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Abstract

What factors underlie industry differences in research intensity and pro-
ductivity growth? We develop a multisector growth model using standard
parameters to capture the main factors considered in the empirical R&D and
productivity growth literature. Along the balanced growth path, we find that
the primary factor behind industry differences in productivity growth is the
extent to which new knowledge builds upon prior knowledge. In contrast,
R&D intensity also depends upon the relative importance of different sources
of prior knowledge. Quantitatively, we find that the key factor behind indus-
try differences in both productivity growth and R&D intensity is the extent to
which new knowledge builds upon prior knowledge, regardless of the source.
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"If the auto industry had done what the computer has done in the
past 30 years, a Rolls Royce would cost $2.50 and get 2 million miles to
the gallon." Computerworld (1980).

1 Introduction

Total factor productivity (TFP) growth rates differ widely across industries, and
these differences have been linked to persistent cross-industry variation in R&D in-
tensity — see Figure 1. The correlation in Figure 1 is sometimes interpreted as
causation from R&D intensity to TFP growth, leading to the policy recommenda-
tion that R&D should be subsidized. However, both R&D and productivity change
reflect the responses of firms to deeper industry characteristics. This paper develops
a general equilibrium model in which both research activity and productivity growth
vary endogenously across industries — to study these factors from the perspective of
growth theory, and to provide a rich framework for policy analysis.

We build the model according to criteria that we believe define a natural bench-
mark. First, industries differ in terms of factors commonly identified in the empirical
literature as being potential determinants of research intensity: technological oppor-
tunity (factors that affect the efficiency of research), appropriability (the extent to
which R&D benefits the innovator) and demand (the magnitude and sensitivity of
the potential returns to research). Second, these factors are implemented in the
model using standard preference and technology parameters drawn from the growth
literature. Third, to discipline our analysis, we study the behavior of the model
along an aggregate balanced growth path — consistent with our use of data from the
United States, where GDP has grown at a stable rate for over a century.

As in Jones (1995), the aggregate growth rate along the balanced growth path is
pinned down by the population growth rate. Comparing across industries, we find
that differences in TFP growth rates depend primarily on one factor of technological
opportunity — the extent to which each industry is able to generate new knowledge by
drawing on prior knowledge. We call this ability receptivity, modeled as the elasticity
of the ideas production function with respect to all sources of prior knowledge. By
contrast, differences in R&D intensities also depend on the fraction of receptivity
that accrues from the firm’s own stock of knowledge. We use this fraction to capture
the notion of appropriability.

Our results are consistent with the claim of Nelson (1988), Klevorick et al (1995)
and Nelson and Wolff (1997) that the extent to which knowledge spills from a firm



70

50 . 1
40} 1

30+ x R

TFP growth rate, %

20

R&D intensity, %

Figure 1: R&D intensity and TFP growth across manufacturing industries. R&D
intensity is measured using the median ratio of R&D spending to sales in Compus-
tat, 1950-2000. TFP growth rates are from the NBER manufacturing productivity
database — see Bartelsman et al (2000). The correlation is 33%, P-value 0.01%. Data
include all 133 industries for which Compustat contained at least one firm. We ex-
clude an outlier (Biological products excluding diagnostics) which has R&D intensity
of 77% — 10 standard deviations from the mean. Including it reduces the correlation
to 15%, P-value 8%. Other authors find a similar relationship: see Terleckyj (1980)
for an early survey.



to its competitors affects R&D intensity, but not TFP growth rates.! Using the
NBER patent citation database as an indicator of knowledge flows, we find that
cross-industry spillovers are relatively weak — whereas spillovers within industries
are large. Moreover, within-industry spillovers are mainly due to knowledge flows
across firms, so that appropriability is quite low. As a result, our model predicts
that differences in R&D intensities are mainly driven by differences in receptivity,
in the form of large knowledge spillovers across firms in the same industry. When
we calibrate the model economy to match changes in the relative prices of different
capital goods over time (adjusted for quality), we find that the correlation between
R&D in the model and in the data is close to 80%.

Along a balanced growth path, neither differences in TFP growth rates nor differ-
ences in R&D intensity turn out to be related to demand factors. This is consistent
with the finding that a robust relationship between demand factors and R&D in-
tensity is hard to pin down — see the survey of Cohen and Levin (1989) — and with
a pervading sense among historians of technical change that the pace and direction
of technical progress is primarily supply-driven. A well-known example of this phe-
nomenon is "Moore’s Law", a prediction of stable decline in the price of computing
efficiency which has held for about 40 years.? In the model, while product demand
provides an incentive to perform research, innovations follow a primarily technolog-
ical rationale, leading to stable rates of technological progress in the long run.

As an application of the model, we solve the planner’s problem and derive industry-
specific tax and subsidy schemes that allow the decentralized equilibrium to replicate
the planner’s solution. While a variety of policies and institutions may impact the
incentives to perform R&D, we focus on R&D subsidies because they are fairly com-
mon (in the form of tax exemptions) and because they are easily interpretable in
quantitative terms. We find that optimal R&D subsidies are not uniform: indus-
tries with higher receptivity or lower appropriability should receive higher subsidies.
Thus, R&D should be subsidized more in industries in which R&D intensity is low
relative to its rate of TFP growth. In a one-sector model, Jones and Williams (1998)
find that R&D intensity is between half and a quarter of its optimal level: we find
that the size of the wedge between the equilibrium and the optimum R&D intensity
varies within this range, depending positively on industry receptivity.

1" Appropriability conditions, through their influence on R&D intensity, affect the position at
any time along the productivity track, but not the slope of that track." Klevorick et al (1995).

2The original statement of Moore (1965) is "the complexity for minimum component costs [of an
integrated circuit] has increased at a rate of roughly a factor of two per year... There is no reason
to believe [this rate] will not remain nearly constant for at least 10 years." However, the costs of
a transistor and of hedonic computing performance measures such as processor speed and memory
capacity have also experienced steady declines, and it is common to cite the "law" in those terms.
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A related paper is Klenow (1996), which studies the determinants of cross-
industry differences in TFP growth and R&D intensity in a 2-sector version of the
Romer (1990) model. We confirm his finding that industries which are more R&D-
intensive because of better appropriability should receive a lower R&D subsidy. How-
ever, by allowing for a broader set of parameters, we also find that industries which
are more R&D-intensive because of higher receptivity should receive larger R&D
subsidies — an effect that turns out to be quantitatively dominant.

Also related is Krusell (1998), who develops a 2-sector framework to endogenize
the gap in TFP growth between capital good and consumption good industries docu-
mented by Greenwood et al (1997). Vourvachaki (2006) and Acemoglu and Guerrieri
(2006) feature two-sector endogenous growth models: however, in all these papers,
either there is only research in one sector, or the focus is not on the factors that
determine sectorial TFP growth rates.

Finally, Jones (1995, 1999) finds that magnitude of the elasticity with respect to
all prior knowledge in the aggregate idea production function is crucial for a balanced
growth path to exist in R&D-based growth models. In a multisector model, we find
that the corresponding elasticity at the industry level is crucial for comparing research
and productivity growth across industries.

Section 2 provides an overview of the related empirical literature. Section 3
describes the structure of the model, and Section 4 studies its long run behavior.
Section 5 applies the model to the problem of optimal research policy, and Section
6 uses patent citations to determine the relative importance of different kinds of
spillovers and derive the quantitative implications the model by calibrating to the
US economy. Section 7 summarizes the results. All proofs are collected in Appendix

A.

2 Factors of R&D Intensity

Numerous empirical studies have attempted to find the determinants of industry vari-
ation in innovative activity. While some studies assume that R&D activity causes
TFP growth, others take our view that both may be determined by deeper "funda-
mentals" of each industry. Consistent with our view, Nelson and Wolff (1998) are
able to identify factors that explain R&D intensity that do not account for TFP
growth rates.

The literature has focused on three sets of fundamental factors that might drive
research activity and TFP growth: product demand factors, technological opportu-
nity, and appropriability.



Demand factors affect the returns to R&D. In Schmookler (1966), large product
markets are thought to encourage innovation by offering relatively large returns to
innovators. Kamien and Schwartz (1970) argue that the gains from reducing the
cost of production may be larger when demand is more elastic. However, the survey
of Cohen and Levin (1989) suggests that the evidence concerning demand factors is
weak. Studies often rely on categorical or dummy variables to stand in for demand
factors but, even using a more structural approach to estimate demand size and
elasticity, Cohen et al (1985) find that demand factors lose significance in cross-
industry R&D regressions when indicators of opportunity and appropriability are
included. Independently, case-based and historical studies suggest that technical
change appears driven by scientific or engineering considerations rather than by
demand conditions.?

Technological opportunity encompasses factors that lead research to be more pro-
ductive in some industries than others. Opportunity has been modeled in different
ways — for example, in Klenow (1996) it is a constant Z; in the production func-
tion for knowledge of industry i. Nelson (1988) and Klevorick et al (1995) list three
sources of technological opportunity, all of which are inherently dynamic: the ad-
vance of scientific understanding (modeled as an exogenous rate of increase in Z;),?
technological advances outside the industry that may "spill over", and the influence
of pre-existing ideas on the ability to generate new ones — which we call receptivity.

Identifying all these factors empirically is difficult. Using surveys of R&D man-
agers, Cohen et al (1985), Cohen et al (1987) and Klevorick et al (1995) try to identify
all three, and relate them to R&D activity as well as to technical change. Using a
different approach, Bernstein and Nadiri (1988) estimate cost functions for a set of
five "high-tech" industries, including the R&D stock of other industries in each one,
and find some evidence of cross-industry spillovers.

Appropriability relates to the extent that an innovating firm (as opposed to its
competitors) benefits from its own newly generated knowledge. Cohen et al (1987),

3"In some of the writing on technological advance, there is a sense that innovation has a cer-
tain inner logic of its own....— particularly in industries where technological advance is very rapid,
advances seem to follow advances in a way that appears somewhat ‘inevitable’ and certainly not
fine tuned to the changing demand and cost conditions." Nelson and Winter (1977), on ‘natural
trajectories.’

4Since the trademark of R&D-based growth models is that technical progress is endogenous,
our model does not feature exogenously growing factors other than the population. However, it is
not clear that academic research is best thought of as being exogenous: it benefits from spillovers
from commercial research, and it is also conducted in response to economic incentives. Thus, an
interpretation of academic research within our model is simply that it is research conducted by a
sector (for instance, educational services, perhaps disaggregated by field), the outcome of which
may spill over to other sectors.



Klevorick et al (1995) and Nelson and Wolff (1997) find evidence that appropriability
is related to R&D intensity and, interestingly, Klevorick et al (1995) and Nelson and
Wolff (1997) argue that the survey data are consistent with an influence of oppor-
tunity factors on both R&D intensity and technical change, whereas appropriability
is only related to R&D intensity. Cohen et al (1987) do find a positive link between
appropriability and an indicator of innovation, also using survey data. What may
cloud these results is that the appropriability measure in all these papers may not
distinguish clearly between appropriability and opportunity. The measure is based
on the response to the question "in this line of business, how much time would a
capable firm typically require to effectively duplicate and introduce a new or im-
proved product developed by a competitor?" This may not distinguish between (a)
the ease with which a competitor might access a firm’s knowledge, and (b) the ease
in general with which preexisting knowledge can be used to generate new knowledge.
In particular, if appropriability itself is generally small, then the measure may reflect
primarily differences in receptivity.
The following stylized facts emerge from the literature.

1. the link between demand factors and research intensity (or rates of TFP growth)
is not robust;

2. There is some evidence that opportunity affects both variables of interest;

3. Appropriability is easier to relate to R&D intensity than to TFP growth rates.

We wish to articulate these factors within a general equilibrium growth model,
based on primitives of preferences and technology drawn from the growth literature.
Given the measurement difficulties inherent in studying the role of knowledge in
technical progress, we use the structure of the model to inform us regarding the
long run relationships that may hold between R&D, TFP growth, and each of these
factors, from the perspective of growth theory. We use a model of firm level R&D that
is intentionally close to the production function approach common in the empirical
literature, with the aim of providing a benchmark to help organize our understanding
of how different industry characteristics may be related to long-run research intensity
and TFP growth.

3 Model Economy

The economy consists of z > 2 sectors. Firms in sectors i € {1,..m — 1} produce
consumption goods, whereas firms in sectors j € {m, ...z} produce investment goods.

7



Each firm in sector i produces a differentiated variety h € [0, 1] of good i, using
capital and labor as physical inputs. The firm’s productivity depends upon the
quantity of technical knowledge at its disposal. New knowledge is produced as a
result of individual firm activity, and of spillovers from other firms. We first consider
spillovers within sectors, and later allow for spillovers across sectors too. We defer a
more detailed discussion of our modeling choices until Section 4.

3.1 Firms
Time is discrete and indexed by ¢ € N. Output of variety h of good ¢ is
Yine = Tint z‘clythilh;a’ ac (07 1) (1)

where Y, is output, T}y is knowledge, K;;; is capital and N;p, is labor. Knowledge
accumulates over time according to the function

Tint+1 = Fipg + (1 = 97) Ty (2)
where new knowledge Fjy; is produced according to®
K4 0 « —Q w
Fiht == ZiT;htT‘it ( ihthlht ) ) ¢ € (07 1) (3)

Qi and L;, are capital and labor used in production of knowledge, and T}; =
fol Tinedh. Let v, = Tings1/Tine be the growth factor of Tj,.
The firm’s profits are

Wint = pintYine — we (Ning + Ling) — Re (Kine + Qint) - (4)

Each sector ¢ < z is monopolistically competitive, so that p;,; is a function of Y.
Taking its demand function as given, firm h in sector i chooses its level of output
and R&D inputs in order to maximize the discounted stream of real profits,

00 1L
Z )\t iht
t=0 Det

(5)

t
where ); is the discount factor at time ¢, with \g = 1, \s = [] ?lrt for t > 1, and r;
s=1

is the real interest rate.b

5The empirical literature focuses on the case ¥ = 1 so that the stock of knowledge is proportional
to the stock of R&D spending. However, it is not uncommon in the growth literature to allow for
diminishing returns (¢ < 1).

6The transversality condition is tlggo XintLint+1 = 0, where ¥, is the shadow price of Tips41.
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Z;, ki, and o; are parameters of opportunity, as they affect the productivity of
research. k; represents the effect of in-house knowledge, and is known in the growth
literature as the intertemporal knowledge spillover. o; represents spillovers from
other firms. We refer to their combined effect p, = w; + 0, as the receptivity of
sector 7: the extent to which the production of new knowledge benefits from prior
knowledge in sector .

Conditional on receptivity, industries may differ in the importance of in-house
knowledge relative to knowledge acquired through spillovers from its competitors. We
define appropriability as the share of receptivity accounted for by in-house knowledge
A = Ki/p;.

The last set of factors considered by the empirical literature relates to demand,
which we model through the household preference structure below.

3.2 Households

There is a continuum of households, each of measure N; = ¢4. In what follows,
we use lower case letters to denote per-capita variables. The life-time utility of a
household is

= v -1
> (Bow) =5~ (6)
t=0 o
m=1 [\ @ 1 o1 oty

G = H (_Z> y Cit = </ Cihl;i dh) 1€ {1, ey M — 1} (7)
i=1 \Wi 0

where (3 is the discount factor, and 1/6 is the intertemporal elasticity of substitution.
We assume that Sgy < 1,0 > 0,4, > 1,w; > 0 and Z?;lwi =1.

Each household member is endowed with one unit of labor and k; units of capital,
and receives income by renting capital and labor to firms, and by earning profits from

the firms. Her budget constraint is

m—1 z
Z /pihtcihtdh + Z /pjhtinhtdh <w+ Rk +m (8)
i=1 j=m

where x5, is investment in variety h of capital good j, p;n: is the price of variety h
z

of good i, wy and R, are rental prices of labor and capital, and Ny = > fol 1L dh
i=1

equals total profits from firms.
The capital accumulation equation is gykiy1 = 2 + (1 — 0x) k. The composite
investment good z; is produced via a Cobb-Douglas function of all capital types j,
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while the elasticity of substitution across different varieties of capital good j is equal
to pu; > 1, s0

v =TT (@)w 2 = [/ xj(sjl)/“jdh] S je{m, .2y (9)

wj
where w; > 0 and Zj:m wj = 1. Finally, the transversality condition for capital is
tlim ¢,k = 0, where (, is the shadow price of capital.
—00

Define the price index for the consumption composite ¢; and the investment com-

posite x; respectively as:
m— 1 z 1
S Jo PintCinedh 2 iem Jo Pimsinedh

Ct Ty

Pt =

Parameters i, and w; capture the industry-specific demand factors considered in
the literature. p; is the elasticity of substitution across different varieties of good ¢
which, in equilibrium, determines the price elasticity of demand, while w; determines
the spending share of each good (market size).

4 Decentralized Equilibrium

In this section, we define the equilibrium concept and characterize conditions for the
equilibrium to display a balanced growth path. Then, we discuss the determinants
of TFP growth rates and R&D intensity in such an equilibrium. Our equilibrium
concept is decentralized, so that there is a potential role to play for externalities
related to appropriability, market rivalry effects, etc. in the determination of out-
comes. Given these externalities, it is of interest to contrast equilibrium outcomes
with efficient outcomes, which we do later in Section 5.

Definition 1 A decentralized equilibrium consists of
m—1

allocations of final output {{<Ciht)he[o,1]}. L {(xjht)he[o,l]} }
= J=m) ¢=0,1,...

allocations of inputs {{(Kiht, Nines Qine Liht)he[o 1]} }
iy ]

z

t=0,1...

, Ry, wt} such that:
1

and sequences of prices {{(piht)he[o,l]} s

1=

1. Given the sequence of prices, households choose investment and consumption
to mazimize their discounted stream of utility (6);
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2. Given the sequence of input prices, and taking their demand functions as given,
firms choose input allocations to maximize (5);

3. The sequence of input prices, satisfies the capital and labor market clearing
conditions in all periods:

z 1 z 1
K= 3 /0 (e + Que) dh, Ne = 3 /0 (N + L) dh (1)

Our aim is to understand productivity dynamics across industries, and not across
different varieties of any given good. Therefore, we focus on symmetric equilibria
across varieties within each sector 7, and suppress the firm index h henceforth. Later
we discuss the implications of symmetry. Technical details of the following discussion
are reported in the Appendix, in Lemmata 1 — 4.

In equilibrium, our assumption of Cobb-Douglas production functions with equal
(relative) input shares across sectors and activities implies that:

Ny Ly pie Tu(1—=1/p,)

(12)

The mapping between relative prices and relative TFP will be useful in our quanti-
tative exercises.

Given (12), the aggregate capital-labor ratio & is also the capital-labor ratio for
production and R&D activities. This allows us to aggregate industries j € {m, ..., z}
into a single investment sector x, where the knowledge index T,; equals

and pu, = (Zf:m wi,u;l)_l. Define v,, = Ty 141/ Ty, so that

175 (13)

Jj=m

Ta:t -

2 .
Yoo = 1T 750 (14)
j=m
The firm’s dynamic optimization condition implies

)\t+1 al_Iz‘ht+1:| |:8Eht+1
iht+1

Tl )| Vi<a (15
Det+1 OLini+1 OTint41 ( 7) (15)

(a) production (b) research () future knowledge

Xiht = {
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where ,,; is the shadow price of knowledge T}y 1, which in equilibrium is determined
by the optimal allocation of inputs across activities.

Equation (15) reflects three benefits to the firm of producing more knowledge:
(a) more efficient production of goods and services, (b) more efficient production of
knowledge, and (c) a larger stock of future knowledge. The equilibrium shadow price
of knowledge is determined by the arbitrage condition for allocating inputs across
activities. In equilibrium, the R&D expenditure share is the same as the R&D
employment share within firm, so we define R&D intensity as Ln:/ (Nint + Lint) -
Combined with the conditions for optimal input allocation, (15) implies

_ht:_(Xht 1/ Xine — ( T)_Aipi)-
Ying — (1 — O1)

Ling (16)

4.1 Aggregate Balanced growth path

We look for a balanced growth path equilibrium (BGP), along which aggregate vari-
ables are growing at constant rates although industry TFP growth rates may be
different.” Conditions under which a BGP exist in a multisector endogenous growth
model are of independent interest. Such a BGP requires a constant ratio of con-
sumption to capital; if ¢ is the relative price of capital, this ratio is the expression
¢/ (qk).

Define p, and p, as weighted averages of the receptivity parameters for aggregate
consumption and aggregate capital,® and define ® as:

cbz(l;f’w—lfa)_l. (17)

Proposition 1 Suppose there exists an equilibrium with l;,n; > 0 that satisfies the
transversality conditions for T; and k. If ® > 0, then there exists a unique aggregate
balanced growth path. Along this path ¢/q and k grow by a constant factor (7;)1/ (1-a)
where

Vi = gn- (18)

"Ngai and Pissarides (2007) show that balanced growth with different values of ~y; is possible in
an exogenous growth setting.

z m—1
$Specifically, (1 —p,)” " = Z wj (1 - p]-)_l and (1—p,) ' = ; wi (1—p) "

Jj=m

12



and knowledge T; grows by a factor vi where’

(=)t VL (19)

The proof observes that the return to investment is constant if k£ grows by a factor
7%(1”), which by (14) is constant if TFP growth is constant in all the capital good
sectors. The restriction for constant sectorial TFP growth follows from the firm’s
dynamic optimization condition (15).

From the household’s Euler condition, consumption growth is constant over time
if the return to saving in terms of consumption goods is constant. In this model,
however, there are z + 1 ways of saving — carrying resources from one period to an-
other. Agents may invest in physical capital, or in knowledge in any of z industries.
For physical capital, both the return to investment and the investment rate are con-
stants along the BGP. The analogous condition for knowledge is that the growth rate
of the shadow price of knowledge x;,,1/x;; and the "yield" of knowledge F;;/T}; are
constant over time. Proposition 1 emerges from these conditions. For capital goods
industries, the constancy of Fj;/T}; implies equation (18) whereas the equivalence of
F,/T; and Fj;/Tj, across any industries ¢ and j implies equation (19).

Proposition 1 contrasts with the behavior of the one-sector model of Jones (1995).
In Jones (1995), the condition for balanced growth is similar to (18), replacing ® with
the expression 1/ (1 — p), where p is the receptivity parameter for the aggregate
economy. Note that this is the same as requiring ® > 0 when o — 0. Thus, the
Jones (1995) restriction is not sufficient when capital is used in the production for
knowledge, as productivity improvements targeting capital goods become a factor of
aggregate productivity growth. In addition, Jones (1995) requires p < 1, whereas
our multi-sector model restricts only the weighted average of receptivity parameters
across capital goods, not for the economy as a whole nor for any particular sector.!’

4.2 Comparing industries

In the remainder of the paper, we focus on the relationship between equilibrium
TFP growth, R&D intensity and industry parameters.!! From (19), we immediately
conclude that:

9Proposition 8 in the Appendix reports sufficient conditions for the existence of a BGP with
R&D activity in all sectors.

10Some aggregate estimates of p are larger than unity and in a one-sector context this poses
a potential puzzle — see Samaniego (2007) for a discussion. This need not pose a puzzle in a
multisector context.

'We show in Appendix that the BGP satisfies the Kaldor (1961) stylized facts of a constant
consumption-output ratio and a constant real interest rate.
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Proposition 2 Along the BGP, consider two sectors i, j such that ~y;,v; > 1. Then,
V; 27, if and only if p; = p;.

Along the BGP, the shadow price of knowledge grows by a constant factor :

1—
Xittr _ Y ’ch Pa) /¥ (20)
Xit Yi G

where G = 1— 0y + % is the gross return on capital. It follows from (16) that R&D
intensity in each sector is constant.

The equilibrium value of X;(’“ depends only on one industry parameter, p;. Still,
equations (16) and (20) imply that industries with the same level of receptivity (p;)
but different appropriability (A;) will have different R&D intensity even if they have
the same equilibrium TFP growth rate.

Proposition 3 Along the BGP, for any sectors with positive TEFP growth rates,
RED intensity is increasing in receptivity p, and in appropriability A;.

4.3 Cross-industry spillovers

Suppose that it is possible for knowledge in any sector ito influence knowledge of
type j # i. Let the knowledge production function be:

Eype = ZT, T (H Tp”) zhthlhta)w (21)
J#i

where p;; is the extent to which sector 7 benefits from knowledge produced in sector
j. Equation (3) is the special case in which p;; = 0 Vi # j. Recalling that p; = r;+0;
and letting p,; = p;, define the total receptivity of industry 7 as Zj p;; © the total
spillovers received by firms in industry 7. An industry is more receptive than another
if total receptivity is larger.

Along the BGP, sectorial TFP growth rates depend on the full matrix of spillovers

Pij-
(07 [0 1/)
E pi;9; = log (7207 y) (22)

However, as in the case Wlthout cross-industry spillovers, it does not depend on
appropriability shares A; nor on demand parameters w; and pu,. To proceed further,
we examine two special cases:
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Case 1 For all j and i # j, p;; = p;-
Case 2 If p;; #0, then py, =0 and py; =0 for k # i, j.

Under Case 1, industries generate knowledge that spills over in the same fashion
to all other industries. For example, the Computer industry generates knowledge
that is equally useful for generating new knowledge in Communications and in Air-
craft, and the Communications industry generates knowledge that is equally useful
for generating new knowledge in Computing and in Aircraft. On the other hand,
the spillover that Aircraft receives from Communications may be different from the
spillover it received from Computing.

Under Case 2, industries are in spillover "pairs." For example, if Communications
and Computing receive spillovers from each other, they do not receive spillovers from
other industries. Note that it is not required that p;; = p;;, nor that p; = p;.

Proposition 4 Along the BGP for Cases 1 and 2, if v;,v; = 1, then y; > v, if and
only if sector i is more receptive than j.

4.4 Discussion

How do our results compare to the empirical literature? First, the model ranking of
TFP and R&D intensity is stable along a BGP, which allows us to make meaningful
comparisons across industries. However, is this consistent with the data? We com-
puted TFP growth rates for durable goods over non-overlapping 5-year periods, using
the procedure applied later in Section 6 to account for quality improvements. We
found that the correlations among cross sections were always 80% or higher. Ilyina
and Samaniego (2007) find that the decade-to-decade correlation of R&D intensity
across US manufacturing industries is over 90%.

Second, Proposition 2 states that the ranking of TFP growth rates depends on
one parameter — p, — whereas Proposition 3 implies that the ranking of R&D inten-
sities depends on two parameters — p, and A;. Thus, consistent with the findings
reviewed in Section 2, TFP growth depends on factors of technological opportunity,
whereas R&D intensity also depends upon appropriability. As a result, TFP growth
rates and R&D intensity may or may not be correlated in the model, depending on
the quantitative impact of A;. In particular, industries with rapid TFP growth will
be relatively R&D intensive, provided that inter-firm spillovers are small or vary little
across industries. Thus, a third prediction is that there should be a negative relation-
ship between measures of intra-industry spillovers and R&D intensity, controlling for
other variables. This is exactly what Nelson and Wolff (1997) find.
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Third, Klevorick et al (1995) identify two effects of appropriability on R&D in-
tensity. First, in their terminology, there is an "incentive effect" whereby large,
uninternalized spillovers reduce R&D activity, causing the negative relationship be-
tween appropriability A; and R&D intensity in Proposition 3. Second, there is an
"efficiency" effect, whereby larger spillovers may encourage R&D at other firms. The
efficiency effect is seen in that, conditional on ;, a larger value of o; raises p, while
leaving A;p,; constant, so that R&D intensity rises. However, in our model, the "effi-
ciency" effect is related to the magnitude of spillovers, not to appropriability per se
and, as suggested by Klevorick et al (1995), this effect disappears once opportunity
(p;) is kept constant.'?

Fourth, note that demand parameters w; and p,; affect neither TFP growth rates
nor R&D intensity along the BGP. General equilibrium mechanisms play a key role in
this result. The relative price levels of different goods depend on w;, and the elasticity
of a firm’s demand function depends on p,;. Since w; affects the level of returns to
production at all dates, but not their growth rate, it does not affect the decision of
whether to use resources for current production or for investment in knowledge. As
for p,, the reason it may matter in a partial equilibrium framework is that elastic
demand allows an innovator to increase market share without having to lower her
price to the same extent as the cost reduction. However, in equilibrium, all firms are
performing research: R&D by the firm’s competitors results in a commensurate fall
in the relative price of their goods, so that this partial equilibrium benefit of research
need not materialize in general equilibrium.

4.5 Model Assumptions and Extensions

In this paper we make several assumptions about functional forms, which we now
discuss. For example, we allow industries to differ in terms of all the factors raised
in the empirical literature that studies the determinants of R&D intensity. However,
other parameters could vary across industries too.

So far, we have assumed that capital shares are the same across industries and ac-
tivities. However, an important channel leading to the determination of equilibrium
TFP growth rates is the "price mechanism" whereby the price of capital declines
as a result of productivity change. This encourages R&D, and explains why v, en-
ters the equilibrium TFP growth rate of each industry. If we allow capital shares

12 As they put it, "given demand and opportunity, stronger appropriability enhances the pri-
vate incentive to engage in R&D, but weaker appropriability lowers the cost of research (increases
opportunity) for others." Thus, their terminology does not distinguish between the magnitude of
spillovers (which is a factor of opportunity) and appropriability (which holds opportunity constant).
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to vary across industries and activities, this price mechanism also contributes to
cross-industry TFP growth rate differences: capital-intensive industries may enjoy
inherently high TFP growth, as suggested by Rosenberg (1969) and Nelson and Win-
ter (1977) inter alia. However, what matters is not capital intensity per se, but the
capital-intensity of research activity. This is because the flow of capital into research
in response to productivity improvements in the capital goods sector depends on this
industry parameter. We are not aware of a precedent to this result. See Appendix
B for details.’

These results are also informative as to how our results would be affected if we
were to allow for intermediate goods. To the extent that intermediates benefit from
productivity improvements, their price would affect growth rates in much the same
way as the price of capital. Thus, intermediates only affect our theoretical results on
cross-industry productivity growth comparisons to the extent that the intermediate
share in the production of knowledge varies across industries.

Ngai and Samaniego (2007) allow for cross industry differences in 1, the returns
to inputs in the knowledge production function. In this case, the industry value of
1 may affect both TFP growth rates and R&D intensity. However, variation in
turns out to be incapable of reproducing the range of TFP growth rates in the data.

We show that, along a balanced growth path, demand factors do not matter for
industry differences in R&D intensity and productivity growth. In future work, it
would be interesting to examine whether demand factors play any role in transition
dynamics. We use Cobb-Douglas aggregation for deriving the balanced growth path
in this context, and a study of transition dynamics would also allow for more general
aggregation with an elasticity of substitution across goods that need not equal one.

The literature on appropriability distinguishes between two channels whereby
research by a firm might affect its competitors. The first is the spillover of knowledge,
or 0; in our model. The second is the "business stealing" or "product rivalry"
effect whereby innovations by one’s competitors decreases one’s market share. In our
model, the severity of this rivalry depends on p,. Even so, this does not imply that p;
affects equilibrium TFP growth rates since, in equilibrium, all firms perform R&D.
Symmetry within industries is not responsible for this result: in notes available upon
request, we prove that Propositions 1 and 2 continue to hold in asymmetric equilibria

13This is worth underlining. It is well known that differences in factor shares in output production
affect the expression for relative prices in (12) and the measurement of productivity change: when
the relative price of capital declines over time, relative prices fall faster than relative TFP in sectors
with higher capital shares in output production. However, they do not determine differences in
TEFP growth rates: only differences in capital shares in the knowledge production function do so.
We leave an assessment of the quantitative impact of this channel for future work.
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such that the distribution of productivity is stable over time within industries, and
show that such equilibria exist. Consistent with our results, Bloom et al (2007)
estimate that the rivalry effect is quantitatively dominated by technological spillovers.

It is worth commenting further on our approach to appropriability. In general
there are three ways for a firm to acquire knowledge for use in production. First, firms
may produce knowledge by investing in R&D,as in our model. Second, knowledge
that spills over between firms may be used as an input into R&D. This activity is free
in the sense that, for example, if one patent cites another, there is no requirement
that any payments be made between patent holders. While our model allows for
such spillovers, function (2) implies that a firm can only receive spillovers from other
firms if it is also carrying out research, as argued by Cohen and Levinthal (1990).
Third, firms may employ the knowledge produced by other firms in production, by
means of a license payment — as in Klenow (1996). However, Arora et al (2002)
find that revenues from licensing equal about 4% of R&D expenditure, suggesting
that licensing is not a major incentive behind R&D activity in general. We abstract
from this third form of knowledge transfers, as the other two appear to be more
quantitatively important.'*

Our model does not distinguish between product and process innovation, for
several reasons. First, much (although by no means all) of the related empirical
literature neglects the distinction. Second, it is rare that a "truly new" product is
introduced. Rather, thinking of industries as being defined at the 2- or 3-digit SIC
level, both product and process innovations may result in improved (or cheaper)
consumer (or capital) services of a given type. Third, although one-sector growth
models that distinguish between product and process innovation sometimes have dif-
ferent properties, such as Young (1998), Jones (1999) argues that these properties are
not generic in the sense that they require a "knife-edge" condition on the parameter
linking the rate of product innovation to the scale of the economy. Fourth, given
that our focus is on industry differences, the exact manner in which we avoid scale
effects on aggregate is of little consequence. Still, it would be interesting in future
work to perform our analysis in a model that allows for product innovation also.

14 Another potential form of knowledge transfer is a merger. We abstract from mergers for three
reasons. First, M&A activity tends to occur in waves, often due to regulatory change — see Andrade
el al (2001). Second, since the acquiring firm becomes the owner of the technology and (effectively)
pays for the costs of R&D upon acquisition of the target firm, in the final analysis it is as though
it had performed its own R&D. This might affect our quantitative results if a lot of mergers are
across industries: however, Andrade et al (2001) find that merger activity is under 1% of firms in
CRSP by value, and that under half of the mergers in their study are across industries.
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5 Research subsidies

As an application of the model, this section studies the planner’s problem, and the
taxes and subsidies that can replicate optimal allocations. The planner chooses a
distribution of capital and labor across sectors at each date.!> Given the variety
of externalities in the model, it is of interest to see how optimal and competitive
allocations differ.

In the US and in many countries, R&D is subsidized by means of a tax write-off —
equivalent to a uniform subsidy if tax rates on corporate income are constant across
sectors. This "one size fits all" policy is built on the assumption of causation between
research and productivity growth, rather than an analysis of the underlying causes
of research activity — for example, the U.S. Chamber of Commerce (2008) advocates
an R&D tax credit on the basis that "research ... promotes both job creation and
economic expansion." On the other hand, R&D policy discussions sometimes raise
the profile of one sector over another. Nelson and Winter (1977) observe that high
productivity growth and the possibility of positive spillovers are raised in policy cir-
cles as reasons to subsidize R&D in particular industries. OECD (2001) suggests
subsidizing innovation in the service sector, due to its dominant size in most OECD
economies and its low TFP growth relative to the manufacturing sector. It is inter-
esting to see how these views contrast with optimal policy in the model economy.

In the model with taxes, we allow the government to assess an industry-specific
tax 7; € R on the sales of industry 4, and to apply a subsidy rate h; € R on any R&D
expenditures. Proceeds are redistributed via a lump sum 7; to the firms.!% The setup
remains essentially as before (allowing for cross-industry spillovers), except that the
profit function becomes:

it = (1 = 73) pint Yine—we (Nipe + (1 — hi) Line) — Re (Kine + (1 — hy) Qune)+13. (23)

Proposition 5 Along a BGP, TFP growth rates in the decentralized economy are
the same as in the planner’s problem. The allocation of resources in production is
efficient in the decentralized problem if and only if

(1—7) <1 - i) 1 VWi=1, .z (24)

2

15See Romer (1990) and Krusell (1998) for a discussion of some technical issues that arise in
environments with a continuum of choice variables.

16Tn our model, a research subsidy is equivalent to an industry specific R&D tax credit funded
out of a tax on profits.
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Proposition 6 When there are no cross-industry spillovers (p,; = 0 fori # j), the
optimal research subsidy is

% Xz‘t/Xz‘t+1 —(1—-47) -
P (1= A py | Rt 4y (25)

Equation (25) has several implications for research policy. The denominator is
always positive in an interior solution. Hence, R&D subsidies are positive if and only
if spillovers are positive. On the other hand, in the case of "fishing out" (p; < 0)
whereby new discoveries are progressively more difficult, h¥ < 0 so that R&D should
be taxed.

Also, conditional on TFP growth rates, industries that perform relatively less
R&D should receive higher subsidies. In the model, given «,, low R&D intensity
is indicative of large, uninternalized spillovers. Still, if appropriability is generally
small or varies little across industries, then industries with rapid TFP growth rates
deserve higher subsidies.!”

When we allow for cross-industry spillovers, the R&D intensity in the planner’s
problem must be determined simultaneously from a system of equations.'® The
optimal R&D subsidy now satisfies:

l_s] [Xit/Xit+1 —(1—4dr7) — A, -
I T ey ™

Two new factors affect the magnitude of optimal research subsidies h;. The first
is the magnitude of its spillovers to other sectors: h} is increasing in p,;, s # i. As
in the case without cross-industry spillovers, the optimal R&D subsidy is increasing
in 7y,, as it is positively related to receptivity: however, industries may have rapid
TFP growth because they receive large spillovers from other industries: whether or
not they provide spillovers is not reflected in their own value of 7,. By contrast,
industries that provide a lot but receive little will have low TFP growth, yet should
get R&D subsidies nonetheless — as an indirect way to foster knowledge production
in other sectors. For example, although the service sector is known to have very

hi = |(1—Ai) p; + Zs;ﬁi Psi (26)

'"We show in the Appendix that X;/X;,; for the Planner is the same as in (49), so
% is decreasing in v, (hence in p,;) and independent of A;. So h; is increasing in

p; given A;, and h; is decreasing in A; given p,.
'8Once {l;/n;}, in the planner’s problem is solved from the system of first order conditions similar

to (16), and {n;}, is solved using the market clearing condition, we can derive {/;}, which then
implies the level of h} for each industry.
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low TFP growth (which is due to low receptivity, according to our model), it should
receive R&D subsidies if it provides large, positive spillovers to other sectors. Thus,
whether productivity growth is a criterion for subsidies depends on whether cross-
industry spillovers are significant.

The second new factor is the size of the sectors to which an industry provides
spillovers. To see this, consider two industries ¢ and j that provide positive spillovers
to other industries, and that have identical technological parameters but different
demand parameters.

Proposition 7 Suppose sectors i and j have identical parameters except for w; and
ti- If psis ps; = 0 Vs, then we have hi > h3 if and only if n; < nj;.

For example, if industries ¢ and j are either both consumption industries or both
capital industries, then n;/n; = w;/w;, so that industries with a lower weight in the
utility function receive higher subsidies — because they provide spillovers to industries
with a larger weight in the utility function.

6 Quantitative implications

6.1 Cross-industry Knowledge Spillovers

Our theory has different implications depending on whether there are significant
cross-industry knowledge spillovers. Knowledge spillovers are difficult to measure:
however, previous papers such as Jaffe et al (2000) have shown that patent citations
appear to represent an indicator of knowledge spillovers, albeit with some degree of
noise. Following this work, we draw on the NBER patent citation database described
in Hall et al (2001). For each patent granted over the period 1975-1999, the database
mentions every patent that it cites — its bibliography. The database also includes
patent categories for patents granted 1963-1999, at the 2-digit SIC level and also more
finely. As discussed in Hall et al (2006), industries seem to vary in their propensity to
patent. We handle this by normalizing cross-citations by the total number of patents
in the citing industry. Thus, the citation matrix we construct reflects the average
rate at which patents in industry 4 cite patents in any industry ;.

19This is analogous to classifying all Economics papers by field, and looking at the rates at which
papers in any given field cite papers in any other given field. At the United States Patent and
Trademark Office, one role of the patent examiner is to determine that the applicant has cited
all relevant "prior art," and the presumption is that this mechanism ensures that patent citations
accurately report the intellectual precursors of the patent under review as not doing so would risk

21



Spillover source Total
CodeISpmover recipient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15|CIT
1|Comp. & Office 530 05 001 026 003 005 032 013 000 035 014 000 001 000 029 7.43
2|Commun. 049 417 001 027 001 002 036 005 001 023 004 000 001 000 019 585
3| Aircraft 010 011 211 007 001 004 019 022 004 006 012 000 006 003 048] 364
4]instr. & Photocop 015 016 000 469 003 000 021 007 000 022 013 000 003 000 069 639
5|Fab. Met. Prod 005 002 000 0O7F 206 001 029 015 000 0OF 025 000 002 002 064 362
6]Autos and Trucks 006 003 001 002 001 299 011 018 003 002 028 000 013 001 044 432
7|Electrical transm. 014 011 001 010 009 001 346 005 000 012 009 000 001 000 035 454
8|Cther Durables 010 004 001 009 007 004 009 259 001 004 031 000 004 002 0862 407
9|Ships and boats 001 004 003 002 001 006 008 011 232 001 016 000 0.04 002 048] 3.38
10|Electrical eq. n.e.c. 030 023 000 036 007 001 038 005 000 28 007 000 001 000 040 475
11|Machinery 006 002 000 008 007 004 010 018 001 003 286 000 002 001 072 419
12|Mining and oilfield 000 001 000 001 001 001 001 004 000 000 006 065 000 000 029 1.09
13|Furniture and fixt 001 002 001 008 002 007 006 014 001 003 011 000 300 005 077 437
14]Structures 000 001 001 002 005 001 009 023 001 001 012 000 012 316 1.08] 492
15]Cther 005 003 000 017 008 002 014 014 001 006 026 001 006 003 €66 7.72

Table 1 — Patent citation matrix derived from the NBER patent citation database.
We focus on 14 durable goods sectors to match between our patent citation data

and the data we use to calibrate the model subsequently.

Table 1 reports the patent citation matrix. Each row corresponds to the average
number of citations made by a given industry. Numbers on the diagonal represent
within-industry citations. CIT is the sum of each row, the average number of citations
per patent in each industry. For all industries, citations are dominated by within-
industry citations, suggesting that cross-industry spillovers are relatively small. We
therefore proceed with our quantitative applications assuming away cross-industry
spillovers. For instance, in the absence of cross-industry spillovers, we can compute
receptivity parameters p; given TFP growth rates using equation (19).2"

6.2 Calibration

We now calibrate the model without cross-industry spillovers, to provide some quan-
titative applications. First, using relative price data from Cummins and Violante

delaying the approval of the patent. The examiner’s name is reported on the patent, so the examiner
is responsible for any mis-attributions. Since the bibliography does not include knowledge that is
not patented, the presumption is also that the extent to which different sectors rely on each other’s
knowledge is roughly similar regardless of whether the knowledge concerned is patented or not. In
this, our results are conservative: if non-patented knowledge is more likely to remain in-house, then
our cross-industry spillovers are upper bounds.

20We show in Appendix E how one might compute the receptivity parameters p; ; in the presence
of cross-industry spillovers.

CIT, the average citations per patent in each industry, may indicate the extent to which knowledge
in any given sector builds on prior knowledge. Ngai and Samaniego (2007) show that CIT is
correlated with TFP growth and R&D intensity across these 14 durables industries.
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(2002), we show that industry TFP growth rates can differ substantially even while
aggregate growth is constant. Second, to compute industry research intensity, we
derive A; using the proportion of own-industry citations that are self-citations. We
find that R&D in the model is highly correlated with R&D in the data. Finally,
using these parameters, we solve for the optimal R&D subsidy in each sector.

We calibrate the model to US data. To begin, we assume that m = 2, so that
there is only one sector producing non-durables. We set z = 15, so that there are 14
capital producing industries. This partition was the finest that allowed us to use all
our data sources, some of which use different industry classification systems.

We set @ = 0.3 as in Greenwood et al (1997). Samaniego (2007) surveys values
of ¢ in the range 0.3 to 0.6. We select 1y = 0.3: higher values lead to higher R&D
intensity, but do not affect results otherwise.

Lemma 2 shows that the model can be aggregated into a 2-sector economy with an
investment sector  and consumption sector ¢. The US National Income and Product
Accounts indicate that g, = 1.022 in consumption units, and the US Census Bureau
that gy = 1.012. In the model, g, also represents the growth of real consumption, so
Gy = ’yi/ (1=e) gq Where g, = 7,/7, is growth in the relative price of capital. Cummins
and Violante (2002) report that g, = 1.0267*, so that v, = 1.0338 and v, = 1.0076.
Equation (18) then implies that p, = 0.76. This suggests that knowledge in the
capital sector generally "stands on the shoulders" of pre-existing knowledge. On the
other hand, p. = —0.04, so that knowledge in non-durables is subject to very mild
"fishing out," whereby new knowledge becomes progressively harder to generate.

6.3 TFP growth rates and Receptivity

Equation (12) implies a relationship between relative rates of price decline and TFP
growth, which we use to compute TFP growth rates (%CV) using the quality-adjusted
relative price of capital provided by Cummins and Violante (2002).?! Equation (19)
yields the implied value of p;, given the values of v, and p, computed above. Results

21'We calibrate the model using relative price data instead of TFP growth rates for several reasons.
First, the TFP measures do not map directly into the model, as their construction allows for factors
that are not present such as intermediate goods, energy, etc. Second, we take seriously the view
of Greenwood et al (1997) among others that quality improvements are an important source of
prodcuvity change. Quality adjusted prices are mostly available only for durable goods. Third,
given that several authors have found TFP growth rates to be closely related to R&D intensity, it
would be no surprise to find a strong correlation between R&D intensity in the model and in the
data. Instead, we calibrate TFP growth rates in the model using quality-adjusted price data — so
there is no a-priori reason to expect a positive link between R&D intensity in the data and in the
model.
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are reported in Table 2.

Capital good sector YV ps

Computers and office equipment 20.48 | 0.96
Communication equipment 10.21 | 0.92
Aircraft 9.36 | 0.91
Instruments and photocopiers 6.81 | 0.88
Fabricated metal products 3.81 | 0.79
Autos and trucks 3.76 | 0.79
Electrical transm. distrib. and industrial appl. | 3.72 | 0.79
Other durables 3.48 | 0.77
Ships and boats 3.16 | 0.75
Electrical equipment, n.e.c. 3.00 |0.73
Machinery 2.82 10.72
Mining and oilfield machinery 2.38 | 0.67
Furniture and fixtures 2.15 | 0.63
Structures 1.82 | 0.57

Table 2 — TFP growth rates across capital goods, based on the quality-
adjusted relative price of capital from Cummins and Violante (2002) (fyiov) .
Values of p; are based on vV, using equation (19), assuming no

cross-industry spillovers, and assuming benchmark values of parameters.

Based on relative prices, TFP growth rates across capital types range from 20% for
Computers and Office equipment to about 2% for Structures. The model is consistent
with a wide dispersion of TFP growth rates and suggests a wide distribution of values
of p, across different types of capital good.

6.4 Appropriability

The citation data may also be used to construct an estimate of appropriability. The
data report the assignee of each patent awarded since 1969. As a result, we can
establish what proportion of own-industry citations are in fact self-citations. We
define appropriability A; as this ratio. Combining with values of p, in Table 3, we
can compute k; and o; (0; = p; — k;). The required assumption is that x; and o;
do not differ significantly depending on whether or not knowledge is patented. If
unpatented knowledge flows across firms more easily than patented knowledge, then
the measure of spillovers implied by the patent data is an upper bound on A;. On
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the other hand, if ideas that flow most easily across firms are the ones patented, then
our numbers represent a lower bound on A;. The patent data represent an unusually
rich source of information on knowledge spillovers, so we proceed while keeping these
caveats in mind. Nonetheless, as we shall see, the difference between patented and
unpatented knowledge must be quite drastic to affect our results.

Capital good sector Pi A; Ki

Computers and office equipment 0.96 | 0.16 | 0.15
Communication equipment 0.92 | 0.16 | 0.15
Aircraft 0.911]0.19 | 0.17
Instruments and photocopiers 0.88 | 0.17 | 0.15
Fabricated metal products 0.79 | 0.21 | 0.17
Autos and trucks 0.79 1 0.19 | 0.15
Electrical transm. distrib. and industrial appl. | 0.79 | 0.16 | 0.13
Other Durables 0.77 1 0.19 | 0.15
Ships and boats 0.75 1 0.16 | 0.12
Electrical equipment, n.e.c. 0.73 1 0.22 | 0.16
Machinery 0.72 1 0.18 | 0.13
Mining and oilfield machinery 0.67 | 0.34 | 0.22
Furniture and fixtures 0.63 | 0.13 | 0.08
Structures 0.57 | 0.12 | 0.07

Table 3 — Receptivity p, from Table 2 and appropriability A; based
on the NBER patent citation database.

Table 3 finds that appropriability A; is generally quite low — 18.5% on average.??
Consequently, R&D intensity in equation (16) will be mainly determined by recep-
tivity. As we will see, this affects the pattern of optimal R&D intensity and optimal
R&D subsidies in the model. It also suggests that receptivity p, should account for
both R&D intensity and TFP growth.

6.5 Optimal R&D subsidies

We now look at the optimal research subsidy for each of these industries. Given
A; and p;, equations (16) and (20) imply that we require values of G and dr to

221f we measure A; using the proportion of self citations out of all citations, the average is even
lower, about 13%.
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derive R&D intensities.?> We match the real rate of return to capital to be 7%
as in Greenwood et al (1997). Hence the gross return in terms of capital goods is
G =1.07/g,, where g, = 1.0267" as before. We choose d7 = 0 as a benchmark.?*

Figure 2 displays R&D intensity in the model, assuming the average level of
appropriability and the values of p, in Table 1. Values are higher than in the data,
as the model concept of knowledge is probably broader than simply scientific R&D.
However, the correlation between the two series is striking. Notably, the results
are insensitive to variations in appropriability: as A; is small, R&D in the model is
mainly determined by receptivity.

It is notable that this correlation is not simply due to the link between TFP and
R&D intensity in Figure 1. The receptivity values used to compute R&D intensity
are based on quality adjusted relative prices. Figure 3 shows that these too correlate
highly with R&D in the data. Hence, while the mapping between TFP and relative
prices in equation (12) rests on assumptions about input shares across sectors, those
assumptions do not seem too far off the mark.

In Table 4, the mean optimal subsidy rate for capital goods industries is 38%,
but ranges up to over 75% for the fastest growing sectors. The optimal subsidy rate
is highly correlated with p, across capital goods (82%). Thus, the model suggests
subsidizing the fastest-growing industries. This is because appropriability A; varies
a lot less across industries than the magnitude of spillovers o; themselves — and,
in Table 3, o; accounts for the bulk of receptivity. Industries deserve subsidies in
the model when they provide large knowledge spillovers: however, since the main
beneficiary of the knowledge of any given industry seems to be that industry itself,
allowing for cross industry spillovers would not change this conclusion.

23We also require information on R&D subsidies. In the US, mostly this is done through R&D
tax credits. In practice the credit rate is about 13% of expenditures: see Wilson (2005). Only
expenditures above a certain limit count towards the credit, which is 3% of sales for new firms or a
3-year moving average of past R&D spending otherwise. Our R&D intensity measure in Table (5)
is mostly lower, and Wilson (2005) notes that federal R&D tax credits are in fact "recaptured” (i.e.
taxed back). All this suggests that the effective subsidy is very small. Hence, we assume h; = 0 Vi
in the benchmark economy.

24Samaniego (2007) surveys values up to 25%, but these are all measures of the economic de-
preciation of ideas, whereas the "physical" rate at which ideas cease to be altogether useful in
production or in research is likely very small. Ngai and Samaniego (2007) find that large values of
o7 generate high values for R&D intensity. The average ratio of R&D to GDP in our economy is
about 5%, which is larger than the value reported by the National Science Foundation but is in line
with estimates that include "non-scientific" R&D by Corrado et al (2006).
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Figure 2: R&D intensity in the model and the data. R&D in the model is derived
using equation (16), assuming appropriability of 18.5% in all industries. R&D inten-
sity in US data is measured using the ratio of R&D spending to sales at the median
firm in Compustat, 1950-2000. Industries included are the 25 categories reported in
Cummins and Violante (2002). The correlation between R&D in the model and the
data is 64.7%, P-value = 0.06%. Using instead values of appropriability computed
from the citation data, and imputing the average value for software (which is not in
the citation data), the correlation rises to 65.8%, P-value 0.05%.
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Figure 3: TFP in the model and R&D intensity. TFP growth is derived from equa-
tion (19), using the quality-adjusted relative price of capital goods in Cummins and
Violante (2002), 1947-2000. R&D intensity in US data is measured using the ratio
of R&D spending to sales at the median firm in Compustat, 1950-2000. Industries
included are the 25 categories reported in Cummins and Violante (2002). The cor-
relation between ~, and R&D in the data is 69%, P-value = 0.01%. If the outlier
(Computers and peripherals) is deleted, the correlation drops to 56%, P-value 0.4%.
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Capital good sector Model | Planner | Ratio | Subs.
Computers and office equipment 22.2 55.0 40.4 | 76.6
Communication equipment 19.7 39.8 49.4 | 63.0
Aircraft 19.6 37.9 51.7 | 60.0
Instruments and photocopiers 17.7 31.2 56.8 | 52.5
Fabricated metal products 14.3 20.7 79.4 | 35.7
Autos and trucks 14.4 20.5 70.2 | 34.8
Electrical transm. distrib. and industrial appl. | 14.0 20.3 69.2 | 35.9
Other durables 13.8 19.3 714 | 33.2
Ships and boats 13.0 17.9 72.8 | 31.3
Electrical equipment, n.e.c. 12.8 17.1 75.4 | 294
Machinery 12.5 16.3 76.7 | 26.4
Mining and oilfield machinery 11.7 14.1 82.8 |19.5
Furniture and fixtures 10.5 13.0 80.8 | 214
Structures 9.5 11.3 84.2 | 174

Table 4 — R&D intensity in the decentralized model and the planner’s
solution. The third column is the ratio of model R&D to the planner’s.

The fourth is the subsidy rate h;. All values are percentages.

Equilibrium R&D intensity ranges from 40—84% of the planner’s value, depending
mainly on p; — since 4; is too small to be of quantitative importance. In a one-sector
model, Jones and Williams (1998) find that R&D intensity is between half and a
quarter of its optimal level, suggesting that our measures of appropriability are more
likely to be upper than lower bounds. Unlike them, however, we find a wide variety
of "wedges" between actual and optimal R&D across industries: there is no "one
size fits all" research policy, primarily because of significant differences in receptivity
across sectors.

7 Concluding remarks

We develop a multi-sector, general equilibrium model of endogenous growth, incor-
porating a number of factors identified in the literature as potential determinants of
the costs and benefits of research, based on preference and technological primitives
drawn from the growth literature. In the model, we find that the main long-run
determinant of productivity growth differences across sectors is the extent to which
pre-existing knowledge is useful for producing new ideas — receptivity. Although this
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parameter has not been identified as a potentially important source of cross-industry
differences in the related literature, it turns out to play a pivotal role in a growth
model that is consistent with stable growth over the long run.

In addition, the fraction of receptivity that accrues from the firm’s own stock
of knowledge affects research intensity but not TFP growth, whereas demand fac-
tors affect neither. This is consistent with the lack of robustness in the empirical
literature on the role of demand, and is also in line with a sense in the technol-
ogy literature that technical change is primarily supply-driven. Nelson and Winter
(1977) argue that innovations follow "natural trajectories" that have a technologi-
cal or scientific rationale rather than being driven by movements in demand and,
similarly, Rosenberg (1969) writes of innovation following a "compulsive sequence."
In our model, the incentives to conduct research depend very much on demand-side
factors: nonetheless, in equilibrium, the primary determinant of differences in long
run productivity growth rates is receptivity. Thus, in the model, "natural trajecto-
ries" are an equilibrium outcome, as long-run TFP growth rates are determined by
technological factors.

We do find that demand parameters may matter for the planner’s allocation
of R&D activity, and hence for optimal R&D subsidies. This result depends on
whether there are cross-industry knowledge spillovers, which the patent citation data
suggest are weak. Nonetheless, the broader point is that whether an industry should
optimally receive subsidies may depend not just on its own characteristics but on
those of the industries that benefit from the knowledge it produces. It would be
useful in future work to develop microfoundations for these spillover parameters,
which could suggest a richer set of policies and mechanisms that might achieve a
more efficient allocation of research activity.
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A Derivations and Proofs

A.1 Household maximization

We first determine the optimal spending across different goods taking as given the
total per capita spending on consumption s. and total spending on investment s,.
Omitting time subscripts, the maximization problems across goods are

1
m—1
maxc s.t. Se = ' PinCindh, and
{Cih} Zl:l /0

max x s.t. Sy = Z;:m/pjhxjhdh

{zn}

where ¢ and x are defined in the household problem. The optimal spending within
sectors ¢ = 1,..m — 1, across different varieties h, is

1

(cin/cin) ™ = pin/piw = cie = cin, (Din/pins )" (27)
which implies
bop—t ﬁ_l Mfil
‘T (/ Ciny' dh/) — o l / (pin/ pz’h')m_ldh/] (28)
0
. M0 ,
Using (28), define p; = [ [ pincindh] /c; = [f Din Zdh} , we can rewrite (28) as

¢ = cin (pin/pi)". Across good i, Cobb-Douglas utility yields p;c;/ (pjc;) = wi/wy,
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SO p;c; = w;S., together with the utility function,

m—1 _ w;

pe = sc/c= 121 i
and the demand for good ¢h is
Cin = Sc (pi/pin)" Wi/ pi
The result follows analogously for investment,
Tin = Sa (0j/Pin)" (w;j/p;) and zj = sz (w;/p;),
where p; is analogously defined as before, and
Pe = so/v =1, 0j’

Given the solution of the static maximization, the dynamic problem is

{max} Ztoio (BQN)t u(ct) s.t.
Ct,Tt

DetCt + Py = Wy + Riky + my
gth—H = It + (1 — (Sk) ]Ct

The solution implies

u,' (ct) _ Pati1/Pet11 (1 G Rtﬂ)
Bu’ (cet1) Pat/Pet

xt

A.2 Firm’s maximization

The firm’s maximization problem is
max > 1L v s.t.
{Nit, Kit,Qit,Lit } Zt_o ! ht/p !
Tinesr = Fipe + (1= 07) Tig
Yine Nicing if i=1,.m-1

}/;ht = Nthht Zf 1= m,...2

Given Il in (4), the static efficiency conditions are standar

OYint/OKint
%. The assumptions on production functions imply
Kine  Qine ( Yin apjht) ( Yint Opjnt
= Pim|\l+——o— | Line=pjm |1 +—— Tint
Nint Lint ' Djnt 8tht ' ! Djnt atht !
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Using the demand function, relative prices are
pine_ Tome (1= 1/1;)
pine Tine (1= 1/11;)

The dynamic efficiency condition involves the optimal R&D decision. The first order
condition of the Lagrangian with respect to Tj; 1 is

A1 OlLipgiq
DPct+1 aTihtH

(35)

OF;
= Xiht T Xiht+1 <8T—Z:J: +1- 5T> =0 (36)

where the shadow price for T} is:

At R,
b= — | =——. 37
it (pct) an’ht/aQiht ( )

A.3 Market Equilibrium
The capital market clearing condition (11) and equal capital-labor ratios (34) imply

Kiht/Niht = Qiht/Liht = K/N =k, and (38)

Ry = apimTineky ™ (1= 1/p;) 5 we = (1 — @) pine Tk (1 — 1/ ;) - (39)

We now focus on the symmetric equilibrium across h within .

A.4 Proofs

The equilibrium structure is summarized in the following claims.

Lemma 1 In equilibrium, (12) holds.

Proof of Lemma 1. See the derivation of (35) and (38) in the Firm’s maximization.
|

Lemma 2 Let 1/p, = > 7 w;(1/p;). Investment industries j € {m, ..., z} can be
aggregated into one sector with a production function

« 11—«
Nz, = Ty (zj.:m Kﬁ) (Zf-:m th> — Tk Ny (40)

where the knowledge index T,; equals (13).
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Proof of Lemma 2. Define T, as in (40), where the second equality follows from
(38). To determine T}, (31) implies ZHE — %5 and, by (35), & = (L/m) )

piTik*n; 1-1/p; ) w;
z (1—1
i=m wi (1=1/1;)

where we define p,, such that

1=1/p, =300 wi(L=1/p;) & 1/ py = 327, wif by (42)

By definition, = = [[;_,, (v;/w;)*” = [I;_,, (Tjk%n;/w;)*’, so using (41) and (42),

we obtain Y o
z z — s J
e () 1 [ ()]

(Zm) 115 (=7

so the index of knowledge is (13). =
Let ¢; be the relative price of capital and G; the gross return on investment in
terms of capital goods. Then,
_ Dat Ry

Det Dt

Lemma 3 The FEuler condition for the consumer satisfies

1 Ct+1)9 dt+1
(2= ) =2 g 44
s ( cr @ 4y
where the equilibrium physical gross return of investment is:
1
Gy=1— 6 + o,k <1 — —> . (45)
Hy

Proof of Lemma 3. The Euler condition follows from (33) in the Consumer’s
Maximization. Using (32) and (35),

pe _ o (m\ & (T =1\
P jgn <pz‘> le_[m (Tz (1—1/Nj)>
= Ti(1-1/m) szm [TJ (1 - 1/:%’)}7%‘ Vi,

so by (13), we have
Pz _ Ti (1 —1/p)
bi T, (1 - 1//%)
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together with (39), we have
R/ps = api Tk (1= 1/p;) [pe = ok 7' T, (1= 1/ 1)
so the expression for G follows from its definition. m

Lemma 4 If positive, the firm’s R€D intensity satisfies (16) . Equilibrium employ-
ment shares for production satisfy

c/q (1-1/p ,
it = Wi , 4
it T ke (1—1/% vesm “n
1—1/p; : .

Proof of Lemma 4. Equation (15) is derived in the firm’s optimization (36),
Nint/line in (16) follows from (2) and (37). To obtain n;, use market clearing and

the expenditure share of good i = 1,.m — 1, p;T;k“n; = p;c; = w;p.c, and so
n; = wi% (7?;) where ¢ = p,/p.. The result for n; follows from (46). The result

for nj, j =m, ...z, follows from (41). m

Lemma 5 The shadow price X, satisfy:

. I; Yl G A AT
Xint (g,ing ;+1) t+17 ipt Vit ' (49)
Xiht+1 it Yt

Proof. Note that

OFini41/0Qint 41 Finey1 Qine o (Qiht—&-l)aw_l (Liht—&-l)(l_a)w

OFipt/0Qint  Ee Qinen — int Qint Lins

= A7 (keen /)™ ™ (Line/Line) ™
so using the F'(.) function and R from (39),

/\t/pct ) R, <8Fiht+1/an’ht+l)
/\t+1/pct+1 Rt+1 3Fz’ht/aQiht

(
_ ( AeDint/ Pet ) ( Tihtlfg_l ) A T (k?t+1)aw_1 (Lz‘ht+1)w_1
Mes1Pint1/Petr1) \ Tkt ) ™7\ ke Lin

)\tpiht/pct > ki—1 o < a liH—l)d)—l
Yine Vit | 9k IN
/\t+ 1Pint+1 / Pet+1 hi it k

Xiht

Xiht+1

it
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Euler equation (33) implies

)\t+1 _ 1 _ 5U' (Ct+1) _ pxt/pct
At 1471 u (ct) Gi1Pat41/Pet+1

: Pat+1/Pit41 _ i
Using (46), =Ziritl —
Sing ( 6)’ Dzt /Dit Vo’ S0

( )\tpiht/pct ) B ( )\tpxt/pct > < piht/pxt > e Yiht
= = Gt ~
At1Dint+1/Pet+1 At 1Piwt+1/Pet 1 Pint+1/Pat1 Vat
Result follows. m
Proof of Proposition 1. Define ko = kT, _1/ (1=9) et gz = x41/xy for all
variables x. From the Euler condition (44), g. is constant if g, and G are constants.
From (45), G is constant if and only if k. is constant. Use Lemma 2 and (38) to
rewrite the capital accumulation equation as gygr = k?fl Z:m njy + 1 — 0, it
follows that gy, is constant if and only if )7 nj is constant. So (48) and (16)
imply n; and [; are constants for j = m,..z. By definition, k. is constant if and
only if g = vz 1/ (1=a) , which by (14) is constant if and only if +, is constant for all
j =m,..z. Constant ’yj requires constant

P 1— Pj—
Fjoot/Tin = 2T (QALY )" = 2T ke TNy

to be constant, i.e. fy?jflgg‘wg% =1, since g, = %;1/(170[)7 so Vj > m,

1= (y2/0-2gy) " 7! (51)

which implies Vi, 7 > m,
Ve =0T, (52)
SO

W, 1

- Wi = pz_l ?7% pz_l m
Vo = ,H 7= ,H [% ] Z{% }

- Z] =m 1 (51)
—1 _
= (53)
then sub. into (51) to obtain
* P @_ 1_px_ Q - (54)
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Finally we need to show g, is constant, using (29),

CoRG) REem) e

So g, is constant if and only if 7, are constants. From (47), n; are constants for
i < m. Using (15) for ¢ < m, =, is constant if and only if (51) holds for i < m
as well. Therefore, (52) holds for i < m as well. Finally we verify the results

A ; Y
t+1Pjht+1 { jht+1 are
Pet+1  OTjpet1

constants. Constant X, 1/X;5: follows immediately from (49) The second term,

1 ()\t+1pjht+1 35/}ht+1> _ AtpaPera /Det+1 Pijt+1/ Pat+1 OFjnt/ 0Q it OYjhs1
Pet+1 aTjht+1 AtDat / Pet pjt/ Pt Ry / DPjt aTjhtJrl

are consistent with (15) by showing both X, ,1/X ;5 and —— o (

(56)
Xjht

using (39), (46), (50), and the production functions,

1 /\t+1pjht+1 ay}ht-u 1 Yo awT/’J kaw 1L¢ 1

— BN
Xjht  DPet+1 aT‘jhtJrl G V5 oT k,Oé 1 ( 1/,Uj) t+14Vjt+1

which is constant given (51). m

Proposition 8 Along the BGP, the non-negativity constraints on l; and n; do not
bind and the transversality conditions for T; and k are satisfied if

@(ﬂ

N 17’11') >1-—90r, ki <1, Vi. (57)
and 8 < (1/gn) " % where Y is defined below.

Proof of Proposition 8. The transversality conditions are: tlim Ciker1 = tlim XitLit+1 =

0, Vi. x,;; and (, are the corresponding shadow values. Substituting (19) into (49),

(07 7 ]' 1
X/ Xisr = (929n)" 7 Gyl fry, = AP Gy

= APTIYG = AP,

which implies (20) in text. So —Xuli ( ) 7551 PV Using (44), 1/G = B9, %9, =

Xit—1Tit—1
Bgl= 1/ (1=e) , together with (18)
Xt Lit

ST A(mpd e g gl=ta el 0m0) = 3gygt=? (58)
Xit—14it—1
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To solve for g., use (52) and (55),

where we define (1 — p,) ™ = 327" wi (1= p) " and ¢ (1= p,) ™ = S wip (1= )7
SO

a 1—p, a
ge = gqva/ 0 =~ r=_ ), (60)

Sub. (54) and (60) into (58), we have
t
Hm G Tirgn = XigTio i (595&79)4’“1)

So TVC for T; holds if f < min (1/gN,[_3), where 3 = (l/gN)H(l*g)q)T. The La-
grangian multiplier for k is the discounted marginal utility, ¢, = (Bgn)" (Dat/Det) 0/ () =
(Ban)" (q:/ct) ¢t~ since qk/c is constant,

Cehe
Gk

So TVC for k holds when TVC for T; holds.
Conditions for I;,n; > 0 : From (2), [; > 0 < v, > 1 — dr, using (53) and (54),

1—py

i >04 gy " >1—067. We now find the condition for n;/l; > 0. From (58)

= Bgngi~?

v T, - 7
Xit/ Xit41 __ Xata (BgNgclfe) | for B<p (61)
Vi Xz‘t+1Tit+1

So from (16), a sufficient condition for n;, > 0is k; < 1. m

A.5 Properties along BGP
We next verify the Kaldor stylized facts. Using (12) and (47),

z z m—1
y_ PeTok® > 1 - 1/'%711‘ _ ﬁkg—l 1 - 1//%7% .t _ Zizzl ni/ (1—1/p)
c Pe =1 1— 1//~%’ & -1 1— 1//v%' Yy Zi:l nl/ (1 - 1/,Uz')

which is constant given n; are constants. The real interest rate is constant from (50).
Using (39), the R&D expenditure share is

Do (Liw+QiR) (1 —1/p,)paTok® 30 Li i i
Z::l piEquNilia prwka Zf:l %Nz Zf:l nl/ (1 - 1/:“1)
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Proof of Proposition 3. It is straightforward to show that

noong\ G%,yg(cprl)/w/,yx — 146 nyj,ygsprl)/lﬁ/,ym —14+6p
w _— - = K,j—/‘ﬁi‘i— - )
")/Z'_1+6T "}/j—1+5T

(62)
the bracket term becomes
Gy L= g+ — Gy &= oy, —
[%‘ - (1 - 5T)] [Vj - (1 - 5T)}
(G%(c”“”/ /e — 1) (v, — %)

T = (=60 [y, — (1=067)] (1=6r)

(1—6r7)

Using (58)

_ Xit/ Xi ali —0\~1 3
Gl 10, = Nl Xl g o0ty g <
Yi Xz't+1Tit+1

So the bracket term in (62) is positive if and only if 7, > ~,. Result follows from
Proposition (1). m

A.6 Cross-industry spillovers

Proof of Proposition 4.  Since 7} is taken as given by firm ih, in terms of
the firm’s dynamic optimization, we just need to replace previous Z; with the term

(Hj i Tﬂ” ) Z;. Similar to the proof of Proposition 1, we require
i [ i—17 (1—a)(1— —1
(H#i Tﬁj) Zkia Nun Th k0070,

ij o a/(l—a i—17.a(y—1)pa(yp—1)/(1-a) ;19— —
(Hj;éﬂﬁj) Ziket—l—lTxt{él )nit+1Nt+1ﬂ§+1 ketw )Txtw & )l;ﬁ 1Nt¢ '

to be constant. So the restriction for BGP (51) is modified to
iJ « —Q 7/) i
1= (TLw”) (370 g) 50 (63)

- o B
Case 1 p;; = p;, i # j: the restriction (63) becomes 1 = (H#i 75’) (73/(1_0‘)91\,) A
which implies Vi # s,
VTt = AT e P = R
— Vi 2V 2 1l=pi+p,2pst+ P
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Case 2: if p;; # 0, then p;, = 0 and p;; = 0 for k # i, j. The restriction (63) implies

P _pi—1 Pij p;—1 1=pi+pj
VitV = 7% S =

1=ps+py;
= Y, 2y =1 p+p; >0+ 0

B Capital Intensity and Productivity

Assume 1 = 1 for simplicity. The consumer’s problem is the same as the baseline

model. The firm’s problem is modified so that Yj,; = ﬂhth,‘;iNil,;ai and I, =
0 \¥ . . o . o

ATHTT < ?;’LtLihtm> . Static efficiency implies equal marginal rates of substitution

across sectors and activities. So across sectors, we have

i _ <71 - %‘) B (64
Ning  o; \1—0; ) Njp

across activities, we have
Qint _ 1 (1 - ai) Kin (65)
Lipg i \1—=mn;) Nim

Equal value of marginal product across sectors implies the relative price:

1 . Q;—0Q (&7} —Qy
oo (173 T (3)™ " ()" (=) (66)
Piht (1 _ L) T \AVint ; -

1

and its growth rate

Dint+1/Pine Vjnt <Kiht+1/Niht+l)aj_ai (67)

Pjint+1 /pjhtJrl B Yint Kin /Niht

As in the baseline, we focus on symmetric equilibrium. Sub. (64) and (65) into
capital capital market clearing condition

K Qit Kj
t Z; (Ni "L t) Nj ! (63)
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where \I/thl — ZZ (%%% + (2—J> (i:—an]) ?VZ) . So (66) becomes

. 1-— L T't N\ Y 1— . I—ay
bt _ ( 'LLJ> J (kU9 (&) ( aj) (69)

Djt (1 _ ML) T, o 1—a

So falling p;/p; can be due to v; > v; or a; > .
We now look for BGP as before. Using (68),

1
Gi1=1—0g+an (1 - —) Ty kO~ om—1 (70)

m

Along BGP, n; and [l;; are constants, ¥, is constant, G;.; is constant if g, =

’y,}l/ (17(1’"), i.e. 7,, to be constant. As before, the dynamic efficiency condition (36)

)‘”p”: ﬁt“ g?::i to grow at the same constant
c J

growth rate. From the production function, gg—i_:tt = anjpt" (Qji/ th)"jt_l, which is
growing at constant rate if 7, is constant, so from (20), Xjnt 18 growing at constant
rate. Together with (69) the ratio (56) simplifies to

requires the shadow price x;;,, and

m—0O; P r].f]_
L NgaPjnes1 Ve 1 7:;:9;: o Tk .
el aj— jt+1
Xjnt — Pet+1 OTjht 41 G v, Tk RS EAY

where B is a constant, so it requires

i—1 nj—a 1

1= Vg gy =7 7,0

N-

Finally combine the dynamic efficiency condition with the knowledge accumula-
tion equation to solve for n;/I;

(71)

v i —Om 1—am
- = — K.

L Vi — (1= 07) L=,
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C Planner’s Problem and Optimal Subsidies

Taking {Ni},2 , ke, Tine, T; = [ Tinedh as given, the planner chooses { Nint, Lint, Kint, Qint }
to maximize (6) subject to (1)-(2), (7), (9), (11), and

gnkir = e+ (1= 0k) by
Nicine = Yine = Tine Ky Ny ® ie{l,..m—1}
Niwjne = Y = ﬂhthhthl,;a je{m,.., z}.
Tinty1 = Fipe + (1 —=67) Tipe ie{l,..z}

Fiht - ZZT;;th? (H T;?) ( ?htL%i;fa)w (NS {17 '“7Z}
J#i

The complete derivation for the planner and decentralized economy with taxes and
subsidies is available from the authors. Here we report the key steps of comparing
the two economies.

Proof of Proposition 5. Restrictions for the BGP in both economies continue to
be (18) and (19) because they both boil down to restricting Fj;/T}; to be constant.
The consumption growth rates are the same for both economies when gross return
on capital G is equal under (24). The LHS of (24) is from the solution of the
decentralized economy. Given the Cobb-Douglas production with equal «, equating
marginal rate of substitution and marginal rate of technical substitution between
goods in the planner’s problem implies:

oU/0Cy, T

ou/oC;, T,
the corresponding condition for the decentralized economy is:

Dint Tsht (1 - 1/:“3) (1 - Ts)

= . 72
Psht Tine (L —1/p1;) (1 — 74) (72
So allocations across goods are the same when (24) holds. =
Proof of Proposition 6. The planner’s solution implies
st [e] st
n; 1 Xit/ Xit41 — (1 = 01) — Zs;éi it_iﬁ
o 1 - (73)
L v Yieyr — (L= 07)

The decentralized economy implies

ng 1 {Xit/XiHl —(1-47)

l; B (0 YVit+1 — (1 - 6T)

—m}u—hg (74)
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Since x;¢/Xit+1 for both economies has the same expression as follows:

X Vi ij —
=2t (L)) Grle (75)
it+1 7:1:

which is the same in both economies because G is the same. The term related to
cross-industry spillover for the planner’s solution is

OF, Ls
Z Xovy1 Zoatil [%Hl - (1- 5T)] (Zs;éi Psi t+1> :

ot Xit+1 aTit+1 litv1

Derive the optimal subsidy (25) and (26) by equating (73) and (74). The second order
conditions are trivially satisfied because the boundaries involve either no production
or no R&D activity, and hence cannot be optimal. =

Proof of Proposition 7. Consider two sectors with identical technology para-
meters except p; and w;. So (75) implies x;,/X;1 are the same for the sectors.

So

. 1 1
h; — hj = =

Xit/Xitg1—(1—61) s Xit/Xit41—(1=0T)
v;—(1=d7) v v;—(1=07)

hi > h;&1l; <l

and (74) implies

n; n; o Psj ls Psi ls o 1 1 ps‘lS
P e (B)is ()0 (25

ni/li > nj/lj Sl > lj

which is the same as n;/l; > n;/l; < n; > n;, which implies
h; > hj S < lj e 7"Ll/lZ < ’I’L]‘/l]‘ < n; < nj.
Using (72), (47) and (48), if either 4,j € {1,.m — 1} or i,j € {m, ...z}, then

ni o wil=1/pm)(A—7) wi
nj (/Jj (1—1//L]) (1—Tj) Ldj

where the equality follows from Proposition 7. m
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D Data

The NBER patent database, described in detail in Hall et al (2001), classifies patents
according to their industry of origin and type of innovation. This involves tracking
the industry of origin of each patent, and of the patents that each patent cites, for
16,522,438 citation entries. While data on patents begin in 1963, citations are only
available for patents granted since 1975.

For most of the paper we place durables into 14 categories we could identify in the
citation data.? The industry classification in Hall et al (2001) mostly coincides with
that in Table 2. The exceptions were Aircraft, Ships and Boats, Autos and Trucks,
and Structures, which we put together from their finer classification, including only
rubrics that we could definitively associate with the industry in question. Autos
and Trucks combines classes 180, 280, 293, 278, 296, 298, 305 and 301. Structures
combines classes 14 and 52 (Bridges and Static Structures). Aircraft equals class 244
(Aeronautics), and Ships and Boats is class 114 (Ships). The full list of categories
may be found at http://www.nber.org/patents/list of classes.txt

Patents from other categories were counted as non-durables. There is also an
issue with the 15% of patent citations where the industry of origin of the cited
patent was not available (i.e. the cited patent was older than 1963). When the
industry of a citation was not known, we assumed that the industry distribution of
citations was the same as for citations with a reported industry (whihc make up 85%
of the database). Excluding these patents, or counting them as non-durables, did
not affect results. Assuming no spillovers between durables and nondurables also
had little impact on the matrix for durables.

TFP in the model is based on quality-adjusted relative prices of capital goods
and the benchmark value of 7,. See Cummins and Violante (2002) for details on the
construction of the price indices.?6

Our measure of R&D intensity is the median ratio of R&D expenditures to sales
among firms in Compustat over the period 1950-2000. All firms in Compustat are
assigned a 4-digit SIC industry code, which is used for industry assignments. Since
firms in Compustat are arguably subject to weak if any financial constraints, this
should reflect the "pure" technologically determined level of R&D intensity for the
industry — see Ilyina and Samaniego (2007). We discard the top and bottom 1% of
observations in the sample, to reduce the influence of outliers.

25The main limitation is the citation data. Hence Figure 1 displays results for all manufacturing
indusitres, and Figures 2 and 3 report all the durables categories in the Cummins and Violante
(2002) data.

26We are very grateful to Gianluca Violante for providing us with relative price data.
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E Cross-industry spillover Matrix

Allowing for cross-industry knowledge spillovers, we can compute the cross-spillover
matrix as follows. Letting g; = log~,;, and letting R be the matrix of p;;, with

pii = pi, equation (63) can be written — log (7?;/(1&)%\[)1& = > Pi;9j — gi or, in
matrix form, v = Rg — g.

Define C' as the cross-citation matrix (as shown in Table 1), so ¢;; is the number
of times a patent in industry ¢ cites one in industry j on average. How does C' map
into R? First, it is not the case that R = C: the mapping between citations and
receptivity requires a scaling factor, reflecting the extent to which a cited patent
aids the production of new knowledge. The scaling factor may differ by contributing
and/or by recipient industry. The number of citations varies a lot by industry, re-
flecting differences across industries in the rate of ideas output, in the "ideas content"
of patents, and possibly in the tendency to patent ideas (as opposed to opting for
secrecy). An idea in Communications may not be the same as an idea in Mining and
Oilfield Machinery, because these industries may differ in their tendency to patent, or
because patents may represent different "increments" in knowledge in each industry.
See Hall et al (2001) for a related discussion of industry fixed effects. Without any
further data on the appropriate relative weights, we can still derive p;; by assuming
that the knowledge content of a given citation is constant regardless of the identity
of the citing industry. Hence, p,; = c;;w; (c;; is citations by patents in industry i of
patents from industry j) or, in matrix notation, R = CW, where W is a diagonal
matrix of the weights. Then, the relationship between citations and growth rates is

()
—log (75/(1704),},N> = Zj cijg;w; — g; or v.= CGw — g, where w is the vector of

weights and G is the diagonal matrix of g;. So, w = G 'C~![v + g]. The vectors
v and g are given by the data, so given matrix C of citations, the vector of weighs
is exactly identified. Given g;, we can derive the unique vector of weights,?” and
compute the implied spillover matrix R. Thus, for example, if ¢ = Communica-
tions and j = Computers, p;; equals the average number of citations of Computing
patents by patents in Communications, weighted by the "ideas content" index of
Computer patents weconmpurers. Index weonmpurers is the value required to map
between measured TFP growth rates and the citation matrix, using the structure of
the model.

2"In practice, we find that the weights do not differ very much. Among durable goods industries,
the mean is 0.26 and, aside from two outliers, the weights lie in the range 0.14 — 0.38. One outlier
is Mining and Oilfield machinery (1.03), where patents tend to have very few references. The other
is Electrical eq. n.e.c. (0.04).
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In about 15% of citations, the industry of the cited patent is not known. In the
reported results these citations were excluded, which is equivalent to assuming that
their industry distribution is the same as that for reported citations. Including them
all as Other (i.e. "Non-durables") affected the results negligibly. Table 7 reports
the spillover matrix. Notably, the primary source of knowledge spillovers for each
industry is the industry itself — as expected. Cross-industry spillovers do appear, but
values of p;; for j # i tend to be small relative to p; (reported along the diagonal).
Thus, total receptivity >, p;; (the sum of each row) is highly correlated with p;
(97%, or 86% excluding Other, and 93% without Electrical equipment n.e.c.). In
addition, values of p;; derived from the model using citation data are very close to
the values of p, in Table 2 (which assumes no cross-industry spillovers and does not
use patent data). The correlation between g; and p;; is about 93% (or 63% without
"Other", and 87% without Electrical equipment n.e.c.?®). The relative importance of
within-industry spillovers suggests that, while the 2-digit SIC codes used are based
on product categories, and thus on product use, it turns out that, at least for these
industries, this lines up with an alternative categorization based on similarities in
the knowledge used in production.

Spillover source Total

Code Spmover recipient 1 2 3 4 3 5] 7 8 9 10 11 12 13 14 13|Recep
T|Comp. & Office 087 009 000 004 001 001 005 003 000 001 003 000 000 000 -006] 109
2|Commun. 008 071 000 004 000 000 006 001 000 001 001 000 000 000 -004] 089
3| Aircraft 00z 002 081 001 000 001 003 005 001 000 002 000 001 000 -009] 0890
4]Instr. & Photocop 002 003 000 074 001 000 003 001 000 001 003 000 000 000 -013] 076
5|Fab. Met. Prod 001 000 000 001 065 000 005 003 000 D00 005 000 000 000 -012] 068
6)Autos and Trucks 001 001 00D 00D 000 062 002 004 001 000 005 000 002 000 -008] 0.71
7|Electrical transm. 002 002 000 002 003 000 056 001 000 000 002 000 000 000 -007] 0862
8|Cther Durables 002 001 000 001 002 001 001 057 000 000 008 000 001 000 -012] 061
9|Ships and boats 000 001 001 000 000 001 001 002 063 000 003 000 001 000 -009] 066
10|Electrical eq. n.e.c. 005 004 000 006 002 000 006 001 000 011 001 000 000 000 -008] 0289
11|Machinery 001 000 000 001 002 001 002 004 000 000 05 000 000 000 -014] 055
12|Mining and oilfield 000 000 000 000 000 000 000 001 000 000 001 067 000 000 -006] 065
13|Furniture and fixt 000 000 DOO 0OO0O1 001 001 001 003 000 000 002 000 051 001 -015] 048
14|Structures 000 000 000 Q00 002 000 001 005 000 000 002 000 002 045 -021] 038
15|Cther 001 001 000 003 002 000 002 003 000 000 005 001 001 000 -1.29] -1.089

Table 7 — Cross-spillover matrix p;;. The matrix is derived from the NBER

patent citation database and equation (22). A row corresponds to spillovers

received by a given industry. Columns represent industries as sources of spillovers.

To assess the robustness of the matrix to omissions, lags, etc, we also computed

the matrix based on data for citations within 5-year windows starting 1975-1979.

28 An outlier is Electrical equipment n.e.c. This reflects the fact that it often cites the Computers,
Communications and Electrical Transmission industries (which grow relatively fast) without this
leading to high growth in Electrical equipment n.e.c.
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These matrices vary very little over time. To get a sense of this, the correlation
between p; (the vector of diagonals) in each five year window vs. the values in the
earliest window is 96% or higher. The correlation between the off-diagonal elements
is 85% or higher. We conclude that our indicators of receptivity are all stable over
time, which supports our assumptions and model structure.
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