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Abstract

Smoothed nonparametric kernel spectral density estimates are
considered for stationary data observed on a d-dimensional lattice.
The implications for edge effect bias of the choice of kernel and
bandwidth are considered. Under some circumstances the bias can
be dominated by the edge effect. We show that this problem can be
mitigated by tapering. Some extensions and related issues are
discussed.
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1. INTRODUCTION

Let {z;} be a weakly dependent, zero-mean covariance stationary process, on a d-
dimensional lattice Z?, for d > 2, such that ¢ represents the multiple index (t1, ..., t4).

Defining the lag-u autocovariance vy, = cov(y, T1,,), we assume that ; has a spectral

density f(\), for A = (Aq, ..., \q) € 1%, I = (=, 71]; this is given by
FO) = @2m)~" X ye™, (1.1)

uezd
where u.\A = u1 A1 + ... + ug)g, and the expansion is well-defined under the condition
> |yl < oo (1.2)
uezd

We are concerned with smoothed nonparametric estimation of f(\) given observa-
tions on ¢ on the rectangular grid N = {t : t; € [1,n,],j =1,...,d}. A classical class
of estimates is of weighted sample autocovariance type, depending on user choice of

kernel function and bandwidth number. Define the lag-u sample autocovariance by

1
Cu == "mxp10, u€ N (1.3)
T t(u)
where ZQ(U) is a sum over t;,t; + u; € [L,ng], j = 1,..,d, and N* =

{u:1—n; <wu;<n;—1,57=1,..,d}. A weighted autocovariance estimate of f(\)
is given by

F) = @m) ™ Y walw)ee™, (1.4)

ueN*
where w, (u) is a suitable n-dependent weight function and n = H?Zln ;3 "n-dependent"
is a convenient short-hand for "dependent on n;,j =1, ...,d", that is justified because
in asymptotic theory we regard each n; as increasing with the overall sample size n,
so we can write n; = n;(n). In particular we consider w,,(u) of form

d

wn(u) = [T k(u;/m;), (1.5)

Jj=1
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where k(v) is an even, bounded, real-valued function such that

lim {1_|U—’|2(“)} — k,, (1.6)

v—0

for some ¢ > 0, 0 < k, < 0o, and the m; = m;(n) are non-negative integers such that

m

j—ooasn—o0,j=1,..d.

Condition (1.6) controls the bias, ensuring in particular that w,(u) — 1 for all
fixed v as n — oo. However, ¢, is a biased estimate of +y, unless u = (0, ...,0), and

for d > 2 its bias is liable to be significant. We may write

Ecy =7, {1+n,u)}, (1.7)
where
_ il -
na(u) =11 (1 L (1.8)
j=1 nj
For fixed u,

() = (— 5 M) (1+o(1)) (1.9)

d
>c> nit (1.10)

where ¢ > 0, e.g. for u; > 0, all j, we can apply the inequality between arithmetic
and geometric means,

d
Son;t>dn M (1.11)
j=1

to deduce that the bias in ¢, for v, is of exact order n='/<.

This is the so-called "edge effect". Guyon (1982) found that the usual parametric
Whittle estimates for lattice data have bias due to edge effect of exact order n=%/<,
The implication is that when d = 2 one has to "incorrectly" center the Whittle

estimates before norming by n2 and establishing asymptotic normality. For d > 3

matters are even worse, the Whittle estimates no longer being n2-consistent.



Here we focus principally on the implications of the edge effect for the bias of
smoothed nonparametric estimates of f(\). Intuitively, one expects the problem to
be less serious because unlike in parametric estimation one would never aspire to a
bias of order n~'. This conjecture is confirmed in case of f (A), but this estimate does
give non-negligible weight to u satisfying (1.10). We describe circumstances in which
the edge effect does and does not dominate its bias.

A simple way of avoiding edge effect bias is to replace ¢, by

as advocated by Guyon (1982) in parametric Whittle estimation. There is now no
bias, Fc, = ~,. However, the ¢, lack a non-negative definiteness property of the ¢,
that contributes to guaranteeing non-negative estimates of the non-negative function

f(A). Defining the periodogram

IN) = @2m) " Y ze™ 2, (1.13)
teN
we can write
f) = ” Wi(A = v)I(v)dv, (1.14)
where
W) = 15, (3, (L.15)
for

Ko, (X)) =(2m) " Y k (&) e G =1,..,d (1.16)

Since I(A) > 0 for all A, choosing non-negative K, (};) for all \; € II, j = 1,...,d,
thus ensures that f (A\) > 0 for all \. The time series spectral analysis literature

provides such choices, for example the modified Bartlett weights

k(v) = (1= o)1(jv] < 1) (1.17)



lead to
.21
Sin 5 )\jmj

Ky, (M) >0, (1.18)

= - 21
2mm; sin 5)‘3'

as desired. An alternative choice is the Parzen weights.

k(v) = 1-602+6v°, |v] <

?

DN | —

1
= 2(1 - |U|)3a 5 < |U| <1, (119)

=0, |v|>1,

which again produces non-negative K, (A;) (see Anderson, 1971, p.518). In general,
if ¢ > 2 in (1.6) the K, ,()\;) need not be non-negative; this is the case if higher-
order kernels are used, or the "flat top" kernels of Politis and Romano (1996) where
effectively ¢ = co. On the other hand even if the K, ();) are non-negative, if c, is
replaced in (1.4) by the unbiased ¢,, a non-negative estimate of f(\) is not guaranteed.

The following section discusses f (M), principally focussing on bias but for complete-
ness also recording a standard asymptotic approximation to the variance of f (N); as
usual, on combining these results consistency can be deduced, and furthermore an
approximation for the mean squared error of f (A\) and an optimal choice of band-
width. In Section 3 we introduce and analyze a tapered estimate, f (A), of f(A), also
employing a kernel and bandwidth similar to those in f(\). Dahlhaus and Kiinsch
(1987) noted that Guyon’s (1982) use of ¢, in place of ¢, loses the minimum-distance
character of Whittle estimation. They pointed out that employing instead a peri-
odogram based on tapered x; avoids this draw-back, and can reduce edge effect bias
sufficiently that, for d = 2, 3, 4, the usual n%—consistency property of Whittle estima-
tion is maintained. Correspondingly, our f (\) is guaranteed non-negative, and we
find that it reduces the bias due to edge effect. Soulier (1996) considered the effect
of tapering on long memory random fields.

Section 4 consists of a Monte Carlo study of finite sample behaviour, and Section

5 discusses related issues and extensions.



2. UNTAPERED SPECTRUM ESTIMATES

We introduce the following assumptions.

Assumption 1: k(v) is a real, even function such that |k(v)| <1, (1.6) holds and

/oo e(v)] dv < oo. (2.1)

—00

Assumption 2: Asn — oo

mj — 00, n; — oo, j=1,..4d. (2.2)

Assumption 3: z; is a covariance stationary process and

d
2 ( 1Iujlmx(q’”> 7l < 00, (2.3)
J

ueZd

where ¢ satisfies (1.6).

Theorem 1 Let Assumptions 1-3 hold. Then as n — oo,

- d
Ef(\) = f(\) + a1n + g + 0 (2 (m;* + nj1)> : (2.4)
j=1
where
d )
an = 2m) kg omy 3 fuyl e (2.5)
j=1 u€Zd
d .
Qo = —(2m)74Y n;l > uyl v e (2.6)
j=1 uczZd

Proof: Using (1.7),

Ef()) = 2m) %Y w,(u)Eée ™

ueN*

= (2m)™ X2 wa(w)y, (1 +n,(u))e™ (2.7)

ueN*



The difference between this and f(\) is

(2m) ™" 2 {wa(u) = 1} y,e”™ (2.8)

uEeN*
+2m) 7 2 wa )y, n, (w)e” A (2.9)
ueN*
—2m)™ Y ye (2.10)
ucZd—N*

Now

W) — 1 = 3° {k (ﬂ) - 1} + v, (2.11)

j=1 m;
where v, is linear in products of two or more of the k(u;/m;) — 1. For any subset L

of {1,...,d},

(2.12)

proceeding as Hannan (1970, p.284). It follows from Assumption 2 that (2.8) is
a1, (14 0(1)). Next

(u) = — 4 uyl 2.13
N, (1) = =+ s, (2.13)
j=1 T

where s,, is linear in products of two or more |u;| /n;. We have

> wa(u)y, I1 bl i <H nj) 2 <H \%I) Yu€ (2.14)

ueN jeL Ty jerL ueZd \ jEL

Thus (2.9) is ag,(1 + o(1)). Finally, (2.10) is
d d 1 / d 1
0 (@m S S il | =o [ St ). 215
= =
where > is the sum over u such that |u;| > n; and uy, € Z, k # j. O

Under Assumption 1, ay,,as, — 0 as n — oo, so it follows from Theorem 1 that

f (\) is asymptotically unbiased. Our interest is in the relative magnitude of o, oy
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a1, corresponds to the usual bias term stressed in the time series literature, while as,,
might be called the "edge effect term". Clearly «s, is dominated by «,, if and only
if

S

<
I
—

— 0, asn— oc. (2.16)

Ma
3

Il
i

J

In the time series case d = 1, (2.16) reduces to a condition standardly imposed in
studies of bias (see e.g. Grenander and Rosenblatt, 1957, Chapter 4; Parzen, 1957;
Anderson, 1971, Chapter 9). However, in practice the statistician is faced with fixed
n;, selects particular m;, and never knows whether oy, or as, is numerically the
major source of bias. For d > 1, one should perhaps be less content with simply
assuming (2.16) and thereby automatically recognizing oy, as dominant.

Bias is often studied with a view to establishing consistency, and a choice of band-
width that minimizes mean squared error (MSE). The latter involves the variance of

f(\). We introduce two further assumptions.

Assumption 4: z; is fourth-order stationary, (1.2) holds, and also

D |Rstu] < 00,
s,t,uczZd

where kg, is the fourth cumulant of xq, x4, z, z,.

Assumption 5: Asn — oo

o, j=1,..d
n;j

The following theorem routinely extends classical results for d = 1 (see e.g. Ander-
son (1971, p.520), Grenander and Rosenblatt (1957, p.134), Hannan (1970, p.280),
Parzen (1957); see also Brillinger’s (1970) and Zhurbenko’s (1986) discussion of spec-

tral estimates for random fields). Thus the proof is omitted.



Theorem 2 Let Assumptions 1, 2, 4 and 5 hold. Then as n — oo

i=1 1

VF) =B, +o (ﬁ @) ,
where

Jj=1 14

B, = {ﬁ %} e K2 (w)du F(N)? {1+ 1(A = 0,mod )},

where 1(.) is the indicator function.

Thus, under Assumptions 1-5, f (A) is mean-square consistent for f(A), and more-
over

MSEf()\) ~ (o, + Oégn)2 +6,, asmn — oo.

Under (2.16), MSEf(\) ~ a2, + 3, as n — oo, and as indicated by Zhurbenko (1986,
p.164) this is minimized by m; ~ a;n'/(@*20 j = 1,...,q, where the a; are certain
positive constants. With this choice of the m;, a2, + 3, has rate n=24/(4+29) However,
if the n; are such that (2.16) does not hold for these m;, then the contribution of
a2, + 201,00, to MSEf(A) (of order (E?zln]-’l)?) will match or dominate a2, + 3,,.
Notice that Assumption 5 implies (2.16) when ¢ < 1 (as for the Bartlett weights
(1.17)), but not when ¢ > 1 (as for the Parzen weights (1.19)).

3. TAPERED SPECTRUM ESTIMATES

We introduce a taper function h(v), satisfying

Assumption 6: h(v) is Lipschitz-continuous on [0, 1] and satisfies

h(0) = 0, (3.1)
h(l—v) = h(v), 0<v< <, (3.2)

/1h2(v)dv > 0. (3.3)



An example of a taper satisfying Assumption 6 is the cosine bell

1
h(v) = 5(1 — cos(27v)).
Define for integer s

1
8 —_— =
hjs=h ( 2)
n;
and thence the tapered sample autocovariances

. 1 d
Cy = F Z ! (H hj,t]-hj,tj-&-uj) TtTtqu,
n t(u) jzl
where
d ny 9
j=1t;=1
Consider the estimate
f

(A) = (21)™ 3wy (u)ée” ™.

ueN*
We introduce:

Assumption 7: f()\) is twice boundedly differentiable on I1¢.

Assumption 8: For all sufficiently large n,

Ko (A) >0, j=1,..d.

Theorem 3 Let Assumptions 1-3 and 6-8 hold. Then as n — oo

~

-2
2"
J=1

Ef()\):f()\)—l—aln(l—l—o(l))—l—O(i ) )

Proof: Asin (1.14) we may write

o= | W=,

10

(3.6)

(3.7)

(3.8)

(3.10)

(3.11)



where

_ 2
I(\) = (2n)*H* < j hﬂj) et (3.12)
teN \ j=1
We have
d
El,(v) = ; f(Q) ngj(yj - Cj)de (3.13)
d j=
for
n; L my 2
gi(v;) = <27r > h?t > > Dy, e'tivi (3.14)
t= j=1
Then we may write
Ef(\) — f(\) =a+b, (3.15)
where
d
o = [ W) | T )0 =0~ [0 dadv,  (316)
d d j=
b = g WA =v){f(v) = f(A)}dv. (3.17)

Now b = (2.8)+(2.10), and is thus as,(1+0(1)). By Taylor’s theorem and Assumption
7,

fv=Q—=fW)+2¢ < C ¢l (3.18)

=17 Oy,

‘ < Of(v)

where C' denotes a generic arbitrarily large positive constant. Since the g;((;) are

even functions, the triangle inequality, Assumption 8 and (3.18) give

d 2
=0 [ ma-n3 [ 61 s (3.19)

As in Dahlhaus and Kiinsch (1987), summation by parts and taking h(v) = 0, v ¢
[0, 1], give

nj . o nj )
21 hye e = {exp(—i¢;) — 1} ZOD(hMj)eXp(thCj), (3.20)
tj= tj=

11



where D(hj,;) = hj,41 — hjy;. Since Assumption 6 implies 227:1 hitj > n;/C, the
Jj-th term in the sum in (3.19) is bounded by

2

Cn;? / Dby, explity())| d¢; < Cn:''SS Dby, )?
II [t;=0 t;=0
< Cnj? (3.21)
from Assumption 6. By Assumption 8
W, (v)dv = k(0)* =1 (3.22)
I1d
to complete the proof. O

Assumption 7 is stronger than Assumption 3 when ¢ = 1, but weaker than As-
sumption 3 when ¢ = 2. Assumption 8 could be relaxed but it implies non-negative
estimates of f()), and facilitates a simple proof. It would be possible to show under

slightly stronger conditions that the (Zd n_2> remainder term in (3.10) is exact.

j=1"%
We are content with a bound here as it is sufficient to demonstrate improvement over
Theorem 1, and to show that under Assumption 4 the remainder is dominated by ay,
when ¢ < 2, as is true for k(v) given by the Parzen weights (1.19). The remainder
term could be reduced by allowing the K, ();) to have a higher-order kernel prop-
erty, or to correspond to the kernels of Politis and Romano (1996), but then f(\) > 0
would no longer be guaranteed.

For completeness we record an approximation to the variance of f (M) (cf. Hannan,

1970, p.270).

Theorem 4 Let Assumptions 1-3 and 6-8 hold. Then as n — oo

Vi) = fg R (v)dv B, +0 (ﬁ %) . (3.23)
{fo h(v)2dv} J=1"

12



Since the coefficient of 3, in (3.23) exceeds 1 unless h(v) is constant, Theorem 4

demonstrates the well-known cost of tapering.

4. MONTE CARLO STUDY OF FINITE SAMPLE
PERFORMANCE

Finite sample bias and standard deviation were examined by a Monte Carlo sim-
ulation. Simple moving average (MA) models were simulated for various values of d
on regular lattices, with ny = nsy... = ny (as in Robinson and Vidal Sanz, 2005). For
d = 2,3 we considered the symmetric multilateral MA model

1 1
=g tp D ot D &y
=1 ja=1

(41.32,73)7#(0,0,0)

having spectral density

FO) = 20)"H1 4 poa(A, .., M) Y

where vg(A1, ..., Ag) = H?Zl(l +2cos \j) — 1. For d = 2 we generated data for both
p = 0.05 and 0.1, with n; = ny = 11,15,19 (so n = 121,225,361). For d = 3 we
generated data for both p = 0.015 and 0.03 with ny = ny = 5,7 (so n = 125, 343).
For d = 4 we considered the temporal spatial model
1 1 11
R D DID DD DI DI,
n==1ja=—1j3=-1j4=1
(41,42,43)#(0,0,0)

having spectral density
f<>\> = (27T)_4h(>\17 >\27 >\3a >\4)7

where

h()\l, )\2, )\3, )\4) =1+ p2U3 ()\1, )\2, )\3) + 2p113()\1, )\2, )\3) COS )\4.

13



We generated data for both p = 0.015 and 0.03 with ny = ny = ng = ny = 5,7 (so
n = 625,2401).

We computed f(\) and f()\) at both A = (0,...,0) and (7/2,...,7/2), using the
Parzen weights (1.19) in both cases, and the cosine bell taper (3.4) for f()). For each
combination, two values of m; = ... = my were employed. The Monte Carlo biases
and standard deviations, on the basis of 100 replications, are presented in Tables 1
and 2 respectively.

(Tables 1 and 2 about here)

The Parzen weights are ones for which ¢ = 2, and so tapering is expected to
reduce large sample bias. This is only partially borne out in the samples used in
our simulations. For d = 2, tapering always reduces bias in case A = (0,...,0),
but sometimes produces the opposite effect when A = (7/2,...,7/2). For d = 3
tapering has virtually no effect when A\ = (0, ..., 0), and sometimes reduces, sometimes
increases, bias when A\ = (7/2,...,7/2). For d = 4, f and f are virtually the same.
The larger m; in each pair tends to perform best, though there is little evidence of
bias reduction with increase of n. As expected, bias tends to increase with p, and is
always negative at the modal value A = (0,...,0). So far as standard deviations are
concerned the predicted inflation due to tapering is noticeable; there is also generally
an increase with m;. Standard deviation tends also to increase with p, and to be

larger at A = (0, ...,0) than at A = (7/2,...,7/2).

5. FINAL COMMENTS

1. There may be cancellations in the bias contributions of Theorems 1 and 3. For
example, since k, > 0, when v, > 0 for all v and A = 0 we have «ay,, > 0 and

o, < 0.

14



2. Nonparametric spectral estimation is of considerable importance in inference for
semiparametric models. Deriving asymptotic normality of a (possibly implicitly-
defined) estimate of a vector-valued parameter typically requires establishing
asymptotic normality of a statistic of form n-2 > ten T, Where x; can now be a
column vector. Under a variety of weak dependence conditions we have

n 2>z —4 N(0,27£(0)). (5.1)

teN

The construction of valid rules of inference requires using a consistent estimate of
£(0) with (5.1). Studentizing mean-like statistics by a nonparametric spectrum
estimate was developed by Jowett (1955), Hannan (1957), Brillinger (1979),
and has latterly been heavily employed in the econometric literature, see e.g.
Newey and West (1987), Andrews (1991). Possible estimates are f(0), f(0) with
2424, replaced in (1.3), (3.5) by ), the prime denoting transposition. If
non-negative K, (\;) are used, £(0) and f(0) will be non-negative definite, as
is desirable for the construction of test statistics or interval estimates from these
variance estimates. Their bias components are analogous to those of Theorems
1 and 3, and in connection with our discussion of these note that (1.17), where
q = 2, was stressed by Newey and West (1987), and (1.19), where ¢ = 2, is one
of the possibilities mentioned by Andrews (1991).

3. Sometimes there is interest in spectral estimation for an unobservable sequence,
in particular for the errors in a time series regression model, for example in
the context of efficient semiparametric estimation of such a model (see e.g.
Hannan, 1970, Chapter 7). Tapered and untapered spectral estimates based on
residuals will incur an additional additive contribution to the bias, which in case
of least squares correction for an unknown mean of z; is of order H?zl(mj /n;)
(cf. Anderson, 1971, p.542). Denote this term «s,. It always dominates g,

when d = 1, but not necessarily when d > 1. Consider the case n; = n%,

15



Jj=1,..,d, where 0 < ¢; < ... < ¢, Z;lzl ¢; = 1, and m; = nj}] Then
1y ~ n’qminﬂ'(d’fwf), Qop ~ N7, g, ~ nzg'l=1 2% =1 Then ay, dominates
a1n if ¢y < qming(¢;1;), and dominates as, if ¢, < 1 — 0, ¢;0;. If all m;
increase at the same rate, i.e. ¢; =1 /d, this requires respectively min; Y >1 /q
and Z;i:l ¥; < d —1; a necessary condition for both inequalities to hold is
d>q/(q—1), eg. d> 2 for ¢ =2. For the tapered estimate f()\), on the

other hand, a necessary condition for the O (Z?Zl nj_2> edge effect term to

dominate both the "leading" bias term in Theorem 2 and an O (H?Zl(mj / nj))

mean-correction term is d > 2¢/(q — 2), under the same circumstances.
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Table 1
Monte Carlo bias of f(0) =: f(0,...,0), f(0) =: f(0,...,0), f(x/2) = f(n/2,...,7/2),
f(m/2) =: f(n/2,...,m/2), using Parzen weights and cosine bell taper for various

values of d, p, n;, m;.

d=2:
n; | m; p = 0.05 p=0.1
f0) ) | f(x/2) f@/2)| fO)  JO) | f(x/2) f(x/2)
11| 4 |-.00127 -.0112 | .0004  .0001 |-.0298 -.0267 | .0014  .0011
11 7 | -.0081 -.0045| .0002  .0007 |-.0186 -.0122 | .0007  .0011
15 5 | -.0100 -.0066 | .0001  .0019 |-.0231 -.0175| .0010  .0028
15 8 | -.0070 -.0021 | -.0001  .0021 | -.0155 -.0071 | .0002  .0026
19| 6 | -.0034 -.0054 | -.0003 -.0001 |-.0191 -.0139 | .0003  .0006
191 9 | -.0071 -.0030 | -.0007 .0000 |-.0151 -.0078 | -.0004  .0005
d=3:
n; | m; p=0.015 p=0.03
f0)  JO) | f(x/2) f(x/2)| JO) f(O) | f(x/2) [(x/2)
5 | 2 |-0034 -.0034 .0001  .0002 |-.0080 -.0080 | .0002  .0003
5 | 3 |-0028 -.0029 | -.0036 .0003 |-.0068 -.0069 | -.0085 .0003
71 3 |-.0029 -.0029  -.0001 .0000 |-.0008 -.0068 | .0000  .0000
7|1 4 |-0024 -.0024  -.0039 -.0001 |-.0057 -.0017 | -.0088  .0000
d=4
n; | mj =0.015 p=0.03
f0)  JO) | f(x/2) f(x/2)| JO) f(O) | f(x/2) [(x/2)
5 | 2 |-.0006 -.0006  .0000  .0000 |-.0013 -.0013 | .0000  .0000
5 | 3 |-.0005 -.0005| .0010  .0000 |-.0012 -.0012 | .0000  .0000
71 3 |-0005 -.0005| .0000  .0000 |-.0012 -.0012 | .0000  .0000
71 4 |-0004 -.0004 | .0000 .0000 |-.0010 -.0010 | .0000  .0000

18



Table 2
Monte Carlo standard deviation of f(0) =: f(0, ...,0), f(0) =: f(0, ..., 0),
f(x/2) = f(x)2,....,7)2), f(x)2) =: f(x/2,...,7/2), using Parzen weights and

cosine bell taper for various values of d, p, n;, m;.

d=2:
n; | m; p=0.05 p=0.1
F0) ) | f(@/2) fx/2)| f0)  f(O) | f(x/2) [(m/2)
11| 4 |.0011 .0209 | .0045  .0082 | .0168 .0321 | .0049  .0090
11| 7 |.0141 .0360 | .0069  .0125 | .0302 .0569 | .0071  .0130
15 5 |.0109 .0241 | .0045  .0109 | .0171 .0378 | .0048  .0113
15| 8 |.0176 .0380 | .0067  .0167 | .0283 .0609 | .0068  .0167
191 6 |.0095 .0207 | .0040  .0082 |.0149 .0329 | .0041  .0084
191 9 |.0140 .0296 | .0062  .0120 | .0224 .0477 | .0062  .0119
d=3:
n; | m; p=0.015 p=0.03
f0)  fO) | f(x/2) f(x/2)| JO) f(0) | f(x/2) flm/2)
5 | 2 |.0007 .0021| .0012  .0016 | .0008 .0023 | .0006  .0017
5| 3 [.0012 .0033 | .0006  .0017 | .0016 .0041 | .0008  .0017
71 3 [.0009 .0022| .0013  .0013 | .0012 .0029 | .0005  .0013
71 4 |.0013 .0031| .0005  .0018 | .0019 .0043 | .0007  .0018
d=4
n; | mj p=0.015 p=0.03
f0)  f(0) | f(x/2) f(x/2) | J(O)  f(0) | f(x/2) f(x/2)
5 | 2 |.0000 .0002| .0000  .0002 | .0000 .0002 | .0000  .0002
5 | 3 [.0001 .0003| .0001  .0002 | .0001 .0004 | .0001  .0002
7 | 3 ].0001 .0002| .0000  .0001 |.0001 .0003 | .0000  .0001
7 | 4 |.0001 .0004 | .0001  .0002 |.0001 .0005 | .0001  .0002
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