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Assessing Disclosure Risk for Record Linkage
Chris Skinner

Southampton Statistical Sciences Research Institute
University of Southampton
Southampton SO17 1EF, United Kingdom

Abstract. An intruder seeks to match a microdata file to an external file using
a record linkage technique. The identification risk is defined as the probability
that a match is correct. The nature of this probability and its estimation is
explored. Some connections are made to the literature on disclosure risk based
on the notion of population uniqueness.

Keywords: identification; log-linear model; match; misclassification;
uniqueness

1 Introduction

Statistical agencies are obliged to protect confidentiality when they release outputs.
One potential threat to confidentiality is the use of record linkage methods [1, 2, 3].
The concern is that an ‘intruder’ might link an element of an agency’s output to a
known individual (or other unit) in some external data source and, if the link is
correct, succeed in identifying an individual who provided data upon which the output
is based. Such identification (identity disclosure) might lead to the disclosure of
further information about this individual.

This threat is most natural to consider when the output consists of a microdata file.
In this paper we suppose the agency releases a file containing records for a sample of
units, with each record containing the values of various variables. These values may
have been masked by statistical disclosure control (SDC) methods, although we
suppose there remains a one to one correspondence between the records and the units
which provided the data. Thus, identification of these units could, in principle, occur
via record linkage to an external file of known units. We suppose that linkage takes
place by matching the values of a subset of the variables, ‘key variables’, shared
between the microdata and the external file.

The main aim of this paper is to consider approaches to measuring and estimating
the risk of identity disclosure in this setting. A secondary aim is to link this work with
other approaches in the literature to assessing identification risk which have centred
on concerns about the existence of ‘population uniques’, i.e. records which are unique
in the population with respect to their values of the key variables.

Possibly the earliest contribution to assessing the identification risk arising from
record linkage is by Spruill in [4]. She considers linkage methods which match by
minimizing a distance measure and combines the definition of risk with the method
for assessing it. The approach is based upon a re-identification experiment where each



record in a microdata file, which has been masked by an SDC method, is matched to
the original unmasked file and the closest record in the latter file selected. The risk is
defined essentially as the proportion of such matches which are correct. She also
notes that account might be taken of ‘near matches’. This broad approach has been
adopted or discussed in much subsequent literature, e.g. [5, 1, 6, 7].

There are, however, some problems with using the empirical proportion of correct
matches as a measure of risk. First, the original unmasked file is acting as a surrogate
for an external file held by the intruder in such approaches. The use of this file
represents a highly conservative approach to risk assessment since it ignores the
protective effect of sampling and, even if there are some common units in the
microdata and external files, the values of the variables for these units in the two files
are likely to differ for many practical reasons e.g. differences in measurement. To
address this concern, the original unmasked file might be replaced by an alternative
surrogate external file constructed by the agency. For example, it is reported in [8]
that the US National Center for Education Statistics uses certain commercially
available school files. Agencies may also consider using other datasets which they
collect (from other surveys) or constructing synthetic files from the original unmasked
file which take account of sampling and measurement error.

A second more conceptual problem with this approach is that it can fail to reflect
adequately the information available to the intruder. Suppose, for example, that the
overall proportion of correct matches is 5% and that the agency considers this
sufficiently low. Suppose, however, that the intruder could determine which 5% of his
claimed matches are correct and which 95% are incorrect. Then the intruder could
claim some matches with 100% confidence and this might be deemed an unacceptable
disclosure risk. On the other hand, suppose the agency chooses to calculate its
proportions separately according to different areas and observes that the proportions
vary across areas from 0% to 70%. It might deem the release of data for those areas
with proportions as high as 70% as unacceptable. However, if the intruder could only
determine that the overall rate of a correct match was 5% (in practice, the intruder
will have difficulty determining the proportion of correct matches since it requires
knowledge of the true identities of the records in the microdata, information
unavailable to the intruder) and was unable to identify areas where it was higher, the
agency’s judgment would be over-conservative.

In this paper we suppose that it is necessary for the intruder to have evidence that
the link is ‘likely’ to be correct. Identification risk is defined as the probability that a
match is correct, conditional on data assumed available to the intruder, c.f. [9, 10],
and it is required that this probability can be estimated reliably from these data. We
suppose that the agency might use empirical proportions of correct matches as a
means of validating these estimates but not as a direct means of estimation.

We focus in this paper on probabilistic record linkage methods (based on the
approach of Fellegi and Sunter in [11] (hereafter referred to as FS) rather than
methods based on distance measures. These probabilistic methods are most naturally
adapted to assess the probability of a correct match. Indeed, part of conventional
record linkage methodology is the estimation of false match rates and one might, as a
first approach, take one minus the estimated false match rate as a measure of
identification risk. However, in conventional applications of record linkage, incorrect
matches (false positives or false negatives) are only of interest because of their



statistical consequences for samples as a whole. FS (p. 1196) state that ‘we are not
concerned with the probability of [these two kinds of erroneous matches]...but rather
with the proportion of occurrences of these two events in the long run’. In contrast,
requirements to protect the confidentiality of every individual imply that an agency
may be interested in the probability of a correct match for a single individual.

The paper is organized as follows. First, a framework for the use of record linkage
for identification is set out in Section 2. Expressions for the probability of a correct
match are obtained in Section 3. After briefly considering issues relating to key
variables in Section 4, the estimation of the probability of a correct match is
considered in Section 5.

2 The Use of Record Linkage to Achieve Identification

Consider a survey microdata file containing records for a sample of responding units
s, drawn from a finite population P . Each record will include variables needed by

genuine users of the file, but is supposed not to include directly identifying variables
like name and address. Suppose an intruder has access to this file and wishes to
identify one or more units ins,. The intruder matches the file to an external file of

records for another sample of units s, — P, for which the identities are known and
for which it is feasible that the intersection s, =s, Ms, is non-empty. (We assume

that the definition of the population P is public and that the intruder can thus remove
any records in the external file which do not belong to P — hence we do not need to
allow for s, and s, to be drawn from different populations.)

Suppose matching is based upon the values of variables, which appear in both files:
the key variables [12]. Let X ., denote the value of the vector of key variables for
unit a in the microdata (a€ s,) and X, the corresponding value for unit b in the
external database (be s, ). The difference in notation between X and X allows for

the possibility that the variables are recorded in a different way in the two data
sources. This difference might arise from various reasons, including measurement
error (in either source) or the application of a perturbative SDC method to the
microdata file. Following FS, suppose the intruder undertakes linkage by calculating

a comparison vector (X .»X,) for pairs of units (a,b)e s, xs,, where the function

7(.,.) takes values in some finite comparison space I".

Example 1: Exact Matching on Categorical Key Variables
Suppose X and X take only K possible values, denoted {1,...,K} without loss
of generality. Let I'={1,2,..,K+1} and define the comparison vector by

7(}2,X):j if X=X= Jj, j=12,.,K, }/()Z,X):K—i-l otherwise. In this case,
an intruder might consider any pair (a,b)e s,Xs, for which }/()ZG,X,,) <K asa

potential match, but rule out of consideration any pair for which 7()2 HX,)=K+1.



Suppose the intruder seeks to use the comparison vectors to identify one or more
pairs (a,b) € s, X, which contain identical units, i.e. are of the form (a,a) where

ac s, . Since the number of pairs in s, X5, may be very large, the intruder may only
consider pairs which fall in a set §csXs,. Partiton § into
M ={(a,b)esla=b,acs,}, the pairs of common units, and
U={(a,b)eslac s,be s,,a#b}, the pairs of different units. The problem faced

by the intruder is how to use comparison vector values to classify pairs from § into
M or U . An optimum strategy is shown by FS to be based upon a comparison of the
probability distributions of the comparison vector between M and U, ie. a
comparison of

m(y)=Pr{y(X,.X,) =yl (a,b)e M1, (1)

and u(y)=Pry(X,,X,)=yl(a,b)e U] , yel. )

We discuss the nature of these probabilities in the next section. FS show that an
optimal approach for the intruder is to order pairs in § according to the likelihood
ratios m(y)/u(y), treating pairs with higher values of this ratio as more likely to

belong to M . Our aim is to explore the probability of a correct match for pairs
selected in this way.

3 The Probability of a Correct Match

Given a pair (a,b), linked using its value of the comparison vector as described after
(1) and (2), the probability that the pair represents a correct match, thatis a =b, may
be defined as  p,,, =Prl(a,b)e M | 7(X,,X,)], i.e. the conditional probability that

the pair is in M given that it is in 5§ and that the comparison vector takes the value
7. To express p,,,, in terms of m(y) and u(y) , let:

p=Pr[(a,b)e M], 3)

be the probability that the pair is in M given that it is in § and, using Bayes
theorem, we obtain

Py =) p/Im(y)p+u(y)(1-p)] . “

Sorting pairs according to this ‘posterior’ probability is equivalent to sorting
according to the likelihood ratio m(y)/u(y). From the SDC perspective, expression



(4) may be interpreted as the identification risk for a pair (a,b), i.e. the probability
that @ and b are identical, given the value of the comparison vector. From the record
linkage perspective, expression (4) is the probability of a correct match or
alternatively one minus the probability of a false match [13].

Expressions (1), (2) and (3) are, of course, dependent on the way the probabilities
are defined. Our basic approach in this paper is to suppose that the probabilities are
defined with respect to the following three processes:

(i) a random selection (with equal probability) of the pair (a,b) from § =M LU ;

(ii) a random process of generating X o

(iii) a specified probability design for the selection of s, from P ;
where the population P and the values X, for units in the population are treated as
fixed. Evaluating the probabilities over (i), holding s, and the )?a fixed, we may
write

m(y) = E[nMy/nM] ,u(y)= E[nU}/ /nU] > 5)

where n, and n;, are the numbers of pairs in M and U respectively, n,, and n,,

are the corresponding numbers of these pairs for which the comparison vector takes
the value ¥ and the expectation is with respect to (ii) and (iii). We may thus interpret

m(y) and u(y) as the expected relative frequencies of the different comparison

vectors within M and U respectively. Similarly, we may write
p=Em, /n), 6)

where 7 is the number of pairs in § and the expectation is with respect to (iii). To
explore the form of p,,, further under (i), (ii) and (iii), consider two special cases.

Example I(continued) Exact matching with no misclassification
Suppose exact matching is used as defined earlier and that: X . =X, for all units
ae P (i.e. no misclassification); s, =P and §=sXs,. Let n =ls | and N = P]I.

Noting that n,, =n, and 71 =n N , we obtain from (5) and (6):

m(h=ELfinl . uh=g| 5D )k
o n(N-1) )’ "

p=E[n /(nN)]=1/N, @)

where f, and F; are the numbers of units with X, =j in s, and P respectively.

Using Bayes theorem we obtain:

Pr{(a,b)e M 1 9(X,,X,)= j1=1/F, . 8)



This result if free of any assumptions about the sampling scheme. Expression (8) is
familiar in the disclosure risk literature, e.g. [14]. It is common to argue, however,
that agencies should design release strategies so that an intruder could not know the
value of F ; from external information [10]. Note that, in particular, this requires

assuming that s, # P. Otherwise, the intruder could determine F, from knowledge
of X, for aec P.If F ; is unknown to the intruder, the uncertainty about F ; needs

to be integrated out of the expression for the identification risk, subject to
conditioning on the information available to the intruder. This integration is most
naturally done by revising the probability mechanisms (i)-(iii) above to include a
process which generates the values X, for units in the population. Under this

extended probability mechanism, the identification risk becomes E(1/ F ; | data) ,
where data represents the data available to the intruder. We shall return to this issue
in Section 5. First, we extend the result in (8) to the case when X . may be derived

from X, by a process of misclassification and s, may be any proper subset of P .

Example 1 (continued) Exact matching with misclassification
Suppose again that exact matching is used and that § = s, Xs,. We now allow s, to

be any proper subset of P and suppose that each )Za is determined from X, as
follows

Pr(X,=jlX,=k)=6, ,forall ae P , 9)

where €, is an element of a misclassification matrix with columns which sum to 1.
We now obtain
. N s i
m(J)zE[ijZ/nlz] , w(H=E| 21— j=1..K
mn, =,

p = Eln;, [(mn,)],

where f ;2 is the number of units in s, with X, = j and )2“ =j., f ; 1s the number

of units in s, with )2“ =J and f; is the number of units in s, with X =j . If we
suppose that Bernoulli sampling is employed with inclusion probability 7 we have
n, =n,n /N sothat p=1/N and nn,—n, = (N —1Dn,,. It follows that

Pr[(a,b)eMI}/(}?a,xb):j]iE[ f; ] ’

! i
where the expectation is with respect to both the sampling and the misclassification
mechanisms. We have E(fjlz) = ﬂﬁj.jfj and E(fj) = Jz'ﬁj , where Fj is the number

of units in P with )2“ = j (imagining that the misclassification takes place before
the sampling). Hence we may write



N

Prl(a,b)e M1 y(X,,X,) = jl=-2Z . (10)

el

Note that this expression applies for any choice of s,, which may be selected

arbitrarily. The expression in (4) for the probability of a correct match and the special
cases in (8) and (10) apply to a pair of records (a,b) with a specific agreement

pattern ¥ . This notion may be extended to apply to a class of pairs, M , for which the
likelihood ratio is above some threshold, say M = {(a,b)] 7()?a,X e, 1, where

I',, is the set of agreement patterns y for which m(y)/u(y) is above a threshold

specified by the intruder as determining which pairs to declare as links.
A key issue for identification risk assessment is how to estimate p,,, and, more

specifically, how to estimate p,m(y) and u(y). We discuss this in section 5. Before
then, we consider the record linkage approach further.

4 Taking Account of Key Variable Structure

In practice it is usual to base the comparison vector 7()2(1,X ,) upon the separate

comparisons of C key variables. Letting X =()2‘,...,)ZC) and X =(X',...X°) we
write

VX, X)) =1/ (X, X)), r (XS, X1, (11)

th

where 7 (X¢,X¢) denotes the comparison vector for the ¢ key variable.

Example 2. Comparison vectors for simple agreements between continuous or
categorical key variables, c.f. [15]

Let (X, X)=1if X°~X° and §*(X°,X°)=0, otherwise, c=1,2,...,.C,
where ~ is a specified agreement relation. Then
C={(/ 7 Y)Y =0,1; c=1,2,..,C} ={0,1} and IT=2°.

Example 3. Comparison vectors for agreements between categorical key variables

Suppose X°¢ and X° are categorical, taking values j¢=12,...t°, and
(X, X)=j° if X =X = j =1,2,...,t° ¥ (X°,X)=t+1 otherwise,
c=12,..,C . Then

C={(7"\ Vs ¥ ¥ =1t +1,c=1,2,..,C} and |r|=f1(zf +1).
c=1



Given the large potential size of I" when C is at all large, it is common to restrict
attention to a subspace I of I'. A common approach is to partition the set of
possible values of a specified subset of the key variables into blocks (e.g. [16]) so that
the intruder only examines pairs for matching for which the values of these key
variables fall in the same block. This constraint is typically equivalent to restricting
attention to a subspace I'" of T".

The estimation of m(y) and u(y) is challenging if Tl is large, as is likely in

Examples 2 and 3 if C is at all large. It is therefore common to make simplifying
assumptions, in particular, following FS, to treat the C agreement patterns in (11) as
independent within M and U ,i.e.

m(y) =m (¥ ym,(y*)..m.(¥°) and u(p) =u, (¥ u, (7).t (¥°) (12)

where m_(y°) :Pr[;/"()?;,X;) =% 1(a,b)e M] and

u, (y)= Pr[;f()z:,X,f) =¥ 1(a,b)e U], c=12,..,C. We refer to this assumption
as independence of agreement patterns. In the categorical variable case of Example 3
with misclassification defined as in (9), a sufficient condition for the independence of

agreement patterns is that misclassification operates independently, variable by
variable, and that the key variables are themselves independent.

5. Estimation

In this section we consider the estimation of the probability of a correct match, p,,, ,

defined in section 3. We assume that the estimator is a function only of data which is
available to the intruder and thus rule out the possibility of using a training sample,
c.f. [13]. In this case, one approach would be to use a mixture model, where p,m(y)

and u(y) are treated as unknown parameters in a model for the observed values of

the comparison vectors. The model is a mixture of models for M and U , treated as
latent classes, and maximum likelihood estimation is used for parameter estimation
(e.g. FS Method 2; [15, 17]). This modelling approach has found some success in
record linkage applications where very strong identifying information, such as name
and address, is available. On the other hand, it has been less successful when the
distributions of the comparison vectors for M and U are not well-separated or are
not each unimodal [15, 18] and this may be the case in practice in many SDC
contexts, e.g. for social survey data. This is a matter for further empirical
investigation, however, which we do not attempt in this paper.

Instead, we approach the estimation problem more directly by considering
expressions for p,, in terms of our assumed probability mechanisms, as in section 3,
and then considering how to estimate these expressions, from the data available to the
intruder as well as possible additional external sources. This approach is analogous to
Method 1 of FS. Since p,,, is a function of p,m(y) and u(y), we also discuss the



problem of estimating these parameters to gain a better understanding of the general
estimation problem. We first return to the two examples in Section 3.

Example : Exact matching with no misclassification
We obtained p,,, =1/F; in expression (8) but argued, following this expression,

that a more suitable measure will usually be E(1/F i | data) . The evaluation of this
conditional expectation is discussed in [19] under the assumption that the F; are
generated from a Poisson log-linear model and that the sample frequencies f;
represent the data. Treating the pairs (f;,F;) as independent, the conditional
probability may then be expressed as E(1/F | f;) and a closed form expression may

be obtained under the Poisson log-linear model and a Bernoulli sampling assumption.
The conditional probability will be highest for cases which are unique in the sample,
Le. f; =1. The conditional probability may be estimated by estimating the log-linear

model parameters and plugging these estimates into the expression for the conditional
probability.

Example 1: Exact matching with misclassification

We obtained the approximate expression p,,, = Hj.j./ﬁ ; in expression (10) . As
above, we may argue that in practice F ; will be unknown and a more suitable

measure is HJ.I.E(I/FI. Ifj). The second component of this expression, E(l/ﬁj Ifj) R

may be estimated by applying the methodology of [19] to the observed microdata.
The misclassification probability &, might be estimated by making some
approximating assumptions and using external evidence on the misclassification
process. One assumption may be that some of the key variables are subject to no
misclassification, as is commonly assumed for blocking variables, and that
misclassification on the remaining variables is not dependent upon the values of such
correctly classified variables. A further assumption may be that the remaining key
variables are misclassified independently. This may be related to but is not the same
as the earlier assumption of independence of agreement patterns. Under the
independence of misclassification assumption, €, may be expressed as a product of
correct classification probabilities for the different key variables. This may need to be
modified to allow for the possibility that the values of some key variables are missing.

To better understand the nature of the general estimation problem, now consider
the separate estimation of p,m(y) and u(y) . Consider p first. If 7 is large we have

from (6) that p =n,, /7. The intruder knows the value of 7 and so needs to estimate
n,, in order to estimate p. We known,, <n,,, where n, =l s, |. And if we take the

worst case, where the intruder selects § in such a way that it includes all possible
common pairs (i.e. all (a,a) where ae€ s,,) then we have n,, =n,,. Thus, in order to

estimate p, it suffices to estimate n,. We suppose the intruder can determine



inclusion probabilities 7, =Pr(ie s,) for ies,. This is plausible. Often inclusion
probabilities are equal in social surveys or else they will vary by strata which may be
known for units in s, . Since we have n, = E()_ 7, ), where the expectation is with

i€s,
respect to the sampling scheme for s, the intruder can estimate n, by

fi,, = ). 7, and hence estimate p by p =7, /7. Note also that some adjustment will

usually be necessary for nonresponse (e.g. by multiplying 7, by a response rate).
Often in social surveys the inclusion probabilities 7, will be small and so 7,, is only

likely to be to have reasonable relative precision as an estimator if the size of the
external database is large, representing a substantial proportion of the population. The
extent to which p may be estimated reliably also, of course, depends upon this

condition.
Let us now turn to the estimation of m(y) and u(y). Consider Example 1 with

misclassification again, where we wish to estimate m(y) and u(y) for j=1,..K.
We may write m(j)=6,E[n,;/n;,], where n,, is the number of units in s, with
y=j. And under Bernoulli (or equal probability) sampling we may write
Elny,;/n,1= f;/n,, sothat m(j)=6,f,/n,. And to first approximation (Jaro, 1989)

we have: u(j)= (fj In)(f;/n,). The right hand side of this expression provides an

estimator of u(j) which should be reliable when f ; and f; are not small. However,

in many disclosure problems of interest this will not be the case. In these
circumstances, a modelling approach such as using log-linear models [19] or the
independence of agreement patterns approach in section 4 seems needed. Note that to
estimate Py in (4) we only need to estimate the ratio m(j)/u(j), which we may

approximate in this case by m(j)/u(j)=46, /(fj /n,) . The factor f,/n, cancels out
and the key unknown required to estimate m(j) is €,. We suggest that it will

normally not be realistic to expect that the intruder will be able to estimate this
parameter reliably from the available data (although the mixture model approach
merits further investigation). Thus, we suggest that a more realistic approach is that it
is estimated by making some approximating assumptions and using external evidence
on the misclassification process, as discussed above.

6 Conclusion

This risk of identification may be defined as the probability of a correct match for
attacks where the intruder uses record linkage. It has been shown that expressions for
this probability may be obtained for probabilistic record linkage in some special
cases. In particular, expressions for the probability in the case of categorical key
variables have close connections to those in other literature on disclosure risk, such as

10



[10]. It has also been shown that an intruder may be able to estimate these
probabilities reliably under certain assumptions.
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