszka (2003). Assumptions B and C' are standard. The
inequalities (7) and (13) together imply dy > d, whilst (8) with (3) is milder than
monotonicity but implies 1; = o(j ') as j — oo. We take 1 > 0 in Assumption F'([)
because 1;(¢) < 1 for all large enough j, by (7). Assumption G is crucial to the proof
of consistency, being used in Lemmas 9 and 10 to show that, in the limit, 6, globally
minimizes Q7(f); it also ensures non-singularity of the matrix Hy in Proposition 2
and Theorem 2 below. This and other assumptions are discussed in Sections 3 and 4
in connection with some parameterizations of interest,

We present asymptotic results for the uncomputable Or as propositions, those for
O as theorems. All these, and the Corollaries in Sections 3 and 4 and Lemmas in

Section 5, assume (1)-(5).



Proposition 1 For some § > 0, let Assumptions A(2+90), B, C, D, E, F(1) and
G, hold. Then

Or — 0y a.s. asT — oc.

Proof. The proof follows as in, e.g., Jennrich (1969, Theorem 6) from uniform a.s.
convergence, over O, of Qr(f) to Q(8) = Eqo(f) established in Lemma 7, the fact
that Qr(A7) < Qr(0), and Lemma 10. m

Theorem 1 For some 6 > 0, let Assumptions A(2+9), B, C, D, E, F(1) and G
hold. Then

Or — 0y a.s. as T — . (15)

Proof. From Lemmas 7 and 8, Q7 (f) converges uniformly to Q(#) a.s., whence the

proof is as indicated for Proposition 1. =

Denote by x; the j-th cumulant of €; and introduce

1
Go= 2+ ky)M —2k3(N+ N')+P, Hy=M + §P,

where

M = E(1o7}), N = E(oy'm0)ey, P = E(0y?)eséh,

for 7o = 79(00), 7¢(0) = (0/06)log 0?(), and ey the second column of the (r + 2) x
(r + 2) identity matrix. In case p, is known (for example, to be zero), we omit the
second row and column from M, and have instead Gy = (2+ k4) M, Hy = M. In case
g is Gaussian, k3 = k4 =0, so Gg = 2Hy = 2M + P.

Proposition 2 Let Assumptions A(4), B, C, D, E, F(3) and G hold. Then

T2 (éT — 90) —a N(0,Hy'Go Hy'Y), as T — oo.

Proof. Write

1 0Qr(0) 1
PO === =T > (o).

t=1



where

with
i (1) 0z,2(p)
Xt(g) = 0_7;2(9)7 Vt(e) - 89 == —QIt(M)eg
By the mean value theorem
0= Q' (Br) = Q% (60) + Hr(br — b). (16)

where Hy has as its ith row the ith row of Hp(f) = T~ Zthl h(6) evaluated at
6 = 8 where hy(8) = (82/9608') Qr(9), |8 — 6| < HéT s
|A]| = {tr(A’A)}% for any real matrix A. Now wu;(0y) = 7:(00)(1 — €2) — 2e96;/ 0y

, where we define

is, by Lemmas 2, 3 and 7, a stationary ergodic martingale difference vector with
finite variance, so from Brown (1971) and the Cramer-Wold device, T%Q‘Tl )(90) —q
N(0,Gy) as T — oc. Finally, by Lemma 7 and Theorem 1, Hy —, Hp, whence the
proof is completed in standard fashion. m
Define
9q.(0) _
00

Gr(0) = T_lzgt(ﬁ), HT(Q):T_lth(Q)-

Theorem 2 Let Assumptions A(4), B, C, D, E, F(3), G and H hold. Then

T (éT - 90) —a N(0, H7'GoHTY) as T — oo, (17)

— A

and Hy'GoHy " is strongly consistently estimated by Hz'(07)Gr(07)Hy (01).
Proof. We have

0= Q% (Br) = QY (60) + Hr(Br — 6o),
where Qg}) (0) = (0/00)Qr(0) and Hy has as its ith row the ith row of Hy(f) evaluated
at 0 = 9?, for Héﬁ) — GOH < HéT — 0p|| . Thus from (16)

O —br = (Hr' = Br)QY 00) — H' {QF 00) - QP (60)}
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where the inverses exist a.s. for all sufficiently large 7' by Lemma 9. In view of

Proposition 2 and Lemma 8, (17) follows on showing that
Q7 (00) = @ (00) = 0,(T717).

The left hand side can be written (Bir + Bor + Bsr)/T, where

T T T
Bir = Ze? bit, Bor = — Z(gf — 1)by;, Bsp = —2es thb?)t’
=1 t=1 t=1
with (1 2(1) 2(1)
b :_Ut (0-?_0'?> b _O-t B 7t b _O'?_O-tZ
1t 5_21 , U2t O'% 5_% y U3t 5'?0}
for 57 = 2(60), 0} = 0}V (00), 3, = 31 (60), with o7V(6) = (9/00)?(0),

521(0) = (0/90)52(6). We show that By = 0,(T"?), i = 1,2, 3. For the remainder
of this proof we drop the zero subscript in ;.

Consider first B;r. We have
t—1 t—1 !
20 (12X e TPt ) as)
s =1
where 1/15.1) = w§1)(< o). From Assumption F'(1)

|

520

t—1 t—1
<142 o+ K o a7,
j=1 j=1

for all n > 0. Now

t—1 t—1 1/2 / 1/2
Sl < (z w) (z wj) < Ko
j=1 j=1 j=1

so since g; > wyr > 0
t—1

5,23 W |ry] < Koyt < o
j=1
From (8),

t—1

1-n_2 —-n=2
E 1/13' xt—jSK@/’t Ot-
Jj=1
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It follows that

520

/o7 < Ko (19)

On the other hand, by the ¢,-inequality (Loéve (1977, p.157)) and (10)

B(o} —0}) S K Y WiB|n [ <K) 7. (20)

j=t j=t

Thus by (8) and (14)

Ebyll” < K™Y ¢h < Ky 900 < Koot hi=m), (21)
j=t j=t

choosing < 1 —1/{p(dyo+ 1)}, which (14) enables. Applying the ¢,-inequality again,

T
E|Bir|’< K E|eo|* E[|bu]|”

t=1
Applying (21), this is O(1) when p > 2/(dy + 1), whilst when p < 2/(dy + 1) we may

choose 7 so small to bound it by

KT ot D(-n) < fee/2—{142(do+1) (1) p/2-2/{L42(do+ ) (1-m)] — o(T0/2),

using (12) (which requires (13)), and arbitrariness of .  Thus By = op(T%) by
Markov’s inequality.

Consider Byr. By independence of €; and by, by c¢,-inequality when p < %, and by
the inequality of von Bahr and Esseen (1965) and the fact that the 2 are i.i.d. with

mean 1 when p > %,

T T
E|Bor|® < K (Eleo|” + DEbul™ < K Y (B [[bae]* + E b)),

t=1 t=1
where (1) (1) (1)
2(1 _2(1 _2(1); 9  —9
b Oy~ — 0y b, — o, (0] —0})
4t — 2 s Ubt — —9 9
o 0104
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Thus, from Assumptions F'(1) and H,

ol < (22% R ) /ot
j=t J=t

o0 1/2 0o ) 1/2 o 1/2
— 1
< fo{Su) S ()} | (S
j=t Jj=t Jj=t
o 1/2 o 1/2
< w3 () (S
j=t j=t
0 1/27]
< K t_d°/2+{Zj_(dﬁl)(l_%)x?_j} ,
j=t

SO

E Hb4tH2p < Kt—rdo 4 KZj—(do+1)P(1—2ﬁ) < Ktl—(do+1)f>(1—277)7
j=t

for sufficiently small . Thus 3., E||by|* is O(1) for p > 2/(dy + 1), whilst for
p <2/(dy+ 1) it is bounded by

K12 (ot )e(1=2m) < re=(dot2){p=2/(do+2)}+2(do+1)pn — o(TP)

from (14) and arbitrariness of 7. Also ||bs|| < K ) 52W /52|l (62 — 52)1/2, so from (19)

and (20) we have F ||bs, ||’ < Kt'~(do+1e(1=20) and proceeding as before

T
ST E bl = o),
t=1

and thence Bop = 0,(T"?).

Next
2p T
<K Eleof” EbY,

t=1

T
Z €tbsy

t=1

E|Bsr||”” < KE

applying ¢,-inequality when p < 1 and Von Bahr and Esseen (1965) when p > 1.

12



Now b3, < (02 — 52)Y/25,% so from (20),

T oo
E|Bsr|* < KY > 4

t=1 j=t

< K{(l(p>2/(do+1))+ (InT)L(p=2/(do + 1)) + T* D1 (p < 2/(dy + 1))}

= oT?),

much as before. Thence By = 0,(T%/?).
It remains to consider the last statement of the theorem, which follows on standard

application of Propositions 1 and 2, Theorem 1 and Lemmas 7 and 8. =

In earlier versions of this paper we checked the conditions in case of GARCH(n, m)
models, in which the v,({) decay exponentially, and we allow the possibility that
the GARCH coefficients lie in a subspace of dimension less than m + n; the details
are available from the authors on request. However, the literature on asymptotic
theory for estimates of GARCH models is now extensive, recent references includ-
ing Berkes, Horvath and Kokoszka (2003), Comte and Lieberman (2003), Ling and
McAleer (2003) and Francq and Zakoian (2004), along with investigations of the
properties of the models themselves, see recently Basrak, Davis and Mikosch (2002),
Kazakevicius and Leipus (2002), Mikosch and Starica (2000). We focus instead on
alternative models which have received less attention, and for which our theoretical

framework is primarily intended. We introduce the generating function

¢@O=Z%©% 2| < 1. (22)
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3. FRACTIONAL GARCH MODELS
A slowly decaying class of ARCH(o0) weights was considered by Robinson (1991),
Ding and Granger (1996), Koulikov (2003), generated by
P(z¢)=1-(1-2)° 0<(<1, (23)

where r = 1 and formally

(=2 =3 o £ Ld>0 (24)

2 T(=d)T(j + 1)

In these references wy = 0 was assumed in (2), but we assume wy > 0 and generalize

(23) as follows. Introduce the functions a; = a;(¢), b; = b;(¢) and, for m > 1, n > 0,

n+mz>r,
a(z;¢) = Zajzj, b(z;()=1— ijzjl(n > 1), (25)
j=1 j=1
and for all ( € T
aj > 0, j=1,...m; b; >0, j=1,...,m (26)
b(z¢) # 0, || <L (27)
a(z; ) and b(z; () have no common zeros in z. (28)

Now take 1(z; () (22) to be given by

a(z O{1 = (1 - 2)%}
2b(2;¢) ’

Y(z:¢) = (29)

with d = d(() satisfying
de(0,1). (30)

We call z; based on (29) a fractional GARCH, FGARCH(n, dy, m), process, for dy =
d(Co)-

14



Corollary 1 Let ¢(z;() be given by (29) and (25) with m > 1, n > 0, and let d and
the aj,b; be continuously differentiable. For some 6 > 0 let Assumptions A(2 + 6),
B, C and E hold, with oll ( € Y satisfying (26)-(28), (30) and

0
rank {3_C (@1 ey Ay b1, ...,bn,d))} =r.

Then (15) is true. Let also d and the a;j,b; be thrice continuously differentiable.

Assumption A(4) hold, and assume dy > § and that (10) holds under (14). Then
(17) is true.

Proof. Denoting by ¢; (j > 1) and d; (j > 0) the coefficients of z7 in the expansions
of a(z;¢)/b(2;¢), 27H{1 — (1 — 2)?} respectively, we have V;(¢) = ?;B Cj—rdy, j > 1.
From Berkes, Horvath and Kokoszka (2003) the ¢; are bounded above and below
by positive, exponentially decaying sequences when n > 1, and are all non-negative
when n = 0. Since the d; are all positive, it follows that (6) holds. Also, Stirling’s
approximation indicates that j~%'/K < d; < Kj~*", so the () satisfy the same
inequalities. Compactness of T, smoothness of d and (30) imply d(¢) > d, to check
(7). The above argument indicates that tp,;, < Kj %1 < Kk %=1 < Ky, for
j >k > 1, so (8) holds, and thus Assumption D. With regard to (11), note that
(0/0d)(z;¢) = —{a(z;¢)/b(2;¢)}27 (1 — 2)?In(1 — z), where the coefficient of 27 in
—2 Y1 = 2) (1 — 2) is Y4 kTl < K(Inj)j 47t < K= @D0=n < Kypi7(()
for any n > 0. Derivatives with respect to the a;,b; are dominated, and higher
derivatives can be dealt with similarly, to complete the checking of Assumption F'(I).

To check Assumption G, suppress reference to ¢ in a, b, 1 and

0(2) =b(z) {1 = (1= 2)"}, 7(2) = b(2)""a(2),

15



and note that

afabfij) = Z79(2), j=1,...m,
azapéjz) = Z7(2)e(2), j=1,...m,
azggz) N _@(1 — 2)"log(1 - 2).

.....

and calling its (7, j)th submatrix U;;. We first show that the (m+n) x (m+n) matrix
Uy, is non-singular. Write R for the n x (m+n) matrix with (4, j)th element v, _;, and
S for the (m +n) x (m + n) matrix with (4, j)th element ¢; ; ,, where ¢; =, =0

for j <0, and for j > 0, ¢; and -, are respectively given by
¢(2) :Z¢jzj7 7(2) :Z’szja
j=1 j=1

these series converging absolutely for |z| < 1 in view of (30). Noting that ¢§'1) is given
by (0/0C)y(2) = > 72, ¢§1)zj, we find that the first m rows of Uy; can be written
(Im, O)S, where I, is the m-rowed identity matrix, O is the m x n matrix of zeroes,
and, when n > 1, the last n rows of Uy; can be written RS. Now S is upper-triangular
with non-zero diagonal elements. Thus for n = 0, U;; = S is non-singular. For n > 1,
Uy is non-singular if and only if the n x n matrix, Ry, having (i, j)th element v, ;
and consisting of the last n columns of R, is non-singular. This is not so if and only
if the v;, j = m,...,m +n — 1, are generated by a homogeneous linear difference
equation of degree n — 1, that is if there exist scalars A\g, A1, ..., A,_1, not all zero, such

that

n—1
)\o%—z/\i%‘—z‘zov j=m,...m+n—1.
i=1

But it follows from (25) and (27) that they are generated by the linear difference

16



equation
n—1
yj—Zbﬁjfi:ﬂj, j=m,..,.m+n—1,
i=1

where T, = am + bnYpn—pny T = bnYjp for j=m+1,...,m+mn— 1. Since b,, # 0 the
m; are all zero if and only if v, , = —a,,/b, and y; =0 for j =m+1—mn,...m—1.
But this implies 7, = 0 also, and thence v; = 0, all j > m —n+1. For m < n this is
inconsistent with the requirement a; > 0, j = 1, ..., m, and for m > n it implies a has
a factor b, which is inconsistent with (28). Thus Uy; is non-singular when n > 1. Non-
singularity of U follows if Usy # Uy Uy 'Uss. For large enough jmini1 = Jmint1(C)
this must be true because Usy decays like (In j,1ni1) j;i;ﬁrl, whereas the elements
of Upp are O (Bj"“r"“) for some 8 € (0,1). This Assumption G is true, and thence
(13). Clearly (13) is true so under the additional conditions so is Assumption H, and
thence (17). m

For m = 1, n = 0, (29) reduces to (23) when a; = 1, whilst when a; € (0,1) it
gives model (4.24) of Ding and Granger (1996). The important difference between
these two cases is that the covariance stationarity condition ¥(1;(,) < 1 is satisfied
in the second but not in the first. In general with (29), as with the GARCH model,

x; is covariance stationary when a(1;(,) < b(1;(,) but not otherwise. We compare

(29) with
{1—a(zQ)} _ )
ETR

with d again satisfying (30) and @ and b again given as in (25), though we now

P(z;¢) =1- (31)

allow m = 0, meaning a(z;¢) = 0. Thus with m = n = 0, (31) reduces to (23).
ARCH(c0) models with ¢ given by (31) were proposed by Baillie, Bollerslev and
Mikkelsen (1996), and called FIGARCH(n, dy, m). In general, though (31) also gives
hyperbolically decaying ), it differs in some notable respects. Application of (26)-

(28) ensures positivity of 1;(¢) in case of FGARCH and facilitates the above proof,

but sufficient conditions in FIGARCH are less apparent in general, though Baillie,
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Bollerslev and Mikkelsen (1996) indicated that they can be obtained. Also, unlike
FGARCH, FIGARCH z; never has finite variance.

The requirement dy > % for the central limit theorem in Corollary 2 would also
be imposed in a corresponding result for FIGARCH. This is automatically satisfied
in GARCH(n, m) models but if only dy € (0,1] in (13) is possible in the general
setting of Section 3, it appears that the asymptotic bias in O is of order at least T_%,
whereas that for 67 is always o(T ’%). Assumption G copes with the replacement of
02(0) by 5%(0), the truncation error varying inversely with dy. Inspection of the proof
of Theorem 2 indicates that this bias problem is due to the term H~!'B;r. The factor

o? — 52 in by, is non-negative, and if j =%~

!is an exact rate for 1, 07 — 77 exceeds
t=% /K as t — oo with probability approaching one. So far as the factor 5?(1) Jo} in
by; is concerned, the second element of %! (see (18)) has zero mean, but the first
is positive, and though the 7,05-1) can have elements of either sign, whenever dy < %
it seems unlikely that the last r elements of Bi7 can be op(T%). Nor is there scope
for relaxing (12) by strengthening other conditions. With regard to implications for
choice of p, when dy > 2d + 1, (14) entails no restriction over (9).

Though results of Giraitis, Kokoszka and Leipus (2000) indicate existence of a
stationary solution of (1)-(3) when 9(1;(,) < 1, Kazakevicius and Leipus (2003) have
questioned the existence of strictly stationary FIGARCH processes, and thus about
the relevance of Assumption E here. The same reservations can be expressed about
FGARCH when a(1;¢,) > b(1;(,), and more generally about ARCH(oc0) processes
with ¢(1;(,) > 1. A sufficient condition for (10) can be deduced as follows. Recursive

substitution gives

o0 o0 o0
2 § § § 2 2 2
Ut S K + K T ¢0j1 e 1/}Ojl€t7j1€t7j17j2 T gtfjl---fjl )
=1

Ji1=1 Ji=1
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so by the c.-inequality

o0 o0 o0
02”<K+KZ<Z“-ZW<--W- et e e ')
t = 071 0j; 1<t—J1 t—j1—J2 t—j1-—Ji .

=1 \j1=1 Ji=1

Thus from Lemma 2

o0 o !
Elo|” <Elo* <K+ KY_ (E |€0|2p2%> .
=0 j=1

The last bound is finite if and only if
Eleol* ) 4, < 1. (32)
j=1

Thus (10) holds if there is a p satisfying (9) and (32). Recursive substitution, and
the ¢,-inequality, were also used by Nelson (1990, Corollary) to upper-bound E |oy|*
in the GARCH(1,1) case, but he employed the simple dynamic structure available
there, and (35) does not reduce to his necessary and sufficient condition.

If ¥(1;¢,) < 1, (32) adds nothing because we already know that Ex3 < oo here,
but if ¢(1; ;) > 1 the second factor on the left of (32) exceeds 1 and increases with
p, and the question is either the first factor, which is less than 1 and decreases with
p (due to A(q)), can over-compensate. Analytic verification of (32) for given (, p
seems in general infeasible, and numerical verification highly problematic when the

1, decay slowly. However, consider the family of densities

f(e) = exp [— {a() 7] (2T ()a()} (33)

for v > 0, where a(y) = {I'(7)/T(37)}2 (also used by Nelson (1991) to model
the innovation of the exponential GARCH model). We have Fey = 0, Fei = 1
as necessary, Assumption A(q) is satisfied for all ¢ > 0, and E|go|” = T'((2p +
1)7)/{0(7)}*T(37)?}. In case v = 0.5, (33) is the normal density, for which 0 is
asymptotically efficient. Here E |go|* = 2°T(p + .5)//7, and numerical calculations
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for FIGARCH(0, dy, 0) cast doubt on (32). In case v = 1, (33) is the Laplace density,
with E |eo|”” = 207''(2p + 1). As 7 increases, E |go|* can be made small for fixed
p < 1, for example with p = 0.95 it is 0.64 when v = 10 and 0.42 when v = 20.

4. GENERALIZED EXPONENTIAL AND HYPERBOLIC MODELS

FGARCH(n,dy, m) (and FIGARCH(n, dy, m)) processes require dy € (0,1). For
d =1, (29) reduces to the GARCH(n, m) case 1(z;() = a(z;()/b(2; (), and for d > 1
at least one coefficient in the expansion of (23) is negative, leading to the possibility of
negative 1;(¢). Because FGARCH );(() decay like j~*', a large mathematical gap
is left relative to GARCH processes. Even if exponential decay is anticipated, there
is a case for more direct modelling of the v,(¢) than provided by GARCH, since it is
the ¢;(¢) and their derivatives that must be formed in point and interval estimation
based on the PMLE.

Consider the choices

¥;(0) = i T(f; + 1) egd/i e, (34)
=1
V(0 =D T(fi+ 1) edn (G + 1)+ 1)~ (35)

=1

where d = d({) and the e; = ¢;((), fi = fi(¢) are such that T satisfies

d € (0,00), (36)
e, > 0, i1=1,....m, (37)
0 < fi<- < f <00, (38)

with 2m + 1 > r. Given (1)-(4) and (22), we call z; generated by (34) a generalized
exponential, GEXP(m), process, and x; generated by (35) a generalized hyperbolic,
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GHYP(m), process. Condition (38) is sufficient but not necessary for ¢;(¢) > 0,
all 7 > 1. By choosing m large enough in (34) or (35), any finite ¥ (1;() can be
arbitrarily well approximated, but (34) and (35) can also achieve parsimony. For real
x> 1, /e and (Inz)/z79"1 decay monotonically if f = 0, and for f > 0 have
single maxima at f/d and ef/(“*Vrespectively. Thus with m = 1 and f; = 0 we have
monotonic decay in (34) and (35); otherwise both can exhibit lack of monotonicity,
whilst eventually decaying exponentially or hyperbolically. The scale factors in (34)
and (35) are so expressed because x7e~% and (Inz)/z~9"1 integrate, over (0, 0), to
D(f +1)/d™ and '(f + 1)/d, respectively, so that ¢(1;¢) = >_I" | e; in both cases,
but the approximation may not be very close and the "integrated" case is less easy
to distinguish than in GARCH and FGARCH models (though it would be possible
to alternatively scale the weights, by infinite sums, to achieve equality).

The following Corollary covers (34) and (35) simultaneously, and implies the special
case when the f; are specified a priori, for example to be non-negative integers; strictly
speaking, when the true value of f; is unknown, Assumption C' prevents it from being

Zero.

Corollary 2 Let ¥(z;() be given by (22) and (34) or (35) with m > 1 and let d and
the e;, fi be continuously differentiable. For some 6 > 0 let Assumptions A(2 + 9),
B, C and E hold, with all ¢ € T satisfying (36)-(38) and

rank {% (e1, f1, ...,em,fm,d)} =7

Then (15) is true. Let also d and the e;, f; be thrice continuously differentiable and
Assumption A(4) hold, and assume dy = d(Cy) > 1 in case of (35) and that (10)
holds under (14). Then (17) is true.

Proof. Given (36)-(38) and the proof of Corollary 1, the verification of Assumptions
D and F'(l) is straightforward. We check Assumption G for (35) only, a very similar
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type of proof holding for (34). We have

B (u),, ...,u;n-)/ . e
o = | G )

Uj

where

w; = (Inln(j+1) = (9/0f;)InT(fiy1), 1) Infi(+1), i=1,..,n
vo= = Zeir(fz‘ﬂ)_l Inf 1 (j + 1),
i=1

and E is the diagonal matrix whose (2i — 1)th diagonal element is e;, and whose
even diagonal elements are all 1. Fixing ¢, we show first that the leading (r — 1) x
where, for ¢ = 1,...,m the (2i) x (2¢) matrix U; has (k,¢)th 2x1 sub-vector wuy;,,
k=1,..,1, £ = 1,...,2i. Suppose, for some i = 1,....,m — 1 and given ji, ..., jo,
that U; has full rank, and partition the rows and columns of U;;; in the ratio 2: :
2, calling its (k, ¢)th submatrix Uy (so Uy = U;). Take joiio = j3;.,. Because
Inlnx strictly increases in x > 1, it follows that Uy is nonsingular and ||U2_21H =
O (Inln jo;4q In~ "+ jy;41). Noting that ||Usz|| = O (Inln jypq In% jyipq), whilst Uy
and Usy; depend only on ji, ..., jo;, we can choose jo;11 such that Uy — U12U231U21
differs negligibly from Uy;. Thus U, has full rank. Since, for f; > 0, U; has full rank
(for example when j; = 1, jo = 2), it follows by induction that U,, has full rank. Since

fm 15 whilst |Jugl| = O (Inlnj Ini j) . a similar

v;j is dominated by a term of order In
argument shows that j. can then be chosen large enough, to complete verification of

Assumption G, and thence (15). We conclude (17) as in the proof of Corollary 1. m
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5. TECHNICAL LEMMAS

Define

[e.o]

o2(0) =w+ ij((’)xtz_j, o = wy + Zsup ¥, (Q)xy;

j=1 j=1 €T

Lemma 1 Under Assumptions B and D, for all 0 € ©,t € Z

K 1'0:2(0) < 02(0) < Ko*(0) a.s.

Proof. A simple extension of Lee and Hansen (1994, Lemma 1). m
Lemma 2 Under Assumptions A(2), B, C, D and E, for all t € Z

E|x|” < Eo< Egugafp(e) < KEo? < KE|z|* <K (39
S

info?(f) > 0, supo(f) < Ko* < oo a.s., (40)
USS) 0cO

Egtelg |In 0?(9)‘ < K. (41)
Proof. With respect to (39), the first inequality follows from Jensen’s inequality,
the second is obvious, the third follows from Lemma 1, the fourth follows from the
¢,-inequality, (7) and (9), whilst the last one is due to (10). The proof of (40) uses
Lemma 1, 02(0) > wr, (10) and Loeve (1977, p.121). To prove (41), [Inz| <z + 2!
for x > 0 and Lemma 2 give

—1
Esup ‘ln 03(9)’ < p tEsupor’(0) + E {infaf(@)} <K.
E) ) 0€©

Lemma 3 Under Assumptions D, E and F(1), for all 6 € ©, 02(0), q;(0) and their

first | derivatives are strictly stationary and ergodic.
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Proof. Follows straightforwardly from the assumptions. =

Lemma 4 Under Assumption A(2), for positive integer k < (b+ 1)n/2,
" —k
E <Z 53> < 0. (42)
=1

Proof. Denote by Mx(t) = E(e'*) the moment-generating function of a random
variable X. By Cressie et al (1981) the left side of (42) is proportional to

/ " M 2 (—t)dt = / MY (—t)dt
0 0

1 00
< /tk‘ldt+/ LM () dt. (43)
0

1
It suffices to show that the last integral is bounded. For all § > 0, there exists n > 0
such that L(e™1) <e7% ¢ € (0,7), so

> 2 n 2 2
Mg (—t) = / e f(e)de < K/ e b0 de 4 2e7.
- 0

[e.o]

The last integral is bounded by
KpE-b-1)/2 /OO e (0-b-1/2g. < [rp(d-b-1)/2
0

Thus (43) is finite if k+n(d—b—1)/2 < 0, that is, since J is arbitrary, if £ < (b+1)n/2.

The previous version of the paper included a longer, independently obtained, proof
of the following lemma which we have been able to shorten in one respect by using
an idea of Berkes, Horvath and Kokoszka (2003) in a corresponding lemma covering

the GARCH(n,m) case.

Lemma 5 Under Assumptions A(q), B, C and D, for p < q/2,

o2\’
Esup ( > < K < 0.
Ee) 03(9)
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Proof. We have
2 _ 2 S 2 2 2 2
oy = wWo + Yo7 + Z Yoty < wWo + o107 187 + Koiy
=2
from (8). Thus o7/07 ; < K (1+¢&7 ;) and thence, for fixed j > 1, 07 /07 ; < Khy;,
where hy; = II7_; (1 +¢2;). For any M < oo

i K p(sey 0,22 i
20 = ape -\ L
K {inf | inf 0,00}
< j=1,..,
M
Zsffj
j=1

The proof can now be completed much as in the proof of Lemma 5.1 of Berkes,
Horvath and Kokoszka (2003), using Holder’s inequality as there but employing our
Lemma 4 and taking M > 2pq/[(b+ 1)(¢ — 2p)]. =

Lemma 6 Under Assumptions A(2), B, C, D, E and F(l), for all p >0 and k <1,

1 oka%() |¥
E : 44
oD | 52(0) 90, .00, |~ (44)
1 9ha2(0) |
E : ‘ )
oob |52(0) 90,,..00, | = (45)

Proof. Take iy < iy < ... <. First assume ¢; > 3, whence, for given k and iy, ...ix

ak 2 0 00
ﬁ =260} 5w,

J=1

where £;(¢) = akT/}j(O/aCil—rﬁCik—z- Now

Z@(C)l’?_](u) < QZ }53(0’ (x?—j + H2>a
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so using Lemma 1

1 9°02(0)
o2(0) 06;,...00;

ER O S

- 02‘2(

ik
It suffices to take p > 1. By Holder’s inequality

oo PP ( o 1-p/p
Z!fj<<)|x?,_{2}§ (O, /x} {Zzﬁj(oxf_]} ,
j=1

j=1

SO

Z]o'il ‘f](C>| x?—j 2

— <K O)PP |wyy]

{ 720) Z (¢ i

By Assumption F'(1), for all n > 0,
sup |€;(C)[" 9;(¢)7 7" < K sup ()P~ < Kj~ D=,
CeT CeY

Since p(d + 1) > 1, we may choose 1 such that (d+ 1)(p — pn) > 1. Thus

oo 2 p
Esup{zjl |§j(§)‘ xtj} < .

The above proof implies that also

?E?{Z}é }

whence the proof of (44) with 7; > 3 is concluded. Next take i; = 2. If 75 > 2

ak
90, ae _225 Jre—i (1

where now &;(¢) = 9" '4;(¢)/0C;,_5.-.0C;, o, whilst if i = 2, i3 > 2

8k
00;,...00; _225
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where now &;(¢) = 0¥ 2¢;(¢)/0¢;, _5---0¢;, 5. In the first of these cases the proof is
seen to be very similar to that above after noting that by the Cauchy inequality (46)
is bounded by

Y

- - 12 .
K{Z \@(C)Mijz ‘5;‘(4)‘} +KZ 1£,(¢)

whilst in the second it is more immediate; we thus omit the details. We are left with
the cases iy = iy = i3 = 2 and 4; = 1, both of which are trivial. The details for (45)
are very similar (the truncations in numerator and denominator match), and are thus
omitted. m

Define
T

9:(8) = w(0)uy(8), Gr() =T~ 4u(6).

t=1

Lemma 7 For some § > 0, under Assumptions A(2+9), B, C, D, E and F(1),
2161(19) Qr(0) —Q(O)] — 0 a.s. asT — oo, (47)
and Q(0)is continuous in 0. If also Assumption F(2) holds,
2161(1; IGr(0) —GO)|| — 0 a.s. as T — oo, (48)
and G(0) is continuous in 0. If also Assumption F(3) holds,
zlelg |Hr(0) — H(@)|| — 0 a.s. as T — oo, (49)
and H(0) is continuous in 0.

Proof. To prove (47), note first that by Lemmas 1, 2, 3 and 5

supFE |qo(6)| < supE |log o3(0)| + supEx,(6) < oc.
e o e
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Thus by ergodicity
Qr(0) — Q) a.s.,
for all & € ©. Then uniform convergence follows on establishing the equicontinuity

property

Qr(9) — QT(Q)) — 0, a.s.,

sup
7:||9-6|| <

as ¢ — 0, and continuity of Q(#). By the mean value theorem it suffices to show that

0Qr(0) 9Q(0)

e R [ R

o || o0 H "o || 00

which, by Loeve (1977, p. 121) and identity of distribution, is implied by Esup ||ug(6)]| <
e

co. By the definition of u; (), and x?(u) < K(x? + 1), ||ve(0)]| < 2(|z¢| + 1), we have

O¢

o4(0)

@ < K [Ire@] {1+ 250 g 2.

Thus E supg |[ue(#)|| is bounded by a constant times
2 ypl/p 1-1/p
Esup ||To(0)]| + [Esup {&} } [Esup ||TO(9)HP/(1)—1)}
© o Lo3(0) e
0o
+Esu +1
o {00(0) }

for all p > 1. On choosing p < 1 + 6/2, this is finite, by Lemmas 5 and 6. (Our use

of Lemmas 5 and 6 is similar to Berkes, Horvath and Kokoszka’s (2003) use of their
Lemmas 5.1 and 5.2 in the GARCH(n, m) case.) This completes the proof of (47).
Then (48) and (49) follow by applying analogous arguments to those above, and so
we omit the details; indeed (48) and (49) are only used in the proof of consistency
of Gr(0r), Hr(0r) for Gy, Hy, where convergence over only a neighbourhood of

would suffice. =
Lemma 8 Under Assumptions A(2+6), B, C, D, E and F(1),

sup |Qr(0) — Qr(0)] — 0 a.s. as T — oo. (50)
fcO
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If also Assumption F(2) holds,
sup ||Gr(0) — Gr(0)|| — 0 a.s. as T — oo. (51)
0€®

If also Assumption F(3) holds,

sup ||Hr(0) — Hr(0)|| — 0 a.s. as T — oo. (52)
6e6

Proof. We have Qr(0) — Qr(0) = Ap(#) + Br(6), where

Ap(0) =T Zln {i%—g;] ; =T! fo {6,%(0) —0,%(0)} .

t=1

Because
20) + ) ()
=0

In(1 +z) <z for z > 0, and 02(0) > wy, > 0, it follows that

[Ar(9)] < KT-lz{a?w) (0)} < KT~ 122w i (u

t=1 j=t

t+T
< KT- Z{ > (¢ } (1)-
t=0 Jj=t+1
Now from (7)
t+T t+T
sup Z V() < K Z JEN < Kmin(t+1,T)(t +1)"¢!
CeT i j=t+1
Thus
supAr(0) < KT7'Y (t+ 1)@, + D)+ K> 747122, +1 53
upAr(6) Z 4( Z ). (53)

t=0 t=T

From c,-inequality, (9) and (10), > "2, (¢t + 1)"¢'22, has finite p-th moment, and
thus, by Loéve (1977, p.121), is a.s. finite. Thus the second term of (53) tends to
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zero a.s. as 1" — oo whilst the first does so for the same reasons combined with the

Kronecker lemma. Next

|Br(0)] < KT—lzxtw)ij(o:cf_j(u)

From previous remarks, » 77, j _d_l(xf,j +1) — 0, a.s. Also, for each 6, a.s.

71 gxt(e) — Exo(0) < K {E (g§(39)> + 1} <K

by ergodicity and Lemma 5. Thus (54) — 0 a.s. by the Toeplitz lemma. The

convergence is uniform in 6 because, from the proof of Lemma 7, for all § € ©,

s [ xo®) — xa(0)]| = 0 as.

é:||§79||<5

as € — 0. This completes the proof of (50). We omit the proofs of (51) and (52) as

they involve the same kind of arguments. m

Lemma 9 For some 6 > 0, under Assumptions A(2+6), B, C, D, E , F(1) and
G, M(0) is finite and positive definite for all 6 € ©.

Proof. Fix 6 € ©. Finiteness of M (0) follows from Lemma 6. Positive definiteness
follows (by an argument similar to that of Lumsdaine (1996) in the GARCH(1,1)
case) if, for all non-null (r + 2) x 1 vectors A\, NM(0)A = E{\N'7o(0)}*> > 0, that is,
that

N71o(0)o3(0) #0 a.s. (55)
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since 0 < 02(0) < oo a.s. Define

Tw(0) = % In 0?(9) =0, 2(6’),
a o0
mu(0) = Z-noi(6) = —20.(0) D i Qaei(w),
=1
Tic(0) = ;C Ino?(f) =0, Z@/Jl )z (
7=1

so that 7,(0) = (74.,(0), T4.(0), Tic(0))'. Write X = (A1, Ag, A3)', where A; and A, are
scalar and A3 is r x 1. Consider first the case A\; = Ay = 0, A3 # 0. Suppose (55) does

not hold. Then we must have
Z)\ w(l Q)2 (1) =0, as.
If MY (¢) # 0 it follows that
1. X
(e + 1 — 1) = = {0} 3 M (a2 (). (56)
j=2

Since o, 1 > 0 a.s. the left side involves the non-degenerate random variable &, 1,
which is independent of the right side, so (56) cannot hold. Thus Ag¢§1)(§) = 0.
Repeated application of this argument indicates that, for all (, Ag¢§1)(¢ )=0,j =
1,...,7-(¢). This is contradicted by Assumption G, so (56) cannot hold. Next consider
the case A\; =0, A2 # 0, A3 = 0. If (56) does not hold we must have

Z¢ Q)i a.s. (57)

Let k be the smallest integer such that 1,(¢) # 0. Then (57) implies

Et—k = U:k(‘g) {N o — Z @/J ) ( }

j=k+1
But the left side is nondegenerate and independent of the right side, so (57) cannot
hold. Next consider the case Ay = 0, Ay # 0, A3 # 0. If (55) is not true then, taking
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Ao = 1, we must have
> {6 Qe i) = 20,0 () =0, as. (58)
j=1

Let k be the smallest integer such that either )\g¢,(€1) () # 0or 1, (C) # 0; the preceding

argument indicates that there exists such k. Then we have

{204(Q) = NP ners + o = ) | {oreen + o — 1}

= > (@) — 26,0 f (), s

j=k+1
The left side is a.s. non-zero and involves the non-degenerate random variable ;_,

which is independent of the right side, so (58) cannot hold. We are left with the
cases where \; # 0. Taking A\; = —1 and noting that 02(0)7,(f) = 1, the preceding

arguments indicate that there exist no A\ and A3 such that

AQU?(G)TW(H) + )\gaf(H)TtC(@) =1, a.s.

Lemma 10 For some § > 0, under Assumptions A(2+§), B, C, D, E, F(1) and H,

inf Q(6) > Q(0).
0£00

Proof. We have

Q) Q) =5 | s~ k1] s | .

The second term on the right hand side is zero only when 1 = p, and is positive

otherwise. Because x — Inx — 1 > 0 for x > 0, with equality only when z = 1, it

remains to show that
Ino3(f) =Inol a.s., some O # 0. (59)
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By the mean value theorem, (59) implies that (0 — 6y)'79(0) = 0 a.s., for 6 # 0 and
some 6 such that ||6 — 6| < [|§ — 6p||. But by Lemma 9 there is no such 6. =
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