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Abstract

A semiparametric bivariate fractionally cointegrated system is considered, integration
orders possibly being unknown and 7/ (0) unobservable inputs having nonparametric
spectral density. Two kinds of estimate of the cointegrating parameter v are considered,
one involving inverse spectral weighting and the other, unweighted statistics with a spectral
estimate at frequency zero. We establish under quite general conditions the asymptotic
distributional properties of the estimates of v, both in case of “strong cointegration” (when
the difference between integration orders of observables and cointegrating errors exceeds
1/2) and in case of “weak cointegration” (when that difference is less than 1/2), which
includes the case of (asymptotically) stationary observables. Across both cases, the same
Wald test statistic has the same standard null ¥ limit distribution, irrespective of whether
integration orders are known or estimated. The regularity conditions include unprimitive
ones on the integration orders and spectral density estimates, but we check these under
more primitive conditions on particular estimates. Finite-sample properties are examined in
a Monte Carlo study.
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1. Introduction

Semiparametric modelling has become popular in cointegration analysis of I(1) time series with I (0)
cointegrating errors. In the simplest parametric setting, observables follow a random walk and coin-
tegrating errors are serially uncorrelated. Autoregressive (AR) extensions have been developed (e.g.
Johansen, 1991), but optimal inference on the unknown cointegrating relations loses validity if the AR
order is under-specified, or if the process lies outside the AR class. Phillips and Hansen (1990), Phillips
(1991a) and others showed that one can do as well allowing the I (0) inputs to have nonparametric
autocorrelation, under suitable conditions on the bandwidth employed in the smoothed nonparametric
spectrum estimate.

Another source of possible misspecification is the basic I (1) /I (0) framework itself. Recently, opti-
mal inference has developed in a fractional setting (see e.g. Jeganathan, 1999, Robinson and Hualde,
2003). Here, integration orders were allowed to be unknown, which is a non-trivial generalization of
the I (1) /I(0) assumption, but theory was developed only in a fully parametric setting, incurring the
familiar concern about misspecification. On the other hand, Dolado and Marmol (1996), Kim and
Phillips (2000) have allowed for nonparametric autocorrelation in I (0) inputs. However these authors
have either assumed knowledge of integration orders, or proposed sub-optimal estimates.

The present paper develops optimal inference on cointegrating relations in a semiparametric frac-
tional setting, with unknown integration orders. To describe our model, we introduce the following
definitions corresponding to ones in Robinson and Hualde (2003) (hereafter RH). For any scalar or
vector sequence v, t = 0, %1, ..., we denote

o = v 1(t > 0), (1.1)

where 1(+) is the indicator function. Defining the difference operator A = 1 — L, where L is the lag
operator, the fractional difference operator is given formally, for any real a, @ # —1,—2, .., by

A= S (@), aj(0) =~ T (12)

j=o D(a)T(j + 1)

with T denoting the gamma function. With the prime denoting transposition, u; = (w1, ug)’ is a
bivariate covariance stationary unobservable process with zero mean and nonparametric spectral density
matrix f(\), given by

Blus) = [~ e an (1.3)

—T

that is at least nonsingular and continuous at all frequencies. For real-valued v, 3, § satisfying

£ 0, (1.4)
> B>0, (1.5)

where at least v is unknown, a cointegrating relation between the scalar observable sequences xy, y; is
given by
Yy = vxp+ Aﬁﬂsuﬁ, (1.6)
= AT%uY, (1.7)



for t =0,+1,....

When g = § = 1, this is just the usual bivariate cointegrated I (1) /I (0) system. However to
cope with fractional systems when § falls in the nonstationary region § > 1/2, the truncations in
(1.6), (1.7) ensure that 2y = y, = 0, for all ¢ < 0. Under (1.6), (1.7), z; and y, are said to have
integration order § and are called I (§) processes, while the cointegrating error A” ﬂsuﬁ has integration
order § — 8 < 0 and is called an I (§ — 8) process. This version of fractional integration (“Type II”
process) and cointegration, and terminology, accords with that in RH. Alternative ones (based on “Type
I” fractional processes), for which the procedures developed below nevertheless apply, are in Dolado
and Marmol (1996), Jeganathan (1999), Kim and Phillips (2000). None of these references covers §
within the stationary region, § € (0,1/2), which is permitted by our (1.5); we call this “stationary
cointegration”. A larger subset of (1.5) (where 6 > 1/2 is possible), consists of 8 € (0,1/2), which
we call “weak cointegration”, because [ is the gap between the integration order of observables and
cointegrating error. The case § > 1/2, which includes the usual I (1)/I(0) one, is called “strong
cointegration”. Stationary cointegration was discussed by Robinson (1994a) and “weak cointegration”
by Hualde and Robinson (2001). The main contribution of the present paper is to not only extend
the method of estimating v in RH (under 8 > 1/2) to allow a nonparametric f, but to simultaneously
cover also 8 < 1/2, including § < 1/2, unlike in any previous paper. Asymptotic theory for point
estimation differs significantly across these cases, but we find that the same rules of inference prevail
throughout, with a Wald statistic having a null limit y? distribution. However, while the estimates
have optimal properties when § > 1/2, and indicate no loss in the lack of parametric assumptions on
f, or of knowledge of 3, §, they are not when § < 1/2, indeed having slower convergence rate than is
optimal here.

We find it convenient to treat our case of nonparametric autocorrelation in the frequency domain.
This prompts consideration of two alternative methods of estimating v. One involves a ratio of weighted
periodogram averages either across all frequencies in the Nyquist band, or only over those within a
shrinking neighbourhood of zero frequency. The weighting is inverse with respect to smoothed esti-
mates of f. Because of the concentration of spectral mass around zero frequency, where f changes
little, computationally simpler estimates, with the same asymptotic properties, replace the weights by
multiplicative factors based on an estimate of f (0). Both types of estimate are described in the follow-
ing section. Regularity conditions and asymptotic properties are presented in Section 3. The conditions
include some unprimitive ones on the estimates of 3, § and f, and these are checked in Section 4 for
particular estimates; this is an especially delicate issue in our semiparametric setting. Section 5 contains
a Monte Carlo study of finite-sample behaviour. All proofs are relegated to Appendices.

2. Estimation of v

Using again notation from RH, we define for real ¢, d

z(c,d) = (ye(e), z4(d))’ (2.1)
where for any sequence {w;}, and real ¢, w;(c) = A°w}. Thus (1.6), (1.7) can be written as
2(1.8) = Gl + (2:2)
introducing ¢ = (1,0)" and
y=0-5, (2.3)



the integration order of the cointegrating error. Note that we allow v to lie in the nonstationary region
when ¢ does.

As discussed by RH, the filtering of x¢, y; in (2.2) provides the orthogonality that justifies a form
of generalized least squares estimation. However they treated autocorrelation in w; parametrically,
whereas we require a smoothed nonparametric estimate of f (\). Given an estimate, f ()\), define

PO=CFNT, g =dF) T ¢ (2.4)

For generic sequences &,, x;, define the discrete Fourier transform, cross-periodogram and periodogram

we () = — 37, T () = we (W) (<A V) = Iee(A). (2:5)
(2mn)? 9
Denote by A; =2mj/n, j =0, ..., [n/2], the Fourier frequencies, where [-] means integer part.

Given observations x4, y;, t = 1, ...,n, define the statistics

G (¢,d) = ReQ > 5;5(N) LicayoN) ¢ bm(c) =Re{ > 5;0(N) Ly (A;) p»  (2.6)
=0 =0
@, (c,d) = RedP(0)Y ] silicajai(N) o Do (0) =T(0) D 85 1ue) (M), (2.7)
=0 §=0
for an integer m such that
m—oocasn—oo, 1<m<n/2 (2.8)

and s; =1, j = 0,n/2, s; = 2, otherwise. Defining
am (¢, d) as, (c,d)

c,d , U (c,d) = 21—~ 2.9
m (¢, d) = o (0) m (¢, d) b (0 (2.9)
we consider the two sets of estimates
W (“weighted”) : Dm(7,0), Dm(3:0); Um(1,0), Dm(3,9), (2.10)
Z (“zero-frequency”) : D5,(7,0), 95,(5,8), 9 (3,8), 72 (3,9). (2.11)

Both, (2.10) and (2.11) cover cases when both, one or neither of 7, § is known, the former including
the traditional one in which v =0, § = 1 is known. When m = [n/2], (2.10), (2.11) are semiparametric
counterparts of the parametric estimates in (2.18) and (3.13) of RH, because the real operators and s;
can be dropped and summations over [0, [n/2]] replaced by ones over [1,n], due to symmetry properties.
As noted there, the computational simplicity of the Z estimates (2.11) over the W estimates (2.10) is
not only due to having to estimate f at only frequency zero, but to

p(0) v q(0
o (c,d) = % >z (e d)mi(c), B, g () = =5 Z (2.12)
t=1 =1

However, RH found, in their parametric setting with § > 1/2, that “zero-frequency” estimates only do
as well as “weighted” ones when § > 1; for § = 1 a “second-order bias” appears and for 1/2 < g < 1



the convergence rate is inferior due to the lack of optimal weighting, and in each case the mixed-normal
asymptotics which underlies the desirable limit null x? distribution of Wald test statistics, is lost.
Requiring m to satisfy

m/n” — 0, as n — oo (2.13)

in (2.11), repairs this defect. On the other hand for S < 1/2 an alternative condition limiting the
increase of m is imposed,

m' 2% /n?” 0, as n — oo, some ¥ > 0, (2.14)

with respect to both W and Z estimates. ¥ relates to the smoothness of f at frequency 0.

Essentially, (2.13) and (2.14) correct for simultaneity bias due to correlation between z; and wui¢
in (1.6), as in earlier work of Robinson (1994a), Robinson and Marinucci (2001, 2003) on the simple
estimate based on unfiltered data

o Re{Y L))
D VRV ROV

For m = [n/2], Uy, is the ordinary least squares (OLS) estimate in the regression of y; on z;, and under
(2.14) 7,, is a narrow-band least squares (NBLS). Robinson (1994a) found that m/n — 0 is necessary
for consistency of (2.15) when ¢ < 1/2 (see also Christensen and Nielsen, 2001), and Robinson and
Marinucci (2001, 2003) found that m/n — 0 reduces the bias of (2.15) when 6 > 1/2 but § + v < 1.
For similar reasons, (2.13) is needed for our result on the “filtered” estimates (2.11) when 1/2 < 8 <1,
whereas (2.14) is needed for both W and Z estimates when 8 < 1/2. Phillips (1991a) considered similar
estimates to 7,, (0,1), 77, (0,1) assuming v = 0, § = 1 is known.

m

(2.15)

3. Regularity conditions and asymptotic theory

We introduce first a series of regularity conditions. Let Iy be the 2-rowed identity matrix. For the W
estimates (2.10) we introduce

Assumption 1. The process u;, t = 0,=£1, ..., has representation
u=A(L)e, A(x)=I+Y A, (3.1)
j=1
where
det {A(2)} £0, |2] =1, (3.2)

A(e*?) is differentiable in X\ € [—m, w1 with derivative in Lip (n), n > 1/2, and with |-| denoting the
Euclidean norm, the €4 are independent and identically distributed vectors with mean zero, positive
definite covariance matriz 0, and E|je,||” < oo, p >4, p>2/(26 —1).

This is Assumption 1 of RH and is easily satisfied if u; is a stationary autoregressive-moving average
(ARMA) process, imposing a global smoothness condition on f (\) which implies that

Yo dllAll <o, 7 T ()] < oo, (3-3)
j=1

T=—00



where I' (r) = E (usuj_,). It is imposed even under (2.14) because it enables the use of the functional
limit theorem of Marinucci and Robinson (2000). However, for the Z estimates (2.11) we can slightly
relax it to

Assumption 1°. Assumption 1 holds with the condition det {A (1)} # 0, replacing (3.2).
Both sets of estimates use:

Assumption 2. There exists K < oo such that

Al +[3] < K, (3.4)
and k> 0 such that R
Y=940,(n""), 6=0+0,(n""), (3.5)
where, as n — 0o
n—mml—max{min{ﬁ,l},l/Q} logm 0. (36)

On fwe impose either of the following two assumptions, for the W and Z estimates respectively.

Assumption 3. Uniformly in j, there exist s > 0, ¢ > 0, such that

FON—FO) = 0

0) n_”), (3.7)
Ty = F Qi) = (FON = FO0) = Op(n7

), (3.8)

where, as n — o0

n—xml—max{min{ﬁ,l},1/2} N O, (39)
n7¢>m27max{min{ﬁ,1},1/2} - 0. (310)

Assumption 3°. There exists » > 0 such that

FO)=f(0) =0, (n77), (3.11)
for which (3.9) is satisfied.

Assumptions 2, 3 and 3° are unprimitive, and it is not always straightforward to see how they can be
satisfied. The most familiar semiparametric estimates of integration orders and smooth spectral densities
have convergence rates no better than n%/%, so for example (3.6) and (3.9) cannot hold when m = [n/2]
and § < 3/5. To cover all situations some bias-reducing device is required. For smooth spectrum
estimation, Parzen (1957) proposed a method corresponding to the use of higher-order kernels in the
frequency domain, and recently Robinson and Henry (2003) employed higher-order kernels to improve
the convergence rate of semiparametric estimates of stationary integration orders. We thus pursue a
higher-order kernel approach to check Assumptions 2, 3 and 3° in Section 4. Alternative approaches
due to Moulines and Soulier (1999), Hurvich and Brodsky (2001), Andrews and Sun (2004), could be
developed.

Finally Assumptions 4 and 4° below are imposed on the bandwidth m in case of the W and Z
estimates respectively.



Assumption 4. When 8 < 1/2, for n in Assumption 1,

mP=1210g" 2 n 4+ 0321 /22 0, as n — oo. (3.12)

Assumption 4°. Assumption 4 holds and, for > 1/2 (2.13) holds.

The first part of (3.12) holds whenever m increases with n at algebraic rate, and the second is
equivalent to (2.14) with ¥ = 1 4+ 7. The role of (2.13) was discussed in Section 2.

To describe limit distribution theory we introduce the following notation. Denote by N (0,6) a
normal random variable with mean 0 and variance §. Denote by W (r) the 2 x 1 vector Brownian
motion with covariance matrix €2, and define

dW (s), W (r;8)=€BQ)" W (r;8), &=(0,1). (3.13)

Denote by fi; (\), f% (\) the (,7)th components of f(\), f~!(\) respectively. Denoting by —4 con-
vergence in distribution and by = convergence in the Skorohod J; topology of D [0, 1], we say that an
estimate U of v has Property M if, as n — oo,

INBT_) — 1_23)
m2 X\, (v-v) —, N <07 2f11(0) fa2 (0) (3.14)
when 8 < 1/2, and
1 -1 1
A5 — ) = q(o)/ﬁ(r;ﬁfdr 27r<;'A(1)—1'Q—1/W(r;ﬁ)dvv(r) (3.15)
0 0

when 8 > 1/2.
The following theorem is proved in Appendix A.

Theorem
(i) If Assumptions 1, 2, 3 and 4 hold, the W estimates (2.10) have Property M;
(ii) If Assumptions 1°, 2, 3° and 4° hold, the Z estimates (2.11) have Property M.
Property M is so designated because it indicates Mixed normal asymptotics; the mixed normal
nature of the limit in (3.15) was discussed by RH, while it is trivially satisfied in (3.14). Introducing

the Wald statistics
W = by, (v — ), WO =12, (2, —v)?, (3.16)

where b,,, and b2, denote respectively by, (¢) and b9, (¢) for ¢ = v or 4 and v,, and V9, respectively
denote any of (2.10) and (2.11). Then we can deduce for both 8 < 1/2 and 8 > 1/2,

W —4 xi, W° =4 xi. (3.17)



For 8 > 1/2 this follows from the Theorem as indicated by RH. For 8 < 1/2 it follows from the Theorem
and the fact that

AN "1(0) f22 (0
e %J;Qg(), as n — 00, (3.18)

from the proof of the Theorem. Thus, the standard limit theory of Wald tests, familiar in many classi-
cal situations in econometrics and associated with optimal procedures in the I (1) /I (0) cointegration
literature (see e.g. Johansen, 1991, Phillips, 1991a,b) is shown to hold here simultaneously for weak
(including stationary) and strong cointegration, and in the possible presence of unknown integration
orders of observables and/or cointegrating errors.

4. Estimation of integration orders and spectral density

This section presents estimates of v, § and f for which Assumptions 2, 3 (or alternatively 3°) hold
under primitive conditions. A similar objective was achieved by Robinson (2002), who justified the
unprimitive conditions required in RH in a fully parametric framework. In our semiparametric situation,
bias-reduction techniques seem unavoidable, and in particular, we use higher-order kernels.

We first justify the existence of estimates of 7y, d, satisfying Assumption 2 under primitive conditions,
for which we extend a case of the general class of estimates presented in Robinson and Henry (2003),
given there for invertible covariance stationary time series, to (possibly unobservable) Type II fractional
processes allowing for the possibility of arbitrarily large memory. We focus on estimating ~y, which, since
u14 is unobservable, is a harder problem than estimating 6. Noting (1.6), for a preliminary estimate of
v, say U, we define the processes

5t =Y — VTt = U1t (*"}/) y i)\t =Yt — /I)\I’t, (41)

and vy, where setting r = [y + 1/2],

ve=1,(=7), Gy =A"Tu =Y a; (y =)y, (4.2)

J=0

noting that —1/2 <~ —r < 1/2, so that 1, is well defined in mean square, v; and v; being Type I and
IT fractionally integrated processes of order «y respectively (see Marinucci and Robinson, 1999).

The procedure of Robinson and Henry (2003) applies to a generic invertible covariance stationary
process, which covers v; in case 7 = 0. In Proposition 1 below, we show that after tapering similar
results to theirs apply for Type I or II processes with arbitrarily large . In Proposition 2, we show that
for > 1/2 the same result as in Proposition 1 holds if we base estimates on v;, whereas for 8 < 1/2,
we deduce a rate of convergence for the estimate of v based on 7;. The reason for this lack of uniformity
is that under weak cointegration ¥ converges relatively slowly, severely affecting estimation of ~.

Defining a taper {g;},_, of order p as in Velasco (1999a,b), and a sequence &,, the discrete Fourier
transform and periodogram of the tapered sequence ¢.&, are

n -1/2 )
wg (\) = (2#2%2) th@e’M, IE(\) = ‘wé’ ()\)‘
t=1

t=1

(4.3)

For an integer ¢ > 1 to be discussed subsequently, introduce a real function k4 (u), 0 < u < 1, satisfying



Assumption P1. k, (u), 0 < u <1 is a boundedly differentiable function such that fol kg (u)du =1,
and defining U;q = fol (logu + 1) u*'k, (u) du, we have

Uig=0,0<i<q—1; Uzq#0. (4.4)

Robinson and Henry (2003) described k, (u) as a higher-order kernel and proposed an example.
Following Robinson and Henry (2003), for an integer [ to be described subsequently such that /p is
integer, for suitable ¢, kq (u), we define

@="7 Z be.s (IP A% — ) (4.5)
where ' = Zé‘:p,zp,.. and

> kg jlog A
ZI kq,j
We present now our estimates of . Denoting by ¥4, Y&, Vg, the tapered local Whittle or Gaussian

semiparametric estimates based on processes vy, Uy, 0y, respectively, which optimize over the interval

O = [Vq, Vs the loss function of Velasco (1999a), we define our estimates 7, 7, 7 of v based on vy, Uy,

Uy, as the zeroes of ¢& (¢), ¢% (c), ¢% (c), which are closest to 74, Vg, Vq, respectively. Our estimates

correspond to the gth-order kernel M-estimate proposed by Robinson and Henry (2003) for the choices

J=1,9g()\) =\ ¢ (2) = ¥, (2), so that they are higher-order kernel versions of the local Whittle

estimates of Kiinsch (1987) and Robinson (1995a), with corresponding loss functions Q% (c), Q% (c),

Q% (c), where

v

bg,j = kq,jVq,j; kgj = kq (§/1), vg; =logAj — (4.6)

o , kg jATTE (N
Q) =1 (1 z0) -2 Z BN ) gy = BRI ) @)

assuming the estimates do not fall on the boundary of ©. Before presenting our results, we introduce
a couple of additional regularity conditions.
Assumption P2. f1 (\) is s-times continuously differentiable at A =0, s > 1.

Defining h (A) = (2sin ()\/2) )\_1)727 fi1 (A), for s > 2 and setting ¢ = [s/2], Assumption P2 is

equivalent to
q )\22

h(A) = f11 (0 Z

(A2<q+1>) as A — 0, (4.8)

where h; represents the 2ith derivative of h (/\) at A = 0. As established in Robinson and Henry (2003),
Assumption P2 can be exploited by use of a k, (u) for suitable g to reduce asymptotic bias when g > 2
(or equivalently s > 4). If ¢ = 1, we are in the situation covered by Robinson (1995a) and Velasco
(1999a), where the maximum rate of convergence is n?/5. For s = 1, following these references, only
the slower rate n'/? is achievable, whereas our Assumption 1 permits the rate n(t+m/(+20)

Assumption P3. For any € > 0, as n — oo,

l—o00, 1=0 (n4‘I/(4q+1)) , 1¢/logn — oo. (4.9)



The second condition in (4.9) (taken from Robinson and Henry, 2003) imposes the maximum rate
at which the bandwidth [ can grow, while the third is innocuous if [ is a power root of n.
Defining

v = g (S0 H) X, (S ntesew)” (410

1 1
v, — /(logu—i—l)qu(u)dm Wq:/ (logu +1)? k2 (u) du, (4.11)
0 0

and denoting by v} either processes v, or vy, and by v* either 7 or 7, we establish the following results.

Proposition 1. Under Assumptions 1, P1-P3, v € (V1,V3), V1 > —1/2, p > max{r, [Vo + 1/2] + 1},
~v* satisfies gP (v*) = 0 with probability approaching one as n — oo, and furthermore

(2m)? Uyghy 127H1/2 p®W,
2o 0, e N 8T ) (4.12)
q):J11 q N q

M=)+

Proposition 2. Under Assumptions 1, P1-P3, v € (V1,Va), V1 > —1/2,

p>max{r,[Va+1/2]+ 1,[6 + 1/2] + 1}, (4.13)
and
v—v=0,n"°""), (4.14)
for any v > 0, 7 satisfies ¢& (7) = 0 with probability approaching one as n — oo. Furthermore, if
v 5 Y
8>1/2
2m)! Uyghy  12911/2 p®W,
ll/2 ~ ( q9'°q NI{o q 4.15
O S, e ) )
whereas if B < 1/2, for any ¢ >0
5 =0, (Z—w—«:)) ) (4.16)

Propositions 1 and 2 are justified in Appendix B. For our purposes, the main implication (when
B > 1/2) is that on choosing | ~ n*/(49+1) (where “~” denotes here exact rate) and s > 2, the
convergence rate of our estimates is n2¢/(49+1)  which can be made arbitrarily close to the parametric
rate n'/2 for ¢ (and thus s) large enough. The same rate clearly applies to the corresponding estimate
of 0 under equivalent conditions. Note also that for the suggested choice of [ the bias term in (4.12)
has exact rate O (1), while (4.9) prevents this from dominating. Related to the 5 < 1/2 situation, for
the previous choice of I, the rate of convergence of the feasible estimate of 7 is n*¢(#=#)/(4a+1)  Though
(4.14) is strong, it is satisfied by OLS (cf. (2.15)) for 5§ > 1. OLS does not satisfy (4.14) for every (v, d)
combination if 8 < 1, but the NBLS (see (2.15) again) suffices. As in Assumption 2, we denote the rate
of convergence of these estimates of v (and also the corresponding ones of ) for the proposed choice of
I by n* with k = k (s) and

k(s) = 2q/(1+4q), for estimates of § and v (when 8 > 1/2), (4.17)
4q (B — ¢) /(1 +4q), for estimates of v when 8 < 1/2. (4.18)



Thus, for large enough s, k(s) can be arbitrarily close to 1/2 and 8 when 8 > 1/2 and 8 < 1/2
respectively. This, in view of (3.6), implies that in strong cointegration the choice m ~ n is feasible, but
if B is close to (but above) 1/2, the existence of a large number of derivatives and use of an appropriate
higher order kernel k, (u) are necessary. A drawback of our approach is that as 8 is unknown, so one
can never be sure that the ¢ employed is adequate, even if f (A) is analytic. This problem is similar to
the choice of taper order, p. Under weak cointegration, (3.6) restricts further the growth of m, which
is already constrained in (3.12), as the inequality 5 > (1+7) /(3 +27n), n € (1/2,1), does not hold for
every 8 € (0,1/2). In any case, in view of (3.5), (3.6), a more slowly converging estimate of v (based
for example on OLS residuals) would further restrict m, affecting the rate of convergence of estimates
of v.

Next we propose a nonparametric estimate of f(A) based on the residual vector u; = (y:(3) —
va(7), xy (g))’, for an estimate v of v, satisfying (4.14) and using our estimates 7, 0, of the orders. We
again need to exploit smoothness, and introduce the following assumption, which strengthens Assump-
tion P2.

Assumption P4. A(e™) is s times differentiable in \ € [—n, 7| with sth derivative in Lip (n), n > 1/2,
s> 1.

This strengthens Assumption P2 and ensures certain rates of convergence for our estimates of the
spectral density at all Fourier frequencies.
We introduce the weighted periodogram estimate of f,

Foy = 2 G\ —\) Iz ZWZGZ,A A)Ia(A), (4.19)

no .
j=—o0

where

=b Z b\ + 275)), (4.20)

j=—00

for a user-chosen integrable function G and bandwidth sequence b = b,,.
Define

x) = /é()\) AN, x € R, (4.21)

and introduce

Assumption P5. b is a sequence of positive real numbers such that b= +b/n — 0 as n — oo; G ())
is a real, even function such that

/|@(A)|d/\<oo, /é 7 1+27%)|g(z)|dz < oo, (4.22)
r R 0

and in a neighbourhood of the origin of radius € > 0,

11— g (z)| < K |z|" for some h > s. (4.23)
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Because G () is even, so is g, and sup, |g ()| < [ |G (A)| dX < oo, which implies along with (4.22)
that g (z) is square integrable. (4.23) implies that g (x) is locally (in a neighbourhood of 0) Lip (h). If
h > 1, this implies that d°g (z) /dz¢ = 0 for any ¢ < h, so bias reduction is possible provided f () is
smooth enough. Indeed in view of (4.21), [" u°Gy (1) du = 0, so that (4.23), introduced by Parzen
(1957), corresponds when h > 2 to a higher-order kernel property of G. The larger h is chosen, the
faster the rate of convergence of our estimates will be. As Robinson (1991) mentions, condition (4.23)
holds for A = 1,2 for many of the usual kernels, but in case the h required is very large, a careful choice
of the covariance averaging kernel g is required.

Denoting by Assumption P6 the set of all conditions needed in order to obtain rates (4.17), (4.18)
for our estimates of =y, d, we show in two propositions the results for ]?()\)

Proposition 3. Under Assumptions P4-P6, uniformly in j,

FOY) = F () =0, (bs T (2) e bnﬁ(s)> =0, (n7), (4.24)

where
X =x(s)=sr(s)/(1+s), (4.25)
if b=0b* ~ nrs)/(+s),
The proof of Proposition 3 is given in Appendix B, where b* is referred to as the “optimal” choice.

For s large enough, as for the estimates of the orders, arbitrarily close rates to n'/2 and n® for the
estimates of the spectral density are achievable under strong and weak cointegration respectively.

Proposition 4. Under Assumptions P4-P6, uniformly in j,

F i) = F j) = (J?()‘j) - f(/\j)> = O (n_lbzn‘”(s)) + o, (n 7101 7%) (4.26)
= 0p(n7%), (4.27)

where )
¢:¢(s):1+%, (4.28)

if b=0b* ~ nos)/(+s),

When 8 > 1/2, the left side of (4.26) is of order arbitrarily close to n=3/2 for s large enough, which
in view of (3.10) enables the choice m ~ n.

Finally, it is important to note that (3.6), (3.9), (3.10) reflect the trade-off between smoothness of
f(N\) and rate of growth of m: a higher s implies higher x (s), x (s) and ¢ (s), so that m is allowed to
increase faster. In all cases, (3.6), (3.9) hold for 5 > 1 for any s, m. For 8 < 1, arbitrarily small & (s),
x (s) also suffice, but the growth of m has to be heavily restricted.

5. Monte Carlo evidence

A Monte Carlo study of finite sample behaviour was carried out, comparing some of our estimates with
the simple one 7,,, given in (2.15), in terms of bias and dispersion, and also examining the goodness of

11



the x? approximation for Wald test statistics. We take A (2) = I {(1 +¢2) /(1 — ¢2)} in cases where
uy is: white noise (WN), with ¢ = ¢ = 0; AR(1), with ¢ = 0.5,0.9, ¢» = 0; MA(1), with ¢» = 0.5,0.9,
¢ = 0. We generated Gaussian ¢; with covariance matrix 2 having ¢jth element w;;, the correlation
p = wio /(w11 wae )Y/? taking values 0, 0.5, -0.5, 0.75 and fixing v = w1 = waey = 1. For g > 1/2,
we consider the combinations (vy,d) = (0,0.6), (0,1.2), (0.4,1.2), (0.4,2). For 8 < 1/2, we consider
(v,6) =(0,0.4), (0.2,0.4), (0.4,0.8), (0.7,1).

Table 1 presents convergence rates of our W, Z estimates and, for both p # 0 and p = 0, of
U, denoted a U (Unfiltered) estimate. These rates are derived from our Theorem and Robinson and
Marinucci (2001, 2003). For strong cointegration, the U estimate rates apply for any m < [n/2],
m — oo, and the rates of W, Z are optimal in this case. For weak cointegration, we only consider the
NBLS version of 7, with m/n — 0 as n — oo, noting that (3.12) needs to be satisfied.

TABLE 1
CONVERGENCE RATES: U WITH p # 0, p = 0 AND W, Z

0,0) | 0,6 (0,12) (412 (42 (0,4 (24 (48 (7.1

U, P ;é 0 n.Gm—.4 n1.2 n.S nl.ﬁ n.4m—.4 n.Qm—.Z n.4 n43

U, p= 0 n.6 nl.? n.S n1.6 n.4m.1 n.Qm.S n.4 n.3
W, 7 n.6 n1‘2 TL‘S Tll‘G n‘4m‘1 n‘2m‘3 TL'477L'1 n.Bm.Z

We generated 1000 series of lengths n = 64,128,256, and choosing different bandwidths b (taking
values 15, 25, 45, depending on whether n is 64, 128, 256 respectively), computed the unweighted
version of (4.19)

j+b
Fow = D0 Ta ), Tale ) = () =0 (0 (D) (5.1

where in all cases a = 7 and (¢, d) = (v, ) or (7, S) The estimates 7, 6, are Robinson’s (1995b) version
of the log-periodogram estimates of Geweke and Porter-Hudak (1983) without trimming or pooling
applied to the untapered series y; — Upx; and T;, where T; = x; for § < 1, Ty = Az for § > 1, adding
back one to the estimate of the order of T; in this case to compute the final estimate of §. b is also
the bandwidth for the semiparametric estimates of v and §. Our estimates of f, v and § do not make
the provision for rate improvement of Section 4, partly because practitioners are likely to use standard
estimates in view of readily available software. However, (3.6) is not satisfied for m = [n/2] when
£ < 0.6 and the Monte Carlo will illustrate the effect.

For 3 > 1/2, we computed W and Z Infeasible estimates v7; = Uy, (v,4), 5 = 7, (7,9), Feasible
estimates Tp = ﬁm(ﬁ,g), vy = ﬁfn(?,g) and the U estimates, Uy = 7,,, for three different sets
of bandwidths m, given by (I,II,IIT) = (10,20,32), (20,40, 64), (40,80, 128), depending on whether
n = 64,128, 256 respectively. The largest bandwidth (m = I11I) for each n corresponds to the full band
case. For weak cointegration, we only present results in the simplest case ¢ = ¢ = 0, for vy, Up, vy,
with m = (I,11,11I) = (2,8,15), (2,12, 20), (3,15,25) and n = 64,128,256 respectively, (I, I, III),
representing in all cases narrow band situations; instead of Z estimates, we computed infeasible and
feasible two-step estimates, given by To; and Tap respectively, where these used (5.1) with w; (y,0,771)
and (%,S, Ur) respectively, 7, being the estimate of v calculated from residuals y; — Upx;.

While our conclusions and comments refer to the whole experiment, to conserve on space we only
report a few representative tables. For the case 5 > 1/2, we only present results for (p, ¢,v) = (0,0,0),
(0.5,0.5,0), (—=0.5,0,0.5), m = I, I1I, whereas for 3 < 1/2, we only report results for p = 0.5.
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We deal first with strong cointegration. Table 2 reports comparative figures corresponding to Monte
Carlo bias (defined as the estimate minus v) and standard deviation (S.D.). The first five rows list the
number of times that the corresponding estimate is no worse than any of the others. The last four rows
compare vis a vis different estimates and reflect the number of times that the corresponding estimate
in the relation is strictly better than the other. All figures relate to the total number (180) of cases (for
all n, m, p and (y,d) combinations).

TABLE 2
COMPARISONS BETWEEN ESTIMATES
BIAS SD.
WN  AR(5) AR(9) MA(5) MA(.9) | WN AR(5) AR(9) MA(5) MA(.9)
7 144 126 136 130 128 145 148 147 127 124
7 167 167 146 176 176 144 165 139 164 165
7 104 90 90 101 103 58 46 46 57 55
75 99 87 81 94 89 56 45 36 51 49
vy 81 89 76 84 83 82 83 92 76 86
Upivy | 80:7 8315 88:30  87:10  88:10 | 5756 20:77  30:92 5361  53:61
oy | 91:13  79:18 7344  84:14  84:15 | 32:75  14:97  9:120  36:76  35:79
vrovy | 10:33 0 142 4:13 1:47 0:48 | 29:27  6:26 16:2 6:43 6:44
UpiU% | 5312 30:28 584 22:31  18:32 | 68:15  85:2  100:1 787  80:10

Detailed results for bias are presented in Tables 3, 4. Overall, infeasible (I) estimates dominate, with
feasible (F) ones clearly superior to 7yy. For the WN situation, this difference is most noticeable when
B8 < 1. Especially for p # 0, 77} is slightly superior to 7y with the exception of the full band situation
with 5 = 0.6, where as the theory predicts 7; beats 3; on the contrary, Up outperforms 7%, differences
being most noticeable for the full band situation. The only estimates which enjoy large improvements
in the AR framework are Ty and the I estimates, especially for 8 = 0.6, this effect being stronger the
larger the AR parameter ¢. Under the AR structure with ¢ = 0.5, the predominance of the feasible
estimates over Ty is still clear, and more noticeable as 8 decreases, with Ty competitive only when n
is small and 3 large. 7§ outperforms 7y, although in general the differences are very small, whereas
both F estimates behave rather similarly. When ¢ = 0.9, F estimates are still preferred to 7y, although
this is competitive for 8 large. 7$’s superiority over Uy is less clear now, whereas that of Tr over %
is accentuated. In the MA situation, results are mainly unaffected by the value of ¢, and apart from
a relative improvement of the Z estimates, results are very similar to those of the WN situation. In
general, bias decreases as n, , increase, and m (with the exception of the case p = 0) and |p| decrease.
The bias is signed by p, except in case of F estimates when § > 1, where it is reversed.

Results for S.D. are presented in Tables 5, 6. Overall, I estimates dominate, but now 7y emerges as
competitive relative to 7p and 7%, especially in the AR situation with ¢ = 0.9, although increases in
n generally favour F estimates, whereas large [ is more favourable to 7y;. In the WN situation, both I
estimates behave similarly, but less so in the AR case. Here, when ¢ = 0.5, 77 beats Uy, the opposite
happening when ¢ = 0.9 (the superiority of 7; based here mainly on the full band case). In the MA
framework, although in general values are close to those of the WN situation, 7$ outperforms 7;. For
this case, S.D. is quite unaffected by 1. In general, 7 beats 7%, which deteriorates more when 8 < 1.
As expected, S.D. decreases when n, [ increase, but in general is not much affected by variations in
bandwidth.
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We next studied the Wald statistics
Wi =bm (v) @1 = 1)> ,Wp = b (3) (Tr — 1)>, WP =05, (7) (75 — 1)°, W =%, (3) (7% — 1)°. (5.2)

Tables 7-10 contain empirical sizes corresponding to nominal o = 0.05,0.10. When w; is WN, results
corresponding to the infeasible Wald statistic W; are on average too large, but certainly close to the
nominal sizes, even when n = 64, for all values of p and m when g > 1, empirical sizes reacting as
theory predicts when n increases. For g = 0.8, empirical sizes of W are worse than in the previous
situation when n = 64, but react quickly in the appropriate direction, when they are comparable to
those for larger 5. For this case, sizes are not much affected by changes in p, but the combination of
simultaneous increase in |p| and m leads to deterioration. This is much more evident when 8 = 0.6,
where in general empirical sizes are substantially larger than for all the previous § cases. Empirical
sizes for W are substantially larger than for Wy, but in almost all cases react appropriately when n
increases, the worst case being 5 = 0.6 with p = 0.75, where for m = 11 sizes are unacceptably large.
The results are better for o = 0.10 than for o = 0.05. When § > 1, empirical sizes of W7 and Wy are
very similar to those of W;, Wg, for all p, m, n and 5. For 8 < 1, both W7} and, especially, W are
worse than W; and Wg respectively, and more so as m increases, as is predicted by the theory. AR
autocorrelation, especially ¢ = 0.9, severely damages W;. When § > 1, Wy is relatively unaffected by
p, m and [, decreasing in all cases when n increases, quite slowly for ¢ = 0.9 though. The behaviour
of Wp is striking. For ¢ = 0.5 and p < 0.5, empirical sizes are substantially smaller than those of
Wy, especially when 8 is large. Again, when § > 1, sizes are relatively unaffected by m, with small
increments as |p| increases (especially for 8 = 1.2), and always decrease as n increases, with empirical
sizes very often smaller than nominal ones when n = 256. In fact, when ¢ = 0.9, empirical sizes when
£ > 1 behave qualitatively in a similar way to the ¢ = 0.5 case, but are significantly reduced, so that
when n = 256 they are much smaller than nominal ones. Their behaviour when § < 1 is interesting.
When ¢ = 0.5 and p = 0, they are substantially smaller than those of W;, being very close to nominal
sizes when n = 256. As |p| increases, this pattern is less clear, and while when |p| = 0.5 sizes are still
better for W (only slightly when 8 = 0.6 though), they are clearly worse for p = 0.75, with significant
deterioration as |p| increases, the effect being more evident as m increases, especially for 5 = 0.6.
This is also observed when ¢ = 0.9, but here, even for the most adverse situation where 5 = 0.6 and
p = 0.75, empirical sizes of Wy are better than those of W; for any m, as now sizes corresponding to
W decrease when ¢ increases. Generally, W7, W3, perform very similarly but slightly better than W7,
W, except when 8 = 0.8 or 8 = 0.6 and ¢ = 0.9, for which Wr tends to behave better than Wp. In
the MA framework, W; behaves similarly to the WN situation (with sizes slightly larger), and is quite
unaffected by the value of 1. Sizes of Wg, although still worse than those of Wi, are closer now than
for ¢ = 1 = 0. Again, the effect of increasing the MA parameter does not have any important effect.
Also, Wy and Wy, perform relatively better than W; and Wr respectively, the clearest improvement
appearing when 5 = 0.6.

We consider now the weak cointegration case. Results for the bias are presented in Table 11. The
overall ranking is 7oy, Uy, Uy, Uap, Up, which are no worse than any of the other estimates in 134, 10,
9, 8 and 3 out of 144 cases respectively. This indicates an overwhelming dominance of the two-step
infeasible estimate. Bias differs substantially depending on whether p = 0 or p # 0. In the former case,
although 7y is clearly best, for example dominating 7y in ratio 22:4 out of 36 cases, the same does not
happen for the F two-step estimate which is inferior to 7; and T in ratios 21:10 and 13:11 respectively,
smaller bandwidths clearly benefitting one-step estimates. 7r and Uspr perform better than Uy, in ratios
18:12 and 16:13 respectively, the U estimate being superior only when m and n are small. As theory
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predicts, biases decrease in absolute value when 8 and n increase, and, unexpectedly, tend to decrease
as m increases. This picture changes dramatically when p # 0. Here, in all cases, biases share the sign
of p, increase in absolute value when m and |p| increase, and show the same pattern as when p = 0 with
respect to 5 and n. There are two important features to note when p # 0. First, both F estimates are
better than the U estimate in all cases. Second, U, whose corresponding biases are in almost all cases
slightly bigger in absolute value than those of Tyy, performs much better not only than 7g, but also,
and more importantly, than 7;. The ratio with respect to the one-step infeasible estimate is 91:16 out
of 108 cases in favour of Uop. This is an encouraging result, demonstrating significant bias reduction
by iteration. Possibly there would be further benefit in continuing the iterations.

Results for S.D. are presented in Table 12. Over the four values of p, Ty is clearly superior,
completely predominating for the two cases where v + ¢ < 1, i.e. (v,0) = (0,0.4), (0.2,0.4) for all p,
m and n. This fact is reflected in the overall ranking, which is Dy, Uy, Vs, Up, Vo, which are no
worse than any of the rest in 98, 23, 22, 4 and 0 out of 144 cases respectively. For all estimates, S.D.
decreases as 3, n, p and m increase. Uy is least affected (although still noticeably) by increments in
m, so the gap between this estimate and the rest tends to shrink as m increases. vy beats Vg in ratio
108:34, U predominating only when (v, §)=(0.4,0.8) for the largest m, and (vy,d) = (0.7, 1) for the two
largest m. Similarly, 7y beats Dop in ratio 124:20. Also, Uop is superior to Ty when (v,d) = (0.7,1)
for the two largest m. Contrary to the experience with bias, two-step estimates were clearly worse than
one-steps. 7; dominates Uo; in ratio 122:22, Uo; only being superior to 7y (with small differences) when
(7,9) = (0.7,1) for the two largest m. Even more striking is the difference between F estimates, since
Ur outperforms Usp in ratio 137:6, Uap being only superior for some cases of (v,4) = (0.7,1) for the
largest m.

We next consider the Wald statistics Wy, Wr, Way = boy (Vo — 1)2, Wop = bop (Uop — 1)2, where
bor and bop differ from their respective one-step counterparts in the same way as oy and Top differ
from 7; and Up. Empirical sizes are given in Tables 13, 14. In all cases sizes are too large, mostly being
very far from nominal ones. In some cases there is convergence as n increases, although this is usually
very slow. As expected, sizes increase as 8 decreases. Overall, the results are not encouraging. When
p = 0, empirical sizes corresponding to W are too large, if acceptable. For the smallest m, they fall as n
increases, though this is less clear for the other two, except for (v, d) = (0.4,0.8). For (v,d) = (0.2,0.4)
sizes tend to be smaller as m increases, the opposite clearly happening with (v,d) = (0.7,1), and in a
less evident way with (v,d) = (0.4,0.8). Sizes corresponding to the two-step I estimate for this p = 0
situation are clearly larger than those of W;, with the exception of some cases for (v,d) = (0.7,1) for
the two largest m. These sizes behave in a qualitatively similar way to those of W, with significant
deterioration as n increases for (v,0) = (0.2,0.4) associated with the largest m. As |p| increases,
sizes are further affected, especially for (v,d) = (0.2,0.4), (0.7,1). Also, there is now a substantial
deterioration as m increases for all 8, without improvement for (vy,d) = (0.2,0.4) for the two largest
m as n increases. For the smallest m and |p| = 0.5, sizes of Wa; are still larger than those of Wy, but
although they also deteriorate as m increases, Way is less damaged than Wy. Also, Wyy deteriorates less
than W; as p increases, so that when p = 0.75, in almost all cases, Wa; is better than W; (especially
for (v,0) = (0,0.4)). This relative performance is also evident for |p| = 0.5, but only for the two largest
m. When p # 0, Way is also better than W when n increases. Sizes corresponding to Wr and Wap
follow in general the same pattern as their I counterparts, but are in almost all cases larger, the gap
increasing as |p| increases.
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A. Appendix A: Proof of Theorem

Denote [; = [ (\;) for any function [ (A), and let K be an arbitrary positive finite constant
give the proof for the infeasible estimate Ty, (y,d) = am, (7,9) /bm (6) when 5 > 1/2, where

m

Am (’V? 5) = Re {Z;”:O Sjijz('y,(s)z(’y) ()‘J)} , bm (’7) = Re {Zj:O SijIz('y) ()‘J)} s

writing p; = Q'f]-_l, q; = C'fj_lc. Clearly

Um(7,0) —v = Z:E’Z;, em(7) = Re {]XZ:O sjpjluz(v)()\j)} .

First, we show that
E(en(y)) = o(n”).
We can write the left side of (A.3) as the real part of

m n

SjPj / Dn(Xj = 1) > an—1e” "IN D, (1= Ny) f (1) Edp,
j=0 7 t=1

J

1
2mn
where a; = a,(8) and Dy(\) = 22:1 e’** is the Dirichlet kernel, where for 0 < \ < T,

1D,V < Kmm{url ,t}.

Noting that for any A,

by periodicity, we can write (A.4) as
1 m ~ n—1 .
g > sy [ Dale) Y e D) 5 o+ A5) = O]
Jj=0 S t=0

Next, by summation by parts, (A.7) is

T

b > s /Dn(—u) {anlDl(M) [f(p+X)—f ()‘j)]fi e~ dyy

27n, 4
= J t=0
n—2 t .
)~ FONEY (1D ra(h) — Dyms ) 30 e d“'} |
prd h=0
Because 1
Z e ™ =, j =0, mod n; =0, otherwise,
t=0
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the contribution of the first term in braces in (A.8) is bounded in modulus by
K laeal [ 1Da(0)]dn =0 (" o). (A.10)

since f is boundedly differentiable, by Stirling’s approximation |as (¢)| < K (1 + s)c_l, fore>0,s >0,
and

[ 120 = 0 (1og ). (A11)

(see e.g. Zygmund, 1977). Regarding the second term in (A.8), note that
arr1Dn—1—1(p) — ar Dy (1) = (ar41 — a¢) Dyp—y—1 () — € ay. (A.12)

The contribution of the first term on the right of (A.12) to the second term of (A.8) is 0 for 5 =1, as
in this case ary1 = at, t =0,...,n — 2. For § # 1, this contribution is bounded in modulus by

2
m

nt Z/w WP (4 A5) — £ )] dy

N

2
— 1) D1 () (De(=2A5) + D] (w4 25) = fF (W)l dp - (A13)

:O

The term in the first braces is bounded by
Km/ it | Do () |? dpe = O (mlogn) (A.14)

by (A.5) and (A.11), since f is boundedly differentiable. Next, the term in the second braces is bounded
by

n—2n—2

KZ/MZZ a1 — ar) D1 (p) (De(=A5) + 1) (as41 — as) Dp—s—1(=p) (Ds(A;) + 1) dpe

t=0 s=0

= 0 nQIOgan*2 (Ztﬁ2> , (A.15)
j=1 t=1

by Lemma C.1 of RH and (A.5), which is O (n®lognl (8 < 1) +n**lognl (8 > 1)), implying that
(A.13) is O (m*/?lognl (B < 1) +nf~tm!/2lognl (8 > 1)). Finally, the contribution of the second
term on the right of (A.12) to the second term of (A.8) is bounded in modulus by

2 3
0ty (Dy(=Ag) +1)| duy (A.16)

m

T ln—2
12 / Dy, (1) dpa /
— S 1t=0
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Now, the first integral inside braces is O (1) by (A.5), whereas noting that
/e_i(s_t)“d,u =2, s =t; =0, otherwise, (A.17)

—T

the second is bounded by K 37, a? |D;()\;)[?, so that (A.16) is bounded by Kn ! >t {n25+1j_2}1/2,
which is O (71'6_1/2 logm), to conclude the proof of (A.3).
Next, we prove that as n — oo,

1

0B (em(7) — Blem(1) = (A1) Q! / W (r: 8) dW (1) . (A18)

0

This proof just consists of showing that as n — oo,
p
em(y) — E{em(y 0 Z:z:t 1 )er + 0p(n), (A.19)

because, normalized by n®, the first term on the right of (A.19) weakly converges to the right of
(A.18) by Proposition 3 of RH. Now, in view of Propositions 1, 2 of RH, (A.19) holds on showing
Var {Re {Zgn/m]ﬂ 55D Luw(y) (Nj )}} =o0 (n25) ,but, as mentioned in Robinson and Marinucci (2001),

this follows by a simple modification of their Theorem 5.1, as p()) is a well-behaved function without
poles.
Finally, to complete the proof for 7, (v,d) when 8 > 1/2, we show that as n — oo,

[N

1
n 2B, (y) = L / W (r (A.20)
T
0
where the right side is almost surely positive. This result follows in view of Propositions 4, 5, 6 of
RH, as by Theorem 4.4 and simple modification of Theorem 5.1 of Robinson and Marinucci (2001) and
Assumption 1,
[n/2]
Re Z 85451 a:('y) ) = Op(n2ﬁ)' (AQI)
Jj=m+1

We now prove the result for 7, (v,6) when 5 < 1/2. First, defining z; (y) = Z;io a;us ¢—j;, this
follows on showing

ZRG {Sjpjfuw(,y)(Aj)} = QZRG {pjlug(,y)(/\j)} + Op (nﬁméiﬁ) y (A.22)
J=0 j=1

QZRe {@ Ly (M)} + 0p (n?Pm!=2%) | (A.23)

> Re{sjgi Loy (M)}
=0
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mé)\ﬁfl%ﬂiRe{pﬂuz(w)(/\j)} - dN<0’ fll(o)fmo)» (A.24)

P 2(1— 28)
m 11
IS Re gl ()}~ p L2020, (A5
j=1

by simple application of Cramer’s Theorem. First, we show (A.22). The left side of (A.22) is
2 Z Re {ijuE(w) ()\j)} + pOIuE(v) (0) + Do (qu('y)(o) - Iui(v) (0))
j=1

+2) R {p; (Lus()(A)) = Luz()(A)) } - (A.26)

j=1

Clearly, the second term in (A.26) is O, (nﬂ) = 0p (nﬁml/z’ﬁ), as under Assumption 1, > i, uy =
O, (n*?), 37, Tt (7) = Op (n'/?+9) (see e.g. Robinson, 1994b). The third term in (A.26) is

n

FEN Y (e () — T (1), (A.27)

™
t=1 s=1

where the second summation in (A.27) has mean 0 and variance

n oo 7T n oo 2 n n o0
Var (Z Zas+luz7_l> < K/ Z Zas—&-leil# dp < KZ Z (t+ l)ﬁ*l (s+ l)ﬁfl
s=11=0 Y |s=11=0 t=1 s=1 [=0
n oo n t—1 oo
< K SN t+0* P+ K ST+ s+ 0!
t=1 1=0 t=2 s=1 [=0
n oo n t—1 oo
< KDY N PRI NN (s+ )P < K, (A.28)
t=1 |=t t=2 s=1 [=0

implying that >0, (2, (v) — Zs (7)) = Op (n%+1/2), and the same conclusion as for the second term.
The expectation of the fourth is the real part of

% / ZPan (Aj — ) Z Zamse*ik’\ff (p) Ee™ 1 dp, (A.29)

Jei=1 5=0 k=1
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which by (A.6) and periodicity equals

T om oo n+s
! —tkA; —is(p—Aj
[ mDa Y ST e Ay = £ O e
— j=1 s=0 k=s+1
oo n+s %
/Z‘D I (ntA) = |||dﬂ/zzzak€iJe ("U o
S J=1 o §=1ls=0 k=s+1

(A.30)
By Assumption 1 and (A.5) the first integral inside braces in (A.30) is O (m). The second integral is

m oo  n+s n+s m oo 2B—2

QWZZ Z Z apage’ RN <KZZ 8+1 O(nz)7 (A.31)

j=15=0 k=s+11l=s+1 j=1s5=0
by Lemma 3.2 in Robinson and Marinucci (2001), to conclude that the expectation is O (m1/2). The
variance of the fourth term in (A.26) is bounded by the real part of

n n n

TN NH NN W H RN
=1

j=1k=1t s=1g=1 =0 p=0

p M) {E (upuy) B (ug,qua,—p) + E (upug,—p) E (upug, 1) + K} p" (=), (A.32)

where & is the fourth cumulant matrix of wu, u,, ua —;, u2,—p. We just detail the contribution to the
variance of the first term in braces in (A.32). By simple application of the Cauchy inequality the second
and third terms have the same order as the first term. This contribution is bounded by

n

m m oo
—2 E E E E Qs i€ —i\js 2 a +lez)\kq E ezt (Aj—Ak) < —1 2 2 E aspi€ —iAjs E a +lez)\]q
=0

j=1k=1 s=1 J=11=0 s=1
(A.33)
by (A.9), while (A.33) is bounded by
Kn~ mZZas+l —l—Kn_lZZZZaS_Ha ppehilams), (A.34)
1=0 s=1 j=11=0 s#q

Clearly, the first term in (A.34) is O (mn?’~1), and by (A.5) the second is bounded by

co n g—1 B—1 B—1
(s+0" (¢+1)
n gq-1 §28-1 n—1 n—q
= KZ q—s :quflzswflﬁf(nwlogn. (A.35)
q=2 s=1 q=1 =



Thus, the fourth term in (A.26) is O, (m1/2 + 1P log!/? n), which is o, (R?m!/278), by (3.12), to
conclude the proof of (A.22). Next, we show (A.23). First, noting that from previous arguments

n

2
% (Z Tt (’Y)) =0p (n%) =0p (nwmkm) , (A.36)

(A.23) follows on showing

ZRG {qﬂwm(v) 1) (Wi () (=Ag) = Wity (=2 ))} = 0p (”wml_%)' (A.37)

First the expectation of the left side of (A.37) is the real part of

py— Z qj Z Z Z g€ agy e / oz () e HHORAy,
J= —T

e % / qu Zanftei(n_t)Ath (>\ _ Z Zaerle z)\Js —ilp (f22 ( ) f22 (}\J)) d,u, (A38)

Jri=1 t=1 s=11=0

since ["_e~"HDrdy =0, for all t > 1,1 > 0. Then, (A.38) is bounded by

W=

m n Tr m n 2
/Z D an TN Dy (N — ) (faz (1) = faz (A dM / > ZasHe_MjSe_M do
7j=11]t=1 Zp J=11s=11=0
(A.39)
Now, the first integral in braces in (A.39) is bounded by
K NN antan—q|De (A — )| [Dg (1= Aj)] (faz (1) — fa2 (A;))° < Kmn®®, (A.40)
j=1t=1q=1

by (A.5). The second integral in braces is

m n n

2772 Z Z Z A1y PN < sz Z a; + an Z Z Dstlptl (A.41)

s —
j=1s=1p=11=0 s=1 [|=s 9¢p10| p‘

which is O (mnw +n2ftllog n), where the order corresponding to the second term in the right of
the inequality in (A.41) is calculated as in (A.35). Thus, the expectation of the left side of (A.37) is

0] (nQﬁ_l/le/Q logl/2 n) Next, the variance of the left side of (A.37) is bounded by the real part of

m m n n n—tn—r n n

47r2n222q7q kzzzzzzzzaq 7ae iPAk g +la+ez>\.(t—s)
Jj=1k=1 t=1 r=1 ¢=0 p=0 s=1 u=1 [=0 v=0
Xe—i/\k(r—u) {E (UZtUQr) E (Uzﬁlu;fv) + FE (UQtUQ’fv) E (UQTUQ’fl) + H} s (A.42)

21



where £ is now the fourth cumulant of uat, uay, ua —1, u2 —y. As before, we just consider the contribution
of the first term in braces, the treatment of remaining terms being very similar. This contribution is

bounded by
2

n n %) m n—t n-+l
Kn_QZ{Z+ > } DD age Y agem el (A.43)

t=1 Ui=0 I=n+1) |j=1q=0 s=l41

Now, noting that by Lemma 3.2 in Robinson and Marinucci (2001)

n+l B8/2—1/2
—isAj (l + 1)
g N KW7 (A.44)
s=l+1 | J|

the contribution of the summation in ! from 0 to n to (A.43) is bounded by

2

-1
Kn™* Z 1T Z )\32;1 <K <n451(6 > %) + n*log® m1(8 = %) +n*Pm!=301(68 < ;) .
=1 j=1 j
(A.45)
Next, by Lemma 3.2 in Robinson and Marinucci (2001), the contribution of the second summation in {
in (A.43) is bounded by

2

Kn=t Y [197 8N TR < kn?PTE Y 12072 < K (A.46)
I=n+1 j=1 I=n+1
We conclude that the left side of (A.37) is
28-1 1 1 28 1 1 1-38 1
O, [n*""2m2logZn+n 1(B>§)+logm1(ﬁ:§)+m z 1(8 < g) ; (AA4T)

in all cases o, (n%ml_zﬁ). Finally, (A.24), (A.25) follow as in the proof of Theorem 2 in Christensen
and Nielsen (2001) who adapted the steps in Lobato (1999) to a somewhat different situation. From
these references, it can be easily shown that

m n t—1
mé%fﬁ% > Re {piLuzy ()} = DG D asC +op (nPm27)) (A.48)
j=1 t=2  s=1
where ¢, = Q7 1/2¢,,
1 m
R w—y3 Zl 0; cos (tA;), (A.49)
=
and
o) =20 [B )P NE (1= BN+ (1= TB (N B(-N)], (A50)
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with B (A) = A (") Q'/2. The only point worth mentioning is that

n o t—1 2 m
yw> n2 Ztr{g ]g]};;cos ((t=s)\) = mﬂ;tr{g’_ﬂj}
_ (=17 AT Enﬁ - ") ple! —ix; )P X\ B
- SWW Ztr {B 0w (1=e™) " B(=x) (1= ) "B () ep B (-1}
(A.51)
cancellations taking place due to (A.6), so that (A.51) equals
A i 1= e O) 11 (A - 2L, (A5
as n — oo, by (2.8).
We have shown that 7,, (v, d) has property M. We now show that as n — oo
Ui (7,0) = U (7,0) = o, (nﬁml/Q_mi“{ﬂ’1/2}) , (A.53)
Pn(3,8) = Pm(1,8) = o, (nPmt/2mmm{A1/2) (A.54)

noting that the proof for 7, (3, ) and Dy, (v, d) is implied by the proof of (A.54). First, (A.53) follows
on showing

en(y) —em(y) = op(nﬁml/Q_min{l/Q”B}), (A.55)
bn(7) = b (7) = op(n*m!2mnl/20), (A.56)

We just prove (A.55), the proof for (A.56) being significantly simpler. The left side of (A.55) is

Re D (05 = ) lusy (V) ¢ - (A.57)
7=0

Noting that
PO) = () = PN 1) = F] Fy, (A.58)

the two possible terms for which s; = 1 are O, (n?~%) = o, (n®m!/2~min{1/2,8}) by (3.9), as by Assump-
tion 1, >, up = Op(nl/ 2), and by results in Robinson and Marinucci (2001) and previous arguments,
S @ () = 0,(nP*1/2). By summation by parts, the remaining terms in (A.57) equal

m* m*—1
2Re{ Bms = Pm=) Y Tua(ry(Ng) — (Dj+1 — pj+1 — (j — p;) Z uz(y)(An) ¢ (A.59)
j=1 j=1
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where m* = m — 1 if m = n/2 or m* = m, otherwise. Using techniques in Robinson and Marinucci
(2003) is not difficult to show that

2]: Liw(y(An) = Op (nPm!P1(B < 1) +0°1(8 > 1)), (A.60)

uniformly in j € [1,m]. Thus, by Assumption 3, the first term of (A.59) is
Op (NP7 m!'P1(B < 1) +n71(8 > 1)), (A.61)

so the first term of (A.59) is o, (n®m!/2=min{1/2,8}) noting (3.9). Similarly, by (A.60) and Assumptions
1, 3, the second term of (A.59) is

O, ((n’g_l_” + n5_¢) m?>P1L(B < 1)+ (n’B_l_% + nﬁ_qﬁ) ml(8>1)), (A.62)

which is o, (nm?!/2-min{1/2.8}) by (3.10), to conclude the proof of (A.53).
Next, noting that

~ ~ /6\7 A’/S ~ ~ 7 " ~
V'm(ry’ 5) —V= /b:L((’/y\) ) P e'm(r% 5) = Re Z Sjpglv(ayg)m(:y)(/\ﬂ ) (A63)
m j=0

where v(7,6) = (u1:(5 — ), 2:(3))’, (A.54) follows on establishing

em(3,0) —em(y) = op(nmt/Ammin{l/20)), (A.64)

em(3,0) — em(3,0) = em(Y) +em(y) = op(nmt/Ammin{l/20h), (A.65)
bm(3) = bm(7) = op(n*Pm!m2mint1/28h) (A.66)

b () = bin(3) = b (V) + b () = op(nPPm!2min{l/26}) (A67)

where €,,(3,0) is like & (7,0) but with p(\) replacing p(\) in (A.63). We just prove (A.64), (A.65),
the proofs for (A.66), (A.67) being similar but simpler.
The left side of (A.64) is the real part of

Z%{ e (= A5) = o) (<A9)] [0, () = wa ()] + ) (<A5) [11,65.5 ) = walA)| |

+Zsﬂ% [w23) (= A7) = o) (= 2)] wu(X)- (A.68)
7=0

We just consider the third term of (A.68), as, following similar techniques to those of RH, one could
easily show that the same order of magnitude obtained applies also to the whole of (A.68). By Taylor’s
theorem, the third term of (A.68) is the real part of

R— 1

7 W’ _
y o Zsjpj wl) (= Az B)wa(Ay) Zs]pj (—Aji6 —Dwa (X)),  (A.69)
r=1
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where for a vector or scalar sequence ¢,, and real b, wl” (\;b) = (2rn) /2 S, al" (b)p,_ et
al" (b) =d"as (b) /db", and |5 — 7| < |y — |- By a straightforward extension of results in Robinson and
Marinucci (2001, 2003)

m

Zsjpjw&?(—)\j;,@)wu()\j) =0, (nﬁ (logm)" (mkﬁl B<)+1(8> 1))) , (A.70)
§=0

the only differences being that the weights al" (8) that are involved (see Lemma C.1 of RH), are not
covered by the weights of Robinson and Marinucci (2001) (but it can be easily shown that they just
contribute the (logm)" factors), and the smooth weighting factor s;p ();), which, as mentioned before,
can be handled by simple modification of the proofs of Robinson and Marinucci (2001, 2003). Next,
the summation in the second term of (A.69) is bounded by

K3 [l (=358 =) e O) < Kn2 Y ol -7)| = 0, (0742, (A1)
j=0 j=1
for any € > 0 in view of Lemma C.5 of RH. Thus, by Assumption 2, choosing R > (k + 2)/k, the third
term of (A.68) is
Op (n"~"logm (m'P1(B<1)+1(8>1))) = op(nfmt/ A min{1/2.8}), (A.72)
in view of (3.6).
Next, noting that the left side of (A.65) is the real part of
55 55 = i) {wam) (“X) [10,5.5 (A) = waO)] + [a3) (=A0) = oy (“AD] wa(A) } . (AT3)
§=0
by summation by parts, similar analysis to that of (A.68) and a straightforward extension of (A.60), it
can be easily shown that by Assumptions 2, 3, (A.73) is
Op (nﬁf"“ logm(n=” 4+ n~%m) (mlfﬁl B<1)+1(B8>1))), (A.74)

which is o,(nfm!/2-min{1/2.8}) by (3.6), (3.9), (3.10). This proves the Theorem for the W estimates
(2.10).

Finally, we give the proof for the Z estimates (2.11). Define the infeasible estimate 79, (v,9) =
@, (4,8) /85, (3), where

Ay, (7,0) = Re {po ZFO 85 L:(v,6)2(+) ()\j)} B =00 Y 5i Lo (M) (A.75)
=0

We just show that 79, (7, 0) has property M, then this follows immediately for the estimates (2.11) from
the proof for the W estimates. Clearly

e?’l (e] -
Po1:0) v = G e ) = Red Y 8iLuac () - (A76)
m j=0

25



For 5 > 1, the result follows in view of Theorem 2 of RH when m = [n/2]. For m < [n/2],

Z 8 L) (A Z Lya(y) (Aj) + 0p(n7), Z $ile(r)(Nj) ¢ = Z Loy (M) + Op(nw)a
j=1

(A7)
by Propositions 4.1, 4.2 of Robinson and Marinucci (2003); we then conclude as in the case m = [n/2].
For 8 = 1, as mentioned in RH, the result follows by Theorem 4.3 of Robinson and Marinucci (2001)
and (2.13). For 1/2 < 8 < 1 we first prove that

E(ep, (7)) = o(n”). (A.78)

By the orthogonality property (A.6), we can write the left side of (A.78) as the real part of
pr Z / Di(Aj = ) ; an ™ ON Dy (= Mg) {2, M) + 20, 0)} s, (A.79)

where = (a,b) = po {f (a) — f (b)} £. The contribution of the second term in braces in (A.79) is

m n—1
nt Z 2(A;,0) Z ar (n —t)e "N, (A.80)
j=1 t=0

By summation by parts, (A.80) is bounded in modulus by

m—1 n
n 'Y a (n—t) [2(X,0) = E(Nj41,0)] Dj (=As) + E(Am, 0) Dy (=A)| < Km Y 772 < Km,
j=1 t=1
(A.81)
as we only consider 8 < 1, to conclude by (2.13). Finally, the proof of (A.3) readily implies that the
contribution of the first term in braces in (A.79) is o(n?).
Next, we show that, as n — oo,

1

w2 e ()~ Elep, () = (AT [T (i) aw (r). (A52)

0

By Theorem 5.1 of Robinson and Marinucci (2001), as n — oo,

Var(ecv)n (7)) =Var Po Z Iua:('y)(AJ) + 0(n2ﬁ)7 (A83)
implying that
e () = B () = 22 > {we(n)us — Blan(ur} + 0,(n). (A81)
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Thus, in view of previous steps, it just remain to prove that

% Z {th('y)ut - F [l’t(V)ut]} — % th—l(V)A (1) gt = Op(nﬁ). (A85)
t=1 t=2

Note that

Y Az (ue = Elw(ud} = Y Az A1) e — Elz(1)A (1) ]}

=D Aw() (wem1 = wi) = Efee(7) (w1 — w)]} (A.86)

oo  F e )
where w; = ijo Ajer_j, Aj = Zk:jH Ay, and

Yo @) (e —we) = Y {we(v) = 21 (M)} wimt + 21 ()wo — 2 (3w (A.87)

As in the proof of Theorem 5.1 of Robinson and Marinucci (2001), because (3.3) ensures boundedness
of the spectrum of w; and the cross-spectrum of w; with wug, it can be easily shown that

Var {Z;Q {ze(v) = z—1(7)} wtfl} =0(n). (A.88)

Next, F |z1(y)wo| < {Exl('y)zEwg}l/2 < 00, due to the truncation in (1.7) and (3.3). Similarly, by
Robinson and Marinucci (2001, 2003),

1
E |zn(y)wn| < {Ban(v)?Ewl}? < Knf~3, (A.89)
to conclude that (A.86) is o,(n”). Finally, we have to prove that

YowaMAD e =Y {zm(MA1) e — Elai()A (1) &)} = 0,(n”), (A.90)
=2 t=2
but this immediately follows, as Var {}_,_, [®i—1(7) — 2:(7)] A (1) &:} = O (n), by similar arguments
to the ones in the proof of Theorem 5.1 of Robinson and Marinucci (2001), to complete the proof for

8>1/2.
Finally, the proof for 8 < 1/2 follows on showing that

(o]

() —em () = op(n’m!?7P), (A.91)
U (1) = b (7) = 0p(n*m!=?). (A.92)

By the bounds for periodograms given in Robinson (1995b), Robinson (2002) and Assumption 1, the
left side of (A.91) is bounded by

e

2

K pj = poll 11w )1 Mok = pol Tagyy (M)
j=1 k=1

2

m m
< K {n?P-22 Zj1+n Z ELltn—28 < Knf=17mm2tn=68, (A.93)
Jj=1 k=1
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so that (A.91) holds as m?/?2t /n!*" — 0 as n — oo, by (3.12). Finally, by the same arguments, the
left side of (A.92) is bounded by

KZ)\ N Ly (V) < K120 =28, (A.94)

so that (A.92) holds as m!*"/n'*" — 0 as n — oo, again by (3.12), to conclude the proof.

B. Appendix B: Proofs of Propositions

Proof of Proposition 1

First, we show the result for 7. The proof strategy is similar to one employed in Andrews and Sun
(2004). First, by checking conditions in Theorem 8.1 of Wooldridge (1994), we show that there exists
a zero of ¢? (c), say g, for which the same result as that of Proposition 1 holds. Next, noting that
by Velasco (1999a) 4 is d'/?-consistent, where d is a sequence such that for § = (1+n)1(s=1) +
21 (s> 1),

1 d*2 (logd)?
d 720

setting d equal to a multiple of a power root of n so that (B.1) is satisfied, 7 is also log5 [-consistent.
Thus, noting that by our definition of 7, |75 — 7| < [Jo — 75|, 7 will be also log® l-consistent as 7o —
Yg = Op(log75 1). The proof is completed by showing that any zero of ¢2 (¢) which is log” I-consistent
is also {1/2-consistent with asymptotic distribution given in Proposition 1, but this immediately follows
from Robinson (1995a), Velasco (1999a), noting that the function k, (u) is bounded.

The score and Hessian corresponding to the objective function Q% (c) are

— 0 as n — oo, (B.1)

2
(0 205 by ;AT (A5) 220 Al (G’z’,v (€) G, (€) = (GY, (0) ) B2)
v \C) = c ) v \C) = ) .
> kg g A5 (Ag) (6%, ()
respectively, where
@, (c)="2 Z kg (Iog A)? A2T2 (A;), g = 0,1,2. (B.3)

We first check that a condition equivalent to (iv) (b) in Wooldridge (1994) holds in our case. More
precisely we show that

2 (2m) Ugghg 12971/2

17555 (7) - (2q)'f11 (0) an

—q N (0,4pdW,) . (B.4)

Now,

where
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noting that 'b,; = 0. From (3.1), uy; = Yico ¢'Ajei—j, so there exist sequences {bj};io and
& ~ d (0, 1) such that uy, = 3272, 0;€,_;. Then, we could set A = 2?21 A; where

A = w(g)%zlb“{E(IP )\/»)h(/\v))—E(fn(O)Ig()\j)>}, (B.7)
A = 21f11 (0 () Zb,“{ (Ip(/\ ))} (B.8)
Ay = 7r(7> Zbw{fg(xj)h(xj)—fn(O)Jg(Aj)—E(Ig(Aj)h(Aj)—fll(O)Ig(Aj))},(B.g)
Ay = (?)%Z’bq,j{fg(xj)xiv—2wh(Aj)1§(Aj)}. (B.10)
We have

q )\21

= () s )~ a0 = (§) 00 X

The first term in (B.11) equals

() {S 5

i=1

(l*éz b, J|A2(q+1>). (B.11)

\2i , i\ % : )
N
0

which, noting Assumption P1, equals

T A2 12 logl
(p) 20 —7y, +0< — ) (B.13)

because proceeding as in Lemma 5 of Velasco (1999a),

. 1
Pt <> / logu+ 1) u'ky () du = O (" logl) (B.14)
0
implying that
A I\ ? hg Al 13 1og! [20+5/2 10 |
12(1)) (29)! Vaa 7O\ = *O(W>7 (B.15)

where by (4.9), the third term of (B.15) is of smaller order than the first, while the second is o (1). For
A, in view of the proof of Lemma 6 of Velasco (1999a), it is straightforward to show that

( ) Z bq.j {277[ Aj) = 1} —a N (0, W, ®), (B.16)

simply noting that as in (B.12)

PN 2 log |
7D by =W, +0 (z> : (B.17)

29



Next, by Velasco (1999a) and some of our previous arguments Var (Az) = o (1), while

P\ 2 18 (A))
Ay = - E by ih (N\; ”7—217’)\
4 (l) 4] (J){h(Aj)/\Jzy (A7)
= 0, (z<1—9>/21ogz1(9<2)+z—1/21og2z1(9:2)+W—P+1/21og3/2 z) =o0,(1), (B.18)

by the condition we set on the tapering order p.
Expanding B in a similar way to A, we get B = Z?:o B;, where

By = MZ ki B (12 (4)) (B.19)
B = 2@2 qu{E(IP A-)h(A,))_E(fH (O)Jg(Aj))}, (B.20)
By, = Q”f” pz ky.j {P’ E(Ig(xj))}, (B.21)
By = @Z By {1 O B OG) = fur OV TE () = B (I () R Oy) = fur () TE () }+ (B22)
By = pz R {12 O9) X3 = 20h (05) T2 () } (B.23)

where by previous results

1\ ;
B = O <n> , By=0, (z-a) , Bs=o,(1), (B.24)
By = 0, (1*9/21 (0 <2)+ 1 ogll (0 = 2) + 177 log!/? z) , (B.25)

whereas

_ pz kg = f11 (0) + 0 (I logl) , (B.26)

to complete the proof of (B.4).
Next, we check condition (iv) (a) of Wooldridge (1994), which in our framework is

I7 HP (y) —, 4V, > 0. (B.27)
Clearly,
2
» 4(FL, () FL, (0 = (F1,(e)")
7 Hy (v) = . 5 , (B.28)
(FO,U (C))
where .
p ! J c
Fyo(c) =7 ka; <log z) NIP (), 9 =0,1, (B.29)
and by the same decomposition as in the treatment of B, it is easy to show that
1
P (2) = 1 ) [y (0 (og)? du, g = 0,1.2, (B.30)
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so that (B.27) follows immediately.
Finally, the proof for 7 follows on showing that condition (iii) (b) in Wooldridge (1994) holds, that
is
sup ¢, ' |HY (¢) — HY ()| = 0, (1), (B.31)
c»ENW
where N, = {c € @,c}/Q lc—~] < 1}, for a sequence of positive numbers ¢,, increasing with n, such

that ¢, /l — 0 as n — oco. We specify this sequence later. Now (B.31) holds on showing

Sk (1062 (22— a2 2 (s
sup c, Z q,j Ogl j j v(])

cEN,

=0, (1), (B.32)

for g = 0,1,2. By the mean value theorem, the term inside the modulus in (B.32) equals

/ ] 9 2(c—
2= Yt (1087 log AR ). (B.33)
where [¢ — | < |¢c —7|. By Theorem 6 of Velasco (1999b), under our conditions £ ‘)\5715 (M) < K, so
the expectation of the absolute value of (B.33) is bounded by
K Niog 2" pog g a727 1 B.34
e =71 [log 7| llogA;| A7, (B.34)

so the left side of (B.32) is bounded by
le =1l 3N [y -2 _ —3/2 3 2\ -2 3, —3)2
sup — (logn) Z [A;|”Ver < ¢, °/ (logn) nﬁz j Ve =0 ((logn)’lc, ,  (B.35)
cEN, Cn
to conclude the proof of the Proposition for 7 on setting c¢;,, such that

(logn)?1

3/2
CTL

— 0 asn — oo. (B.36)

The proof for 4 holds on showing that

ESE () = SEM) = o (1), (B.37)
I (HE () = HE (7)) op (1), (B.38)
sup ¢, ' [HY (¢) = HE (v)| = o0,(1), (B.39)
ceN,
Jo—7 = op(log™°1). (B.40)
First, (B.37) follows if
5 ST b X (12 09) — 2 () = 0, (1), (B.41)

The expectation of the absolute value of the left side of (B.41) is bounded by
Kl %logn}" {E (A? |w? (A;) — w? (Aj)f) E ()\57 |w? () + w? (Aj)f)} , (B.42)
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which, by the Theorem of Robinson (2002) and results in Velasco (1999b) is

(0] (l_% 1ognzlj7_T_1) =0 (l_% logn (""1(y>r)+logll (y=r)+1(y< r))) ,

which is 0 (1) by (4.9), since v —r < 1/2. Similarly, (B.38) holds because
!/
Y g (og )T AT (17 () = I ()
= O og>n (""L(y>r)+logll(y=7)+1(y<7))) =0(1),

by (4.9). Next, (B.39) holds if

- ! AN
sup ¢, 0. <10g l) (A? — )\?A’> IZ(Nj)| =0, (1),
cEN,
which by the treatment of (B.32) is implied by
sup clle—7 Z log = ’ llog Aj| A; 2fe= 7‘)\27 |12 (A) = IZ (N\))] = 0, (1),
cEN

where |¢ — | < |¢ — 7|. Proceeding as in (B.34), the left side of (B.46) is

0] (053/2 (logn)3 (l"’_Tl (y>r)+logll(y=r)+1(y< 7’))) =0, (1),

on setting ¢, as in (B.36).
Following Robinson (1995a) and Velasco (1999a), we set © = 01 U O3, with

O1={c:y—1/24e¢<c<Va}, Os={c:Vi<e<y—-1/2+¢},

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)

for € € (0,1/4) (taking Oz to be empty in case Vi > v —1/2+¢), in order to show (B.40). Considering
that the bandwidth associated with 7 is d, we show first that 7o — v = o, (d_l/z), so that (B.40)

follows on setting d as a multiple of a power root of n. The main steps consist of establishing

Gh(c) —GE (o)

v _ —10
Seuel)) (o) = 0p (log d) ,
c€O,
where J— )
= BTN ). 67 @) = fu () 53T,
where throughout 3" = 3¢ i=p2p,.» and also

Pr<iélf5(c)§0)ﬂ()asnﬂoo,

where
GE (e

S(ec) = IOgG;;(fy))_2 c—7 Z log A;.
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(B.49)

(B.50)

(B.51)

(B.52)



We first show (B.49). Now

Gp(c)—Gh(e) _ 5% (D™ (1 ) - 2 () (B.53)
ar (e) @55 (5

so that as in the proof of Theorem 5 of Velasco (1999a), the left side of (B.49) is bounded by

-\ 2(c— .\ — 142
Ksup 23" (2 o -rol <23 () mog - moy)
P d g v v\ ="y d RN v (A

c€O,
_ < a1y < )_WE <w>1> — 0, (d), (B.54)

by Robinson (2002), since y—r < 1/2 and € < 1/4. Next, we show (B.51). Setting z = exp (pd_1 S logj)7

we have
D 7 ,7 2(c—7) 5
: _ P _ YIP (.
Pr <1(512fS(c)§0> = Pr 1(5)12fd (z) LA (M) <0
< Pr (g S o — AP () < 0), (B.55)
where 1o
(4 Ti1<i<s
aj = Z _ B.56
J { (%)2(v1 ’\{)’Z<j§d ( )
Now (B.55) is 0 (1) by showing
BN = AT (12 00— 1 O) = 0, (1) (B.57)

By the Theorem of Robinson (2002) the left side of (B.57) is bounded by

K § :z J e d j 2(v1—7) "
—1 J iy—r—1 -1 J y—r—1 1 1
2. <z> J +&d ijzﬂ,,z”pw <Z) j +KdTY ,

(B.58)
which is O (d72¢ 4+ d~'*7~" + d~'logd) = 0 (1), on setting € < (r — + 1) /2, to conclude the proof.

Proof of Proposition 2
For 8 > 1/2, the proof is very similar to that for 5. In fact, (4.15) follows on showing

(S =SEM) = op(1), (B.59)
( 2(v) - H (7)) op (1), (B.60)
cs;\;;c 1|Hp(c) HE()| = o0,(1), (B.61)
Jo—7 = op(log™’1) (B.62)
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These results follow as easily as corresponding ones in Proposition 1, noting that in the present case
~ ~ 2 2
[ (Ag) = IZ ()| < [P = vl [wh (\) wg (=Xy)] + (7 = )" Jwk (3] (B.63)

The only point worth stressing is the proof of (B.59). By (B.63), the left side of (B.59) is bounded by
K-+ logn (17— 1] SN0y X0, (B.64)

so that the left side of (B.59) is O, (I7/2logn ((n¥I'=% +n?¥)1(1/2 < B < 1) +n?1(8 >1))) =
op (1) on setting 9 and [ such that

n*logn  n¥logn
11/2 1B—1/2

— 0 as n — oo. (B.65)

For 8 < 1/2 the proof is also very similar. The main difference is that now (B.59) does not hold,
because its left side is O, (1_1/2 logn (n’/’ll_ﬁ + nw)) =0, (l1/2_/3+“’), on setting [, ¥, ¢, such that

nYlogn  n*¥logn

B TYCR 0 as n — oo. (B.66)

Proof of Proposition 3

First, o
F=g 3 ()T ™ +a0), (.67
s=1—-n
where
T (s) = %Smgﬂ, 520, =T (—s), s <0. (B.68)
t=1

Now u; = us + 7, where
= [ G =) = w1) = 0= ) 2e3), (war (5-) —ar) ] (B.69)

Define T (s)=T(s) + R (s), where

n—s

_ 1 —
I'(s)= - Z upuy g, $>0; = I'(-s), s<0, (B.70)
t=1
and
N 1 n—s R
R(s) = - Z {rori s +uwri s +rug b, s >0, =R (—s), s <0, (B.71)
t=1

and split the first term on the right of (B.67) as f (\) + g ()\) where

Foy= 1 g(3)T@e™ G =5 > g(5) Ris)e™™ (B.72)



By arguments similar to those of the proof of Theorem, r; = r1¢ + 72 + d, where
(=3 0 %y
- o~ /
O )j}_jla;m)um; = @-n) (m) 0). (B

and d; involves terms of smaller order. Hence, the order of magnitude of }AE(S) is given by the order

of n=t ot aib; ,, for the different combinations of a¢, by = 7y, us, © = 1,2. Thus, in view of the

conditions specified in Proposition 4 and Lemmas B.1, B.2, B.3 of RH, uniformly in s,
R(s) = O, (n_”(s) +n” mi“{ﬁ’l}w) =0, (n_“(s)) ) (B.74)

for 1 < min{B,1} — k(s). Then, as b=2 3"~ |g(s/b)| = O(1) by (4.22) and «(s) < 1/2, (B.74)

s=1-n
readily implies that uniformly in A, g(A) = O, (bn*“(s)). By Theorem 5A and a straightforward
modification of Theorem 5B of Parzen (1957),

FO) = F ) =0, (b7 minls 4 (v/m) ), (B.75)

for covariance averaging kernels ¢ satisfying (4.23), so that the first term on the right of (B.67) is

f)+0, (b—s + (Z) T4 bn_”(5)> : (B.76)

as the kernel is chosen such that A > s. R
Finally, as in the proof of Theorem 2.1 of Robinson (1991), @ (\) is bounded in norm by

KS:ZJQ G)|[Fe-9) < K_; 9 (3)]IT =9 +K:§1;n o (2)][Rn -

uniformly in A € [—7, 7]. The second term on the right side of (B.77) can be treated as in the analysis
of g(\), whereas the first term is

0, <n1 f |59 (Z)D =0, (n"1p?), (B.78)

s=1—n

. (B.T7)

by (4.22), since T (n — s) is a sum of s terms whose mean exists and is uniformly bounded, implying by
(B.76) that

F)=-fN) =0, (b—s + (Z) " b 4 n—1b2> : (B.79)

In order to find the “optimal” rate for b, let b ~ n® for some a > 0. Clearly, n®~*(*) dominates n(®—1/2
for any s, whereas n® *(5) and n?*~! share the same rate for & = (14 s) /(1 + 2s), which is not a
sensible choice as we seek estimates of f (\) which could approach the parametric rate n~1/2 for s large
enough. For a < (1+5s)/(1+2s), again n® ") dominates n?*~!. Finally, noting that n=®* and
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n®= ") move in opposite directions when « changes, it is clear that the value of a which maximizes
the rate of convergence should satisfy -as = a — k (s), i.e. a* =k (s) /(1 + s), to conclude the proof.
Proof of Proposition 4

Considering first the contribution of the first term on the right of (B.67), we have

n—1

-~ -~ 1 "\ H —iTA; —iT A,
94105 =5 g (5) R(r) (et — ™) (B.80)

which is bounded in norm, uniformly in j € [1,n], by

n—1 n—1
-1 "\p —132 | ™5
Kn T;n rg (5)’ HR(T) < Kn™'b T:;nﬁ g (g>‘ HR(T) , (B.81)
as
max |exp (ir);) — exp (irAj41)] < [r[n "t (B.82)
J
Thus, by (B.74), (4.22), uniformly in j € [1,n],
Gr1 =05 = Op (n~ 162 (B.83)
Next, defining a1; = f; — Ef;, azj = Ef; — f;, a1,j41 — a1 is bounded in norm by
n—1 r )
“2=. (5) @) = EE@) (e =) | (B.84)

which is, uniformly in 5, O,(b*n~3/2) by (B.82) since (4.22) implies that b=2>"_!_|rg(r/b)| = O (1),

r=1—-n
and &; being an iid sequence with finite fourth moment and f () being continuous readily implies that,

uniformly in r, T (r) — ET (r) = O, (n"1/2). Next, by (B.82), asj41 — ag; is, uniformly in j, bounded
in norm by

> g (D) el ot 2o ()] I0e+ Kt Y HIC@). (855)

r=1—-n r=1-n [r|>n

The third term is bounded by
En=* Y |r[* T (n)] =o(n*), (B.86)

|r|>n

as Assumption P5 implies >°° __|r|”||T (r)|| < oo. As again by Assumption P5, sup, |r|||T (r)| < K,
the second term is bounded by

n—1

Kn™? Z 7| ‘g (%)‘ =0 (1*n7?), (B.87)

r=1—n
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from (4.22). Finally, the first term in (B.85) is bounded by

Kot 3 [1=g (D) IIe @)l + Kt 30 [1=g ()] I IT )1, (B.88)

|r|<eb |r|>eb

for € € (0,¢€), where € is given in Assumption P5. Letting ¢ = h — s, the first term in (B.88) is bounded
by
Kn=tpr b= CH) N 7D ()| = 0 (7100 (B.89)

|r|<eb

from Lemma 4 of Parzen (1957). The second term in (B.88) is bounded by

-1 |r|s —o(n-1pt—
Kn lﬂgeb(bg)s_l IT )] = o0 (n~"0'~) . (B.90)

to conclude as in (B.89). Finally, @jﬂ — @j is bounded in norm by

n—1

Kn~1 Z rg(%)’“f(n—T)HJranl "il

r=1—-n r=1-n

o (5)| [Rn=n

, (B.91)

uniformly in j. The second term in (B.91) can be treated as (B.81), whereas by the previous analysis,

the first term is .
O, <n2 Z r? ‘g (%) ‘) =0, (n %), (B.92)

by (4.22). Clearly, b?n~17%(5) dominates b*n=3/2, b>n~2 and also b3n~2, since this last rate and
b?>n~17%) are only equal for b ~ n(1T9)/(0+29) when B < 1/2, b ~ n(+2s(0-(8=¢))/(1+2s) = Als0,
n~ 1'% dominates n ™%, equating it only when s = 1.
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TABLE 3
MONTE CARLO BIAS OF 7,79, g, 7%, 7y FOR m = I

n 64 128 256
61 0,6 012 4,12 4206 012 412 42| 0.6 012 4,12 .4,2
U; | -.003 -001 -.002 .000 |-.00I .000 -.001 .000| .000 .000 .000 .000
v9 | -.003 -001 -.003 .000 |-.001 .000 -.001 .000 | .000 .000 .000 .000
WN | p |-005 -.001 -.004 .000 |-.002 .000 -.001 .000| .000 .000 .000 .000
75 | -.006 -.001 -.004 .000 |-001 .000 -.001 .000 | .000 .000 .000 .000
vy | -.005 -.001 -.007 .000 |-.002 .000 -.003 .000 | .000 .000 -.001 .000
U; | 041 001 .007 .000 | .029 .000 .004 .000 | .019 .000 .001 .000
79 | .039 .001  .007 .000 | .027 .000 .003 .000 | .018 .000 .001  .000
AR | wp | 063 -.002 .019 -.001 | .045 -.001 .010 .000 | .029 .000 .004 .000
¥9, | 061 -002 .019 -.001 | .042 -001 .010 .000 | .026 .000  .004 .000
vy | 101 002  .032 .000 | .082 .001 .019 .000 | .066 .000 .011  .000
U; | -.045 -001 -.006 .000 | -.031 .000 -.003 .000 | -.022 .000 -.00I .000
v9 | -041 -001 -.006 .000 |-.027 .000 -.002 .000 |-.020 .000 -.001 .000
MA | g | -.065 .001 -.017 .00l |-043 .001 -.007 .000 | -.028 .00l -.002 .000
v% | -.063 001 -018 .001 |-040 .001 -.007 .000 | -.025 .001 -.002 .000
vy | -112 -.003 -.034 .000 | -.090 -.001 -.020 .000 | -.074 .000 -.011 .000
TABLE 4
MONTE CARLO BIAS OF 7}, 7%, Up, U%, Uy FOR m = 111
n 64 128 256
461 0,6 012 412 42]0.6 012 412 42| 0.6 012 4,12 .42
Ur | -.003 -001 -.003 .000 |-.00L .000 -.001 .000| .000 .000 .000 .000
79 |[-003 -001 -.003 .000 | .000 .000 -.001 .000| .000 .000 .000 .000
WN | p |-.005 -001 -.005 .000 |-.002 .000 -.002 .000| .000 .000 .000 .000
v% | -.006 -.001 -.006 .000 |-001 -.001 -.002 .000| .00L .000 .000 .000
vy | -.005 -.001 -.007 .000 |-.002 .000 -.003 .000 | .000 .000 -.001 .000
U; | 052 .00 .009 .000 | .037 .000 .004 .000| .025 .000 .002 .000
v9 | 046 .001  .007 .000 | .032 .000 .004 .000 | .021 .000 .00l .000
AR | wp | 082 -001 .024 -.001 | .057 -.001 .012 .000 | .038 .000 .005 .000
75 | 089 000 .029 -.001 | .058 -.001 .013 .000 | .037 .000 .005 .000
vy | 121 003  .033  .000 | .097 .001 .020 .000 | .078 .000 .01l  .000
U; | -.062 -001 -.009 .000 |-.043 .000 -.004 .000|-.030 .000 -.00I .000
v9 | -053 -.001 -.007 .000 |-.036 .000 -.003 .000 |-.026 .000 -.001 .000
MA | Up | -.087 .000 -.023 .001 |-058 .00l -.010 .000 | -.038 .000 -.003 .000
7% | -.088 000 -.025 .001 |-.057 .001 -.011 .000 | -.037 .000 -.003 .000
vy | -145 -.004 -.036 .000 | -.118 -.001 -.020 .000 | -.099 .000 -.011 .000
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MONTE CARLO S$.D. OF 77,79, 7p, 7%, 7y FOR m = I

TABLE 5

n 64 128 256
v610,.6 012 412 420.6 012 412 42[0.6 0,12 4,12 .4,2
v; | 111 026 .072 .009 | .065 .011 .037 .003 | .040 .004 .020 .00l
79 | 110 .025 .070 .009 | .065 .010  .037 .003 | .039 .004 .020 .001
WN | op | .115 030 .077 .010 | .068 .012  .041 .003 | .042 .005 .021 .00l
v% | 114 .030 077 .010 | .068 .011  .041 .003 | .041 .005 .021 .001
vy | 098 025 .080 .011 | .058 .010 .046 .003 | .036 .004  .025 .00l
U; | .099 021 .060 .008 | .060 .009 .032 .002 | .036 .004 .017 .00l
79 | .098 021 060 .008|.059 .009 .032 .002 | .036 .004 .017 .001
AR | 7y | .108 .030 .076 .010 | .065 .013  .042 .003 | .041 .005 .023 .00l
v% | 110 .031 078 .011 | .065 .013  .043 .003 | .041 .005  .023 .001
vy | 093 022 .070 .010 | .060 .009  .041 .003 | .039 .004 .022 .00l
U; | 093 020 058 .007 | .058 .009 .031 .003 | .037 .004 017 .001
79 [ .092 020 057 .007 |.058 .009 .031 .003 | .036 .004 .017 .001
MA | wp | .102 .025 .068 .008 | .064 .011 .038 .003 | .039 .005 .021 .00l
75 [ 102 026 069 .009 | .064 .012 .039 .003 | .040 .005 .022 .00l
vy | 088 021  .066 .009 | .059 .009 .040 .003 | .041 .004 .023 .00l
TABLE 6
MONTE CARLO S.D. OF 77,79, Up, 7%, Uy FOR m = I11
n 64 128 256
v610,.6 012 412 420.6 012 4,12 4206 0,12 4,12 .4,2
Ur | .103 026 .071 .009 | .06 .010 .037 .003 | .038 .004 .020 .00l
79 | .108 .025 073 .009 | .068 .010 .039 .003 | .042 .004 .021 .001
WN | op | 105 .029 .075 .009 | .062 .011  .041 .003 | .039 .005 .021 .00l
v5, | 114 030 087 .009 | .069 .012 .048 .003 | .044 .005 .024 .001
Ty | 086 025 078 .010 | .052 .010  .046 .003 | .033 .004 .025 .00l
U; | .097 021 .061 .008 | .060 .009 .033 .002 | .037 .004 .017 .001
v9 | .097 021 059 .008 |.059 .009 .032 .002 | .036 .004 .017 .001
AR | 7p | 097 029 068 .010 | .061 .012  .037 .003 | .039 .005 .021 .00l
7% | 110 030 075 .010 | .066 .013  .040 .003 | .043 .005  .022 .00l
vy | 092 .022  .069 .010 | .062 .009 .040 .003 | .042 .004 .022 .00l
Ur | 090 020 057 .007 | .060 .009 .032 003 | .039 .004 018 .001
79 | .091 .020 .057 .007 | .059 .009 .032 .003 | .039 .004 .018 .001
MA | 7p | .096 .023 .063 .008 | .064 .011 .037 .003 | .041 .005 .020 .00l
v5 | 105 024 068 .008 | .071 .011  .039 .003 | .045 .005 .021 .001
vy | 089 021  .066 .009 | .064 .009 .040 .003 | .048 .004 .022 .00l
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TABLE 7
EMPIRICAL SIZES OF W; AND Wr FOR m =1

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m Y 0 W[ WF W[ WF W[ WF W[ WF W] WF W] WF
0 .6 | .106 .171 .096 .146 .083 .121 | .175 .222 146 .206 .140 .191
WN | 0| 12].075 .190 .062 .147 .052 .125 | .144 247 123 .195 .120 .169
4112 .094 179 078 139 .061 .122 | .157 .244 .132 .198 .116 .165
410 2 |.062 172 072 154 .066 .118 | .125 .222 .131 .198 .122 .176
0| .6 | .256 .202 .222 .206 .203 .173 | .360 .274 .319 .286 .290 .259
AR | 0 | 1.2 | .190 .103 .142 .078 .128 .053 | .267 .149 .225 .101 .204 .084
41121 .200 .155 154 117 121 .100 | .285 .217 .241 .187 .203 .162
41 2 | .18 079 .142 .065 .126 .037 | .273 .113 217 .090 .193 .069
0| .6 |.179 .220 .155 .238 .158 .213 | .246 .306 .247 .317 .231 .271
MA | 0| 12].093 .156 .098 .155 .069 .112 | .167 .211 .155 .198 .124 .150
4 1.2].126 189 .095 .176 .078 .147 | .195 .276 .166 .241 .148 .205
41 2 .09 .131 .091 .130 .080 .091 | .151 .172 .160 .181 .128 .137

TABLE 8
EMPIRICAL SIZES OF W7 AND Wz FOR m =1

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
mo| oy 6 | W We o WP We o W oWe | We W Wy We o WP WS
0o .6 |.103 .177 .090 .143 .078 .117 | .175 .224 .151 .203 .133 .180
WN | 0] 12].073 .192 .065 .149 .050 .126 | .137 .247 .122 194 122 .172
41121 .091 177 077 134 .03 .120 | .163 .239 .126 .192 .111 .165
41 2 .064 .169 .075 .156 .065 .119 | .123 .224 .128 .199 .117 .174
0| .6 |.248 .203 .212 .202 .177 .161 | .345 .280 .303 .274 .269 .239
AR | 0 | 1.2 | .187 .106 .144 .078 .127 .055 | .268 .149 .221 .108 .203 .088
4112 .194 159 153 132 .117 111 | .281 .224 .235 .199 .202 .172
41 2 | .18 .078 .145 .067 .125 .037 | .277 117 217 .094 .195 .071
0| .6 |.168 .215 .145 .225 .143 .197 | .236 .301 .234 .302 .209 .266
MA | 0| 12].091 .154 .097 .158 .068 .108 | .170 .208 .157 .204 .121 .156
4112 .122 196 .093 .177 .076 .157 | .193 .275 .167 .261 .144 .215
A1 2 |.091 132 .092 .128 .082 .091 | .150 .171 .157 .180 .129 .137

42




TABLE 9
EMPIRICAL SIZES OF Wy AND Wr FOR m = I11

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m Y 0 W] WF W[ WF W] WF W[ WF W[ WF W] WF
0 .6 | 127 185 100 .146 .090 .123 | .198 .233 .159 .204 .155 .192
WN | 0| 12].074 .192 .065 .142 .052 .126 | .141 .246 .122 .199 .123 .170
4112 ] .104 187 .086 .142 .064 .121 | .171 .251 .139 .200 .121 .168
410 2 | .067 174 071 152 .062 .117 | .121 .219 .126 .202 .122 .172
0| .6 | .316 .259 .274 .266 .255 .240 | .391 .353 .353 .350 .346 .332
AR | 0 | 1.2 | .191 .102 .147 .076 .127 .052 | .278 .142 216 .103 .204 .084
4112 .216 159 166 .113 132 .097 | .297 .227 .252 .183 .207 .154
412 | .195 077 139 .066 .126 .039 | .268 .116 .223 .096 .197 .071
0| .6 |.237r .308 .242 318 .238 .281 | .326 .410 .328 .395 .323 .373
MA |0 |12].099 .160 .099 .152 .066 .104 | .172 .204 .160 .199 .121 .147
4 12].134 201 .108 .177 .087 .149 | .216 .276 .184 241 .156 .203
41 2 1.09 .139 .089 .136 .078 .090 | .151 .179 .165 .183 .129 .139

TABLE 10
EMPIRICAL SIZES OF W7 AND Wg FOR m = II]

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
mo |y 6 | W o We o WP We o W oWe | WP W Wy We o WP WS
0| .6 |.149 .219 .131 .18 .118 .163 | .217 .275 .205 .252 .188 .243
WN | 0] 12].066 .192 .066 .142 .051 .127 | .143 .250 .128 .196 .123 .174
4 1.2 117 228 .103 .164 .079 143 | .192 286 .153 .225 .139 .201
41 2 |.066 .172 .074 .155 .063 .118 | .125 .223 .124 196 .118 .176
0| .6 |.279 .306 .231 .264 .208 .227 | .367 .368 .328 .351 .294 .320
AR | 0 | 1.2 | .18 .101 .145 .077 .127 .055 | .274 .147 .218 .108 .204 .089
4 1.2].203 173 157 .131 115 111 | .282 .255 .243 .198 .201 .165
41 2 189 .079 142 .065 .125 .038 | .269 .115 .221 .093 .194 .073
0| .6 |.211 .307 .202 .316 .201 .283 | .283 .401 .271 .393 .268 .355
MA | 0 | 1.2 | .097 .157 .095 .149 .065 .105 | .174 .210 .155 .206 .120 .156
4 1.2].128 216 .103 .189 .083 .157 | .210 .300 .173 .251 .151 .222
41 2 .089 .134 .090 .131 .078 .090 | .150 .170 .156 .179 .126 .135

43




TABLE 11
MONTE CARLO BIAS OF Uy, Uas, U, Uar, Uy FOR p= 5, ¢ =1 =0

n 64 128 256
6104 24 48 71|04 2.4 4.8 7,1]0.4 2,4 4.8 .71
vr | .060 .182 .055 .100 | .043 .164 .040 .080 | .028 .131 .025 .055
vor | 025 120 .024 .053 | .019 .110 .018 .044 | .010 .079 .009 .025
I vp | 072 204 .069 .122 | .054 .194 .052 .107 | .031 .140 .031 .066
vor | 031 164 .031 .077 | .026 .162 .026 .075 | .005 .089 .009 .033
vy | 149 276 .140 .194 | .119 .254 109 .163 | .096 .226 .085 .132
vr | 119 263 .092 .142 | .093 .240 .068 .116 | .063 .203 .044 .082
vor | 069 216 .054 .101 | .050 .191 .037 .078 | .029 .153 .021 .050
II | vy | 141 282 116 .173 | .108 .256 .088 .144 | .070 .212 .054 .098
Uop | 105 .259 .091 .150 | .075 .225 065 121 | .038 .172 032 .072
vy 211 321 161 .204 | 181  .301 131 176 | 146 .273 .099 138
vy | JA77 318 120 .169 | .127 279 .084 133 | .085 .235 .052 .092
vor | 123 288 .085 .138 | .078 .242 .053 .101 | .044 .189 .028 .062
II1 | 7F 197 0 .329 143 0195 | 143 .289 103 .157 | 093 .242 .064 .109
Uop | 164 315 123 182 | .106 .266 .081 .140 | .057 .207 .042 .086
vy | .29 351 174 208 | .212 323 137 .178 | 170  .292 103 .140

TABLE 12
MONTE CARLO S.D. OF U, Vs;,Vp,Vor,Vy FOR p = .5, p=1=0

n 64 128 256
60,4 24 48 71004 24 4.8 71|04 2.4 4.8 .71
vr | .262 521 .261 .382 | .185 429 188 .297 | .115 .300 .116 .197
Uor | 288 .648  .286  .427 | .199 520 .199 .319 | 121  .357 121  .206
I vp | 291 530 .286 413 | .207 .455 .207 .336 | .129 325 .128 .221
vap | 380 708  .363 .514 | .268 .637 .248 .408 | .162 .440 .157 .266
vy 201 342 221 354 | .146  .289 74 308 | .094 .207 113 .219
vr | 172 268 185 283 | .117 .206 .129 222 | .084 .171 .089 .159
vor | 196 332 .202  .292 | .130 .252 .135 .214 | .091 .209 .092 .153
IIm| vy | 179 267 .191 .285 | .121 .205 .136 .233 | .088 .170 .094 .171
Uop | 214 328 221 311 | 142 .246 153 242 | 103 .212 107 177
vy | 137 201 174 298 | .097 158 .133 .256 | .070 .127 .095 .197
vr | 144 198 169 273 | 105 .167 .123 .223 | .076 .140 .084 .159
Tor | 164 233 A78 0 .269 | 116 .196 1250 .209 | .082 .167 .085  .146
II1 | 7p 153 .204 710 .269 | 110 170 128 228 | .078  .139 .087 .167
Uop | 179 241 187 275 | 125 198 137 .228 | .088 .164 .095 .163
vy | 123 167  .166 .289 | .091 .140 .130 .252 | .066 .112 .093 .195
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TABLE 13
EMPIRICAL SIZES OF W; AND Wr FOR p= .5, ¢ =9 =0

« .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m Y 1) W[ WF WI WF W[ WF W[ WF W[ WF W[ WF
0 .4|.172 .263 .151 .240 .111 .209 | .247 .335 .228 .298 .192 284
I |.2].4).275 .336 .283 .327 .263 .311 | .362 .416 .354 .398 .357 .381
41 .8 | .170 242 161 .240 .108 .194 | .244 314 .232 .297 .199 .264
12220 275 221 .263 193 228 | .308 .345 .292 .341 .277 .299
0|.4|.273 .343 .263 .361 .232 .320 | .361 .425 .346 .443 .326 .400
II | .2 | 4| .434 473 .490 .549 518 .536 | .511 .550 .578 .622 .588 .605
4.8 1.252 325 .236 .343 .206 .300 | .329 .399 317 422 .294 .383
01 1.339 398 380  .448  .344 406 | .430 .476 .470 527 .423 .485
0| .4 .418 488 .407 481 .365 .419 | .521 .571 .502 .569 .462 .515
IIm { .2 | 4| .618 .646 .665 .701 .682 .706 | .694 .708 .741 .768 .747 .764
4.8 1.322 392 .301 .401 .261 .349 | 412 473 388 476 .348 .432
701 | 444 488 451 513 417 480 | .514 561 .529 .607 .506 .548
TABLE 14
EMPIRICAL SIZES OF Wy; AND Worp FOR p=.5,0=9% =0
« .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m |y |0 | War Wap Wor Wap Wor Wop | Wor Wap Wop Wap Wap Wap
0.4 .206 .312 .158 .274 .121 .242 | .287 .391 .246 .336 .210 .309
I | 2] 4] .352 430 .322 .394 .300 .353 | .455 .507 .412 475 .384 431
4 0.8 .197 312 162 267 121 228 | .286 .380 .247 333 211 .295
01275 333 231 285 207 259 | 362 414 298 364 .275 .336
0.4 .262 .347 221 356 .196 .321 | .338 .433 .308 .438 .281 .402
II | 2| .4 .439 495 447 529 446 .504 | .513 573 .522 .606 .522 .574
4.8 .262 354 227 371 192 310 | .346 446 304 444 281 .398
1 344 4150 332 441 306 394 | 433 499 421 523 381  .460
0| .4).329 .448 276 .412 .220 .339 | .412 .526 .358 .488 310 .424
IIr | .2 | .4 .563 .623 .582 .647 .562 .613 | .636 .691 .649 .703 .631 .672
4 0.8 .292 400 .246 .395 .204 .336 | .379 484 339 472 286 411
|1 | 415 492 404 497 341 440 | 502  .566 .488 .571 441 528
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