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Abstract 
 
Smoothed nonparametric kernel spectral density estimates are 
considered for stationary data observed on a d-dimensional lattice. 
The implications for edge effect bias of the choice of kernel and 
bandwidth are considered. Under some circumstances the bias can 
be dominated by the edge effect. We show that this problem can be 
mitigated by tapering. Some extensions and related issues are 
discussed. 
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1. INTRODUCTION

Let fxtg be a weakly dependent, zero-mean covariance stationary process, on a d-

dimensional lattice Zd, for d � 2, such that t represents the multiple index (t1; :::; td).

De�ning the lag-u autocovariance 
u = cov(xt; xt+u), we assume that xt has a spectral

density f(�), for � = (�1; :::; �d) 2 �d, � = (��; �]; this is given by

f(�) = (2�)�d
P
u2Zd


ue
�iu:�; (1.1)

where u:� = u1�1 + :::+ ud�d, and the expansion is well-de�ned under the condition

P
u2Zd

j
uj <1: (1.2)

We are concerned with smoothed nonparametric estimation of f(�) given observa-

tions on t on the rectangular grid N = ft : tj 2 [1; nj]; j = 1; :::; dg. A classical class

of estimates is of weighted sample autocovariance type, depending on user choice of

kernel function and bandwidth number. De�ne the lag-u sample autocovariance by

cu =
1

n

P
t(u)

0xtxt+u; u 2 N�; (1.3)

where
P0

t(u) is a sum over tj; tj + uj 2 [1; nj], j = 1; :::; d, and N� =

fu : 1� nj � uj � nj � 1; j = 1; :::; dg. A weighted autocovariance estimate of f(�)

is given by

~f(�) = (2�)�d
P
u2N�

wn(u)cue
�iu:�; (1.4)

wherewn(u) is a suitable n-dependent weight function and n = �dj=1nj; "n-dependent"

is a convenient short-hand for "dependent on nj; j = 1; :::; d", that is justi�ed because

in asymptotic theory we regard each nj as increasing with the overall sample size n,

so we can write nj = nj(n). In particular we consider wn(u) of form

wn(u) =
dQ
j=1

k(uj=mj); (1.5)
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where k(v) is an even, bounded, real-valued function such that

lim
v!0

�
1� k(v)

jvjq
�
= kq; (1.6)

for some q > 0, 0 < kq <1, and the mj = mj(n) are non-negative integers such that

mj !1 as n!1, j = 1; :::; d.

Condition (1.6) controls the bias, ensuring in particular that wn(u) ! 1 for all

�xed u as n ! 1. However, cu is a biased estimate of 
u unless u = (0; :::; 0), and

for d � 2 its bias is liable to be signi�cant. We may write

Ecu = 
u f1 + �n(u)g ; (1.7)

where

�n(u) =
dQ
j=1

�
1� jujj

nj

�
� 1: (1.8)

For �xed u,

�n(u) =

 
�

dP
j=1

jujj
nj

!
(1 + o(1)) (1.9)

as n!1. For u such that ����� dPj=1 ujnj
����� � c

dP
j=1

n�1j ; (1.10)

where c > 0, e.g. for uj > 0, all j; we can apply the inequality between arithmetic

and geometric means,
dP
j=1

n�1j � dn�1=d; (1.11)

to deduce that the bias in cu for 
u is of exact order n
�1=d.

This is the so-called "edge e¤ect". Guyon (1982) found that the usual parametric

Whittle estimates for lattice data have bias due to edge e¤ect of exact order n�1=d.

The implication is that when d = 2 one has to "incorrectly" center the Whittle

estimates before norming by n
1
2 and establishing asymptotic normality. For d � 3

matters are even worse, the Whittle estimates no longer being n
1
2 -consistent.
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Here we focus principally on the implications of the edge e¤ect for the bias of

smoothed nonparametric estimates of f(�). Intuitively, one expects the problem to

be less serious because unlike in parametric estimation one would never aspire to a

bias of order n�1. This conjecture is con�rmed in case of ~f(�), but this estimate does

give non-negligible weight to u satisfying (1.10). We describe circumstances in which

the edge e¤ect does and does not dominate its bias.

A simple way of avoiding edge e¤ect bias is to replace cu by

�cu =

(
dQ
j=1

�
1� jujj

nj

�)�1
cu; (1.12)

as advocated by Guyon (1982) in parametric Whittle estimation. There is now no

bias, E�cu = 
u. However, the �cu lack a non-negative de�niteness property of the cu

that contributes to guaranteeing non-negative estimates of the non-negative function

f(�). De�ning the periodogram

I(�) = (2�)�dn�1
����P
t2N

xte
it:�

����2 ; (1.13)

we can write

~f(�) =

Z
�d
Wn(�� �)I(�)d�; (1.14)

where

Wn(�) =
dQ
j=1

Kmj
(�j); (1.15)

for

Kmj
(�j) = (2�)

�1 P
uj2Z

k

�
uj
mj

�
e�i�juj ; j = 1; :::; d: (1.16)

Since I(�) � 0 for all �, choosing non-negative Kmj
(�j) for all �j 2 �, j = 1; :::; d,

thus ensures that ~f(�) � 0 for all �. The time series spectral analysis literature

provides such choices, for example the modi�ed Bartlett weights

k(v) = (1� jvj)1(jvj � 1) (1.17)

4



lead to

Kmj
(�j) =

sin2 1
2
�jmj

2�mj sin
2 1
2
�j
� 0; (1.18)

as desired. An alternative choice is the Parzen weights.

k(v) = 1� 6v2 + 6 jvj3 ; jvj � 1

2
;

= 2(1� jvj)3; 1

2
< jvj � 1; (1.19)

= 0; jvj > 1;

which again produces non-negative Kmj
(�j) (see Anderson, 1971, p.518). In general,

if q > 2 in (1.6) the Kmj
(�j) need not be non-negative; this is the case if higher-

order kernels are used, or the "�at top" kernels of Politis and Romano (1996) where

e¤ectively q = 1. On the other hand even if the Kmj
(�j) are non-negative, if cu is

replaced in (1.4) by the unbiased �cu, a non-negative estimate of f(�) is not guaranteed.

The following section discusses ~f(�), principally focussing on bias but for complete-

ness also recording a standard asymptotic approximation to the variance of ~f(�); as

usual, on combining these results consistency can be deduced, and furthermore an

approximation for the mean squared error of ~f(�) and an optimal choice of band-

width. In Section 3 we introduce and analyze a tapered estimate, f̂(�), of f(�), also

employing a kernel and bandwidth similar to those in ~f(�). Dahlhaus and Künsch

(1987) noted that Guyon�s (1982) use of �cu in place of cu loses the minimum-distance

character of Whittle estimation. They pointed out that employing instead a peri-

odogram based on tapered xt avoids this draw-back, and can reduce edge e¤ect bias

su¢ ciently that, for d = 2; 3; 4, the usual n
1
2 -consistency property of Whittle estima-

tion is maintained. Correspondingly, our f̂(�) is guaranteed non-negative, and we

�nd that it reduces the bias due to edge e¤ect. Soulier (1996) considered the e¤ect

of tapering on long memory random �elds.

Section 4 consists of a Monte Carlo study of �nite sample behaviour, and Section

5 discusses related issues and extensions.
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2. UNTAPERED SPECTRUM ESTIMATES

We introduce the following assumptions.

Assumption 1: k(v) is a real, even function such that jk(v)j � 1, (1.6) holds andZ 1

�1
jk(v)j dv <1: (2.1)

Assumption 2: As n!1

mj !1; nj !1; j = 1; :::; d: (2.2)

Assumption 3: xt is a covariance stationary process and

P
u2Zd

 
dP
j=1

jujjmax(q;1)
!
j
uj <1; (2.3)

where q satis�es (1.6).

Theorem 1 Let Assumptions 1-3 hold. Then as n!1,

E ~f(�) = f(�) + �1n + �2n + o

 
dP
j=1

�
m�q
j + n�1j

�!
; (2.4)

where

�1n = (2�)�dkq
dP
j=1

m�q
j

P
u2Zd

jujjq 
ue�iu:�; (2.5)

�2n = �(2�)�d
dP
j=1

n�1j
P
u2Zd

jujj 
ue�iu:�: (2.6)

Proof : Using (1.7),

E ~f(�) = (2�)�d
P
u2N�

wn(u)E~cue
�iu:�

= (2�)�d
P
u2N�

wn(u)
u(1 + �n(u))e
�iu:�: (2.7)
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The di¤erence between this and f(�) is

(2�)�d
P
u2N�

fwn(u)� 1g 
ue�iu:� (2.8)

+(2�)�d
P
u2N�

wn(u)
u�n(u)e
�iu:� (2.9)

�(2�)�d
P

u2Zd�N�

ue

�iu:�: (2.10)

Now

wn(u)� 1 =
dP
j=1

�
k

�
uj
mj

�
� 1
�
+ vn; (2.11)

where vn is linear in products of two or more of the k(uj=mj)� 1. For any subset L

of f1; :::; dg;

P
u2N

Q
j2L

�
k

�
uj
mj

�
� 1
�

ue

�iu:� =

 Q
j2L

mj

!�q P
u2N

(Q
j2L

k(uj=mj)� 1
juj=mjjq

jujjq
)

ue

�iu:�;

(2.12)

proceeding as Hannan (1970, p.284). It follows from Assumption 2 that (2.8) is

�1n(1 + o(1)). Next

�n(u) = �
dP
j=1

jujj
nj

+ sn; (2.13)

where sn is linear in products of two or more jujj =nj. We have

P
u2N

wn(u)
u
Q
j2L

jujj
nj

e�iu:� �
 Q
j2L

nj

!�1 P
u2Zd

 Q
j2L
jujj
!

ue

�iu:�: (2.14)

Thus (2.9) is �2n(1 + o(1)). Finally, (2.10) is

O

 
(2�)�d

dP
j=1

n�1j
P 0 jujj j
uj

!
= o

 
dP
j=1

n�1j

!
; (2.15)

where
P0 is the sum over u such that jujj � nj and uk 2 Z, k 6= j. �

Under Assumption 1, �1n; �2n ! 0 as n ! 1, so it follows from Theorem 1 that

~f(�) is asymptotically unbiased. Our interest is in the relative magnitude of �1n; �2n;
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�1n corresponds to the usual bias term stressed in the time series literature, while �2n

might be called the "edge e¤ect term". Clearly �2n is dominated by �1n if and only

if
dP
j=1

n�1j

dP
j=1

m�q
j

! 0; as n!1: (2.16)

In the time series case d = 1, (2.16) reduces to a condition standardly imposed in

studies of bias (see e.g. Grenander and Rosenblatt, 1957, Chapter 4; Parzen, 1957;

Anderson, 1971, Chapter 9). However, in practice the statistician is faced with �xed

nj, selects particular mj, and never knows whether �1n or �2n is numerically the

major source of bias. For d > 1, one should perhaps be less content with simply

assuming (2.16) and thereby automatically recognizing �1n as dominant.

Bias is often studied with a view to establishing consistency, and a choice of band-

width that minimizes mean squared error (MSE). The latter involves the variance of

~f(�). We introduce two further assumptions.

Assumption 4: xt is fourth-order stationary, (1.2) holds, and alsoP
s;t;u2Zd

j�stuj <1;

where �stu is the fourth cumulant of x0; xs; xt; xu.

Assumption 5: As n!1

mj

nj
! 0; j = 1; :::; d:

The following theorem routinely extends classical results for d = 1 (see e.g. Ander-

son (1971, p.520), Grenander and Rosenblatt (1957, p.134), Hannan (1970, p.280),

Parzen (1957); see also Brillinger�s (1970) and Zhurbenko�s (1986) discussion of spec-

tral estimates for random �elds). Thus the proof is omitted.
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Theorem 2 Let Assumptions 1, 2, 4 and 5 hold. Then as n!1

V f̂(�) = �n + o

 
dQ
j=1

mj

nj

!
;

where

�n =

(
dQ
j=1

mj

nj

)R
Rd k

2(u)du f(�)2 f1 + 1(� = 0;mod�)g ;

where 1(:) is the indicator function.

Thus, under Assumptions 1-5, ~f(�) is mean-square consistent for f(�), and more-

over

MSE ~f(�) � (�1n + �2n)
2 + �n; as n!1:

Under (2.16), MSE ~f(�) � �21n+�n as n!1, and as indicated by Zhurbenko (1986,

p.164) this is minimized by mj � ajn
1=(d+2q), j = 1; :::; q, where the aj are certain

positive constants. With this choice of themj, �21n+�n has rate n
�2q=(d+2q). However,

if the nj are such that (2.16) does not hold for these mj, then the contribution of

�22n + 2�1n�2n to MSE ~f(�) (of order
�
�dj=1n

�1
j

�2
) will match or dominate �21n + �n.

Notice that Assumption 5 implies (2.16) when q � 1 (as for the Bartlett weights

(1.17)), but not when q > 1 (as for the Parzen weights (1.19)).

3. TAPERED SPECTRUM ESTIMATES

We introduce a taper function h(v), satisfying

Assumption 6: h(v) is Lipschitz-continuous on [0; 1] and satis�es

h(0) = 0; (3.1)

h(1� v) = h(v); 0 � v <
1

2
; (3.2)Z 1

0

h2(v)dv > 0: (3.3)
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An example of a taper satisfying Assumption 6 is the cosine bell

h(v) =
1

2
(1� cos(2�v)): (3.4)

De�ne for integer s

hj;s = h

�
s� 1

2

nj

�
(3.5)

and thence the tapered sample autocovariances

ĉu =
1

Hn

P
t(u)

0

 
dQ
j=1

hj;tjhj;tj+uj

!
xtxt+u; (3.6)

where

Hn =
dQ
j=1

njP
tj=1

h2j;tj : (3.7)

Consider the estimate

f̂(�) = (2�)�d
P
u2N�

wn(u)ĉue
�iu:�: (3.8)

We introduce:

Assumption 7: f(�) is twice boundedly di¤erentiable on �d.

Assumption 8: For all su¢ ciently large n,

Kmj
(�j) � 0; j = 1; :::; d: (3.9)

Theorem 3 Let Assumptions 1-3 and 6-8 hold. Then as n!1

Ef̂(�) = f(�) + �1n(1 + o(1)) +O

 
dP
j=1

n�2j

!
: (3.10)

Proof : As in (1.14) we may write

f̂(�) =

Z
�d
Wn(�� �)Ih(�)d�; (3.11)

10



where

Ih(�) = (2�)
�dH�1

n

�����Pt2N
 

njQ
j=1

hj;tj

!
xte

it:�

�����
2

: (3.12)

We have

EIh(�) =

Z
�d
f(�)

dQ
j=1

gj(�j � �j)d�j (3.13)

for

gj(�j) =

�
2�

njP
t=1

h2j;tj

��1 ����� njPj=1hj;tjeitj�j
�����
2

: (3.14)

Then we may write

Ef̂(�)� f(�) = a+ b; (3.15)

where

a =

Z
�d
Wn(�� �)

Z
�d

dQ
j=1

gj(�j) ff(� � �)� f(�)g d�d�; (3.16)

b =

Z
�d
Wn(�� �) ff(�)� f(�)g d�: (3.17)

Now b = (2.8)+(2.10), and is thus �1n(1+o(1)). By Taylor�s theorem and Assumption

7, �����f(� � �)� f(�) +
dP
j=1

�j
@f(�)

@�j

����� � C k�k2 ; (3.18)

where C denotes a generic arbitrarily large positive constant. Since the gj(�j) are

even functions, the triangle inequality, Assumption 8 and (3.18) give

jaj � C

Z
�d
Wn(�� �)

dP
j=1

Z
�d



�j

2 gj(�j)d�j: (3.19)

As in Dahlhaus and Künsch (1987), summation by parts and taking h(�) = 0, � =2

[0; 1], give

njP
tj=1

hj;tje
itj�j =

�
exp(�i�j)� 1

	�1 njP
tj=0

D(hj;tj) exp(itj�j); (3.20)

11



where D(hj;tj) = hj;tj+1 � hj;tj . Since Assumption 6 implies
Pnj

tj=1
h2j;tj � nj=C, the

j-th term in the sum in (3.19) is bounded by

Cn�1j

Z
�

����� njPtj=0D(hj;tj) exp(itj�j)
�����
2

d�j � Cn�1j

njP
tj=0

D(hj;tj)
2

� Cn�2j ; (3.21)

from Assumption 6. By Assumption 8Z
�d
Wn(�)d� = k(0)d = 1 (3.22)

to complete the proof. �

Assumption 7 is stronger than Assumption 3 when q = 1, but weaker than As-

sumption 3 when q = 2. Assumption 8 could be relaxed but it implies non-negative

estimates of f(�), and facilitates a simple proof. It would be possible to show under

slightly stronger conditions that the
�Pd

j=1 n
�2
j

�
remainder term in (3.10) is exact.

We are content with a bound here as it is su¢ cient to demonstrate improvement over

Theorem 1, and to show that under Assumption 4 the remainder is dominated by �1n

when q � 2, as is true for k(v) given by the Parzen weights (1.19). The remainder

term could be reduced by allowing the Kmj
(�j) to have a higher-order kernel prop-

erty, or to correspond to the kernels of Politis and Romano (1996), but then f̂(�) � 0

would no longer be guaranteed.

For completeness we record an approximation to the variance of f̂(�) (cf. Hannan,

1970, p.270).

Theorem 4 Let Assumptions 1-3 and 6-8 hold. Then as n!1

V f̂(�) =

R 1
0
h4(v)dvnR 1

0
h(v)2dv

o2�n + o

 
dQ
j=1

mj

nj

!
: (3.23)
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Since the coe¢ cient of �n in (3.23) exceeds 1 unless h(v) is constant, Theorem 4

demonstrates the well-known cost of tapering.

4. MONTE CARLO STUDY OF FINITE SAMPLE
PERFORMANCE

Finite sample bias and standard deviation were examined by a Monte Carlo sim-

ulation. Simple moving average (MA) models were simulated for various values of d

on regular lattices, with n1 = n2::: = nd (as in Robinson and Vidal Sanz, 2005). For

d = 2; 3 we considered the symmetric multilateral MA model

xt = "t + �
1P

j1=�1
� � �

1P
jd=�1

(j1;j2;j3) 6=(0;0;0)

"t�j;

having spectral density

f(�) = (2�)�d f1 + �vd(�1; :::; �d)g2 ;

where vd(�1; :::; �d) =
Qd

j=1(1 + 2 cos�j) � 1. For d = 2 we generated data for both

� = 0:05 and 0:1, with n1 = n2 = 11; 15; 19 (so n = 121; 225; 361). For d = 3 we

generated data for both � = 0:015 and 0:03 with n1 = n2 = 5; 7 (so n = 125; 343).

For d = 4 we considered the temporal spatial model

xt = "t + �
1P

j1=�1

1P
j2=�1

1P
j3=�1

1P
j4=1

(j1;j2;j3) 6=(0;0;0)

"t�j;

having spectral density

f(�) = (2�)�4h(�1; �2; �3; �4);

where

h(�1; �2; �3; �4) = 1 + �
2v3 (�1; �2; �3) + 2�v3(�1; �2; �3) cos�4:

13



We generated data for both � = 0:015 and 0:03 with n1 = n2 = n3 = n4 = 5; 7 (so

n = 625; 2401).

We computed ~f(�) and f̂(�) at both � = (0; :::; 0) and (�=2; :::; �=2), using the

Parzen weights (1.19) in both cases, and the cosine bell taper (3.4) for f̂(�). For each

combination, two values of m1 = ::: = md were employed. The Monte Carlo biases

and standard deviations, on the basis of 100 replications, are presented in Tables 1

and 2 respectively.

(Tables 1 and 2 about here)

The Parzen weights are ones for which q = 2, and so tapering is expected to

reduce large sample bias. This is only partially borne out in the samples used in

our simulations. For d = 2, tapering always reduces bias in case � = (0; :::; 0),

but sometimes produces the opposite e¤ect when � = (�=2; :::; �=2). For d = 3

tapering has virtually no e¤ect when � = (0; :::; 0), and sometimes reduces, sometimes

increases, bias when � = (�=2; :::; �=2). For d = 4, ~f and f̂ are virtually the same.

The larger mj in each pair tends to perform best, though there is little evidence of

bias reduction with increase of n. As expected, bias tends to increase with �, and is

always negative at the modal value � = (0; :::; 0). So far as standard deviations are

concerned the predicted in�ation due to tapering is noticeable; there is also generally

an increase with mj. Standard deviation tends also to increase with �, and to be

larger at � = (0; :::; 0) than at � = (�=2; :::; �=2).

5. FINAL COMMENTS

1. There may be cancellations in the bias contributions of Theorems 1 and 3. For

example, since kq > 0, when 
u � 0 for all u and � = 0 we have �1n > 0 and

�2n < 0.
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2. Nonparametric spectral estimation is of considerable importance in inference for

semiparametric models. Deriving asymptotic normality of a (possibly implicitly-

de�ned) estimate of a vector-valued parameter typically requires establishing

asymptotic normality of a statistic of form n�
1
2

P
t2N xt, where xt can now be a

column vector. Under a variety of weak dependence conditions we have

n�2
P
t2N

xt !d N (0; 2�f(0)): (5.1)

The construction of valid rules of inference requires using a consistent estimate of

f(0) with (5.1). Studentizing mean-like statistics by a nonparametric spectrum

estimate was developed by Jowett (1955), Hannan (1957), Brillinger (1979),

and has latterly been heavily employed in the econometric literature, see e.g.

Newey and West (1987), Andrews (1991). Possible estimates are ~f(0); f̂(0) with

xtxt+u replaced in (1.3), (3.5) by xtx0t+u, the prime denoting transposition. If

non-negative Kmj
(�j) are used, ~f(0) and f̂(0) will be non-negative de�nite, as

is desirable for the construction of test statistics or interval estimates from these

variance estimates. Their bias components are analogous to those of Theorems

1 and 3, and in connection with our discussion of these note that (1.17), where

q = 2, was stressed by Newey and West (1987), and (1.19), where q = 2, is one

of the possibilities mentioned by Andrews (1991).

3. Sometimes there is interest in spectral estimation for an unobservable sequence,

in particular for the errors in a time series regression model, for example in

the context of e¢ cient semiparametric estimation of such a model (see e.g.

Hannan, 1970, Chapter 7). Tapered and untapered spectral estimates based on

residuals will incur an additional additive contribution to the bias, which in case

of least squares correction for an unknown mean of xt is of order �dj=1(mj=nj)

(cf. Anderson, 1971, p.542). Denote this term �3n. It always dominates �2n

when d = 1, but not necessarily when d > 1. Consider the case nj = n�j ,
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j = 1; :::; d, where 0 < �j � : : : � �d,
Pd

j=1 �j = 1; and mj = n
 j
j . Then

�1n � n�qminj(�j j), �2n � n��1, �3n � n
Pd
j=1 �j j�1. Then �2n dominates

�1n if �1 < qminj(�j j), and dominates �3n if �1 < 1 �
Pd

j=1 �j j. If all nj

increase at the same rate, i.e. �j � 1=d; this requires respectively minj  j > 1=q

and
Pd

j=1  j < d � 1; a necessary condition for both inequalities to hold is

d > q=(q � 1), e.g. d > 2 for q = 2. For the tapered estimate f̂(�), on the

other hand, a necessary condition for the O
�Pd

j=1 n
�2
j

�
edge e¤ect term to

dominate both the "leading" bias term in Theorem 2 and an O
�
�dj=1(mj=nj)

�
mean-correction term is d > 2q=(q � 2), under the same circumstances.
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Table 1

Monte Carlo bias of ~f(0) =: f̂(0; :::; 0), f̂(0) =: f̂(0; :::; 0), ~f(�=2) =: ~f(�=2; :::; �=2),

f̂(�=2) =: f̂(�=2; :::; �=2), using Parzen weights and cosine bell taper for various

values of d, �, nj, mj.

d = 2 :

nj mj � = 0:05 � = 0:1

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

11 4 -.00127 -.0112 .0004 .0001 -.0298 -.0267 .0014 .0011

11 7 -.0081 -.0045 .0002 .0007 -.0186 -.0122 .0007 .0011

15 5 -.0100 -.0066 .0001 .0019 -.0231 -.0175 .0010 .0028

15 8 -.0070 -.0021 -.0001 .0021 -.0155 -.0071 .0002 .0026

19 6 -.0034 -.0054 -.0003 -.0001 -.0191 -.0139 .0003 .0006

19 9 -.0071 -.0030 -.0007 .0000 -.0151 -.0078 -.0004 .0005
d = 3 :

nj mj � = 0:015 � = 0:03

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

5 2 -.0034 -.0034 .0001 .0002 -.0080 -.0080 .0002 .0003

5 3 -.0028 -.0029 -.0036 .0003 -.0068 -.0069 -.0085 .0003

7 3 -.0029 -.0029 -.0001 .0000 -.0008 -.0068 .0000 .0000

7 4 -.0024 -.0024 -.0039 -.0001 -.0057 -.0017 -.0088 .0000
d = 4 :

nj mj � = 0:015 � = 0:03

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

5 2 -.0006 -.0006 .0000 .0000 -.0013 -.0013 .0000 .0000

5 3 -.0005 -.0005 .0010 .0000 -.0012 -.0012 .0000 .0000

7 3 -.0005 -.0005 .0000 .0000 -.0012 -.0012 .0000 .0000

7 4 -.0004 -.0004 .0000 .0000 -.0010 -.0010 .0000 .0000
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Table 2

Monte Carlo standard deviation of ~f(0) =: f̂(0; :::; 0), f̂(0) =: f̂(0; :::; 0),

~f(�=2) =: ~f(�=2; :::; �=2), f̂(�=2) =: f̂(�=2; :::; �=2), using Parzen weights and

cosine bell taper for various values of d, �, nj, mj.

d = 2 :

nj mj � = 0:05 � = 0:1

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

11 4 .0011 .0209 .0045 .0082 .0168 .0321 .0049 .0090

11 7 .0141 .0360 .0069 .0125 .0302 .0569 .0071 .0130

15 5 .0109 .0241 .0045 .0109 .0171 .0378 .0048 .0113

15 8 .0176 .0380 .0067 .0167 .0283 .0609 .0068 .0167

19 6 .0095 .0207 .0040 .0082 .0149 .0329 .0041 .0084

19 9 .0140 .0296 .0062 .0120 .0224 .0477 .0062 .0119
d = 3 :

nj mj � = 0:015 � = 0:03

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

5 2 .0007 .0021 .0012 .0016 .0008 .0023 .0006 .0017

5 3 .0012 .0033 .0006 .0017 .0016 .0041 .0008 .0017

7 3 .0009 .0022 .0013 .0013 .0012 .0029 .0005 .0013

7 4 .0013 .0031 .0005 .0018 .0019 .0043 .0007 .0018
d = 4 :

nj mj � = 0:015 � = 0:03

~f(0) f̂(0) ~f(�=2) f̂(�=2) ~f(0) f̂(0) ~f(�=2) f̂(�=2)

5 2 .0000 .0002 .0000 .0002 .0000 .0002 .0000 .0002

5 3 .0001 .0003 .0001 .0002 .0001 .0004 .0001 .0002

7 3 .0001 .0002 .0000 .0001 .0001 .0003 .0000 .0001

7 4 .0001 .0004 .0001 .0002 .0001 .0005 .0001 .0002
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