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Abstract 
 
 

A semiparametric bivariate fractionally cointegrated system is considered, integration 
orders possibly being unknown and I (0) unobservable inputs having nonparametric 
spectral density. Two kinds of estimate of the cointegrating parameter ν  are considered, 
one involving inverse spectral weighting and the other, unweighted statistics with a spectral 
estimate at frequency zero. We establish under quite general conditions the asymptotic 
distributional properties of the estimates of ν, both in case of “strong cointegration” (when 
the difference between integration orders of  observables and cointegrating errors exceeds 
1/2) and in case of “weak cointegration” (when that difference is less than 1/2), which 
includes the case of (asymptotically) stationary observables. Across both cases, the same 
Wald test statistic has the same standard null χ2 limit distribution, irrespective of whether 
integration orders are known or estimated. The regularity conditions include unprimitive 
ones on the integration orders and spectral density estimates, but we check these under 
more primitive conditions on particular estimates. Finite-sample properties are examined in 
a Monte Carlo study. 
 
 
JEL Classification: C32. 
 
Keywords: Fractional cointegration, semiparametric model, unknown integration orders. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
©  The author.  All rights reserved.  Short sections of text, not to exceed two paragraphs, 
may be quoted without explicit permission provided that full credit, including © notice, is 
given to the source. 



1. Introduction

Semiparametric modelling has become popular in cointegration analysis of I(1) time series with I (0)
cointegrating errors. In the simplest parametric setting, observables follow a random walk and coin-
tegrating errors are serially uncorrelated. Autoregressive (AR) extensions have been developed (e.g.
Johansen, 1991), but optimal inference on the unknown cointegrating relations loses validity if the AR
order is under-speci�ed, or if the process lies outside the AR class. Phillips and Hansen (1990), Phillips
(1991a) and others showed that one can do as well allowing the I (0) inputs to have nonparametric
autocorrelation, under suitable conditions on the bandwidth employed in the smoothed nonparametric
spectrum estimate.
Another source of possible misspeci�cation is the basic I (1) =I (0) framework itself. Recently, opti-

mal inference has developed in a fractional setting (see e.g. Jeganathan, 1999, Robinson and Hualde,
2003). Here, integration orders were allowed to be unknown, which is a non-trivial generalization of
the I (1) =I (0) assumption, but theory was developed only in a fully parametric setting, incurring the
familiar concern about misspeci�cation. On the other hand, Dolado and Marmol (1996), Kim and
Phillips (2000) have allowed for nonparametric autocorrelation in I (0) inputs. However these authors
have either assumed knowledge of integration orders, or proposed sub-optimal estimates.
The present paper develops optimal inference on cointegrating relations in a semiparametric frac-

tional setting, with unknown integration orders. To describe our model, we introduce the following
de�nitions corresponding to ones in Robinson and Hualde (2003) (hereafter RH). For any scalar or
vector sequence vt, t = 0;�1; :::; we denote

v#t = vt1(t > 0); (1.1)

where 1(�) is the indicator function. De�ning the di¤erence operator � = 1 � L; where L is the lag
operator, the fractional di¤erence operator is given formally, for any real �; � 6= �1;�2; ::, by

��� =
1P
j=0

aj(�)L
j ; aj(�) =

�(j + �)

�(�)�(j + 1)
; (1.2)

with � denoting the gamma function. With the prime denoting transposition, ut = (u1t; u2t)
0 is a

bivariate covariance stationary unobservable process with zero mean and nonparametric spectral density
matrix f(�), given by

E(u0u
0
j) =

Z �

��
eij�f(�)d�; (1.3)

that is at least nonsingular and continuous at all frequencies. For real-valued �, �, � satisfying

� 6= 0; (1.4)

� � � > 0; (1.5)

where at least � is unknown, a cointegrating relation between the scalar observable sequences xt, yt is
given by

yt = �xt +�
���u#1t; (1.6)

xt = ���u#2t; (1.7)



for t = 0;�1; :::.
When � = � = 1, this is just the usual bivariate cointegrated I (1) =I (0) system. However to

cope with fractional systems when � falls in the nonstationary region � > 1=2, the truncations in
(1.6), (1.7) ensure that xt = yt = 0, for all t � 0. Under (1.6), (1.7), xt and yt are said to have
integration order � and are called I (�) processes, while the cointegrating error ����u#1t has integration
order � � � < � and is called an I (� � �) process. This version of fractional integration (�Type II�
process) and cointegration, and terminology, accords with that in RH. Alternative ones (based on �Type
I� fractional processes), for which the procedures developed below nevertheless apply, are in Dolado
and Marmol (1996), Jeganathan (1999), Kim and Phillips (2000). None of these references covers �
within the stationary region, � 2 (0; 1=2), which is permitted by our (1.5); we call this �stationary
cointegration�. A larger subset of (1.5) (where � > 1=2 is possible), consists of � 2 (0; 1=2), which
we call �weak cointegration�, because � is the gap between the integration order of observables and
cointegrating error. The case � > 1=2, which includes the usual I (1) =I (0) one, is called �strong
cointegration�. Stationary cointegration was discussed by Robinson (1994a) and �weak cointegration�
by Hualde and Robinson (2001). The main contribution of the present paper is to not only extend
the method of estimating � in RH (under � > 1=2) to allow a nonparametric f , but to simultaneously
cover also � < 1=2, including � < 1=2, unlike in any previous paper. Asymptotic theory for point
estimation di¤ers signi�cantly across these cases, but we �nd that the same rules of inference prevail
throughout, with a Wald statistic having a null limit �2 distribution. However, while the estimates
have optimal properties when � > 1=2, and indicate no loss in the lack of parametric assumptions on
f , or of knowledge of �, �, they are not when � < 1=2, indeed having slower convergence rate than is
optimal here.
We �nd it convenient to treat our case of nonparametric autocorrelation in the frequency domain.

This prompts consideration of two alternative methods of estimating �. One involves a ratio of weighted
periodogram averages either across all frequencies in the Nyquist band, or only over those within a
shrinking neighbourhood of zero frequency. The weighting is inverse with respect to smoothed esti-
mates of f . Because of the concentration of spectral mass around zero frequency, where f changes
little, computationally simpler estimates, with the same asymptotic properties, replace the weights by
multiplicative factors based on an estimate of f (0). Both types of estimate are described in the follow-
ing section. Regularity conditions and asymptotic properties are presented in Section 3. The conditions
include some unprimitive ones on the estimates of �, � and f , and these are checked in Section 4 for
particular estimates; this is an especially delicate issue in our semiparametric setting. Section 5 contains
a Monte Carlo study of �nite-sample behaviour. All proofs are relegated to Appendices.

2. Estimation of �

Using again notation from RH, we de�ne for real c, d

zt(c; d) = (yt(c); xt(d))
0
; (2.1)

where for any sequence fwtg, and real c, wt(c) = �cw#t . Thus (1.6), (1.7) can be written as

zt(
; �) = �xt(
)� + u
#
t ; (2.2)

introducing � = (1; 0)0 and

 = � � �; (2.3)
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the integration order of the cointegrating error. Note that we allow 
 to lie in the nonstationary region
when � does.
As discussed by RH, the �ltering of xt, yt in (2.2) provides the orthogonality that justi�es a form

of generalized least squares estimation. However they treated autocorrelation in ut parametrically,
whereas we require a smoothed nonparametric estimate of f (�). Given an estimate, bf (�), de�ne

bp (�) = � 0 bf (�)�1 , bq (�) = � 0 bf (�)�1 �: (2.4)

For generic sequences �t, �t, de�ne the discrete Fourier transform, cross-periodogram and periodogram

w� (�) =
1

(2�n)
1
2

nX
t=1

�te
it�, I��(�) = w� (�)w� (��)0 , I�(�) = I��(�): (2.5)

Denote by �j = 2�j=n, j = 0; :::; [n=2], the Fourier frequencies, where [�] means integer part.
Given observations xt, yt, t = 1; :::; n, de�ne the statistics

bam (c; d) = Re

8<:
mX
j=0

sjbp (�j) Iz(c;d)x(c)(�j)
9=; , bbm (c) = Re

8<:
mX
j=0

sjbq (�j) Ix(c)(�j)
9=; ; (2.6)

baom (c; d) = Re

8<:bp (0)
mX
j=0

sjIz(c;d)x(c)(�j)

9=; , bbom (c) = bq (0) mX
j=0

sjIx(c)(�j); (2.7)

for an integer m such that
m!1 as n!1; 1 � m � n=2; (2.8)

and sj = 1, j = 0; n=2, sj = 2, otherwise. De�ning

b�m (c; d) = bam (c; d)bbm (c) , b�om (c; d) = baom (c; d)bbom (c) ; (2.9)

we consider the two sets of estimates

W (�weighted�) : b�m(
; �); b�m(b
; �); b�m(
;b�); b�m(b
;b�); (2.10)

Z (�zero-frequency�) : b�om(
; �); b�om(b
; �); b�om(
;b�); b�om(b
;b�): (2.11)

Both, (2.10) and (2.11) cover cases when both, one or neither of 
, � is known, the former including
the traditional one in which 
 = 0, � = 1 is known. When m = [n=2], (2.10), (2.11) are semiparametric
counterparts of the parametric estimates in (2.18) and (3.13) of RH, because the real operators and sj
can be dropped and summations over [0; [n=2]] replaced by ones over [1; n], due to symmetry properties.
As noted there, the computational simplicity of the Z estimates (2.11) over the W estimates (2.10) is
not only due to having to estimate f at only frequency zero, but to

bao[n=2] (c; d) = bp (0)
2�

nX
t=1

zt (c; d)xt(c), bbo[n=2] (c) = bq (0)
2�

nX
t=1

x2t (c): (2.12)

However, RH found, in their parametric setting with � > 1=2, that �zero-frequency�estimates only do
as well as �weighted�ones when � > 1; for � = 1 a �second-order bias�appears and for 1=2 < � < 1

3



the convergence rate is inferior due to the lack of optimal weighting, and in each case the mixed-normal
asymptotics which underlies the desirable limit null �2 distribution of Wald test statistics, is lost.
Requiring m to satisfy

m=n� ! 0; as n!1 (2.13)

in (2.11), repairs this defect. On the other hand for � < 1=2 an alternative condition limiting the
increase of m is imposed,

m1+2#=n2# ! 0, as n!1, some # > 0, (2.14)

with respect to both W and Z estimates. # relates to the smoothness of f at frequency 0.
Essentially, (2.13) and (2.14) correct for simultaneity bias due to correlation between xt and u1t

in (1.6), as in earlier work of Robinson (1994a), Robinson and Marinucci (2001, 2003) on the simple
estimate based on un�ltered data

�m =
Re
nPm

j=0 Ixy(�j)
o

Pm
j=0 Ix(�j)

: (2.15)

For m = [n=2], �m is the ordinary least squares (OLS) estimate in the regression of yt on xt, and under
(2.14) �m is a narrow-band least squares (NBLS). Robinson (1994a) found that m=n! 0 is necessary
for consistency of (2.15) when � < 1=2 (see also Christensen and Nielsen, 2001), and Robinson and
Marinucci (2001, 2003) found that m=n ! 0 reduces the bias of (2.15) when � > 1=2 but � + 
 � 1.
For similar reasons, (2.13) is needed for our result on the ��ltered�estimates (2.11) when 1=2 < � � 1,
whereas (2.14) is needed for both W and Z estimates when � < 1=2. Phillips (1991a) considered similar
estimates to b�m (0; 1), b�om (0; 1) assuming 
 = 0, � = 1 is known.
3. Regularity conditions and asymptotic theory

We introduce �rst a series of regularity conditions. Let I2 be the 2-rowed identity matrix. For the W
estimates (2.10) we introduce

Assumption 1. The process ut; t = 0;�1; :::; has representation

ut = A (L) "t, A (z) = I2 +
1X
j=1

Ajz
j ; (3.1)

where

det fA (z)g 6= 0; jzj = 1; (3.2)

A(ei�) is di¤erentiable in � 2 [��; �] with derivative in Lip (�), � > 1=2, and with k�k denoting the
Euclidean norm, the "t are independent and identically distributed vectors with mean zero, positive
de�nite covariance matrix 
; and E k"tkp <1; p � 4; p > 2=(2� � 1):
This is Assumption 1 of RH and is easily satis�ed if ut is a stationary autoregressive-moving average

(ARMA) process, imposing a global smoothness condition on f (�) which implies that

1X
j=1

j kAjk <1,
1X

r=�1
jrj k� (r)k <1; (3.3)
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where � (r) = E
�
utu

0
t�r
�
. It is imposed even under (2.14) because it enables the use of the functional

limit theorem of Marinucci and Robinson (2000). However, for the Z estimates (2.11) we can slightly
relax it to

Assumption 1o . Assumption 1 holds with the condition det fA (1)g 6= 0 , replacing (3.2).
Both sets of estimates use:

Assumption 2. There exists K <1 such that

jb
j+ ���b���� � K; (3.4)

and � > 0 such that b
 = 
 +Op
�
n��

�
, b� = � +Op

�
n��

�
; (3.5)

where, as n!1
n��m1�maxfminf�;1g;1=2g logm! 0: (3.6)

On bf we impose either of the following two assumptions, for the W and Z estimates respectively.

Assumption 3. Uniformly in j, there exist { > 0, � > 0, such that

bf (�j)� f (�j) = Op
�
n�{

�
; (3.7)bf (�j+1)� f (�j+1)� � bf (�j)� f (�j)� = Op

�
n��

�
; (3.8)

where, as n!1

n�{m1�maxfminf�;1g;1=2g ! 0; (3.9)

n��m2�maxfminf�;1g;1=2g ! 0: (3.10)

Assumption 3o . There exists { > 0 such that

bf (0)� f (0) = Op
�
n�{

�
; (3.11)

for which (3.9) is satis�ed.

Assumptions 2, 3 and 3o are unprimitive, and it is not always straightforward to see how they can be
satis�ed. The most familiar semiparametric estimates of integration orders and smooth spectral densities
have convergence rates no better than n2=5, so for example (3.6) and (3.9) cannot hold when m = [n=2]
and � � 3=5. To cover all situations some bias-reducing device is required. For smooth spectrum
estimation, Parzen (1957) proposed a method corresponding to the use of higher-order kernels in the
frequency domain, and recently Robinson and Henry (2003) employed higher-order kernels to improve
the convergence rate of semiparametric estimates of stationary integration orders. We thus pursue a
higher-order kernel approach to check Assumptions 2, 3 and 3o in Section 4. Alternative approaches
due to Moulines and Soulier (1999), Hurvich and Brodsky (2001), Andrews and Sun (2004), could be
developed.
Finally Assumptions 4 and 4o below are imposed on the bandwidth m in case of the W and Z

estimates respectively.
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Assumption 4. When � < 1=2, for � in Assumption 1,

m��1=2 log1=2 n+ n3+2�=n2+2� ! 0, as n!1: (3.12)

Assumption 4o . Assumption 4 holds and, for � > 1=2 (2.13) holds.
The �rst part of (3.12) holds whenever m increases with n at algebraic rate, and the second is

equivalent to (2.14) with # = 1 + �. The role of (2.13) was discussed in Section 2.
To describe limit distribution theory we introduce the following notation. Denote by N (0; �) a

normal random variable with mean 0 and variance �. Denote by W (r) the 2 � 1 vector Brownian
motion with covariance matrix 
, and de�ne

W (r;�) =

rZ
0

(r � s)��1

� (�)
dW (s) , fW (r;�) = �0B (1)

�1
W (r;�) , � = (0; 1)0 : (3.13)

Denote by fij (�), f ij (�) the (i; j)th components of f (�), f�1 (�) respectively. Denoting by !d con-
vergence in distribution and by ) convergence in the Skorohod J1 topology of D [0; 1], we say that an
estimate b� of � has Property M if, as n!1;

m
1
2���m (b���)!d N

�
0;

1� 2�
2f11 (0) f22 (0)

�
(3.14)

when � < 1=2, and

n�(b� � �))
8<:q (0)

1Z
0

fW (r;�)
2
dr

9=;
�1

2�� 0A (1)
�10

�1

1Z
0

fW (r;�) dW (r) (3.15)

when � > 1=2:
The following theorem is proved in Appendix A.

Theorem

(i) If Assumptions 1, 2, 3 and 4 hold, the W estimates (2.10) have Property M;

(ii) If Assumptions 1 o , 2, 3 o and 4 o hold, the Z estimates (2.11) have Property M.

Property M is so designated because it indicates Mixed normal asymptotics; the mixed normal
nature of the limit in (3.15) was discussed by RH, while it is trivially satis�ed in (3.14). Introducing
the Wald statistics

W = bm (�m � �)2 , W o = bom (�
o
m � �)

2
; (3.16)

where bm and bom denote respectively bm (c) and bom (c) for c = 
 or b
 and �m and �om respectively
denote any of (2.10) and (2.11). Then we can deduce for both � < 1=2 and � > 1=2,

W !d �21, W o !d �21: (3.17)
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For � > 1=2 this follows from the Theorem as indicated by RH. For � < 1=2 it follows from the Theorem
and the fact that

�2�m
2m

bm,
�2�m
2m

bom !p
f11 (0) f22 (0)

1� 2� , as n!1; (3.18)

from the proof of the Theorem. Thus, the standard limit theory of Wald tests, familiar in many classi-
cal situations in econometrics and associated with optimal procedures in the I (1) =I (0) cointegration
literature (see e.g. Johansen, 1991, Phillips, 1991a,b) is shown to hold here simultaneously for weak
(including stationary) and strong cointegration, and in the possible presence of unknown integration
orders of observables and/or cointegrating errors.

4. Estimation of integration orders and spectral density

This section presents estimates of 
, � and f for which Assumptions 2, 3 (or alternatively 3o) hold
under primitive conditions. A similar objective was achieved by Robinson (2002), who justi�ed the
unprimitive conditions required in RH in a fully parametric framework. In our semiparametric situation,
bias-reduction techniques seem unavoidable, and in particular, we use higher-order kernels.
We �rst justify the existence of estimates of 
, �, satisfying Assumption 2 under primitive conditions,

for which we extend a case of the general class of estimates presented in Robinson and Henry (2003),
given there for invertible covariance stationary time series, to (possibly unobservable) Type II fractional
processes allowing for the possibility of arbitrarily large memory. We focus on estimating 
, which, since
u1t is unobservable, is a harder problem than estimating �. Noting (1.6), for a preliminary estimate of
�, say b�, we de�ne the processes

evt = yt � �xt = u1t (�
) , bvt = yt � b�xt; (4.1)

and vt, where setting r = [
 + 1=2],

vt =  t (�
) ,  t = �
r�
u1t =

1X
j=0

aj (
 � r)u1;t�j ; (4.2)

noting that �1=2 � 
 � r < 1=2, so that  t is well de�ned in mean square, vt and evt being Type I and
II fractionally integrated processes of order 
 respectively (see Marinucci and Robinson, 1999).
The procedure of Robinson and Henry (2003) applies to a generic invertible covariance stationary

process, which covers vt in case r = 0. In Proposition 1 below, we show that after tapering similar
results to theirs apply for Type I or II processes with arbitrarily large 
. In Proposition 2, we show that
for � > 1=2 the same result as in Proposition 1 holds if we base estimates on bvt, whereas for � < 1=2,
we deduce a rate of convergence for the estimate of 
 based on bvt. The reason for this lack of uniformity
is that under weak cointegration b� converges relatively slowly, severely a¤ecting estimation of 
:
De�ning a taper fgtgnt=1 of order p as in Velasco (1999a,b), and a sequence �t, the discrete Fourier

transform and periodogram of the tapered sequence gt�t are

wp� (�) =

 
2�

nX
t=1

g2t

!�1=2 nX
t=1

gt�te
it�; Ip� (�) =

���wp� (�)���2 : (4.3)

For an integer q � 1 to be discussed subsequently, introduce a real function kq (u), 0 � u � 1, satisfying

7



Assumption P1. kq (u), 0 � u � 1 is a boundedly di¤erentiable function such that
R 1
0
kq (u) du = 1,

and de�ning Uiq =
R 1
0
(log u+ 1)u2ikq (u) du, we have

Uiq = 0, 0 � i � q � 1; Uqq 6= 0: (4.4)

Robinson and Henry (2003) described kq (u) as a higher-order kernel and proposed an example.
Following Robinson and Henry (2003), for an integer l to be described subsequently such that l=p is
integer, for suitable q, kq (u), we de�ne

qp� (c) =
p

l

X0
bq;j

�
Ip� (�j)�

2c
j � 1

�
; (4.5)

where
P0

=
Pl
j=p;2p;:: and

bq;j = kq;jvq;j , kq;j = kq (j=l) , vq;j = log �j �
P0

kq;j log �jP0
kq;j

: (4.6)

We present now our estimates of 
. Denoting by 
G, e
G, b
G, the tapered local Whittle or Gaussian
semiparametric estimates based on processes vt, evt, bvt, respectively, which optimize over the interval
� = [O1;O2] the loss function of Velasco (1999a), we de�ne our estimates 
, e
, b
 of 
 based on vt, evt,bvt, as the zeroes of qpv (c), qpev (c), qpbv (c), which are closest to 
G, e
G, b
G, respectively. Our estimates
correspond to the qth-order kernel M-estimate proposed by Robinson and Henry (2003) for the choices
J = 1, g (�) = �,  (z) =  1 (z), so that they are higher-order kernel versions of the local Whittle
estimates of Künsch (1987) and Robinson (1995a), with corresponding loss functions Qpv (c), Q

pev (c),
Qpbv (c), where

Qp� (c) = l

�
logGp� (c)� 2c

P0
kq;j log �jP0

kq;j

�
, Gp� (c) =

P0
kq;j�

2c
j I

p
� (�j)P0

kq;j
; (4.7)

assuming the estimates do not fall on the boundary of �. Before presenting our results, we introduce
a couple of additional regularity conditions.

Assumption P2. f11 (�) is s-times continuously di¤erentiable at � = 0, s � 1:
De�ning h (�) =

�
2 sin (�=2)��1

��2

f11 (�), for s � 2 and setting q = [s=2], Assumption P2 is

equivalent to

h (�) = f11 (0) +

qX
i=1

hi�
2i

(2i)!
+O

�
�2(q+1)

�
as �! 0; (4.8)

where hi represents the 2ith derivative of h (�) at � = 0. As established in Robinson and Henry (2003),
Assumption P2 can be exploited by use of a kq (u) for suitable q to reduce asymptotic bias when q � 2
(or equivalently s � 4). If q = 1, we are in the situation covered by Robinson (1995a) and Velasco
(1999a), where the maximum rate of convergence is n2=5. For s = 1, following these references, only
the slower rate n1=3 is achievable, whereas our Assumption 1 permits the rate n(1+�)=(3+2�).

Assumption P3. For any � > 0, as n!1,

l!1; l = O
�
n4q=(4q+1)

�
, l�= log n!1: (4.9)
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The second condition in (4.9) (taken from Robinson and Henry, 2003) imposes the maximum rate
at which the bandwidth l can grow, while the third is innocuous if l is a power root of n:
De�ning

� = lim
n!1

�Xn

t=1
h2t

��2Xn�p

k=0;p;2p;::

�Xn

t=1
h2t cos (t�k)

�2
; (4.10)

Vq =

Z 1

0

(log u+ 1)
2
kq (u) du, Wq =

Z 1

0

(log u+ 1)
2
k2q (u) du; (4.11)

and denoting by v�t either processes vt or evt, and by 
� either 
 or e
, we establish the following results.
Proposition 1. Under Assumptions 1, P1-P3, 
 2 (O1;O2), O1 > �1=2, p � max fr; [O2 + 1=2] + 1g,

� satis�es qpv (


�) = 0 with probability approaching one as n!1, and furthermore

l1=2 (
� � 
) + (2�)
q
Uqqhq

2 (2q)!f11 (0)Vq

l2q+1=2

n2q
!d N

�
0;
p�Wq

4V 2q

�
: (4.12)

Proposition 2. Under Assumptions 1, P1-P3, 
 2 (O1;O2), O1 > �1=2,

p � max fr; [O2 + 1=2] + 1; [� + 1=2] + 1g ; (4.13)

and b� � � = Op
�
n
��+ 

�
; (4.14)

for any  > 0, b
 satis�es qpbv (b
) = 0 with probability approaching one as n ! 1. Furthermore, if
� > 1=2

l1=2 (b
 � 
) + (2�)
q
Uqqhq

2 (2q)!f11 (0)Vq

l2q+1=2

n2q
!d N

�
0;
p�Wq

4V 2q

�
; (4.15)

whereas if � < 1=2, for any ' > 0 b
 � 
 = Op

�
l�(��')

�
: (4.16)

Propositions 1 and 2 are justi�ed in Appendix B. For our purposes, the main implication (when
� > 1=2) is that on choosing l � n4q=(4q+1) (where ��� denotes here exact rate) and s � 2, the
convergence rate of our estimates is n2q=(4q+1), which can be made arbitrarily close to the parametric
rate n1=2 for q (and thus s) large enough. The same rate clearly applies to the corresponding estimate
of � under equivalent conditions. Note also that for the suggested choice of l the bias term in (4.12)
has exact rate O (1), while (4.9) prevents this from dominating. Related to the � < 1=2 situation, for
the previous choice of l, the rate of convergence of the feasible estimate of 
 is n4q(��')=(4q+1). Though
(4.14) is strong, it is satis�ed by OLS (cf. (2.15)) for � � 1. OLS does not satisfy (4.14) for every (
; �)
combination if � < 1, but the NBLS (see (2.15) again) su¢ ces. As in Assumption 2, we denote the rate
of convergence of these estimates of 
 (and also the corresponding ones of �) for the proposed choice of
l by n� with � = � (s) and

� (s) = 2q= (1 + 4q) , for estimates of � and 
 (when � > 1=2), (4.17)

= 4q (� � ') = (1 + 4q) , for estimates of 
 when � < 1=2: (4.18)
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Thus, for large enough s, � (s) can be arbitrarily close to 1/2 and � when � > 1=2 and � < 1=2
respectively. This, in view of (3.6), implies that in strong cointegration the choice m � n is feasible, but
if � is close to (but above) 1/2, the existence of a large number of derivatives and use of an appropriate
higher order kernel kq (u) are necessary. A drawback of our approach is that as � is unknown, so one
can never be sure that the q employed is adequate, even if f (�) is analytic. This problem is similar to
the choice of taper order, p. Under weak cointegration, (3.6) restricts further the growth of m, which
is already constrained in (3.12), as the inequality � > (1 + �) = (3 + 2�), � 2 (1=2; 1), does not hold for
every � 2 (0; 1=2). In any case, in view of (3.5), (3.6), a more slowly converging estimate of 
 (based
for example on OLS residuals) would further restrict m, a¤ecting the rate of convergence of estimates
of �.
Next we propose a nonparametric estimate of f (�) based on the residual vector but = (yt(b
) �b�xt(b
); xt(b�))0, for an estimate b� of �, satisfying (4.14) and using our estimates b
, b�, of the orders. We

again need to exploit smoothness, and introduce the following assumption, which strengthens Assump-
tion P2.

Assumption P4. A(ei�) is s times di¤erentiable in � 2 [��; �] with sth derivative in Lip (�), � > 1=2,
s � 1:
This strengthens Assumption P2 and ensures certain rates of convergence for our estimates of the

spectral density at all Fourier frequencies.
We introduce the weighted periodogram estimate of f;

bf(�) = 2�b

n

1X
j=�1

G(b(�� �j))Ibu(�j) = 2�

n

nX
j=1

Gb(�� �j)Ibu(�j); (4.19)

where

Gb (�) = b
1X

j=�1
G(b(�+ 2�j)); (4.20)

for a user-chosen integrable function G and bandwidth sequence b = bn:
De�ne

g (x) =

Z
<

G (�) eix�d�; x 2 <; (4.21)

and introduce

Assumption P5. b is a sequence of positive real numbers such that b�1 + b=n ! 0 as n ! 1; G (�)
is a real, even function such that

Z
<

��G (�)�� d� <1, Z
<

G (�) d� = 1,

1Z
0

�
1 + x2

�
jg (x)j dx <1; (4.22)

and in a neighbourhood of the origin of radius � > 0;

j1� g (x)j < K jxjh for some h � s: (4.23)
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Because G (�) is even, so is g, and supx jg (x)j �
R
< jG (�)j d� <1, which implies along with (4.22)

that g (x) is square integrable. (4.23) implies that g (x) is locally (in a neighbourhood of 0) Lip (h). If
h > 1, this implies that dcg (x) =dxc = 0 for any c < h, so bias reduction is possible provided f (�) is
smooth enough. Indeed in view of (4.21),

R �
�� �

cGb (�) d� = 0, so that (4.23), introduced by Parzen
(1957), corresponds when h > 2 to a higher-order kernel property of Gb. The larger h is chosen, the
faster the rate of convergence of our estimates will be. As Robinson (1991) mentions, condition (4.23)
holds for h = 1; 2 for many of the usual kernels, but in case the h required is very large, a careful choice
of the covariance averaging kernel g is required.
Denoting by Assumption P6 the set of all conditions needed in order to obtain rates (4.17), (4.18)

for our estimates of 
, �, we show in two propositions the results for bf (�).
Proposition 3. Under Assumptions P4-P6, uniformly in j;

bf (�j)� f (�j) = Op

 
b�s +

�
b

n

� 1
2

+ bn��(s)

!
= Op

�
n��

�
; (4.24)

where
� = � (s) = s� (s) = (1 + s) ; (4.25)

if b = b� � n�(s)=(1+s):

The proof of Proposition 3 is given in Appendix B, where b� is referred to as the �optimal�choice.
For s large enough, as for the estimates of the orders, arbitrarily close rates to n1=2 and n� for the
estimates of the spectral density are achievable under strong and weak cointegration respectively.

Proposition 4. Under Assumptions P4-P6, uniformly in j,

bf (�j+1)� f (�j+1)� � bf (�j)� f (�j)� = Op

�
n�1b2n��(s)

�
+ op

�
n�1b1�s

�
(4.26)

= Op
�
n��

�
; (4.27)

where

� = � (s) = 1 +
� (s) (s� 1)
1 + s

; (4.28)

if b = b� � n�(s)=(1+s):

When � > 1=2, the left side of (4.26) is of order arbitrarily close to n�3=2 for s large enough, which
in view of (3.10) enables the choice m � n.
Finally, it is important to note that (3.6), (3.9), (3.10) re�ect the trade-o¤ between smoothness of

f (�) and rate of growth of m: a higher s implies higher � (s), � (s) and � (s), so that m is allowed to
increase faster. In all cases, (3.6), (3.9) hold for � � 1 for any s, m. For � < 1; arbitrarily small � (s),
� (s) also su¢ ce, but the growth of m has to be heavily restricted.

5. Monte Carlo evidence

A Monte Carlo study of �nite sample behaviour was carried out, comparing some of our estimates with
the simple one �m, given in (2.15), in terms of bias and dispersion, and also examining the goodness of
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the �21 approximation for Wald test statistics. We take A (z) = I2 f(1 +  z) = (1� �z)g in cases where
ut is: white noise (WN), with � =  = 0; AR(1), with � = 0:5; 0:9,  = 0; MA(1), with  = 0:5; 0:9,
� = 0. We generated Gaussian "t with covariance matrix 
 having ijth element !ij ; the correlation
� = !12 =(!11 !22 )

1=2 taking values 0, 0.5, -0.5, 0.75 and �xing � = !11 = !22 = 1. For � > 1=2,
we consider the combinations (
; �) = (0; 0:6), (0; 1:2), (0:4; 1:2), (0:4; 2). For � < 1=2, we consider
(
; �) = (0; 0:4), (0:2; 0:4), (0:4; 0:8), (0:7; 1).
Table 1 presents convergence rates of our W, Z estimates and, for both � 6= 0 and � = 0, of

�m, denoted a U (Un�ltered) estimate. These rates are derived from our Theorem and Robinson and
Marinucci (2001, 2003). For strong cointegration, the U estimate rates apply for any m � [n=2],
m ! 1, and the rates of W, Z are optimal in this case. For weak cointegration, we only consider the
NBLS version of �m with m=n! 0 as n!1, noting that (3.12) needs to be satis�ed.

TABLE 1
CONVERGENCE RATES: U WITH � 6= 0, � = 0 AND W, Z

(
; �) (0; :6) (0; 1:2) (:4; 1:2) (:4; 2) (0; :4) (:2; :4) (:4; :8) (:7; 1)
U, � 6= 0 n:6m�:4 n1:2 n:8 n1:6 n:4m�:4 n:2m�:2 n:4 n:3

U, � = 0 n:6 n1:2 n:8 n1:6 n:4m:1 n:2m:3 n:4 n:3

W, Z n:6 n1:2 n:8 n1:6 n:4m:1 n:2m:3 n:4m:1 n:3m:2

We generated 1000 series of lengths n = 64; 128; 256, and choosing di¤erent bandwidths b (taking
values 15, 25, 45, depending on whether n is 64, 128, 256 respectively), computed the unweighted
version of (4.19)

bf (�j) = 1

2b+ 1

j+bX
k=j�b

Ieu (�k) , eut (c; d; a) = (yt (c)� axt (c) ; xt (d))0 ; (5.1)

where in all cases a = �b and (c; d) = (
; �) or (b
;b�). The estimates b
, b�, are Robinson�s (1995b) version
of the log-periodogram estimates of Geweke and Porter-Hudak (1983) without trimming or pooling
applied to the untapered series yt � �bxt and xt, where xt = xt for � < 1, xt = �xt for � � 1, adding
back one to the estimate of the order of xt in this case to compute the �nal estimate of �. b is also
the bandwidth for the semiparametric estimates of 
 and �. Our estimates of f , 
 and � do not make
the provision for rate improvement of Section 4, partly because practitioners are likely to use standard
estimates in view of readily available software. However, (3.6) is not satis�ed for m = [n=2] when
� � 0:6 and the Monte Carlo will illustrate the e¤ect.
For � > 1=2, we computed W and Z Infeasible estimates �I = b�m (
; �), �oI = b�om (
; �), Feasible

estimates �F = b�m(b
;b�), �oF = b�om(b
;b�) and the U estimates, �U = �m, for three di¤erent sets
of bandwidths m, given by (I; II; III) = (10; 20; 32); (20; 40; 64); (40; 80; 128), depending on whether
n = 64; 128; 256 respectively. The largest bandwidth (m = III) for each n corresponds to the full band
case. For weak cointegration, we only present results in the simplest case � =  = 0, for �I , �F , �U ,
with m = (I; II; III) = (2; 8; 15); (2; 12; 20); (3; 15; 25) and n = 64; 128; 256 respectively, (I; II; III),
representing in all cases narrow band situations; instead of Z estimates, we computed infeasible and
feasible two-step estimates, given by �2I and �2F respectively, where these used (5.1) with eut (
; �; �I)
and eut(b
2;b�; �F ) respectively, b
2 being the estimate of 
 calculated from residuals yt � �Fxt:
While our conclusions and comments refer to the whole experiment, to conserve on space we only

report a few representative tables. For the case � > 1=2, we only present results for (�; �;  ) = (0; 0; 0),
(0:5; 0:5; 0), (�0:5; 0; 0:5), m = I; III, whereas for � < 1=2, we only report results for � = 0:5:
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We deal �rst with strong cointegration. Table 2 reports comparative �gures corresponding to Monte
Carlo bias (de�ned as the estimate minus �) and standard deviation (S.D.). The �rst �ve rows list the
number of times that the corresponding estimate is no worse than any of the others. The last four rows
compare vis a vis di¤erent estimates and re�ect the number of times that the corresponding estimate
in the relation is strictly better than the other. All �gures relate to the total number (180) of cases (for
all n, m, � and (
; �) combinations).

TABLE 2
COMPARISONS BETWEEN ESTIMATES
BIAS S.D.

WN AR(.5) AR(.9) MA(.5) MA(.9) WN AR(.5) AR(.9) MA(.5) MA(.9)
�I 144 126 136 130 128 145 148 147 127 124
�oI 167 167 146 176 176 144 165 139 164 165
�F 104 90 90 101 103 58 46 46 57 55
�oF 99 87 81 94 89 56 45 36 51 49
�U 81 89 76 84 83 82 83 92 76 86

�F : �U 89:7 83:15 88:30 87:10 88:10 57:56 29:77 30:92 53:61 53:61
�oF : �U 91:13 79:18 73:44 84:14 84:15 32:75 14:97 9:120 36:76 35:79
�I : �

o
I 10:33 1:42 4:13 1:47 0:48 29:27 6:26 16:2 6:43 6:44

�F : �
o
F 53:12 30:28 58:4 22:31 18:32 68:15 85:2 100:1 78:7 80:10

Detailed results for bias are presented in Tables 3, 4. Overall, infeasible (I) estimates dominate, with
feasible (F) ones clearly superior to �U . For the WN situation, this di¤erence is most noticeable when
� < 1. Especially for � 6= 0, �oI is slightly superior to �I with the exception of the full band situation
with � = 0:6, where as the theory predicts �I beats �oI ; on the contrary, �F outperforms �

o
F , di¤erences

being most noticeable for the full band situation. The only estimates which enjoy large improvements
in the AR framework are �U and the I estimates, especially for � = 0:6, this e¤ect being stronger the
larger the AR parameter �. Under the AR structure with � = 0:5, the predominance of the feasible
estimates over �U is still clear, and more noticeable as � decreases, with �U competitive only when n
is small and � large. �oI outperforms �I , although in general the di¤erences are very small, whereas
both F estimates behave rather similarly. When � = 0:9, F estimates are still preferred to �U , although
this is competitive for � large. �oI�s superiority over �I is less clear now, whereas that of �F over �

o
F

is accentuated. In the MA situation, results are mainly una¤ected by the value of  , and apart from
a relative improvement of the Z estimates, results are very similar to those of the WN situation. In
general, bias decreases as n, �, increase, and m (with the exception of the case � = 0) and j�j decrease.
The bias is signed by �, except in case of F estimates when � > 1, where it is reversed.
Results for S.D. are presented in Tables 5, 6. Overall, I estimates dominate, but now �U emerges as

competitive relative to �F and �oF , especially in the AR situation with � = 0:9, although increases in
n generally favour F estimates, whereas large � is more favourable to �U . In the WN situation, both I
estimates behave similarly, but less so in the AR case. Here, when � = 0:5, �oI beats �I , the opposite
happening when � = 0:9 (the superiority of �I based here mainly on the full band case). In the MA
framework, although in general values are close to those of the WN situation, �oI outperforms �I . For
this case, S.D. is quite una¤ected by  . In general, �F beats �oF , which deteriorates more when � < 1.
As expected, S.D. decreases when n, � increase, but in general is not much a¤ected by variations in
bandwidth.
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We next studied the Wald statistics

WI = bbm (
) (�I � 1)2 ;WF = bbm (b
) (�F � 1)2 ;W o
I =

bbom (
) (�oI � 1)2 ;W o
F =

bbom (b
) (�oF � 1)2 : (5.2)
Tables 7-10 contain empirical sizes corresponding to nominal � = 0:05; 0:10. When ut is WN, results
corresponding to the infeasible Wald statistic WI are on average too large, but certainly close to the
nominal sizes, even when n = 64, for all values of � and m when � > 1, empirical sizes reacting as
theory predicts when n increases. For � = 0:8, empirical sizes of WI are worse than in the previous
situation when n = 64, but react quickly in the appropriate direction, when they are comparable to
those for larger �. For this case, sizes are not much a¤ected by changes in �, but the combination of
simultaneous increase in j�j and m leads to deterioration. This is much more evident when � = 0:6,
where in general empirical sizes are substantially larger than for all the previous � cases. Empirical
sizes for WF are substantially larger than for WI , but in almost all cases react appropriately when n
increases, the worst case being � = 0:6 with � = 0:75, where for m = III sizes are unacceptably large.
The results are better for � = 0:10 than for � = 0:05. When � > 1, empirical sizes of W o

I and W
o
F are

very similar to those of WI , WF , for all �, m, n and �. For � < 1, both W o
I and, especially, W

o
F are

worse than WI and WF respectively, and more so as m increases, as is predicted by the theory. AR
autocorrelation, especially � = 0:9, severely damages WI . When � > 1, WI is relatively una¤ected by
�, m and �, decreasing in all cases when n increases, quite slowly for � = 0:9 though. The behaviour
of WF is striking. For � = 0:5 and � � 0:5, empirical sizes are substantially smaller than those of
WI , especially when � is large. Again, when � > 1, sizes are relatively una¤ected by m, with small
increments as j�j increases (especially for � = 1:2), and always decrease as n increases, with empirical
sizes very often smaller than nominal ones when n = 256. In fact, when � = 0:9, empirical sizes when
� > 1 behave qualitatively in a similar way to the � = 0:5 case, but are signi�cantly reduced, so that
when n = 256 they are much smaller than nominal ones. Their behaviour when � < 1 is interesting.
When � = 0:5 and � = 0, they are substantially smaller than those of WI , being very close to nominal
sizes when n = 256. As j�j increases, this pattern is less clear, and while when j�j = 0:5 sizes are still
better for WF (only slightly when � = 0:6 though), they are clearly worse for � = 0:75, with signi�cant
deterioration as j�j increases, the e¤ect being more evident as m increases, especially for � = 0:6.
This is also observed when � = 0:9, but here, even for the most adverse situation where � = 0:6 and
� = 0:75, empirical sizes of WF are better than those of WI for any m, as now sizes corresponding to
WF decrease when � increases. Generally, W o

I , W
o
F perform very similarly but slightly better than WI ,

WF , except when � = 0:8 or � = 0:6 and � = 0:9, for which WF tends to behave better than W o
F . In

the MA framework, WI behaves similarly to the WN situation (with sizes slightly larger), and is quite
una¤ected by the value of  . Sizes of WF , although still worse than those of WI , are closer now than
for � =  = 0. Again, the e¤ect of increasing the MA parameter does not have any important e¤ect.
Also, W o

I and W
o
F perform relatively better than WI and WF respectively, the clearest improvement

appearing when � = 0:6:
We consider now the weak cointegration case. Results for the bias are presented in Table 11. The

overall ranking is �2I , �I , �U , �2F , �F , which are no worse than any of the other estimates in 134, 10,
9, 8 and 3 out of 144 cases respectively. This indicates an overwhelming dominance of the two-step
infeasible estimate. Bias di¤ers substantially depending on whether � = 0 or � 6= 0. In the former case,
although �2I is clearly best, for example dominating �I in ratio 22:4 out of 36 cases, the same does not
happen for the F two-step estimate which is inferior to �I and �F in ratios 21:10 and 13:11 respectively,
smaller bandwidths clearly bene�tting one-step estimates. �F and �2F perform better than �U , in ratios
18:12 and 16:13 respectively, the U estimate being superior only when m and n are small. As theory
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predicts, biases decrease in absolute value when � and n increase, and, unexpectedly, tend to decrease
as m increases. This picture changes dramatically when � 6= 0. Here, in all cases, biases share the sign
of �, increase in absolute value when m and j�j increase, and show the same pattern as when � = 0 with
respect to � and n. There are two important features to note when � 6= 0. First, both F estimates are
better than the U estimate in all cases. Second, �2F , whose corresponding biases are in almost all cases
slightly bigger in absolute value than those of �2I , performs much better not only than �F , but also,
and more importantly, than �I . The ratio with respect to the one-step infeasible estimate is 91:16 out
of 108 cases in favour of �2F . This is an encouraging result, demonstrating signi�cant bias reduction
by iteration. Possibly there would be further bene�t in continuing the iterations.
Results for S.D. are presented in Table 12. Over the four values of �, �U is clearly superior,

completely predominating for the two cases where 
 + � < 1, i.e. (
; �) = (0; 0:4), (0:2; 0:4) for all �,
m and n. This fact is re�ected in the overall ranking, which is �U , �I , �2I , �F , �2F , which are no
worse than any of the rest in 98, 23, 22, 4 and 0 out of 144 cases respectively. For all estimates, S.D.
decreases as �, n, � and m increase. �U is least a¤ected (although still noticeably) by increments in
m, so the gap between this estimate and the rest tends to shrink as m increases. �U beats �F in ratio
108:34, �F predominating only when (
; �)=(0:4; 0:8) for the largest m, and (
; �) = (0:7; 1) for the two
largest m. Similarly, �U beats �2F in ratio 124:20. Also, �2F is superior to �U when (
; �) = (0:7; 1)
for the two largest m. Contrary to the experience with bias, two-step estimates were clearly worse than
one-steps. �I dominates �2I in ratio 122:22, �2I only being superior to �I (with small di¤erences) when
(
; �) = (0:7; 1) for the two largest m. Even more striking is the di¤erence between F estimates, since
�F outperforms �2F in ratio 137:6, �2F being only superior for some cases of (
; �) = (0:7; 1) for the
largest m.
We next consider the Wald statistics WI , WF , W2I = b2I (�2I � 1)2, W2F = b2F (�2F � 1)2, where

b2I and b2F di¤er from their respective one-step counterparts in the same way as �2I and �2F di¤er
from �I and �F . Empirical sizes are given in Tables 13, 14. In all cases sizes are too large, mostly being
very far from nominal ones. In some cases there is convergence as n increases, although this is usually
very slow. As expected, sizes increase as � decreases. Overall, the results are not encouraging. When
� = 0, empirical sizes corresponding toWI are too large, if acceptable. For the smallest m, they fall as n
increases, though this is less clear for the other two, except for (
; �) = (0:4; 0:8). For (
; �) = (0:2; 0:4)
sizes tend to be smaller as m increases, the opposite clearly happening with (
; �) = (0:7; 1), and in a
less evident way with (
; �) = (0:4; 0:8). Sizes corresponding to the two-step I estimate for this � = 0
situation are clearly larger than those of WI , with the exception of some cases for (
; �) = (0:7; 1) for
the two largest m. These sizes behave in a qualitatively similar way to those of WI , with signi�cant
deterioration as n increases for (
; �) = (0:2; 0:4) associated with the largest m. As j�j increases,
sizes are further a¤ected, especially for (
; �) = (0:2; 0:4), (0:7; 1). Also, there is now a substantial
deterioration as m increases for all �, without improvement for (
; �) = (0:2; 0:4) for the two largest
m as n increases. For the smallest m and j�j = 0:5, sizes of W2I are still larger than those of WI , but
although they also deteriorate as m increases, W2I is less damaged thanWI . Also, W2I deteriorates less
than WI as � increases, so that when � = 0:75, in almost all cases, W2I is better than WI (especially
for (
; �) = (0; 0:4)). This relative performance is also evident for j�j = 0:5, but only for the two largest
m. When � 6= 0, W2I is also better than WI when n increases. Sizes corresponding to WF and W2F

follow in general the same pattern as their I counterparts, but are in almost all cases larger, the gap
increasing as j�j increases.
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A. Appendix A: Proof of Theorem

Denote lj = l (�j) for any function l (�), and let K be an arbitrary positive �nite constant. We �rst
give the proof for the infeasible estimate �m (
; �) = am (
; �) =bm (�) when � > 1=2, where

am (
; �) = Re
nXm

j=0
sjpjIz(
;�)x(
) (�j)

o
, bm (
) = Re

nXm

j=0
sjqjIx(
) (�j)

o
; (A.1)

writing pj = � 0f�1j , qj = � 0f�1j �. Clearly

�m(
; �)� � =
em(
)

bm(
)
, em(
) = Re

8<:
mX
j=0

sjpjIux(
)(�j)

9=; : (A.2)

First, we show that
E(em(
)) = o(n�): (A.3)

We can write the left side of (A.3) as the real part of

1

2�n

mX
j=0

sjpj

�Z
��

Dn(�j � �)
nX
t=1

an�te
�i(n�t)�jDt(�� �j)f (�) �d�; (A.4)

where at = at(�) and Dt(�) =
Pt
k=1 e

ik� is the Dirichlet kernel, where for 0 < � < �;

jDt(�)j < Kmin
n
j�j�1 ; t

o
: (A.5)

Noting that for any �,
p (�) f (�) � = 0; (A.6)

by periodicity, we can write (A.4) as

1

2�n

mX
j=0

sjpj

�Z
��

Dn(��)
n�1X
t=0

ate
�it�jDn�t(�) [f (�+ �j)� f (�j)] �d�: (A.7)

Next, by summation by parts, (A.7) is

1

2�n

mX
j=0

sjpj

�Z
��

Dn(��)
(
an�1D1(�) [f (�+ �j)� f (�j)] �

n�1X
t=0

e�it�jd�

� [f (�+ �j)� f (�j)] �
n�2X
t=0

(at+1Dn�t�1(�)� atDn�t(�))
tX

h=0

e�ih�jd�:

)
: (A.8)

Because
n�1X
t=0

e�it�j = n, j = 0, mod n; = 0, otherwise, (A.9)
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the contribution of the �rst term in braces in (A.8) is bounded in modulus by

K jan�1j
�Z

��

jDn(�)j d� = O
�
n��1 log n

�
; (A.10)

since f is boundedly di¤erentiable, by Stirling�s approximation jas (c)j � K (1 + s)
c�1, for c > 0, s � 0,

and
�Z

��

jDn(�)j d� = O (log n) ; (A.11)

(see e.g. Zygmund, 1977). Regarding the second term in (A.8), note that

at+1Dn�t�1(�)� atDn�t(�) = (at+1 � at)Dn�t�1(�)� ei(n�t)�at: (A.12)

The contribution of the �rst term on the right of (A.12) to the second term of (A.8) is 0 for � = 1, as
in this case at+1 = at, t = 0; :::; n� 2. For � 6= 1, this contribution is bounded in modulus by

Kn�1

8<:
mX
j=0

�Z
��

jDn (�)j2 kf (�+ �j)� f (�j)k d�

9=;
1
2

�

8<:
mX
j=0

�Z
��

�����
n�2X
t=0

(at+1 � at)Dn�t�1(�) (Dt(��j) + 1)
�����
2

kf (�+ �j)� f (�j)k d�

9=;
1
2

: (A.13)

The term in the �rst braces is bounded by

Km

�Z
��

j�j jDn (�)j2 d� = O (m log n) ; (A.14)

by (A.5) and (A.11), since f is boundedly di¤erentiable. Next, the term in the second braces is bounded
by

K
mX
j=0

�Z
��

j�j
n�2X
t=0

n�2X
s=0

(at+1 � at)Dn�t�1(�) (Dt(��j) + 1) (as+1 � as)Dn�s�1(��) (Ds(�j) + 1) d�

= O

0@n2 log n mX
j=1

j�2

 
nX
t=1

t��2

!21A ; (A.15)

by Lemma C.1 of RH and (A.5), which is O
�
n2 log n1 (� < 1) + n2� log n1 (� > 1)

�
, implying that

(A.13) is O
�
m1=2 log n1 (� < 1) + n��1m1=2 log n1 (� > 1)

�
. Finally, the contribution of the second

term on the right of (A.12) to the second term of (A.8) is bounded in modulus by

Kn�1
mX
j=0

8<:
�Z

��

j�Dn (�)j2 d�
�Z

��

�����
n�2X
t=0

ei(n�t)�at (Dt(��j) + 1)
�����
2

d�

9=;
1
2

: (A.16)
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Now, the �rst integral inside braces is O (1) by (A.5), whereas noting that

�Z
��

e�i(s�t)�d� = 2�, s = t; = 0, otherwise, (A.17)

the second is bounded byK
Pn
t=1 a

2
t jDt(�j)j2, so that (A.16) is bounded byKn�1

Pm
j=1

�
n2�+1j�2

	1=2
,

which is O
�
n��1=2 logm

�
, to conclude the proof of (A.3).

Next, we prove that as n!1;

n��(em(
)� E(em(
)))) � 0A (1)
�10

�1

1Z
0

fW (r;�) dW (r) : (A.18)

This proof just consists of showing that as n!1;

em(
)� E fem(
)g =
p0
2�

nX
t=1

xt�1(
)A (1) "t + op(n
�); (A.19)

because, normalized by n� , the �rst term on the right of (A.19) weakly converges to the right of
(A.18) by Proposition 3 of RH. Now, in view of Propositions 1, 2 of RH, (A.19) holds on showing

V ar
n
Re
nP[n=2]

j=m+1 sjpjIux(
)(�j)
oo

= o
�
n2�
�
;but, as mentioned in Robinson and Marinucci (2001),

this follows by a simple modi�cation of their Theorem 5.1, as p(�) is a well-behaved function without
poles.
Finally, to complete the proof for �m (
; �) when � > 1=2, we show that as n!1,

n�2�bm(
))
q0
2�

1Z
0

fW (r;�)
2
dr; (A.20)

where the right side is almost surely positive. This result follows in view of Propositions 4, 5, 6 of
RH, as by Theorem 4.4 and simple modi�cation of Theorem 5.1 of Robinson and Marinucci (2001) and
Assumption 1,

Re

8<:
[n=2]X
j=m+1

sjqjIx(
)(�j)

9=; = op(n
2�). (A.21)

We now prove the result for �m (
; �) when � < 1=2. First, de�ning ext (
) = P1
j=0 aju2;t�j , this

follows on showing

mX
j=0

Re
�
sjpjIux(
)(�j)

	
= 2

mX
j=1

Re
�
pjIuex(
)(�j)	+ op �n�m 1

2��
�
; (A.22)

mX
j=0

Re
�
sjqjIx(
)(�j)

	
= 2

mX
j=1

Re
�
qjIex(
)(�j)	+ op �n2�m1�2�� ; (A.23)
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m
1
2���1m

2�

n

mX
j=1

Re
�
pjIuex(
)(�j)	 ! d N

�
0;
f11 (0) f22 (0)

2 (1� 2�)

�
; (A.24)

�2��1m

2�

n

mX
j=1

Re
�
qjIex(
)(�j)	 ! p

f11 (0) f22 (0)

1� 2� ; (A.25)

by simple application of Cramer�s Theorem. First, we show (A.22). The left side of (A.22) is

2

mX
j=1

Re
�
pjIuex(
)(�j)	+ p0Iuex(
)(0) + p0 �Iux(
)(0)� Iuex(
)(0)�

+2
mX
j=1

Re
�
pj
�
Iux(
)(�j)� Iuex(
)(�j)�	 : (A.26)

Clearly, the second term in (A.26) is Op
�
n�
�
= op

�
n�m1=2���, as under Assumption 1, Pn

t=1 ut =

Op
�
n1=2

�
,
Pn
t=1 ext (
) = Op

�
n1=2+�

�
(see e.g. Robinson, 1994b). The third term in (A.26) is

p0
2�n

nX
t=1

ut

nX
s=1

(xs (
)� exs (
)) ; (A.27)

where the second summation in (A.27) has mean 0 and variance

V ar

 
nX
s=1

1X
l=0

as+lu2;�l

!
� K

�Z
��

�����
nX
s=1

1X
l=0

as+le
il�

�����
2

d� � K
nX
t=1

nX
s=1

1X
l=0

(t+ l)
��1

(s+ l)
��1

� K
nX
t=1

1X
l=0

(t+ l)
2��2

+K
nX
t=2

t�1X
s=1

1X
l=0

(t+ l)
��1

(s+ l)
��1

� K
nX
t=1

1X
l=t

l2��2 +K
nX
t=2

t�1X
s=1

1X
l=0

(s+ l)
2��2 � Kn2�+1; (A.28)

implying that
Pn
s=1 (xs (
)� exs (
)) = Op

�
n�+1=2

�
, and the same conclusion as for the second term.

The expectation of the fourth is the real part of

1

�n

�Z
��

mX
j=1

pjDn (�j � �)
1X
s=0

nX
k=1

ak+se
�ik�jf (�) �e�is�d�; (A.29)
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which by (A.6) and periodicity equals

1

�n

�Z
��

mX
j=1

pjDn (��)
1X
s=0

n+sX
k=s+1

ake
�ik�j (f (�+ �j)� f (�j)) �e�is(���j)d�

� K

n

8<:
�Z

��

mX
j=1

jDn (��) kf (�+ �j)� f (�j)kj2 d�
�Z

��

mX
j=1

�����
1X
s=0

n+sX
k=s+1

ake
�ik�je�is(���j)

�����
2

d�

9=;
1
2

:

(A.30)

By Assumption 1 and (A.5) the �rst integral inside braces in (A.30) is O (m). The second integral is

2�
mX
j=1

1X
s=0

n+sX
k=s+1

n+sX
l=s+1

akale
i(l�k)�j � K

mX
j=1

1X
s=0

(s+ 1)
2��2

j�j j2
= O

�
n2
�
; (A.31)

by Lemma 3.2 in Robinson and Marinucci (2001), to conclude that the expectation is O
�
m1=2

�
. The

variance of the fourth term in (A.26) is bounded by the real part of

1

�2n2

mX
j=1

mX
k=1

nX
t=1

nX
r=1

nX
s=1

nX
q=1

1X
l=0

1X
p=0

as+laq+pe
i�j(t�s)�i�k(r�q)

�p (�j) fE (utu0r)E (u2;�lu2;�p) + E (utu2;�p)E (u0ru2;�l) + �g p0 (��k) ; (A.32)

where � is the fourth cumulant matrix of ut, ur, u2;�l, u2;�p. We just detail the contribution to the
variance of the �rst term in braces in (A.32). By simple application of the Cauchy inequality the second
and third terms have the same order as the �rst term. This contribution is bounded by

Kn�2
mX
j=1

mX
k=1

1X
l=0

nX
s=1

as+le
�i�js

nX
q=1

aq+le
i�kq

nX
t=1

eit(�j��k) � Kn�1
mX
j=1

1X
l=0

nX
s=1

as+le
�i�js

nX
q=1

aq+le
i�jq;

(A.33)
by (A.9), while (A.33) is bounded by

Kn�1m
1X
l=0

nX
s=1

a2s+l +Kn
�1

mX
j=1

1X
l=0

nXX
s 6=q

as+laq+le
i�j(q�s): (A.34)

Clearly, the �rst term in (A.34) is O
�
mn2��1

�
, and by (A.5) the second is bounded by

Kn�1
1X
l=0

nXX
s 6=q

as+laq+l
1

j�q�sj
� K

1X
l=0

nX
q=2

q�1X
s=1

(s+ l)
��1

(q + l)
��1

q � s � K
nX
q=2

q�1X
s=1

1

q � s

1X
l=s

l2��2

� K
nX
q=2

q�1X
s=1

s2��1

q � s = K
n�1X
q=1

q�1
n�qX
s=1

s2��1 � Kn2� log n: (A.35)
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Thus, the fourth term in (A.26) is Op
�
m1=2 + n� log1=2 n

�
, which is op

�
n�m1=2���, by (3.12), to

conclude the proof of (A.22). Next, we show (A.23). First, noting that from previous arguments

q0
2�n

 
nX
t=1

xt (
)

!2
= Op

�
n2�
�
= op

�
n2�m1�2�� ; (A.36)

(A.23) follows on showing

mX
j=1

Re
�
qjwx(
)(�j)

�
wx(
)(��j)� wex(
)(��j)�	 = op

�
n2�m1�2�� : (A.37)

First the expectation of the left side of (A.37) is the real part of

1

2�n

mX
j=1

qj

nX
t=1

n�tX
q=0

nX
s=1

1X
l=0

aqe
iq�jas+le

i�j(t�s)
�Z

��

f22 (�) e
�i(l+t)�d�

=
1

2�n

�Z
��

mX
j=1

qj

nX
t=1

an�te
i(n�t)�jDt (�j � �)

nX
s=1

1X
l=0

as+le
�i�jse�il� (f22 (�)� f22 (�j)) d�, (A.38)

since
R �
�� e

�i(l+t)�d� = 0, for all t � 1, l � 0. Then, (A.38) is bounded by

K

n

8<:
�Z

��

mX
j=1

�����
nX
t=1

an�te
i(n�t)�jDt (�j � �) (f22 (�)� f22 (�j))

�����
2

d�

�Z
��

mX
j=1

�����
nX
s=1

1X
l=0

as+le
�i�jse�il�

�����
2

d�

9=;
1
2

.

(A.39)
Now, the �rst integral in braces in (A.39) is bounded by

K
mX
j=1

nX
t=1

nX
q=1

an�tan�q jDt (�j � �)j jDq (�� �j)j (f22 (�)� f22 (�j))2 � Kmn2� ; (A.40)

by (A.5). The second integral in braces is

2�
mX
j=1

nX
s=1

nX
p=1

1X
l=0

as+lap+le
i(p�s)�j � Km

nX
s=1

1X
l=s

a2l +Kn
nXX
s 6=p

1X
l=0

as+lap+l
js� pj ; (A.41)

which is O
�
mn2� + n2�+1 log n

�
, where the order corresponding to the second term in the right of

the inequality in (A.41) is calculated as in (A.35). Thus, the expectation of the left side of (A.37) is

O
�
n2��1=2m1=2 log1=2 n

�
. Next, the variance of the left side of (A.37) is bounded by the real part of

1

4�2n2

mX
j=1

mX
k=1

qjq�k

nX
t=1

nX
r=1

n�tX
q=0

n�rX
p=0

nX
s=1

nX
u=1

1X
l=0

1X
v=0

aqe
iq�jape

�ip�kas+lau+ve
i�j(t�s)

�e�i�k(r�u) fE (u2tu2r)E (u2;�lu2;�v) + E (u2tu2;�v)E (u2ru2;�l) + �g ; (A.42)
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where � is now the fourth cumulant of u2t, u2r, u2;�l, u2;�v. As before, we just consider the contribution
of the �rst term in braces, the treatment of remaining terms being very similar. This contribution is
bounded by

Kn�2
nX
t=1

(
nX
l=0

+

1X
l=n+1

)������
mX
j=1

n�tX
q=0

aqe
iq�j

n+lX
s=l+1

ase
�is�jei(t+l)�j

������
2

: (A.43)

Now, noting that by Lemma 3.2 in Robinson and Marinucci (2001)�����
n+lX
s=l+1

ase
�is�j

����� � K
(l + 1)

�=2�1=2

j�j j�=2+1=2
; (A.44)

the contribution of the summation in l from 0 to n to (A.43) is bounded by

Kn�1
nX
l=1

0@l ��12 mX
j=1

1

�
3�+1
2

j

1A2

� K

�
n4�1(� >

1

3
) + n4� log2m1(� =

1

3
) + n4�m1�3�1(� <

1

3

�
:

(A.45)
Next, by Lemma 3.2 in Robinson and Marinucci (2001), the contribution of the second summation in l
in (A.43) is bounded by

Kn�1
1X

l=n+1

0@l��1n1+� mX
j=1

j�1��

1A2

� Kn2�+1
1X

l=n+1

l2��2 � Kn4� : (A.46)

We conclude that the left side of (A.37) is

Op

�
n2��

1
2m

1
2 log

1
2 n+ n2�

�
1(� >

1

3
) + logm1(� =

1

3
) +m

1�3�
2 1(� <

1

3
)

��
; (A.47)

in all cases op
�
n2�m1�2��. Finally, (A.24), (A.25) follow as in the proof of Theorem 2 in Christensen

and Nielsen (2001) who adapted the steps in Lobato (1999) to a somewhat di¤erent situation. From
these references, it can be easily shown that

m
1
2���1m

2�

n

mX
j=1

Re
�
pjIuex(
)(�j)	 = nX

t=2

�t

t�1X
s=1

ct�s�s + op

�
n�m1=2��

�
; (A.48)

where �t = 

�1=2"t;

ct =
1

2�nm1=2

mX
j=1

%j cos (t�j) ; (A.49)

and

% (�) = ��m

h
B0 (�) p0 (�) �0

�
1� e�i�

���
B (��) +

�
1� ei�

���
B0 (�) �p (��)B (��)

i
; (A.50)
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with B (�) = A
�
ei�
�

1=2. The only point worth mentioning is that

1

4�2n2m

mX
j=1

tr
�
%0�j%j

	 nX
t=1

t�1X
s=1

cos2 ((t� s)�j) =
(n� 1)2

16�2n2m

mX
j=1

tr
�
%0�j%j

	
=

(n� 1)2 �2�m
8�2n2m

mX
j=1

tr
n
B0 (�j) p

0
j�
0 �1� e�i�j��� B (��j) �1� ei�j��� B0 (�j) �p�jB (��j)o ,

(A.51)

cancellations taking place due to (A.6), so that (A.51) equals

(n� 1)2 �2�m
2n2m

mX
j=1

��1� ei�j ���2� f22 (�j) f11 (��j)! f22 (0) f
11 (0)

2 (1� 2�) ; (A.52)

as n!1, by (2.8).
We have shown that �m (
; �) has property M. We now show that as n!1

b�m(
; �)� �m(
; �) = op

�
n�m1=2�minf�;1=2g

�
; (A.53)

b�m(b
;b�)� b�m(
; �) = op

�
n�m1=2�minf�;1=2g

�
; (A.54)

noting that the proof for b�m(b
; �) and b�m(
;b�) is implied by the proof of (A.54). First, (A.53) follows
on showing

bem(
)� em(
) = op(n
�m1=2�minf1=2;�g); (A.55)bbm(
)� bm(
) = op(n
2�m1�2minf1=2;�g): (A.56)

We just prove (A.55), the proof for (A.56) being signi�cantly simpler. The left side of (A.55) is

Re

8<:
mX
j=0

sj(bpj � pj)Iux(
)(�j)
9=; : (A.57)

Noting that bp (�)� p (�) = � 0f(�)�1
h
f(�)� bf(�)i bf(�)�1; (A.58)

the two possible terms for which sj = 1 are Op(n��{) = op(n
�m1=2�minf1=2;�g) by (3.9), as by Assump-

tion 1,
Pn
t=1 ut = Op(n

1=2), and by results in Robinson and Marinucci (2001) and previous arguments,Pn
t=1 xt (
) = Op(n

�+1=2). By summation by parts, the remaining terms in (A.57) equal

2Re

8<:(bpm� � pm�)
m�X
j=1

Iux(
)(�j)�
m��1X
j=1

(bpj+1 � pj+1 � (bpj � pj)) jX
h=1

Iux(
)(�h)

9=; , (A.59)
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where m� = m � 1 if m = n=2 or m� = m, otherwise. Using techniques in Robinson and Marinucci
(2003) is not di¢ cult to show that

jX
h=1

Iux(
)(�h) = Op
�
n�m1��1 (� < 1) + n�1 (� � 1)

�
; (A.60)

uniformly in j 2 [1;m]. Thus, by Assumption 3, the �rst term of (A.59) is

Op
�
n��{m1��1 (� < 1) + n��{1 (� � 1)

�
; (A.61)

so the �rst term of (A.59) is op(n�m1=2�minf1=2;�g) noting (3.9). Similarly, by (A.60) and Assumptions
1, 3, the second term of (A.59) is

Op
��
n��1�{ + n���

�
m2��1 (� < 1) +

�
n��1�{ + n���

�
m1 (� � 1)

�
; (A.62)

which is op(n�m1=2�minf1=2;�g) by (3.10), to conclude the proof of (A.53).
Next, noting that

b�m(b
;b�)� � = bem(b
;b�)bbm(b
) , bem(b
;b�) = Re
8<:

mX
j=0

sjbpjIv(b
;b�)x(b
)(�j)
9=; ; (A.63)

where v(b
;b�) = (u1t(b
 � 
) ; xt(b�))0, (A.54) follows on establishing
em(b
;b�)� em(
) = op(n

�m1=2�minf1=2;�g); (A.64)bem(b
;b�)� em(b
;b�)� bem(
) + em(
) = op(n
�m1=2�minf1=2;�g); (A.65)

bm(b
)� bm(
) = op(n
2�m1�2minf1=2;�g); (A.66)bbm(b
)� bm(b
)�bbm(
) + bm(
) = op(n
2�m1�2minf1=2;�g); (A.67)

where em(b
;b�) is like bem(b
;b�) but with p(�) replacing bp(�) in (A.63). We just prove (A.64), (A.65),
the proofs for (A.66), (A.67) being similar but simpler.
The left side of (A.64) is the real part of

mX
j=0

sjpj

n�
wx(b
)(��j)� wx(
)(��j)� hwv(b
;b�)(�j)� wu(�j)i+ wx(
)(��j) hwv(b
;b�)(�j)� wu(�j)io

+
mX
j=0

sjpj
�
wx(b
)(��j)� wx(
)(��j)�wu(�j): (A.68)

We just consider the third term of (A.68), as, following similar techniques to those of RH, one could
easily show that the same order of magnitude obtained applies also to the whole of (A.68). By Taylor�s
theorem, the third term of (A.68) is the real part of

R�1X
r=1

(
 � b
)r
r!

mX
j=0

sjpjw
(r)
u2 (��j ;�)wu(�j) +

(
 � b
)R
R!

mX
j=0

sjpjw
(R)
u2 (��j ; � � 
)wu(�j); (A.69)
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where for a vector or scalar sequence 't, and real b, w
(r)
' (�; b) = (2�n)

�1=2Pn
t=2

Pt�1
s=1 a

(r)
s (b)'t�se

it�,

a
(r)
s (b) = dras (b) =db

r, and j
 � 
j � jb
 � 
j. By a straightforward extension of results in Robinson and
Marinucci (2001, 2003)

mX
j=0

sjpjw
(r)
u2 (��j ;�)wu(�j) = Op

�
n� (logm)

r �
m1��1 (� < 1) + 1 (� � 1)

��
; (A.70)

the only di¤erences being that the weights a(r)s (�) that are involved (see Lemma C.1 of RH), are not
covered by the weights of Robinson and Marinucci (2001) (but it can be easily shown that they just
contribute the (logm)r factors), and the smooth weighting factor sjp (�j), which, as mentioned before,
can be handled by simple modi�cation of the proofs of Robinson and Marinucci (2001, 2003). Next,
the summation in the second term of (A.69) is bounded by

K
mX
j=0

���w(R)u2 (��j ; � � 
)
��� kwu(�j)k � Kn2

mX
j=1

���a(R)j (� � 
)
��� = Op

�
n�+�+2

�
; (A.71)

for any � > 0 in view of Lemma C.5 of RH. Thus, by Assumption 2, choosing R > (�+ 2)=�, the third
term of (A.68) is

Op
�
n��� logm

�
m1��1 (� < 1) + 1 (� � 1)

��
= op(n

�m1=2�minf1=2;�g); (A.72)

in view of (3.6).
Next, noting that the left side of (A.65) is the real part of

mX
j=0

sj (bpj � pj)nwx(b
)(��j) hwv(b
;b�)(�j)� wu(�j)i+ �wx(b
)(��j)� wx(
)(��j)�wu(�j)o ; (A.73)

by summation by parts, similar analysis to that of (A.68) and a straightforward extension of (A.60), it
can be easily shown that by Assumptions 2, 3, (A.73) is

Op
�
n��� logm(n�{ + n��m)

�
m1��1 (� < 1) + 1 (� � 1)

��
; (A.74)

which is op(n�m1=2�minf1=2;�g) by (3.6), (3.9), (3.10). This proves the Theorem for the W estimates
(2.10).
Finally, we give the proof for the Z estimates (2.11). De�ne the infeasible estimate �om (
; �) =

aom (
; �) =b
o
m (�), where

aom (
; �) = Re
n
p0
Xm

j=0
sjIz(
;�)x(
) (�j)

o
, bom(
) = q0

mX
j=0

sjIx(
)(�j): (A.75)

We just show that �om(
; �) has property M, then this follows immediately for the estimates (2.11) from
the proof for the W estimates. Clearly

�om(
; �)� � =
eom(
)

bom(
)
, eom(
) = Re

8<:p0
mX
j=0

sjIux(
)(�j)

9=; . (A.76)
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For � > 1, the result follows in view of Theorem 2 of RH when m = [n=2]. For m < [n=2],

Re

8<:
mX
j=0

sjIux(
)(�j)

9=; =

nX
j=1

Iux(
)(�j) + op(n
�), Re

8<:
mX
j=0

sjIx(
)(�j)

9=; =

nX
j=1

Ix(
)(�j) + op(n
2�),

(A.77)
by Propositions 4.1, 4.2 of Robinson and Marinucci (2003); we then conclude as in the case m = [n=2].
For � = 1, as mentioned in RH, the result follows by Theorem 4.3 of Robinson and Marinucci (2001)
and (2.13). For 1=2 < � < 1 we �rst prove that

E(eom(
)) = o(n�): (A.78)

By the orthogonality property (A.6), we can write the left side of (A.78) as the real part of

1

2�n

mX
j=0

�Z
��

Dn(�j � �)
nX
t=1

an�te
�i(n�t)�jDt(�� �j) f�(�; �j) + �(�j ; 0)g d�; (A.79)

where � (a; b) = p0 ff (a)� f (b)g �. The contribution of the second term in braces in (A.79) is

n�1
mX
j=1

�(�j ; 0)

n�1X
t=0

at (n� t) e�it�j : (A.80)

By summation by parts, (A.80) is bounded in modulus by

n�1
n�1X
t=0

jatj (n� t)

������
m�1X
j=1

[�(�j ; 0)� �(�j+1; 0)]Dj (��t) + �(�m; 0)Dm (��t)

������ � Km
nX
t=1

t��2 � Km;

(A.81)
as we only consider � < 1, to conclude by (2.13). Finally, the proof of (A.3) readily implies that the
contribution of the �rst term in braces in (A.79) is o(n�).
Next, we show that, as n!1,

n��(eom(
)� E(eom(
)))) � 0A (1)
�10

�1

1Z
0

fW (r;�) dW (r) : (A.82)

By Theorem 5.1 of Robinson and Marinucci (2001), as n!1;

V ar(eom(
)) = V ar

0@p0 nX
j=1

Iux(
)(�j)

1A+ o(n2�); (A.83)

implying that

eom(
)� E(eom(
)) =
p0
2�

nX
t=1

fxt(
)ut � E [xt(
)ut]g+ op(n�): (A.84)
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Thus, in view of previous steps, it just remain to prove that

p0
2�

nX
t=1

fxt(
)ut � E [xt(
)ut]g �
p0
2�

nX
t=2

xt�1(
)A (1) "t = op(n
�): (A.85)

Note that
nX
t=1

fxt(
)ut � E [xt(
)ut]g �
nX
t=1

fxt(
)A (1) "t � E [xt(
)A (1) "t]g

=
nX
t=1

fxt(
) (wt�1 � wt)� E [xt(
) (wt�1 � wt)]g ; (A.86)

where wt =
P1
j=0

eAj"t�j , eAj =P1
k=j+1Ak, and

nX
t=1

xt(
) (wt�1 � wt) =
nX
t=2

fxt(
)� xt�1(
)gwt�1 + x1(
)w0 � xn(
)wn: (A.87)

As in the proof of Theorem 5.1 of Robinson and Marinucci (2001), because (3.3) ensures boundedness
of the spectrum of wt and the cross-spectrum of wt with u2t, it can be easily shown that

V ar
nXn

t=2
fxt(
)� xt�1(
)gwt�1

o
= O (n) : (A.88)

Next, E jx1(
)w0j �
�
Ex1(
)

2Ew20
	1=2 � 1, due to the truncation in (1.7) and (3.3). Similarly, by

Robinson and Marinucci (2001, 2003),

E jxn(
)wnj �
�
Exn(
)

2Ew2n
	 1
2 � Kn��

1
2 ; (A.89)

to conclude that (A.86) is op(n�). Finally, we have to prove that
nX
t=2

xt�1(
)A (1) "t �
nX
t=2

fxt(
)A (1) "t � E [xt(
)A (1) "t]g = op(n
�); (A.90)

but this immediately follows, as V ar f
Pn
t=2 [xt�1(
)� xt(
)]A (1) "tg = O (n), by similar arguments

to the ones in the proof of Theorem 5.1 of Robinson and Marinucci (2001), to complete the proof for
� > 1=2:
Finally, the proof for � < 1=2 follows on showing that

eom (
)� em (
) = op(n
�m1=2��); (A.91)

bom (
)� bm (
) = op(n
2�m1�2�): (A.92)

By the bounds for periodograms given in Robinson (1995b), Robinson (2002) and Assumption 1, the
left side of (A.91) is bounded by

K

8<:
mX
j=1

kpj � p0k kIu (�j)k
mX
k=1

kpk � p0k Ix(
) (�k)

9=;
1
2

� K

8<:n2��2�2�
mX
j=1

j1+�
mX
k=1

k1+��2�

9=;
1
2

� Kn��1��m2+��� ; (A.93)
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so that (A.91) holds as m3=2+�=n1+� ! 0 as n ! 1, by (3.12). Finally, by the same arguments, the
left side of (A.92) is bounded by

K
mX
j=1

�1+�j Ix(
) (�j) � Kn2��1��m2+��2� ; (A.94)

so that (A.92) holds as m1+�=n1+� ! 0 as n!1, again by (3.12), to conclude the proof.

B. Appendix B: Proofs of Propositions

Proof of Proposition 1
First, we show the result for 
. The proof strategy is similar to one employed in Andrews and Sun

(2004). First, by checking conditions in Theorem 8.1 of Wooldridge (1994), we show that there exists
a zero of qpv (c), say 
S , for which the same result as that of Proposition 1 holds. Next, noting that
by Velasco (1999a) 
G is d1=2-consistent, where d is a sequence such that for � = (1 + �) 1 (s = 1) +
21 (s > 1) ;

1

d
+
d1+2� (log d)

2

n2�
! 0 as n!1; (B.1)

setting d equal to a multiple of a power root of n so that (B.1) is satis�ed, 
G is also log
5 l-consistent.

Thus, noting that by our de�nition of 
, j
G � 
j � j
G � 
S j, 
 will be also log5 l-consistent as 
G �

S = Op(log

�5 l). The proof is completed by showing that any zero of qpv (c) which is log
5 l-consistent

is also l1=2-consistent with asymptotic distribution given in Proposition 1, but this immediately follows
from Robinson (1995a), Velasco (1999a), noting that the function kq (u) is bounded.
The score and Hessian corresponding to the objective function Qpv (c) are

Spv (c) =
2l
P0

bq;j�
2c
j I

p
v (�j)P0

kq;j�
2c
j I

p
v (�j)

, Hp
v (c) =

4l
�
Gp2;v (c)G

p
0;v (c)�

�
Gp1;v (c)

�2��
Gp0;v (c)

�2 ; (B.2)

respectively, where

Gpg;v (c) =
p

l

X0
kq;j (log �j)

g
�2cj I

p
v (�j) , g = 0; 1; 2: (B.3)

We �rst check that a condition equivalent to (iv) (b) in Wooldridge (1994) holds in our case. More
precisely we show that

l�
1
2Spv (
)�

2 (2�)
q
Uqqhq

(2q)!f11 (0)

l2q+1=2

n2q
!d N (0; 4p�Wq) : (B.4)

Now,

l�
1
2Spv (
) = 2p

1
2
A

B
; (B.5)

where

A =
�p
l

� 1
2
X0

bq;j

�
�2
j I

p
v (�j)� 1

�
, B =

p

l

X0
kq;j�
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j I

p
v (�j) ; (B.6)
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noting that
P0

bq;j = 0. From (3.1), u1t =
P1
j=0 �

0Aj"t�j , so there exist sequences fbjg1j=0 and
�t � iid (0; 1) such that u1t =

P1
j=0 bj�t�j . Then, we could set A =
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; (B.7)

A2 = 2�f11 (0)
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� 1
2
X0

bq;j
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Ip� (�j)� E
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Ip� (�j)
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; (B.8)

A3 = 2�
�p
l

� 1
2
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Ip� (�j)h (�j)� f11 (0) I

p
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,(B.9)

A4 =
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� 1
2
X0

bq;j

n
Ipv (�j)�

2

j � 2�h (�j) Ip� (�j)

o
: (B.10)

We have

A1 =
�p
l

� 1
2
X0

bq;j (h (�j)� f11 (0)) =
�p
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2
X0
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(2i)!
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jbq;j j�2(q+1)j
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: (B.11)

The �rst term in (B.11) equals

�
l

p

� 1
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8<:
qX
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(2i)!
Uiq +
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24p
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1Z
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(log u+ 1)u2ikq (u) du

359=; ; (B.12)

which, noting Assumption P1, equals�
l

p

� 1
2 hq�

2q
l

(2q)!
Uqq +O

 
l
3
2 log l
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!
; (B.13)

because proceeding as in Lemma 5 of Velasco (1999a),

p

l

X0
bq;j

�
j
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�2i
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(log u+ 1)u2ikq (u) du = O
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implying that
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(2q)!
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2 log l
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l2q+5=2 log l

n2q+2

�
; (B.15)

where by (4.9), the third term of (B.15) is of smaller order than the �rst, while the second is o (1). For
A2, in view of the proof of Lemma 6 of Velasco (1999a), it is straightforward to show that�p

l

� 1
2
X0

bq;j

n
2�Ip� (�j)� 1

o
!d N (0;Wq�) ; (B.16)

simply noting that as in (B.12)
p
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X0
b2q;j =Wq +O

�
log l
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�
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Next, by Velasco (1999a) and some of our previous arguments V ar (A3) = o (1), while
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bq;jh (�j)

(
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�
= op (1) ; (B.18)

by the condition we set on the tapering order p:
Expanding B in a similar way to A, we get B =

P4
i=0Bi, where
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2�f11 (0) p

l

X0
kq;j

n
Ip� (�j)� E

�
Ip� (�j)

�o
; (B.21)
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where by previous results

B1 = O
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whereas
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�
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�
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to complete the proof of (B.4).
Next, we check condition (iv) (a) of Wooldridge (1994), which in our framework is

l�1Hp
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)!p 4Vq > 0: (B.27)
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) =
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and by the same decomposition as in the treatment of B, it is easy to show that
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so that (B.27) follows immediately.
Finally, the proof for 
 follows on showing that condition (iii) (b) in Wooldridge (1994) holds, that

is
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c2N
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)j = op (1) ; (B.31)
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o
, for a sequence of positive numbers cn increasing with n, such

that cn=l! 0 as n!1. We specify this sequence later. Now (B.31) holds on showing
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for g = 0; 1; 2. By the mean value theorem, the term inside the modulus in (B.32) equals
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where jc� 
j � jc� 
j. By Theorem 6 of Velasco (1999b), under our conditions E
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j Ipv (�j)��� � K, so

the expectation of the absolute value of (B.33) is bounded by
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so the left side of (B.32) is bounded by

sup
c2N


jc� 
j
cn

(log n)
3
X0

j�j j�
2p
cn � c�3=2n (log n)

3
n

2p
cn

X0
j
� 2p

cn = O
�
(log n)

3
lc�3=2n

�
; (B.35)

to conclude the proof of the Proposition for 
 on setting cn such that
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The proof for e
 holds on showing that
l�

1
2

�
Spv (
)� S

pev (
)� = op (1) ; (B.37)

l�1
�
Hp
v (
)�H

pev (
)� = op (1) ; (B.38)

sup
c2N


c�1n
��Hpev (c)�Hpev (
)�� = op (1) ; (B.39)

e
G � 
 = op
�
log�5 l

�
: (B.40)

First, (B.37) follows if
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The expectation of the absolute value of the left side of (B.41) is bounded by
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which, by the Theorem of Robinson (2002) and results in Velasco (1999b) is
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which is o (1) by (4.9), since 
 � r < 1=2. Similarly, (B.38) holds because
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by (4.9). Next, (B.39) holds if
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which by the treatment of (B.32) is implied by
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where jc� 
j � jc� 
j. Proceeding as in (B.34), the left side of (B.46) is

O
�
c�3=2n (log n)

3 �
l
�r1 (
 > r) + log l1 (
 = r) + 1 (
 < r)

��
= op (1) ; (B.47)

on setting cn as in (B.36).
Following Robinson (1995a) and Velasco (1999a), we set � = �1 [�2, with

�1 = fc : 
 � 1=2 + � � c � O2g , �2 = fc : O1 � c < 
 � 1=2 + �g ; (B.48)

for � 2 (0; 1=4) (taking �2 to be empty in case O1 � 
 � 1=2+ �), in order to show (B.40). Considering
that the bandwidth associated with e
G is d, we show �rst that e
G � 
 = op

�
d�1=2

�
, so that (B.40)

follows on setting d as a multiple of a power root of n. The main steps consist of establishing

sup
c2�1

����Gpv (c)�Gpev (c)Gp (c)

���� = op
�
log�10 d

�
; (B.49)

where
Gp� (c) =

p

d

X00
�2cj I

p
� (�j) , G

p (c) = f11 (0)
p

d

X00
�
2(c�
)
j ; (B.50)

where throughout
P00

=
Pd
j=p;2p;::, and also

Pr

�
inf
�2

S (c) � 0
�
! 0 as n!1; (B.51)

where

S (c) = log
Gpev (c)
Gpev (
) � 2 (c� 
)

p

d

X00
log �j : (B.52)
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We �rst show (B.49). Now

Gpv (c)�G
pev (c)

Gp (c)
=

p
d

P00 � j
d

�2(c�
)
�2
j

�
Ipv (�j)� I

pev (�j)�
f11 (0)

p
d

P00 � j
d

�2(c�
) ; (B.53)

so that as in the proof of Theorem 5 of Velasco (1999a), the left side of (B.49) is bounded by

K sup
c2�1

p

d

X00
�
j

d

�2(c�
)
�2
j

��Ipv (�j)� Ipev (�j)�� � K
p

d

X00
�
j

d

��1+2�
�2
j

��Ipv (�j)� Ipev (�j)��
= Op

 
d�1

X00
�
j

d

��1+2�
j(
�r)�1

!
= Op

�
d�2�

�
; (B.54)

by Robinson (2002), since 
�r < 1=2 and � < 1=4. Next, we show (B.51). Setting z = exp
�
pd�1

P00
log j

�
,

we have

Pr

�
inf
�2

S (c) � 0
�

= Pr

 
inf
�2

p

d

X00
"�

j

z

�2(c�
)
� 1
#
�2
j I

pev (�j) � 0
!

� Pr
�p
d

X00
[aj � 1]�2
j I

pev (�j) � 0
�
; (B.55)

where

aj =

( �
j
z

��1+2�
, 1 � j � z;�

j
z

�2(O1�
) , z < j � d:
(B.56)

Now (B.55) is o (1) by showing

p

d

X00
(aj � 1)�2
j

�
Ipev (�j)� Ipv (�j)� = op (1) : (B.57)

By the Theorem of Robinson (2002) the left side of (B.57) is bounded by

Kd�1
Xz

j=p;2p;::

�
j

z

��1+2�
j
�r�1+Kd�1

Xd

j=z+p;z+2p;::

�
j

z

�2(O1�
)
j
�r�1+Kd�1

X00
j
�r�1,

(B.58)
which is O

�
d�2� + d�1+
�r + d�1 log d

�
= o (1), on setting � < (r � 
 + 1) =2, to conclude the proof.

Proof of Proposition 2
For � > 1=2, the proof is very similar to that for e
. In fact, (4.15) follows on showing

l�
1
2

�
Spev (
)� Spbv (
)� = op (1) ; (B.59)

l�1
�
Hpev (
)�Hpbv (
)� = op (1) ; (B.60)

sup
c2N


c�1n
��Hpbv (c)�Hpbv (
)�� = op (1) ; (B.61)

b
G � 
 = op
�
log�5 l

�
: (B.62)
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These results follow as easily as corresponding ones in Proposition 1, noting that in the present case��Ipbv (�j)� Ipev (�j)�� � jb� � �j ��wpx (�j)wpev (��j)��+ (b� � �)2 jwpx (�j)j2 : (B.63)

The only point worth stressing is the proof of (B.59). By (B.63), the left side of (B.59) is bounded by

Kl�
1
2 log n

�
jb� � �jX0

�
��j + (b� � �)2X0
�
2(
��)
j

�
; (B.64)

so that the left side of (B.59) is Op
�
l�1=2 log n

��
n l1�� + n2 

�
1 (1=2 < � < 1) + n2 1 (� � 1)

��
=

op (1) on setting  and l such that

n2 log n

l1=2
+
n log n

l��1=2
! 0 as n!1: (B.65)

For � < 1=2 the proof is also very similar. The main di¤erence is that now (B.59) does not hold,
because its left side is Op

�
l�1=2 log n

�
n l1�� + n2 

��
= Op

�
l1=2��+'

�
, on setting l,  , ', such that

n log n

l'
+
n2 log n

l1=2
! 0 as n!1: (B.66)

Proof of Proposition 3
First, bf (�) = 1

2�

n�1X
s=1�n

g
�s
b

� b� (s) e�is� + bQ (�) ; (B.67)

where

b� (s) = 1

n

n�sX
t=1

butbu0t+s; s � 0; = b�0 (�s) ; s < 0: (B.68)

Now but = ut + rt, where

rt =
h
(u1t (b
 � 
)� u1t)� (b� � �)xt(b
);�u2t �b� � ��� u2t�i0 : (B.69)

De�ne b� (s) = � (s) + bR (s), where
� (s) =

1

n

n�sX
t=1

utu
0
t+s; s � 0; = �

0
(�s) ; s < 0; (B.70)

and bR (s) = 1

n

n�sX
t=1

�
rtr

0
t+s + utr

0
t+s + rtu

0
t+s

	
; s � 0; = bR0 (�s) ; s < 0; (B.71)

and split the �rst term on the right of (B.67) as f (�) + bg (�) where
f (�) =

1

2�

n�1X
s=1�n

g
�s
b

�
� (s) e�is�, bg (�) = 1

2�

n�1X
s=1�n

g
�s
b

� bR (s) e�is�: (B.72)
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By arguments similar to those of the proof of Theorem, rt = r1t + r2t + dt, where

r1t =

�
(
 � b
) 0

0 (� � b�)
� t�1X
j=1

a0j (0)ut�j ; r2t = (b� � �) � xt(
) 0
�0
; (B.73)

and dt involves terms of smaller order. Hence, the order of magnitude of bR (s) is given by the order
of n�1

Pn�s
t=1 atb

0
t+s, for the di¤erent combinations of at; bt = rit; ut, i = 1; 2. Thus, in view of the

conditions speci�ed in Proposition 4 and Lemmas B.1, B.2, B.3 of RH, uniformly in s,

bR (s) = Op

�
n��(s) + n�minf�;1g+ 

�
= Op

�
n��(s)

�
; (B.74)

for  < min f�; 1g � � (s). Then, as b�1
Pn�1
s=1�n jg(s=b)j = O (1) by (4.22) and � (s) < 1=2, (B.74)

readily implies that uniformly in �, bg (�) = Op
�
bn��(s)

�
. By Theorem 5A and a straightforward

modi�cation of Theorem 5B of Parzen (1957),

f (�)� f (�) = Op

�
b�minfh;sg + (b=n)

1
2

�
; (B.75)

for covariance averaging kernels g satisfying (4.23), so that the �rst term on the right of (B.67) is

f (�) +Op

 
b�s +

�
b

n

� 1
2

+ bn��(s)

!
; (B.76)

as the kernel is chosen such that h � s.
Finally, as in the proof of Theorem 2.1 of Robinson (1991), bQ (�) is bounded in norm by

K
n�1X
s=1�n

���g �s
b

���� 


b� (n� s)


 � K
n�1X
s=1�n

���g �s
b

���� 

� (n� s)

+K n�1X
s=1�n

���g �s
b

���� 


 bR (n� s)


 ; (B.77)

uniformly in � 2 [��; �]. The second term on the right side of (B.77) can be treated as in the analysis
of bg(�), whereas the �rst term is

Op

 
n�1

n�1X
s=1�n

���sg �s
b

����! = Op
�
n�1b2

�
; (B.78)

by (4.22), since � (n� s) is a sum of s terms whose mean exists and is uniformly bounded, implying by
(B.76) that

bf (�)� f (�) = Op

 
b�s +

�
b

n

� 1
2

+ bn��(s) + n�1b2

!
: (B.79)

In order to �nd the �optimal�rate for b, let b � n� for some � > 0. Clearly, n���(s) dominates n(��1)=2

for any s, whereas n���(s) and n2��1 share the same rate for � = (1 + s) = (1 + 2s), which is not a
sensible choice as we seek estimates of f (�) which could approach the parametric rate n�1=2 for s large
enough. For � < (1 + s) = (1 + 2s), again n���(s) dominates n2��1. Finally, noting that n��s and
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n���(s) move in opposite directions when � changes, it is clear that the value of � which maximizes
the rate of convergence should satisfy -�s = �� � (s), i.e. �� = � (s) = (1 + s), to conclude the proof.

Proof of Proposition 4
Considering �rst the contribution of the �rst term on the right of (B.67), we have

bgj+1 � bgj = 1

2�

n�1X
r=1�n

g
�r
b

� bR (r) �e�ir�j+1 � e�ir�j� ; (B.80)

which is bounded in norm, uniformly in j 2 [1; n], by

Kn�1
n�1X
r=1�n

���rg �r
b

���� 


 bR (r)


 � Kn�1b2
n�1X
r=1�n

jrj
b2

���g �r
b

���� 


 bR (r)


 ; (B.81)

as
max
j
jexp (ir�j)� exp (ir�j+1)j � jrjn�1: (B.82)

Thus, by (B.74), (4.22), uniformly in j 2 [1; n],

bgj+1 � bgj = Op

�
n�1b2n��(s)

�
: (B.83)

Next, de�ning a1j = f j � Ef j , a2j = Ef j � fj , a1;j+1 � a1j is bounded in norm by

K







n�1X
r=1�n

g
�r
b

� �
� (r)� E� (r)

� �
e�ir�j+1 � e�ir�j

�




 ; (B.84)

which is, uniformly in j, Op(b2n�3=2) by (B.82) since (4.22) implies that b�2
Pn�1
r=1�n jrg(r=b)j = O (1),

and "t being an iid sequence with �nite fourth moment and f (�) being continuous readily implies that,
uniformly in r, � (r)� E� (r) = Op

�
n�1=2

�
. Next, by (B.82), a2;j+1 � a2j is, uniformly in j, bounded

in norm by

Kn�1
n�1X
r=1�n

���1� g �r
b

���� jrj k� (r)k+Kn�2 n�1X
r=1�n

r2
���g �r

b

���� k� (r)k+Kn�1 X
jrj�n

jrj k� (r)k : (B.85)

The third term is bounded by
Kn�s

X
jrj�n

jrjs k� (r)k = o
�
n�s

�
; (B.86)

as Assumption P5 implies
P1
r=�1 jrj

s k� (r)k <1. As again by Assumption P5, supr jrj k� (r)k � K,
the second term is bounded by

Kn�2
n�1X
r=1�n

jrj
���g �r

b

���� = O
�
b2n�2

�
; (B.87)
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from (4.22). Finally, the �rst term in (B.85) is bounded by

Kn�1
X
jrj<"b

���1� g �r
b

���� jrj k� (r)k+Kn�1 X
jrj�"b

���1� g �r
b

���� jrj k� (r)k ; (B.88)

for " 2 (0; �), where � is given in Assumption P5. Letting i = h� s, the �rst term in (B.88) is bounded
by

Kn�1b1�sb�(i+1)
X
jrj<"b

jrj1+s+i k� (r)k = o
�
n�1b1�s

�
; (B.89)

from Lemma 4 of Parzen (1957). The second term in (B.88) is bounded by

Kn�1
X
jrj�"b

jrjs

(b")
s�1 k� (r)k = o

�
n�1b1�s

�
; (B.90)

to conclude as in (B.89). Finally, bQj+1 � bQj is bounded in norm by

Kn�1
n�1X
r=1�n

���rg �r
b

���� 

� (n� r)

+Kn�1 n�1X
r=1�n

���rg �r
b

���� 


 bR (n� r)


 ; (B.91)

uniformly in j. The second term in (B.91) can be treated as (B.81), whereas by the previous analysis,
the �rst term is

Op

 
n�2

n�1X
r=1�n

r2
���g �r

b

����! = Op
�
n�2b3

�
; (B.92)

by (4.22). Clearly, b2n�1��(s) dominates b2n�3=2, b2n�2 and also b3n�2, since this last rate and
b2n�1��(s) are only equal for b � n(1+s)=(1+2s), when � < 1=2, b � n(1+2s(1�(��')))=(1+2s). Also,
n�1b1�s dominates n�s, equating it only when s = 1.
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TABLE 3
MONTE CARLO BIAS OF �I ; �

o
I ; �F ; �

o
F ; �U FOR m = I

n 64 128 256

; � 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2
�I -.003 -.001 -.002 .000 -.001 .000 -.001 .000 .000 .000 .000 .000
�oI -.003 -.001 -.003 .000 -.001 .000 -.001 .000 .000 .000 .000 .000

WN �F -.005 -.001 -.004 .000 -.002 .000 -.001 .000 .000 .000 .000 .000
�oF -.006 -.001 -.004 .000 -.001 .000 -.001 .000 .000 .000 .000 .000
�U -.005 -.001 -.007 .000 -.002 .000 -.003 .000 .000 .000 -.001 .000
�I .041 .001 .007 .000 .029 .000 .004 .000 .019 .000 .001 .000
�oI .039 .001 .007 .000 .027 .000 .003 .000 .018 .000 .001 .000

AR �F .063 -.002 .019 -.001 .045 -.001 .010 .000 .029 .000 .004 .000
�oF .061 -.002 .019 -.001 .042 -.001 .010 .000 .026 .000 .004 .000
�U .101 .002 .032 .000 .082 .001 .019 .000 .066 .000 .011 .000
�I -.045 -.001 -.006 .000 -.031 .000 -.003 .000 -.022 .000 -.001 .000
�oI -.041 -.001 -.006 .000 -.027 .000 -.002 .000 -.020 .000 -.001 .000

MA �F -.065 .001 -.017 .001 -.043 .001 -.007 .000 -.028 .001 -.002 .000
�oF -.063 .001 -.018 .001 -.040 .001 -.007 .000 -.025 .001 -.002 .000
�U -.112 -.003 -.034 .000 -.090 -.001 -.020 .000 -.074 .000 -.011 .000

TABLE 4
MONTE CARLO BIAS OF �I ; �

o
I ; �F ; �

o
F ; �U FOR m = III

n 64 128 256

; � 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2
�I -.003 -.001 -.003 .000 -.001 .000 -.001 .000 .000 .000 .000 .000
�oI -.003 -.001 -.003 .000 .000 .000 -.001 .000 .000 .000 .000 .000

WN �F -.005 -.001 -.005 .000 -.002 .000 -.002 .000 .000 .000 .000 .000
�oF -.006 -.001 -.006 .000 -.001 -.001 -.002 .000 .001 .000 .000 .000
�U -.005 -.001 -.007 .000 -.002 .000 -.003 .000 .000 .000 -.001 .000
�I .052 .001 .009 .000 .037 .000 .004 .000 .025 .000 .002 .000
�oI .046 .001 .007 .000 .032 .000 .004 .000 .021 .000 .001 .000

AR �F .082 -.001 .024 -.001 .057 -.001 .012 .000 .038 .000 .005 .000
�oF .089 .000 .029 -.001 .058 -.001 .013 .000 .037 .000 .005 .000
�U .121 .003 .033 .000 .097 .001 .020 .000 .078 .000 .011 .000
�I -.062 -.001 -.009 .000 -.043 .000 -.004 .000 -.030 .000 -.001 .000
�oI -.053 -.001 -.007 .000 -.036 .000 -.003 .000 -.026 .000 -.001 .000

MA �F -.087 .000 -.023 .001 -.058 .001 -.010 .000 -.038 .000 -.003 .000
�oF -.088 .000 -.025 .001 -.057 .001 -.011 .000 -.037 .000 -.003 .000
�U -.145 -.004 -.036 .000 -.118 -.001 -.020 .000 -.099 .000 -.011 .000
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TABLE 5
MONTE CARLO S.D. OF �I ; �

o
I ; �F ; �

o
F ; �U FOR m = I

n 64 128 256

; � 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2
�I .111 .026 .072 .009 .065 .011 .037 .003 .040 .004 .020 .001
�oI .110 .025 .070 .009 .065 .010 .037 .003 .039 .004 .020 .001

WN �F .115 .030 .077 .010 .068 .012 .041 .003 .042 .005 .021 .001
�oF .114 .030 .077 .010 .068 .011 .041 .003 .041 .005 .021 .001
�U .098 .025 .080 .011 .058 .010 .046 .003 .036 .004 .025 .001
�I .099 .021 .060 .008 .060 .009 .032 .002 .036 .004 .017 .001
�oI .098 .021 .060 .008 .059 .009 .032 .002 .036 .004 .017 .001

AR �F .108 .030 .076 .010 .065 .013 .042 .003 .041 .005 .023 .001
�oF .110 .031 .078 .011 .065 .013 .043 .003 .041 .005 .023 .001
�U .093 .022 .070 .010 .060 .009 .041 .003 .039 .004 .022 .001
�I .093 .020 .058 .007 .058 .009 .031 .003 .037 .004 .017 .001
�oI .092 .020 .057 .007 .058 .009 .031 .003 .036 .004 .017 .001

MA �F .102 .025 .068 .008 .064 .011 .038 .003 .039 .005 .021 .001
�oF .102 .026 .069 .009 .064 .012 .039 .003 .040 .005 .022 .001
�U .088 .021 .066 .009 .059 .009 .040 .003 .041 .004 .023 .001

TABLE 6
MONTE CARLO S.D. OF �I ; �

o
I ; �F ; �

o
F ; �U FOR m = III

n 64 128 256

; � 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2 0; :6 0; 1:2 :4; 1:2 :4; 2
�I .103 .026 .071 .009 .061 .010 .037 .003 .038 .004 .020 .001
�oI .108 .025 .073 .009 .068 .010 .039 .003 .042 .004 .021 .001

WN �F .105 .029 .075 .009 .062 .011 .041 .003 .039 .005 .021 .001
�oF .114 .030 .087 .009 .069 .012 .048 .003 .044 .005 .024 .001
�U .086 .025 .078 .010 .052 .010 .046 .003 .033 .004 .025 .001
�I .097 .021 .061 .008 .060 .009 .033 .002 .037 .004 .017 .001
�oI .097 .021 .059 .008 .059 .009 .032 .002 .036 .004 .017 .001

AR �F .097 .029 .068 .010 .061 .012 .037 .003 .039 .005 .021 .001
�oF .110 .030 .075 .010 .066 .013 .040 .003 .043 .005 .022 .001
�U .092 .022 .069 .010 .062 .009 .040 .003 .042 .004 .022 .001
�I .090 .020 .057 .007 .060 .009 .032 .003 .039 .004 .018 .001
�oI .091 .020 .057 .007 .059 .009 .032 .003 .039 .004 .018 .001

MA �F .096 .023 .063 .008 .064 .011 .037 .003 .041 .005 .020 .001
�oF .105 .024 .068 .008 .071 .011 .039 .003 .045 .005 .021 .001
�U .089 .021 .066 .009 .064 .009 .040 .003 .048 .004 .022 .001
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TABLE 7
EMPIRICAL SIZES OF WI AND WF FOR m = I

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .106 .171 .096 .146 .083 .121 .175 .222 .146 .206 .140 .191
WN 0 1.2 .075 .190 .062 .147 .052 .125 .144 .247 .123 .195 .120 .169

.4 1.2 .094 .179 .078 .139 .061 .122 .157 .244 .132 .198 .116 .165

.4 2 .062 .172 .072 .154 .066 .118 .125 .222 .131 .198 .122 .176
0 .6 .256 .202 .222 .206 .203 .173 .360 .274 .319 .286 .290 .259

AR 0 1.2 .190 .103 .142 .078 .128 .053 .267 .149 .225 .101 .204 .084
.4 1.2 .200 .155 .154 .117 .121 .100 .285 .217 .241 .187 .203 .162
.4 2 .189 .079 .142 .065 .126 .037 .273 .113 .217 .090 .193 .069
0 .6 .179 .220 .155 .238 .158 .213 .246 .306 .247 .317 .231 .271

MA 0 1.2 .093 .156 .098 .155 .069 .112 .167 .211 .155 .198 .124 .150
.4 1.2 .126 .189 .095 .176 .078 .147 .195 .276 .166 .241 .148 .205
.4 2 .096 .131 .091 .130 .080 .091 .151 .172 .160 .181 .128 .137

TABLE 8
EMPIRICAL SIZES OF W o

I AND W o
F FOR m = I

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F

0 .6 .103 .177 .090 .143 .078 .117 .175 .224 .151 .203 .133 .180
WN 0 1.2 .073 .192 .065 .149 .050 .126 .137 .247 .122 .194 .122 .172

.4 1.2 .091 .177 .077 .134 .053 .120 .163 .239 .126 .192 .111 .165

.4 2 .064 .169 .075 .156 .065 .119 .123 .224 .128 .199 .117 .174
0 .6 .248 .203 .212 .202 .177 .161 .345 .280 .303 .274 .269 .239

AR 0 1.2 .187 .106 .144 .078 .127 .055 .268 .149 .221 .108 .203 .088
.4 1.2 .194 .159 .153 .132 .117 .111 .281 .224 .235 .199 .202 .172
.4 2 .185 .078 .145 .067 .125 .037 .277 .117 .217 .094 .195 .071
0 .6 .168 .215 .145 .225 .143 .197 .236 .301 .234 .302 .209 .266

MA 0 1.2 .091 .154 .097 .158 .068 .108 .170 .208 .157 .204 .121 .156
.4 1.2 .122 .196 .093 .177 .076 .157 .193 .275 .167 .261 .144 .215
.4 2 .091 .132 .092 .128 .082 .091 .150 .171 .157 .180 .129 .137
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TABLE 9
EMPIRICAL SIZES OF WI AND WF FOR m = III

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .127 .185 .100 .146 .090 .123 .198 .233 .159 .204 .155 .192
WN 0 1.2 .074 .192 .065 .142 .052 .126 .141 .246 .122 .199 .123 .170

.4 1.2 .104 .187 .086 .142 .064 .121 .171 .251 .139 .200 .121 .168

.4 2 .067 .174 .071 .152 .062 .117 .121 .219 .126 .202 .122 .172
0 .6 .316 .259 .274 .266 .255 .240 .391 .353 .353 .350 .346 .332

AR 0 1.2 .191 .102 .147 .076 .127 .052 .278 .142 .216 .103 .204 .084
.4 1.2 .216 .159 .166 .113 .132 .097 .297 .227 .252 .183 .207 .154
.4 2 .195 .077 .139 .066 .126 .039 .268 .116 .223 .096 .197 .071
0 .6 .237 .308 .242 .318 .238 .281 .326 .410 .328 .395 .323 .373

MA 0 1.2 .099 .160 .099 .152 .066 .104 .172 .204 .160 .199 .121 .147
.4 1.2 .134 .201 .108 .177 .087 .149 .216 .276 .184 .241 .156 .203
.4 2 .090 .139 .089 .136 .078 .090 .151 .179 .165 .183 .129 .139

TABLE 10
EMPIRICAL SIZES OF W o

I AND W o
F FOR m = III

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F W o
I W o

F

0 .6 .149 .219 .131 .186 .118 .163 .217 .275 .205 .252 .188 .243
WN 0 1.2 .066 .192 .066 .142 .051 .127 .143 .250 .128 .196 .123 .174

.4 1.2 .117 .228 .103 .164 .079 .143 .192 .286 .153 .225 .139 .201

.4 2 .066 .172 .074 .155 .063 .118 .125 .223 .124 .196 .118 .176
0 .6 .279 .306 .231 .264 .208 .227 .367 .368 .328 .351 .294 .320

AR 0 1.2 .189 .101 .145 .077 .127 .055 .274 .147 .218 .108 .204 .089
.4 1.2 .203 .173 .157 .131 .115 .111 .282 .255 .243 .198 .201 .165
.4 2 .189 .079 .142 .065 .125 .038 .269 .115 .221 .093 .194 .073
0 .6 .211 .307 .202 .316 .201 .283 .283 .401 .271 .393 .268 .355

MA 0 1.2 .097 .157 .095 .149 .065 .105 .174 .210 .155 .206 .120 .156
.4 1.2 .128 .216 .103 .189 .083 .157 .210 .300 .173 .251 .151 .222
.4 2 .089 .134 .090 .131 .078 .090 .150 .170 .156 .179 .126 .135
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TABLE 11
MONTE CARLO BIAS OF �I ; �2I ; �F ; �2F ; �U FOR � = :5, � =  = 0

n 64 128 256

; � 0; :4 :2; :4 :4; :8 :7; 1 0; :4 :2; :4 :4; :8 :7; 1 0; :4 :2; :4 :4; :8 :7; 1
�I .060 .182 .055 .100 .043 .164 .040 .080 .028 .131 .025 .055
�2I .025 .120 .024 .053 .019 .110 .018 .044 .010 .079 .009 .025

I �F .072 .204 .069 .122 .054 .194 .052 .107 .031 .140 .031 .066
�2F .031 .164 .031 .077 .026 .162 .026 .075 .005 .089 .009 .033
�U .149 .276 .140 .194 .119 .254 .109 .163 .096 .226 .085 .132
�I .119 .263 .092 .142 .093 .240 .068 .116 .063 .203 .044 .082
�2I .069 .216 .054 .101 .050 .191 .037 .078 .029 .153 .021 .050

II �F .141 .282 .116 .173 .108 .256 .088 .144 .070 .212 .054 .098
�2F .105 .259 .091 .150 .075 .225 .065 .121 .038 .172 .032 .072
�U .211 .321 .161 .204 .181 .301 .131 .176 .146 .273 .099 .138
�I .177 .318 .120 .169 .127 .279 .084 .133 .085 .235 .052 .092
�2I .123 .288 .085 .138 .078 .242 .053 .101 .044 .189 .028 .062

III �F .197 .329 .143 .195 .143 .289 .103 .157 .093 .242 .064 .109
�2F .164 .315 .123 .182 .106 .266 .081 .140 .057 .207 .042 .086
�U .259 .351 .174 .208 .212 .323 .137 .178 .170 .292 .103 .140

TABLE 12
MONTE CARLO S.D. OF �I ; �2I ; �F ; �2F ; �U FOR � = :5, � =  = 0

n 64 128 256

; � 0; :4 :2; :4 :4; :8 :7; 1 0; :4 :2; :4 :4; :8 :7; 1 0; :4 :2; :4 :4; :8 :7; 1
�I .262 .521 .261 .382 .185 .429 .188 .297 .115 .300 .116 .197
�2I .288 .648 .286 .427 .199 .520 .199 .319 .121 .357 .121 .206

I �F .291 .530 .286 .413 .207 .455 .207 .336 .129 .325 .128 .221
�2F .380 .708 .363 .514 .268 .637 .248 .408 .162 .440 .157 .266
�U .201 .342 .221 .354 .146 .289 .174 .308 .094 .207 .113 .219
�I .172 .268 .185 .283 .117 .206 .129 .222 .084 .171 .089 .159
�2I .196 .332 .202 .292 .130 .252 .135 .214 .091 .209 .092 .153

II �F .179 .267 .191 .285 .121 .205 .136 .233 .088 .170 .094 .171
�2F .214 .328 .221 .311 .142 .246 .153 .242 .103 .212 .107 .177
�U .137 .201 .174 .298 .097 .158 .133 .256 .070 .127 .095 .197
�I .144 .198 .169 .273 .105 .167 .123 .223 .076 .140 .084 .159
�2I .164 .233 .178 .269 .116 .196 .125 .209 .082 .167 .085 .146

III �F .153 .204 .171 .269 .110 .170 .128 .228 .078 .139 .087 .167
�2F .179 .241 .187 .275 .125 .198 .137 .228 .088 .164 .095 .163
�U .123 .167 .166 .289 .091 .140 .130 .252 .066 .112 .093 .195

44



TABLE 13
EMPIRICAL SIZES OF WI AND WF FOR � = :5, � =  = 0

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .172 .263 .151 .240 .111 .209 .247 .335 .228 .298 .192 .284
I .2 .4 .275 .336 .283 .327 .263 .311 .362 .416 .354 .398 .357 .381

.4 .8 .170 .242 .161 .240 .108 .194 .244 .314 .232 .297 .199 .264

.7 1 .222 .275 .221 .263 .193 .228 .308 .345 .292 .341 .277 .299
0 .4 .273 .343 .263 .361 .232 .320 .361 .425 .346 .443 .326 .400

II .2 .4 .434 .473 .490 .549 .518 .536 .511 .550 .578 .622 .588 .605
.4 .8 .252 .325 .236 .343 .206 .300 .329 .399 .317 .422 .294 .383
.7 1 .339 .398 .380 .448 .344 .406 .430 .476 .470 .527 .423 .485
0 .4 .418 .488 .407 .481 .365 .419 .521 .571 .502 .569 .462 .515

III .2 .4 .618 .646 .665 .701 .682 .706 .694 .708 .741 .768 .747 .764
.4 .8 .322 .392 .301 .401 .261 .349 .412 .473 .388 .476 .348 .432
.7 1 .444 .488 .451 .513 .417 .480 .514 .561 .529 .607 .506 .548

TABLE 14
EMPIRICAL SIZES OF W2I AND W2F FOR � = :5, � =  = 0

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 
 � W2I W2F W2I W2F W2I W2F W2I W2F W2I W2F W2I W2F

0 .4 .206 .312 .158 .274 .121 .242 .287 .391 .246 .336 .210 .309
I .2 .4 .352 .430 .322 .394 .300 .353 .455 .507 .412 .475 .384 .431

.4 .8 .197 .312 .162 .267 .121 .228 .286 .380 .247 .333 .211 .295

.7 1 .275 .333 .231 .285 .207 .259 .362 .414 .298 .364 .275 .336
0 .4 .262 .347 .221 .356 .196 .321 .338 .433 .308 .438 .281 .402

II .2 .4 .439 .495 .447 .529 .446 .504 .513 .573 .522 .606 .522 .574
.4 .8 .262 .354 .227 .371 .192 .310 .346 .446 .304 .444 .281 .398
.7 1 .344 .415 .332 .441 .306 .394 .433 .499 .421 .523 .381 .460
0 .4 .329 .448 .276 .412 .220 .339 .412 .526 .358 .488 .310 .424

III .2 .4 .563 .623 .582 .647 .562 .613 .636 .691 .649 .703 .631 .672
.4 .8 .292 .400 .246 .395 .204 .336 .379 .484 .339 .472 .286 .411
.7 1 .415 .492 .404 .497 .341 .440 .502 .566 .488 .571 .441 .528
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