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Abstract.  An intruder seeks to match a microdata file to an external file using 

a record linkage technique. The identification risk is defined as the probability 

that a match is correct. The nature of this probability and its estimation is 

explored. Some connections are made to the literature on disclosure risk based 

on the notion of population uniqueness.  
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1   Introduction 

Statistical agencies are obliged to protect confidentiality when they release outputs. 

One potential threat to confidentiality is the use of record linkage methods [1, 2, 3]. 

The concern is that an ‘intruder’ might link an element of an agency’s output to a 

known individual (or other unit) in some external data source and, if the link is 

correct, succeed in identifying an individual who provided data upon which the output 

is based. Such identification (identity disclosure) might lead to the disclosure of 

further information about this individual.  

This threat is most natural to consider when the output consists of a microdata file. 

In this paper we suppose the agency releases a file containing records for a sample of 

units, with each record containing the values of various variables. These values may 

have been masked by statistical disclosure control (SDC) methods, although we 

suppose there remains a one to one correspondence between the records and the units 

which provided the data. Thus, identification of these units could, in principle, occur 

via record linkage to an external file of known units. We suppose that linkage takes 

place by matching the values of a subset of the variables, ‘key variables’, shared 

between the microdata and the external file.   

The main aim of this paper is to consider approaches to measuring and estimating 

the risk of identity disclosure in this setting. A secondary aim is to link this work with 

other approaches in the literature to assessing identification risk which have centred 

on concerns about the existence of ‘population uniques’, i.e. records which are unique 

in the population with respect to their values of the key variables.   

 Possibly the earliest contribution to assessing the identification risk arising from 

record linkage is by Spruill in [4]. She considers linkage methods which match by 

minimizing a distance measure and combines the definition of risk with the method 

for assessing it. The approach is based upon a re-identification experiment where each 
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record in a microdata file, which has been masked by an SDC method, is matched to 

the original unmasked file and the closest record in the latter file selected. The risk is 

defined essentially as the proportion of such matches which are correct.  She also 

notes that account might be taken of ‘near matches’. This broad approach has been 

adopted or discussed in much subsequent literature, e.g. [5, 1, 6, 7].      

There are, however, some problems with using the empirical proportion of correct 

matches as a measure of risk. First, the original unmasked file is acting as a surrogate 

for an external file held by the intruder in such approaches. The use of this file 

represents a highly conservative approach to risk assessment since it ignores the 

protective effect of sampling and, even if there are some common units in the 

microdata and external files, the values of the variables for these units in the two files 

are likely to differ for many practical reasons e.g. differences in measurement. To 

address this concern, the original unmasked file might be replaced by an alternative 

surrogate external file constructed by the agency. For example, it is reported in [8] 

that the US National Center for Education Statistics uses certain commercially 

available school files. Agencies may also consider using other datasets which they 

collect (from other surveys) or constructing synthetic files from the original unmasked 

file which take account of sampling and measurement error. 

A second more conceptual problem with this approach is that it can fail to reflect 

adequately the information available to the intruder. Suppose, for example, that the 

overall proportion of correct matches is 5% and that the agency considers this 

sufficiently low. Suppose, however, that the intruder could determine which 5% of his 

claimed matches are correct and which 95% are incorrect. Then the intruder could 

claim some matches with 100% confidence and this might be deemed an unacceptable 

disclosure risk. On the other hand, suppose the agency chooses to calculate its 

proportions separately according to different areas and observes that the proportions 

vary across areas from 0% to 70%. It might deem the release of data for those areas 

with proportions as high as 70% as unacceptable. However, if the intruder could only 

determine that the overall rate of a correct match was 5% (in practice, the intruder 

will have difficulty determining the proportion of correct matches since it requires 

knowledge of the true identities of the records in the microdata, information 

unavailable to the intruder) and was unable to identify areas where it was higher, the 

agency’s judgment would be over-conservative.  

In this paper we suppose that it is necessary for the intruder to have evidence that 

the link is ‘likely’ to be correct. Identification risk is defined as the probability that a 

match is correct, conditional on data assumed available to the intruder, c.f. [9, 10], 

and it is required that this probability can be estimated reliably from these data. We 

suppose that the agency might use empirical proportions of correct matches as a 

means of validating these estimates but not as a direct means of estimation.    

We focus in this paper on probabilistic record linkage methods (based on the 

approach of  Fellegi and Sunter in [11] (hereafter referred to as FS) rather than 

methods based on distance measures. These probabilistic methods are most naturally 

adapted to assess the probability of a correct match. Indeed, part of conventional 

record linkage methodology is the estimation of false match rates and one might, as a 

first approach, take one minus the estimated false match rate as a measure of 

identification risk. However, in conventional applications of record linkage, incorrect 

matches (false positives or false negatives) are only of interest because of their 
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statistical consequences for samples as a whole.  FS (p. 1196) state that ‘we are not 

concerned with the probability of [these two kinds of erroneous matches]…but rather 

with the proportion of occurrences of these two events in the long run’. In contrast, 

requirements to protect the confidentiality of every individual imply that an agency 

may be interested in the probability of a correct match for a single individual.  

The paper is organized as follows. First, a framework for the use of  record linkage 

for identification is set out in Section 2. Expressions for the probability of a correct 

match are obtained in Section 3. After briefly considering issues relating to key 

variables in Section 4, the estimation of the probability of a correct match is 

considered in Section 5. 

2  The Use of Record Linkage to Achieve Identification 

Consider a survey microdata file containing records for a sample of responding units 

1
s  drawn from a finite population P . Each record will include variables needed by 

genuine users of the file, but is supposed not to include directly identifying variables 

like name and address. Suppose an intruder has access to this file and wishes to 

identify one or more units in
1

s .  The intruder matches the file to an external file of 

records for another sample of units 
2

s P⊂ , for which the identities are known and 

for which it is feasible that the intersection 
12 1 2

s s s= ∩  is non-empty. (We assume 

that the definition of the population P  is public and that the intruder can thus remove 

any records in the external file which do not belong to P  – hence we do not need to 

allow for 
1

s  and 
2

s  to be drawn from different populations.)  

Suppose matching is based upon the values of variables, which appear in both files: 

the key variables [12].  Let  
a

X�  denote the value of the vector of key variables for 

unit a  in the microdata (
1

a s∈ ) and 
b

X  the corresponding value for unit b  in the 

external database (
2

b s∈ ). The difference in notation between X�  and X allows for 

the possibility that the variables are recorded in a different way in the two data 

sources. This difference might arise from various reasons, including measurement 

error (in either source) or the application of a perturbative SDC method to the 

microdata file.  Following FS, suppose the intruder undertakes linkage by calculating 

a comparison vector ( , )
a b

X Xγ �  for pairs of units 
1 2

( , )a b s s∈ × , where the function 

(.,.)γ  takes values in some finite comparison space Γ . 

 

Example 1: Exact Matching on Categorical Key Variables  

Suppose X�  and X  take only K  possible values, denoted {1,..., }K  without loss 

of generality. Let {1, 2,..., 1}KΓ = +  and define the comparison vector by 

( , )X X jγ =�  if X X j= =� , 1,2,...,j K= ,  ( , ) 1X X Kγ = +�  otherwise.  In this case, 

an intruder might consider any pair 
1 2

( , )a b s s∈ ×  for which ( , )
a b

X X Kγ ≤�  as a 

potential match, but rule out of consideration any pair for which ( , ) 1
a b

X X Kγ = +� . 
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Suppose the intruder seeks to use the comparison vectors to identify one or more 

pairs
1 2

( , )a b s s∈ ×  which contain identical units, i.e. are of the form ( , )a a  where 

12
a s∈ . Since the number of pairs in 

1 2
s s×  may be very large, the intruder may only 

consider pairs which fall in a set 
1 2

s s s⊂ ×� . Partition s�  into   

12
{( , ) | , }M a b s a b a s= ∈ = ∈� , the pairs of common units, and 

1 2
{( , ) | , , }U a b s a s b s a b= ∈ ∈ ∈ ≠� , the pairs of different units. The problem faced 

by the intruder is how to use comparison vector values to classify pairs from s�  into 

M or U . An optimum strategy is shown by FS to be based upon a comparison of the 

probability distributions of the comparison vector between M and U , i.e. a 

comparison of  

 

( ) Pr[ ( , ) | ( , ) ]
a b

m X X a b Mγ γ γ= = ∈�  ,         (1) 

 

  and ( ) Pr[ ( , ) | ( , ) ]
a b

u X X a b Uγ γ γ= = ∈�  , γ ∈ Γ .        (2) 

 

We discuss the nature of these probabilities in the next section. FS show that an 

optimal approach for the intruder is to order pairs in s�  according to the likelihood 

ratios ( ) / ( )m uγ γ , treating pairs with higher values of this ratio as more likely to 

belong to M . Our aim is to explore the probability of a correct match for pairs 

selected in this way.  

3  The Probability of a Correct Match 

Given a pair ( , )a b , linked using its value of the comparison vector as described after 

(1) and (2), the probability that the pair represents a correct match, that is a b= ,  may 

be defined as  
|

Pr[( , ) | ( , )]
M a b

p a b M X Xγ γ= ∈ � , i.e. the conditional probability that 

the pair is in M  given that it is in s�  and that the comparison vector takes the value 

γ . To express
|M

p γ  in terms of ( )m γ and ( )u γ , let: 

 

Pr[( , ) ]p a b M= ∈ ,      (3) 

 

be the probability that the pair is in M  given that it is in s�  and, using Bayes 

theorem, we obtain 

 

|
( ) /[ ( ) ( )(1 )]

M
p m p m p u pγ γ γ γ= + −   .                   (4) 

 

Sorting pairs according to this ‘posterior’ probability is equivalent to sorting 

according to the likelihood ratio ( ) / ( )m uγ γ . From the SDC perspective, expression 
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(4) may be interpreted as the identification risk for a pair ( , )a b , i.e. the probability 

that a  and b  are identical, given the value of the comparison vector. From the record 

linkage perspective, expression (4) is the probability of a correct match or 

alternatively one minus the probability of a false match [13].  

Expressions (1), (2) and (3) are, of course, dependent on the way the probabilities 

are defined. Our basic approach in this paper is to suppose that the probabilities are 

defined with respect to the following three processes: 

(i) a random selection (with equal probability) of  the pair ( , )a b  from s M U= ∪� ; 

(ii) a random process of generating 
a

X� ; 

(iii) a specified probability design for the selection of 
1

s  from P ; 

where the population P and the values 
a

X  for units in the population are treated as 

fixed. Evaluating the probabilities over (i), holding 
1

s  and the 
a

X�  fixed, we may 

write   

 

( ) [ / ]
M M

m E n nγγ =  , ( ) [ / ]
U U

u E n nγγ =  ,   (5) 

 

where 
M

n and 
U

n  are the numbers of pairs in M  and U respectively, 
M

n γ  and 
U

n γ  

are the corresponding numbers of these pairs for which the comparison vector takes 

the value γ  and the expectation is with respect to (ii) and (iii). We may thus interpret 

( )m γ  and ( )u γ  as the expected relative frequencies of the different comparison 

vectors within  M  and U  respectively. Similarly, we may write  

 

( / )
M

p E n n= � ,      (6) 

 

where n�  is the number of pairs in s�  and the expectation is with respect to (iii).  To 

explore the form of 
|M

p γ  further under (i), (ii) and (iii), consider two special cases. 

 

Example 1(continued) Exact matching  with no misclassification 

Suppose exact matching is used as defined earlier and that: 
a a

X X=�  for all units 

a P∈  (i.e. no misclassification); 
2

s P=  and 
1 2

s s s= ×� .  Let 
1 1

| |n s=  and | |N P= . 

Noting that 
1M

n n=  and 
1

n n N=� , we obtain from (5) and (6): 

1
( ) [ / ]

j
m j E f n=  ,        

1

  ( -1)  
( )

( 1)

j j
f F

u j E
n N

 
=  

− 
 ,  1,...,j K=  

           
1 1

[ /( )] 1/p E n n N N= = ,         (7) 

 

where 
j

f  and 
j

F  are the numbers of units with  
a

X j=  in 
1

s  and P  respectively.  

Using Bayes theorem we obtain:   

Pr[( , ) | ( , ) ] 1/
a b j

a b M X X j Fγ∈ = =�    .             (8) 
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This result if free of any assumptions about the sampling scheme. Expression (8) is 

familiar in the disclosure risk literature, e.g. [14]. It is common to argue, however, 

that agencies should design release strategies so that an intruder could not know the 

value of 
j

F  from external information [10]. Note that, in particular, this requires 

assuming that 
2

s P≠ . Otherwise, the intruder could determine 
j

F  from knowledge 

of 
a

X  for a P∈ . If 
j

F  is unknown to the intruder, the uncertainty about  
j

F  needs 

to be integrated out of the expression for the identification risk, subject to 

conditioning on the information available to the intruder. This integration is most 

naturally done by revising the probability mechanisms (i)-(iii) above to include a 

process which generates the values 
a

X  for units in the population. Under this 

extended probability mechanism, the identification risk becomes (1/ | )
j

E F data , 

where data represents the data available to the intruder.  We shall return to this issue 

in Section 5. First, we extend the result in (8) to the case when 
a

X�  may be derived 

from 
a

X  by a process of misclassification and 
2

s  may be any proper subset of P  .  

 

Example 1 (continued) Exact matching with misclassification 

Suppose again that exact matching is used and that 
1 2

s s s= ×� . We now allow 
2

s  to 

be any proper subset of P  and suppose that each 
a

X�  is determined from 
a

X  as 

follows  

Pr( | )
a a jk

X j X k θ= = =�  , for all a P∈  ,         (9) 

where 
jk

θ  is an element of a misclassification matrix with columns which sum to 1. 

We now obtain 

12

12
( ) [ / ]

j
m j E f n=  ,  

12

j

1 2 12

   
( )

j j
f f f

u j E
n n n

 −
=  

 − 

�

,     1,...,j K=  

12 1 2
[ /( )]p E n n n= , 

where 
12

j
f  is the number of units in 

12
s  with 

a
X j=  and 

a
X j=� ,  

j
f�  is the number 

of units in 
1

s  with 
a

X j=�  and
j

f  is the number of units in 
2

s  with 
a

X j=  . If we 

suppose that Bernoulli sampling is employed with inclusion probability π  we have 

12 2 1
/n n n N�  so that 1/p N�  and 

1 2 12 12
( 1)n n n N n− −� .  It follows that  

12

Pr[( , ) | ( , ) ]
j

a b

j j

f
a b M X X j E

f f
γ

 
∈ =  

 
 

� �
�

 ,                       

where the expectation is with respect to both the sampling and the misclassification 

mechanisms. We have 
12

( )
j jj j

E f fπθ=  and ( )
j j

E f Fπ=� � ,  where 
j

F�  is the number 

of units in P  with 
a

X j=�  (imagining that the misclassification takes place before 

the sampling). Hence we may write 
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Pr[( , ) | ( , ) ]
jj

a b

j

a b M X X j
F

θ
γ∈ =� �

�
 .     (10) 

Note that this expression applies for any choice of 
2

s , which may be selected 

arbitrarily. The expression in (4) for the probability of a correct match and the special 

cases in (8) and (10) apply to a pair of records ( , )a b  with a specific agreement 

pattern γ . This notion may be extended to apply to a class of pairs, M̂ , for which the 

likelihood ratio is above some threshold, say ˆ {( , ) | ( , ) }
a b M

M a b X Xγ= ∈ Γ� , where 

M
Γ  is the set of agreement patterns γ  for which ( ) / ( )m uγ γ  is above a threshold 

specified by the intruder as determining which pairs to declare as links.   

A key issue for identification risk assessment is how to estimate 
|M

p γ and, more 

specifically, how to estimate , ( )p m γ  and ( )u γ . We discuss this in section 5. Before 

then, we consider the record linkage approach further. 

4 Taking Account of Key Variable Structure 

In practice it is usual to base the comparison vector ( , )
a b

X Xγ �  upon the separate 

comparisons of C  key variables. Letting 1( ,..., )CX X X=� � �  and 1( ,..., )CX X X=  we 

write  

 

 1 1 1( , ) [ ( , ),..., ( , )]C C C

a b a b a b
X X X X X Xγ γ γ=� � � ,       (11) 

 

where ( , )c c cX Xγ �  denotes the comparison vector for the c
th  

key variable.  

 

Example 2.  Comparison vectors for simple agreements between continuous or 

categorical key variables, c.f. [15] 

Let ( , ) 1c c cX Xγ =�  if c cX X� ∼  and ( , ) 0c c cX Xγ =� , otherwise, 1,2,...,c C= , 

where ∼  is a specified agreement relation. Then  
1 2{( , ,..., ) | 0,1C cγ γ γ γΓ = = ; 1,2,..., }c C= {0,1}C=  and | | 2CΓ = . 

 

Example 3. Comparison vectors for agreements between categorical key variables 

Suppose cX�  and cX  are categorical, taking values 1,2,...,c cj t= ,  and  

( , )c c c cX X jγ =�  if c c cX X j= =� , 1,2,...,c cj t= , ( , ) 1c c c cX X tγ = +�  otherwise, 

1,2,...,c C= . Then 

 1 2{( , ,..., ) | 1,..., 1, 1,2,..., }C c ct c Cγ γ γ γΓ = = + =  and 
1

| | ( 1)
C

c

c

t
=

Γ = +∏ . 
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Given the large potential size of Γ  when C  is at all large, it is common to restrict 

attention to a subspace  *Γ  of Γ . A common approach is to partition the set of 

possible values of a specified subset of the key variables into blocks (e.g. [16]) so that 

the intruder only examines pairs for matching for which the values of these key 

variables fall in the same block. This constraint is typically equivalent to restricting 

attention to a subspace *Γ  of Γ . 

The estimation of ( )m γ  and ( )u γ  is challenging if  | |Γ  is large, as is likely in 

Examples 2 and 3 if C  is at all large. It is therefore common to make simplifying 

assumptions, in particular, following FS, to treat the C  agreement patterns in (11) as 

independent within  M  and U , i.e.  

 
1 2

1 2
( ) ( ) ( )... ( )C

C
m m m mγ γ γ γ=  and 1 2

1 2
( ) ( ) ( )... ( )C

C
u u u uγ γ γ γ=       (12) 

 

where  ( ) Pr[ ( , ) | ( , ) ]c c c c c

c a b
m X X a b Mγ γ γ= = ∈�   and 

( ) Pr[ ( , ) | ( , ) ]c c c c c

c a b
u X X a b Uγ γ γ= = ∈� , 1,2,...,c C= . We refer to this assumption 

as independence of agreement patterns. In the categorical variable case of Example 3 

with misclassification defined as in (9), a sufficient condition for the independence of 

agreement patterns is that misclassification operates independently, variable by 

variable, and that the key variables are themselves independent.   

5. Estimation 

In this section we consider the estimation of the probability of a correct match,
|M

p γ , 

defined in section 3. We assume that the estimator is a function only of data which is 

available to the intruder and thus rule out the possibility of using a training sample, 

c.f. [13]. In this case, one approach would be to use a mixture model, where , ( )p m γ  

and ( )u γ  are treated as unknown parameters in a model for the observed values of 

the comparison vectors. The model is a mixture of models for M  and U , treated  as 

latent classes, and maximum likelihood estimation is used for parameter estimation 

(e.g. FS Method 2; [15, 17]). This modelling approach has found some success in 

record linkage applications where very strong identifying information, such as name 

and address, is available. On the other hand, it has been less successful when the 

distributions of the comparison vectors for M  and U  are not well-separated or are 

not each unimodal [15, 18] and this may be the case in practice in many SDC 

contexts, e.g. for social survey data. This is a matter for further empirical 

investigation, however, which we do not attempt in this paper.  

Instead, we approach the estimation problem more directly by considering 

expressions for 
|M

p γ in terms of our assumed probability mechanisms, as in section 3, 

and then considering how to estimate these expressions, from the data available to the 

intruder as well as possible additional external sources. This approach is analogous to 

Method 1 of FS. Since 
|M

p γ  is a function of , ( )p m γ  and ( )u γ , we also discuss the 
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problem of estimating these parameters to gain a better understanding of the general 

estimation problem. We first return to the two examples in Section 3.  

 

Example : Exact matching with no misclassification 

We obtained 
|

1/
M j

p Fγ =   in expression (8) but argued, following this expression, 

that a more suitable measure will usually be (1/ | )
j

E F data . The evaluation of this 

conditional expectation is discussed in [19] under the assumption that the 
j

F  are 

generated from a Poisson log-linear model and that the sample frequencies 
j

f  

represent the data. Treating the pairs ( , )
j j

f F  as independent, the conditional 

probability may then be expressed as (1/ | )
j j

E F f  and a closed form expression may 

be obtained under the Poisson log-linear model and a Bernoulli sampling assumption. 

The conditional probability will be highest for cases which are unique in the sample, 

i.e. 1
j

f = . The conditional probability may be estimated by estimating the log-linear 

model parameters and plugging these estimates into the expression for the conditional 

probability.  

 

Example 1: Exact matching  with misclassification 

We obtained the approximate expression
|

/
M jj j

p Fγ θ ��  in expression (10) . As 

above, we may argue that in practice 
j

F�  will be unknown and a more suitable 

measure is (1/ | )
jj j j
E F fθ �� . The second component of this expression, (1/ | )

j j
E F f�� , 

may be estimated by applying the methodology of [19] to the observed microdata.  

The misclassification probability 
jj

θ  might be estimated by making some 

approximating assumptions and using external evidence on the misclassification 

process. One assumption may be that some of the key variables are subject to no 

misclassification, as is commonly assumed for blocking variables, and that 

misclassification on the remaining variables is not dependent upon the values of such 

correctly classified variables. A further assumption may be that the remaining key 

variables are misclassified independently. This may be related to but is not the same 

as the earlier assumption of independence of agreement patterns. Under the 

independence of misclassification assumption,  
jj

θ  may be expressed as a product of 

correct classification probabilities for the different key variables.  This may need to be 

modified to allow for the possibility that the values of some key variables are missing.  

 

To better understand the nature of the general estimation problem, now consider 

the separate estimation of , ( )p m γ  and ( )u γ . Consider p  first. If n�  is large we have 

from (6) that /
M

p n n�� . The intruder knows the value of n�  and so needs to estimate 

M
n  in order to estimate p . We know

12M
n n≤ , where 

12 12
| |n s= . And if we take the 

worst case, where the intruder selects s�  in such a way that it includes all possible 

common pairs (i.e. all ( , )a a  where 
12

a s∈ ) then we have 
12M

n n= . Thus, in order to 

estimate p , it suffices to estimate 
12

n . We suppose the intruder can determine 
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inclusion probabilities 
1

Pr( )
i

i sπ = ∈  for 
2

i s∈ . This is plausible. Often inclusion 

probabilities are equal in social surveys or else they will vary by strata which may be 

known for units in 
2

s . Since we have 
2

12 ( )i
i s

n E π
∈

= ∑ , where the expectation is with 

respect to the sampling scheme for 
1

s , the  intruder can estimate 
12

n  by 

2

12
ˆ

i
i s

n π
∈

= ∑ and hence estimate p  by  
12

ˆ ˆ /p n n= � . Note also that some adjustment will 

usually be necessary for nonresponse (e.g. by multiplying 
i

π  by a response rate). 

Often in social surveys the inclusion probabilities 
i

π  will be small and so 
12

n̂  is only 

likely to be to have reasonable relative precision as an estimator if the size of the 

external database is large, representing a substantial proportion of the population. The 

extent to which p  may be estimated reliably also, of course, depends upon this 

condition.  

Let us now turn to the estimation of ( )m γ  and ( )u γ . Consider Example 1 with 

misclassification again, where we wish to estimate ( )m γ  and ( )u γ  for 1,...,j K= . 

We may write 
12 12

( ) [ / ]
jj j

m j E n nθ= , where 
12 j

n  is the number of units in 
12

s  with 

jγ = . And under Bernoulli (or equal probability) sampling we may write 

12 12 2
[ / ] /

j j
E n n f n= , so that 

2
( ) /

jj j
m j f nθ= . And to first approximation (Jaro, 1989) 

we have: 
1 2

( ) ( / )( / )
j j

u j f n f n�� . The right hand side of this expression provides an 

estimator of ( )u j  which should be reliable when 
j

f�  and 
j

f  are not small. However, 

in many disclosure problems of interest this will not be the case. In these 

circumstances, a modelling approach such as using log-linear models [19] or the 

independence of agreement patterns approach in section 4 seems needed.  Note that to 

estimate
|M

p γ  in (4) we only need to estimate the ratio ( ) / ( )m j u j , which we may 

approximate in this case by 
1

( ) / ( ) /( / )
jj j

m j u j f nθ= � . The factor 
2

/
j

f n  cancels out 

and the key unknown required to estimate ( )m j  is 
jj

θ . We suggest that it will 

normally not be realistic to expect that the intruder will be able to estimate this 

parameter reliably from the available data (although the mixture model approach 

merits further investigation). Thus, we suggest that a more realistic approach is that it 

is estimated by making some approximating assumptions and using external evidence 

on the misclassification process, as discussed above. 

6 Conclusion 

This risk of identification may be defined as the probability of a correct match for 

attacks where the intruder uses record linkage. It has been shown that expressions for 

this probability may be obtained for probabilistic record linkage in some special 

cases. In particular, expressions for the probability in the case of categorical key 

variables have close connections to those in other literature on disclosure risk, such as 
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[10]. It has also been shown that an intruder may be able to estimate these 

probabilities reliably under certain assumptions.  
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