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Description of the structural model

The goal of this Appendix is to describe the model used for simulations of productivity and

wage changes in different counterfactuals as part of SERC’s research for the Northern Way on

the impact of strengthening economic linkages between Leeds and Manchester. The model has

been developed by Behrens et al. (2008) to which the reader might refer for further details.

1 Closed economy

Consider a closed economy with a final consumption good, provided as a continuum of hori-

zontally differentiated varieties. We denote by Ω the endogenously determined set of available

varieties, with measure N . There are L consumers, each of whom supplies inelastically one unit

of labor, which is the only factor of production.

1.1 Preferences and demands

All consumers have identical preferences which display ‘love of variety’ and give rise to demands

with variable elasticities. Following Behrens and Murata (2007), the utility maximization prob-

lem of a representative consumer is given by:

max
q(j), j∈Ω

U ≡
∫

Ω

[
1− e−αq(j)

]
dj s.t.

∫
Ω

p(j)q(j)dj = E, (1)

where E denotes expenditure; p(j) > 0 and q(j) ≥ 0 stand for the price and the per capita

consumption of variety j; and α > 0 is a parameter. As shown by Behrens and Murata (2007),

solving (1) yields the following demand functions:

q(i) =
E

Np
− 1

α

{
ln

[
p(i)

Np

]
+ h

}
, ∀i ∈ Ω, (2)

where

p ≡ 1

N

∫
Ω

p(j)dj and h ≡ −
∫

Ω

ln

[
p(j)

Np

]
p(j)

Np
dj

denote the average price and the differential entropy of the price distribution, respectively. Since

marginal utility at zero consumption is bounded, the demand for a variety need not be positive.

Indeed, as can be seen from (2), the demand for variety i is positive if and only if its price is

lower than the reservation price pd. Formally,

q(i) > 0 ⇐⇒ p(i) < pd ≡ Np e
αE
Np
−h. (3)

Note that the reservation price pd is a function of the price aggregates p and h. Combining

expressions (2) and (3) allows us to express the demand for variety i concisely as follows:

q(i) =
1

α
ln

[
pd

p(i)

]
. (4)
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1.2 Technology and market structure

The labor market is assumed to be perfectly competitive so that all firms take the wage rate w

as given. Prior to production, each firm engages in research and development, which requires

a fixed amount F of labor paid at the market wage. Each firm discovers its marginal labor

requirement m(i) ≥ 0 only after making this irreversible investment. We assume that m(i) is

drawn from a common and known, continuously differentiable distribution G. Since research

and development costs are sunk, a firm will survive (i.e., remain active) in the market provided

it can charge a price p(i) above marginal cost m(i)w.

Each surviving firm sets its price to maximize operating profit

π(i) = L
[
p(i)−m(i)w

]
q(i), (5)

where q(i) is given by (4). Since there is a continuum of firms, no individual firm has any impact

on pd so that the first-order conditions for (operating) profit maximization are given by:

ln

[
pd

p(i)

]
=
p(i)−m(i)w

p(i)
, ∀i ∈ Ω. (6)

A price distribution satisfying (6) is called a price equilibrium. Multiplying both sides of (6) by

p(i), integrating over Ω, and using (4) yield the average price as follows:

p = mw +
αE

N
, (7)

where m ≡ (1/N)
∫

Ω
m(j)dj denotes the average marginal labor requirement of the surviving

firms. Observe that expression (7) displays pro-competitive effects, i.e., the average price is

decreasing in the mass of surviving firms N .

Equations (4) and (6) imply that q(i) = (1/α)[1 − m(i)w/p(i)], which allows us to derive

the upper and lower bounds for the marginal labor requirement. The maximum output is given

by q(i) = 1/α at m(i) = 0. The minimum output is given by q(i) = 0 at p(i) = m(i)w, which

by (6) implies that p(i) = pd. Therefore, the cutoff marginal labor requirement is defined as

md ≡ pd/w. A firm that draws md is indifferent between producing and not producing, whereas

all firms with a draw below (resp., above) md remain in (resp., exit from) the market.

Since firms differ only by their marginal labor requirement, we can express all firm-level

variables in terms ofm. Solving (6) by using the LambertW function, defined as ϕ = W (ϕ)eW (ϕ),

the profit-maximizing prices and quantities, as well as operating profits, can be expressed as

follows:

p(m) =
mw

W
, q(m) =

1

α
(1−W ), π(m) =

Lmw

α

(
W−1 +W − 2

)
, (8)

where we suppress the argument em/md of W to alleviate notation. It is readily verified that

W ′ > 0 for all non-negative arguments and that W (0) = 0 and W (e) = 1 (see Section A.1 for the

derivation of (8) and the properties of W ). Hence, 0 ≤ W ≤ 1 if 0 ≤ m ≤ md. The expressions
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in (8) show that a firm with a draw md charges a price equal to marginal cost, faces zero demand,

and earns zero profit. Since W ′ > 0, we readily obtain ∂p(m)/∂m > 0, ∂q(m)/∂m < 0 and

∂π(m)/∂m < 0. In words, firms with better draws charge lower prices, sell larger quantities,

and earn higher operating profits than firms with worse draws.

1.3 Equilibrium

We now state the equilibrium conditions for the closed economy, which consist of zero expected

profits and labor market clearing. First, given the mass of entrants NE, the mass of surviving

firms can be written as N = NEG(md). Using (5), the zero expected profit condition for each

firm is given by:

L

∫ md

0

[p(m)−mw] q(m)dG(m) = Fw, (9)

which, combined with (8), can be rewritten as

L

α

∫ md

0

m
(
W−1 +W − 2

)
dG(m) = F. (10)

As the left-hand side of (10) is strictly increasing in md from 0 to∞, there always exists a unique

equilibrium cutoff (see Section A.2). Furthermore, the labor market clearing condition is given

by:1

NE

[
L

∫ md

0

mq(m)dG(m) + F

]
= L, (11)

which, combined with (8), can be rewritten as

NE

[
L

α

∫ md

0

m (1−W ) dG(m) + F

]
= L. (12)

Given the equilibrium cutoff md, equation (12) can be uniquely solved for NE.

How does population size affect entry and firms’ survival probabilities? Using the equilibrium

conditions (10) and (12), we can show that a larger L leads to more entrants NE and a smaller

cutoff md, respectively (see Section A.3). The effect of population size on the mass of surviving

firms N is in general ambiguous. However, under the commonly made assumption that firms’

productivity draws 1/m follow a Pareto distribution

G(m) =
( m

mmax

)k
,

1Note that by using (9) and the budget constraint NE
∫md

0
p(m)q(m)dG(m) = E, we obtain EL/(wNE) =

L
∫md

0
mq(m)dG(m) + F which, together with (11), yields E = w in equilibrium.
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with upper bound mmax > 0 and shape parameter k ≥ 1, we can show that N is increasing in L.2

Using this distributional assumption, we readily obtain closed-form solutions for the equilibrium

cutoff and mass of entrants:

md =

[
αF (mmax)k

κ2L

] 1
k+1

and NE =
κ2

κ1 + κ2

L

F
,

where κ1 and κ2 are positive constants that solely depend on k (see Sections B.1 and B.2).3 The

mass of surviving firms is then given as follows:

N =
κ

1
k+1

2

κ1 + κ2

( α

mmax

) k
k+1

(
L

F

) 1
k+1

,

which is increasing in population size L. One can further check that N is decreasing in the fixed

labor requirement F and in the upper bound mmax. Finally, since m = [k/(k+1)]md holds when

productivity follows a Pareto distribution, a larger population also maps into higher average

productivity 1/m.

2 Open economy

We now turn to the open economy case. As dealing with two regions only marginally alleviates

the notational burden, we first derive the equilibrium conditions for the general case with K

asymmetric regions that we use when taking our model to the data. We then present some

clear-cut analytical results for the special case of two asymmetric regions in order to guide the

intuition for the general case.

2.1 Preferences and demands

Preferences are analogous to the ones described in the previous section. Let psr(i) and qsr(i)

denote the price and the per capita consumption of variety i when it is produced in region s and

consumed in region r. It is readily verified that the demand functions in the open economy case

are given as follows:

qsr(i) =
Er
N c
rpr
− 1

α

{
ln

[
psr(i)

N c
rpr

]
+ hr

}
, ∀i ∈ Ωsr,

where N c
r is the mass of varieties consumed in region r; Ωsr denotes the set of varieties produced

in region s and consumed in region r; and

pr ≡
1

N c
r

∑
s

∫
Ωsr

psr(j)dj and hr ≡ −
∑
s

∫
Ωsr

ln

[
psr(j)

N c
rpr

]
psr(j)

N c
rpr

dj

2The Pareto distribution has been extensively used in the previous literature on heterogeneous firms (e.g.,
Bernard et al., 2007; Helpman et al., 2008; Melitz and Ottaviano, 2008).

3For this solution to be consistent, we must ensure that md ≤ mmax, i.e., mmax ≥ αF/(κ2L).
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denote the average price and the differential entropy of the price distribution of all varieties

consumed in region r. As in the closed economy case, the demand for domestic variety i (resp.,

foreign variety j) is positive if and only if the price of variety i (resp., variety j) is lower than

the reservation price pdr . Formally,

qrr(i) > 0 ⇐⇒ prr(i) < pdr and qsr(j) > 0 ⇐⇒ psr(j) < pdr ,

where pdr ≡ N c
rpre

αEr/(Nc
rpr)−hr is a function of the price aggregates pr and hr. The demands for

domestic and foreign varieties can then be concisely expressed as follows:

qrr(i) =
1

α
ln

[
pdr

prr(i)

]
and qsr(j) =

1

α
ln

[
pdr

psr(j)

]
. (13)

2.2 Technology and market structure

Technology and the entry process are identical to the ones described in Section 2. We assume

that shipments from r to s are subject to trade costs τrs > 1 for all r and s, that markets are

segmented, and that firms are free to price discriminate.

Firms in region r independently draw their productivities from a region-specific distribution

Gr. Assuming that firms incur trade costs in terms of labor, the operating profit of firm i in r

is given by:

πr(i) =
∑
s

πrs(i) =
∑
s

Lsqrs(i) [prs(i)− τrsmr(i)wr] . (14)

Each firm maximizes (14) with respect to its prices prs(i) separately. Since it has no impact on

the price aggregates and on the wages, the first-order conditions are given by:

ln

[
pds

prs(i)

]
=
prs(i)− τrsmr(i)wr

prs(i)
, ∀i ∈ Ωrs. (15)

We first solve for the average price in region r. To do so, multiply (15) by prs(i), use (13),

integrate over Ωrs, and finally sum the resulting expressions to obtain

pr ≡
1

N c
r

∑
s

∫
Ωsr

psr(j)dj =
1

N c
r

∑
s

τsrws

∫
Ωsr

ms(j)dj +
αEr
N c
r

, (16)

where the first term is the average of marginal delivered costs in region r. Expression (16) shows

that pr is decreasing in the mass N c
r of firms competing in region r, which is similar to the result

on pro-competitive effects established in the closed economy case.

Equations (13) and (15) imply that qrs(i) = (1/α)[1 − τrsmr(i)wr/prs(i)], which shows that

qrs(i) = 0 at prs(i) = τrsmr(i)wr. It then follows from (15) that prs(i) = pds. Hence, a firm

located in r with draw mx
rs ≡ pds/(τrswr) is just indifferent between selling and not selling in

region s. All firms with draws below mx
rs are productive enough to sell to region s. In what
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follows, we refer to mx
ss ≡ md

s as the domestic cutoff in region s, whereas mx
rs with r 6= s is the

export cutoff. Export and domestic cutoffs are linked as follows:

mx
rs =

τss
τrs

ws
wr
md
s. (17)

Expression (17) reveals how trade costs and wage differentials affect firms’ ability to break into

foreign markets. When wages are equalized (wr = ws) and internal trade is costless (τss = 1),

all export cutoffs must fall short of the domestic cutoffs since τrs > 1. In that case, breaking

into any foreign market is always harder than selling domestically. However, in the presence of

wage differentials and internal trade costs, the domestic and the foreign cutoffs can no longer

be clearly ranked. The usual ranking, namely that exporting to s is more difficult than selling

domestically in s, prevails only when τssws < τrswr.

The first-order conditions (15) can be solved as in the closed economy case. Switching to

notation in terms of m, the profit-maximizing prices and quantities, as well as operating profits,

are given by:

prs(m) =
τrsmwr
W

, qrs(m) =
1

α
(1−W ) , πrs =

Lsτrsmwr
α

(W−1 +W − 2), (18)

where W denotes the Lambert W function with argument eτrsmwr/p
d
s, which we suppress to

alleviate notation. It is readily verified that more productive firms again charge lower prices,

sell larger quantities, and earn higher operating profits.

Observe that in an open economy, the masses of varieties consumed and produced in each

region need not be the same. Given a mass of entrants NE
r , only Np

r = NE
r Gr (maxs {mx

rs})
firms survive, namely those which are productive enough to sell at least in one market. Finally,

the mass of varieties consumed in region r is given by

N c
r =

∑
s

NE
s Gs(m

x
sr). (19)

2.3 Equilibrium

The zero expected profit condition for each firm in region r is given by

∑
s

Ls

∫ mxrs

0

[prs(m)− τrsmwr] qrs(m)dGr(m) = Frwr, (20)

where Fr is the region-specific fixed labor requirement. Furthermore, each labor market clears

in equilibrium, which requires that

NE
r

[∑
s

Lsτrs

∫ mxrs

0

mqrs(m)dGr(m) + Fr

]
= Lr. (21)
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Last, trade is balanced for each region:

NE
r

∑
s6=r

Ls

∫ mxrs

0

prs(m)qrs(m)dGr(m) = Lr
∑
s6=r

NE
s

∫ mxsr

0

psr(m)qsr(m)dGs(m).

As in the foregoing section, we can restate the equilibrium conditions using the Lambert W

function (see Section C for details).

In what follows, we assume that productivity draws 1/m follow a Pareto distribution with

identical shape parameters k ≥ 1. However, to capture differences in local technological possi-

bilities, we allow the upper bounds to vary across regions, i.e., Gr(m) = (m/mmax
r )k. A lower

mmax
r implies that firms in region r have a higher probability of drawing a better productivity.

Under the Pareto distribution, the equilibrium conditions can be greatly simplified. First, using

the expressions in Sections B.1 and C.1, labor market clearing requires that

NE
r

[
κ1

α (mmax
r )k

∑
s

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

+ Fr

]
= Lr. (22)

Second, using the expressions in Sections B.2 and C.2, zero expected profits imply that

µmax
r ≡ αFr (mmax

r )k

κ2

=
∑
s

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

, (23)

where µr is a simple monotonic transformation of the upper bounds. Last, using the expressions

in Sections B.3 and C.3, balanced trade requires that

NE
r wr

(mmax
r )k

∑
s 6=r

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

= Lr
∑
s 6=r

τsr
NE
s ws

(mmax
s )k

(
τrr
τsr

wr
ws
md
r

)k+1

. (24)

The 3K conditions (22)–(24) depend on 3K unknowns: the wages wr, the masses of entrants

NE
r , and the domestic cutoffs md

r . The export cutoffs mx
rs can then be computed using (17).

Combining (22) and (23) immediately shows that

NE
r =

κ2

κ1 + κ2

Lr
Fr
. (25)

The mass of entrants in region r therefore positively depends on that region’s size Lr and

negatively on its fixed labor requirement Fr.

Adding the term in r that is missing on both sides of (24), and using (23) and (25), we obtain

the following equilibrium relationship:

1

(md
r)
k+1

=
∑
s

Lsτrr

(
τrr
τsr

wr
ws

)k
1

µmax
s

. (26)

Expressions (23) and (26) summarize how wages, upper bounds, cutoffs, trade costs and popu-

lation sizes are related in general equilibrium.
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2.4 Two-region case

Our model allows for clear-cut comparative static results with two asymmetric regions. Us-

ing (23)–(25), an equilibrium can be characterized by a system of three equations with three

unknowns (the two cutoffs md
1 and md

2, and the relative wage w1/w2) as follows:(
w1

w2

)2k+1

=

(
τ21

τ12

)k (
τ22

τ11

)k+1(
md

2

md
1

)k+1(
µmax

2

µmax
1

)
(27)

µmax
r = Lrτrr

(
md
r

)k+1
+ Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

, (28)

for r = 1, 2 and s 6= r. Equation (28) for regions 1 and 2 can readily be solved for the cutoffs as

a function of the relative wage ω ≡ w1/w2:

(md
1)k+1 =

µmax
1

L1τ11

1− ρ
(
τ22
τ12

)k
ω−(k+1)

1−
(
τ11τ22
τ12τ21

)k and (md
2)k+1 =

µmax
2

L2τ22

1− ρ−1
(
τ11
τ21

)k
ωk+1

1−
(
τ22τ11
τ21τ12

)k , (29)

where ρ ≡ µmax
2 /µmax

1 captures relative technological possibilities. A larger ρ (given Fr) implies,

ceteris paribus, that firms in region 2 face a higher probability of drawing a worse productivity

than those in region 1. Substituting the cutoffs (29) into (27) yields after some simplification

LHS ≡ ωk = ρ
L1

L2

(
τ21

τ12

)k
ρτ−k11 − τ−k21 ω

k+1

τ−k22 ω
k+1 − ρτ−k12

≡ RHS. (30)

Assume that intraregional trade is less costly than interregional trade, i.e., τ11 < τ21 and τ22 < τ12.

Then, the RHS of (30) is decreasing in ω on its relevant domain, whereas the LHS is increasing

in ω. Hence, there exists a unique equilibrium such that the equilibrium relative wage ω∗ is

bounded by relative trade costs τ22/τ12 and τ21/τ11, relative technological possibilities ρ, and the

shape parameter k (see Section A.4).

Since the RHS of (30) is decreasing in ω, the comparative static results are straightforward to

derive. Assume that τ21 = τ12 and τ11 = τ22. In Section A.5 we show that, everything else equal:

(i) the larger region has the higher wage; (ii) higher internal trade costs in one region reduce its

relative wage; (iii) better access for one region to the other raises its relative wage; (iv) wages

converge as bilateral trade barriers fall; (v) the larger region has the lower cutoff and the higher

utility; and (vi) the cutoff decreases and the utility increases as bilateral trade barriers fall.

2.5 Welfare

To see that tougher selection or more diversity in consumption map into welfare gains, notice

that since e−αqsr(m) = psr(m)/pdr by (13), the indirect utility in region r is given by

Ur =
∑
s

NE
s

∫ mxsr

0

[
1− e−αqsr(m)

]
dGs(m) = N c

r

(
1− pr

pdr

)
.

9



Using expression (16), one can verify that pr = [k/(k + 1)]pdr + αwr/N
c
r , which allows us to

express the indirect utility as Ur = N c
r/(k + 1)− α/(τrrmd

r). Since N c
r is defined as in (19), and

making use of the fact that expression (26) holds in equilibrium, we can rewrite the indirect

utility as follows:

Ur =

[
1

(k + 1)κ3

− 1

]
α

τrrmd
r

. (31)

Hence, welfare is inversely proportional to the cutoff md
r . Alternatively, the equilibrium utility

can be written as Ur = [1/(k + 1)− κ3]N c
r ., i.e., welfare changes in region r are proportional to

changes in the mass of varieties available for consumption.

3 Estimation and counterfactuals

In this section we take the model with K asymmetric regions to the data. To this end, we first

derive two sets of general equilibrium constraints. Using data on wages, GDP per worker, pop-

ulation, firms’ productivity dispersion, and generalized transport costs for UK local authorities

and city regions, we then structurally estimate trade frictions. With all the elements of the

model in our hands, we are finally able to simulate productivity and wage changes across UK

regions stemming from different policies.

3.1 Gravity equation system

The value of exports from region r to region s is given by

Xrs = NE
r Ls

∫ mxsr

0

prs(m)qrs(m)dGr(m).

Using equations (18), (25), and the Pareto distribution for Gr(m), we obtain the following gravity

equation:4

Xrs

LrLs
= τ−krs τ

k+1
ss (ws/wr)

k+1wr
(
md
s

)k+1
(µmax

r )−1 . (32)

As can be seen from (32), exports depend on bilateral trade costs τrs, internal trade costs in the

destination τss, origin and destination wages wr and ws, destination productivity md
s, and origin

technological possibilities µmax
r . A higher relative wage ws/wr raises the value of exports as firms

in r face relatively lower production costs, whereas a higher absolute wage wr raises the value

of exports by increasing export prices prs. Furthermore, a larger md
s raises the value of exports

since firms located in the destination are on average less productive. Last, a lower µmax
r implies

4Contrary to standard practice in the gravity literature, we do not move the GDPs but instead move the
population sizes to the left-hand side. Applying the former approach to our model would amount to assuming
that wages are exogenous in the gravity estimation, which is not the case in general equilibrium.
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that firms in region r have higher expected productivity, which raises the value of their exports.

Conditions (23) and (26) allow us to derive the following general equilibrium constraints:

1

(md
s)
k+1

=
∑
v

Lvτ
−k
vs τ

k+1
ss

(
ws
wv

)k
(µmax

v )−1 s = 1, 2, . . . K (33)

µmax
r =

∑
v

Lvτ
−k
rv τ

k+1
vv

(
wv
wr

)k+1 (
md
v

)k+1
r = 1, 2. . . . K (34)

The gravity equation system consists of the gravity equation (32) and the 2K general equilibrium

constraints (33) and (34) that summarize the interactions between the 2K endogenous variables,

namely the wages and cutoffs.

3.2 Data and estimation procedure

To estimate the gravity equation system (32)–(34) like in Behrens et al. (2008) data on trade

flows across regions are needed. However, such data are not available for the UK. An alternative

strategy, that we adopt in what follows, is to use the 2K general equilibrium constraints (33)

and (34) only.

Looking at general equilibrium constrains, one can notice that some variables are easily

observable while others needs to be estimated. Data on wages wr and populations Lr across UK

regions are indeed easy to obtain and we borrow them from, respectively, the Annual Survey of

Hours and Earnings (ASHE) and the Office for National Statistics (ONS). Data refers to the

year 2006. As for productivities md
r we use, in a fully consistent way with respect to the model,

local GDP per worker in 2006 reconstructed from NUTS3 GDP data provided by Eurostat

and total employment figures provided by ONS.5 Indeed, under the Pareto distribution, the

domestic cutoff in each region is proportional to the inverse of the average firm productivity, i.e.,

md
r = [(k + 1)/k]mr. Since labor is the only production input, a firm productivity in the model

corresponds to its value added per worker while the sum of firms’ value added equals local GDP.

Finally as a measure of the degree of firms’ heterogeneity in productivity, the parameter k, we

use the the rather standard value of 2.6

In order to close the model, we are still left with trade frictions (τrs) and technological possi-

bilities (µmax
r ). Trade frictions, in a broad sense, represents all impediments to doing business in

different locations. As standard in the gravity literature (see Anderson and van Wincoop, 2004)

we assume that such costs are related to distance. In particular, we assume τrs ≡ dγrs where drs

5Data on GDP at the local authority level are not available and have been reconstructed from NUTS3 data.
In a first step, NUTS3 GDP per worker has been regressed on local wages, employment density, and employment
density squared producing an R2 of 0.8092. Using the estimated coefficients of such a regressions, GDP at the
local authority level has been estimated from available data on wages, employment density, and employment
density squared referring to the same spatial scale.

6See Del Gatto et al. (2006).
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is the generalized transportation cost (GTC) between region r and s and γ is a parameter to be

estimated.7 GTC within a region is either directly available or, for missing observations, it has

been assumed to be half of the GTC between a region and its first order contiguity neighbors.

Technological possibilities µmax
r represents the competitiveness of a region once ‘discounted’

for its size, population, and accessibility to other regions. Clearly, data for such a variable do

not exist and need to be reconstructed from the model. In order to estimate µmax
r , as well as the

γ for all regions, we use the following iterative procedure:

1. We start with an initial guess for γ and use (34) to back out values for µmax
r . Let us denote

such values as µ̂max
r

2. Using µ̂max
r in (33) we estimate γ by non-linear lest squares to produce and estimate γ̂

3. Using γ̂ in (34) we obtain new values for µ̂max
r .

4. Iterate steps 2 and 3 until convergence. Convergence is achieved whenever the value γ̂ in

two consecutive iterations is lower than 10−6.

By applying such a procedure we obtain a significant (at the 5% confidence level) γ̂=-0.0366

with the R2 of the non-linear least squares estimation of (33) being 0.8049.

3.3 Counterfactual simulations

In order to simulate the impact of changes in trade costs and/or population on productivity and

wages we proceed as follows. We first compute the values of productivity 1/
(
md
s

)
obtained after

the convergence of our iterative procedure using (33): ̂1/ (md
s). These values of productivity are

then plugged into (34) in order to obtain consistent equilibrium values of wages ŵv/wr. Such

values of wages are then used in (33) to get another guess for productivity. We iterate such

procedure until both ̂1/ (md
s) and ŵv/wr satisfy conditions (33) and (34)

In order to back out the impact of transport policies (defined as changes of some trade costs

values τrs) and/or housing policies (defined as changes of some values of local populations  Lr) we

solve for the new values of wages and GDP per worker that satisfy the 2K system of equations

(33) and (34). GDP per worker changes induced by a given policy can be fully recovered.

However, as the model is invariant with respect to the absolute level of wages (i.e. only relative

wages matters), regional wage changes induced by a given policy needs to be evaluated with

7In particular, we use the weighted average of road GTC and the train GTC. Weights are given by the share
of journeys of 5 miles and more made with (respectively) car and train. Such weights, provided by the 2006
National Travel Survey, are equal to 0.8684 and 0.1316. GTC road are based on the year 1998 while GTC train
are based on the year 2004. We use the change in the retail price index over the period 1998-2004 to make GTC
road comparable to GTC train. See Appendix 3 of the SERC report for details on sources and construction
methodology of GTC data.
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respect to a reference region. We choose the city-region of Aberdeen as ‘numeraire’ because

is rather small and peripheral with respect to the study area of Leeds and Manchester and is

therefore likely to be only marginally affected by the policies under evaluation. Such relative

wage changes are thus ‘quasi absolute wage changes’. Indeed, in all simulations, GDP per worker

changes in Aberdeen are negligible.
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A: Proofs and computations

A.1. Derivation of (8) and properties of W . Using pd = mdw, the first-order conditions

(6) can be rewritten as

ln

[
mdw

p(m)

]
= 1− mw

p(m)
.

Taking the exponential of both sides and rearranging terms, we have

e
m

md
=

mw

p(m)
e
mw
p(m) .
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Noting that the Lambert W function is defined as ϕ = W (ϕ)eW (ϕ) and setting ϕ = em/md, we

obtain W (em/md) = mw/p(m), which implies p(m) as given in (8). The derivations of q(m)

and π(m) then follow straightforwardly.

Turning to the properties of the Lambert W function, we clearly see that ϕ = W (ϕ)eW (ϕ)

implies that W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms on both sides and differentiating yield

W ′(ϕ) =
W (ϕ)

ϕ[W (ϕ) + 1]
> 0

for all ϕ > 0. Finally, we have 0 = W (0)eW (0), which implies W (0) = 0; and e = W (e)eW (e),

which implies W (e) = 1.

A.2. Existence and uniqueness of the equilibrium cutoff md. We show that there exists

a unique equilibrium cutoff md. To see this, apply the Leibnitz integral rule to the left-hand

side of (10) and use W (e) = 1 to obtain

eL

α(md)2

∫ md

0

m2
(
W−2 − 1

)
W ′dG(m) > 0,

where the sign comes from W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Hence, the left-hand side of

(10) is strictly increasing. This uniquely determines the equilibrium cutoff md, because

lim
md→0

∫ md

0

m
(
W−1 +W − 2

)
dG(m) = 0 and lim

md→∞

∫ md

0

m
(
W−1 +W − 2

)
dG(m) =∞.

A.3. Market size, the equilibrium cutoff, and the mass of entrants. Differentiating

(10) and using the Leibniz integral rule, we readily obtain

∂md

∂L
= −

αF
(
md
)2

eL2

[∫ md

0

m2
(
W−2 − 1

)
W ′dG(m)

]−1

< 0,

because W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Differentiating (12) with respect to L yields

∂NE

∂L
=
F (NE)2

L2

{
1− eL3

αF (md)2

[∫ md

0

m2W ′dG(m)

]
∂md

∂L

}
> 0,

where the sign comes from ∂md/∂L < 0 as established in the foregoing.

A.4. Existence and uniqueness in the two-region case. Under our assumptions on trade

costs, the RHS of (30) is non-negative if and only if ω < ω < ω, where ω ≡ ρ1/(k+1) (τ22/τ12)k/(k+1)

and ω ≡ ρ1/(k+1) (τ21/τ11)k/(k+1). Furthermore, the RHS is strictly decreasing in ω ∈ (ω, ω)

with limω→ω+ RHS = ∞ and limω→ω−RHS = 0. The LHS of (30) is, on the contrary, strictly

increasing in ω ∈ (0,∞). Hence, there exists a unique equilibrium ω∗ ∈ (ω, ω).
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A.5. Market size, trade frictions, and wages. (i) First, ω∗ is increasing in L1/L2 as an

increase in L1/L2 raises the RHS of (30) without affecting the LHS. This implies that if the two

regions have equal technological possibilities (ρ = 1) and face symmetric trade costs (τ12 = τ21

and τ11 = τ22), the larger region has the higher relative wage.

(ii) Higher internal trade costs in one region reduce the relative wage of that region, because

∂(RHS)

∂τ11

< 0 iff ω∗ > ω and
∂(RHS)

∂τ22

> 0 iff ω∗ < ω.

(iii) Better access to the foreign market raises the domestic relative wage, whereas better access

to the domestic market reduces the domestic relative wage because

∂(RHS)

∂τ12

< 0 iff ω∗ < ω and
∂(RHS)

∂τ21

> 0 iff ω∗ > ω.

(iv) Assuming that τ12 = τ21 = τ and that τ11 = τ22 = t, one can verify that

∂(RHS)

∂τ
= −kρt

k

τ k+1

L1

L2

ρ2 − ω2(k+1)

[ωk+1 − ρ(t/τ)k]2


>

=

<

 0 for


ω < ρ

1
k+1 < ω∗ < ω

ω < ω∗ = ρ
1
k+1 < ω

ω < ω∗ < ρ
1
k+1 < ω

 . (35)

Note that when regions are of equal size, but have different upper bounds (ρ > 1), the first case

of (35) applies since ω∗ > ρ1/(k+1) in equilibrium. To see this, evaluate (30) at ω = ρ1/(k+1) and

recall that τ21 = τ12 = τ and L1 = L2. The LHS is equal to ρk/(k+1), which falls short of the

RHS given by ρ (since ρ > 1 and k ≥ 1). Since the LHS is increasing and the RHS is decreasing,

it must be that ω∗ > ρ1/(k+1). Hence, lower trade costs reduce the relative wage of the more

productive region. Furthermore, when regions have the same upper bounds but different sizes

(L1 > L2), we obtain ω∗ > ρk/(k+1) = 1, so that the first case of (35) applies again. (v) Assuming

that τ12 = τ21 = τ and that τ11 = τ22 = t and using (29), one can verify that(
md

1

md
2

)k+1

=
L2

ρL1

[
1− ρ

(
t
τ

)k
ω−(k+1)

1− ρ−1
(
t
τ

)k
ωk+1

]
. (36)

Furthermore, (30) can be rewritten as

ωk =
ρL1

L2

[
1− ρ−1

(
t
τ

)k
ωk+1

1− ρ
(
t
τ

)k
ω−(k+1)

]
ρ

ωk+1
⇐⇒ ω2k+1 = ρ

(
md

2

md
1

)k+1

,

where we use (36) to obtain the equivalence. Now assume that ρ = 1 and that L1 > L2. Then,

we know from (i) that ω > 1, which implies md
1 < md

2. It is then readily verified from (31) that

the larger region has the higher utility. (vi) Let τ12 = τ21 = τ and τ11 = τ22 = t. Imposing

symmetry between the two regions, i.e., ρ = 1 and ω = 1, and using (29), one can verify that

(md
r)
k+1 = µmax

r /{Lrt[1 + (t/τ)k]}, thus implying that the cutoff decreases as bilateral trade

barriers fall. It is then readily verified from (31) that the utility increases as bilateral trade

barriers fall.
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Section B: Integrals involving the Lambert W function

To derive closed-form solutions for various expressions throughout the paper we need to compute

integrals involving the Lambert W function. This can be done by using the change in variables

suggested by Corless et al. (1996, p.341). Let

z ≡ W
(

e
m

I

)
, so that e

m

I
= zez, where I = md

r ,m
x
rs,

where subscript r can be dropped in the closed economy. The change in variables then yields

dm = (1 + z)ez−1Idz, with the new integration bounds given by 0 and 1. Under our assumption

of a Pareto distribution for productivity draws, the change in variables allows to rewrite integrals

in simplified form.

B.1. First, consider the following expression, which appears when integrating firms’ outputs:∫ I

0

m
[
1−W

(
e
m

I

)]
dGr(m) = κ1 (mmax

r )−k Ik+1,

where κ1 ≡ ke−(k+1)
∫ 1

0
(1 − z2) (zez)k ezdz > 0 is a constant term which solely depends on the

shape parameter k.

B.2. Second, the following expression appears when integrating firms’ operating profits:∫ I

0

m

[
W
(

e
m

I

)−1

+W
(

e
m

I

)
− 2

]
dGr(m) = κ2 (mmax

r )−k Ik+1,

where κ2 ≡ ke−(k+1)
∫ 1

0
(1 + z) (z−1 + z − 2) (zez)k ezdz > 0 is also a constant term which solely

depends on the shape parameter k.

B.3. Finally, the following expression appears when integrating firms’ revenues:∫ I

0

m

[
W
(

e
m

I

)−1

− 1

]
dGr(m) = κ3 (mmax

r )−k Ik+1,

where κ3 ≡ ke−(1+k)
∫ 1

0
(z−1 − z) (zez)k ezdz > 0 is a constant term which solely depends on the

shape parameter k. Using the expressions for κ1 and κ2, one can verify that κ3 = κ1 + κ2.

Section C: Equilibrium in the open economy

In this Section we restate the open economy equilibrium conditions of Section 3 using the Lam-

bert W function.
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C.1. Using (18), the labor market clearing condition can be rewritten as follows:

NE
r

{
1

α

∑
s

Lsτrs

∫ mxrs

0

m

[
1−W

(
e
m

mx
rs

)]
dGr(m) + Fr

}
= Lr. (37)

C.2. Plugging (18) into (20), zero expected profits require that

1

α

∑
s

Lsτrs

∫ mxrs

0

m

[
W

(
e
m

mx
rs

)−1

+W

(
e
m

mx
rs

)
− 2

]
dGr(m) = Fr. (38)

As in the closed economy case, the zero expected profit condition depends solely on the cutoffs

mx
rs and is independent of the mass of entrants.

C.3. Finally, the trade balance condition is given by

NE
r wr

∑
s 6=r

Lsτrs

∫ mxrs

0

m

[
W

(
e
m

mx
rs

)−1

− 1

]
dGr(m)

= Lr
∑
s 6=r

NE
s τsrws

∫ mxsr

0

m

[
W

(
e
m

mx
sr

)−1

− 1

]
dGs(m). (39)

Applying the region-specific Pareto distributions Gr(m) = (m/mmax
r )k to (37)–(39) yields, after

some algebra and using the results of Section B, expressions (22)–(24) given in the main text.
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