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in Normal Form Games?
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Abstract. This paper presents an analysis of games in which rationality
is not necessarily mutual knowledge. We argue that a player who faces a
non-rational opponent faces genuine uncertainty that is best captured by
non-additive beliefs. Optimal strategies can then be derived from assump-
tions about the rational player’s attitude towards uncertainty. This paper
investigates the consequences of this view of strategic interaction. We present
an equilibrium concept for normal form games, called Choquet-Nash Equi-
librium, that formalizes this intuition, and study existence and properties
of these equilibria. Our results suggest new robustness concepts for Nash
equilibria.

Keywords: rationality, normal form game, uncertainty aversion, Choquet
expected utility theory, Nash equilibrium, robustness.

1. Introduction

From a classical point of view, game theory is about the question what consti-
tutes rationality in a situation of strategic interaction (von Neumann & Mor-
genstern 1944, particularly sections 2.1 and 4.1). The players are assumed to be
rational in a decision-theoretic sense, i. e. they act as if they possess a utility
function over outcomes and beliefs given by a probability distribution over states,
and maximise (subjective) expected utility (von Neumann and Morgenstern (1944),
Savage (1954)). Beliefs, in turn, have to be compatible with what the players know.
In particular, players are assumed to know that their opponents are themselves ra-
tional. Under additional assumptions, the equilibrium concept (Nash (1950)) can
then be interpreted as a rationality concept (see, e.g., Tan and Werlang (1988),
Aumann and Brandenburger (1995)).

However, the assumptions that players are rational, and that they know that
their opponents are rational, are restrictive, both from an introspective and an
experimental point of view. This paper addresses the question what constitutes
rationality if rationality is not mutual knowledge. As in Kreps et al. (1982), we
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distinguish between rational and non-rational players. However, we argue that the
possibility that the opponent is not rational leads to uncertainty that cannot be
adequately captured by beliefs that are necessarily representable by a probability
measure. Thus, the analysis of games without mutual knowledge of rationality has
to be based on a weaker definition of decision-theoretic rationality. In particular,
Choquet-expected utility theory allows more general beliefs. Thus, we combine the
analysis of Kreps et al. (1982) with Choquet-expected utility theory.

Choquet-expected utility theory (henceforth CEU) is due to Schmeidler (1989).
Under Choquet-expected utility theory players are maximising expected utility sub-
ject to their beliefs, but their beliefs do not have to be additive. CEU is closely
related to, but not quite identical with maxmin expected utility theory (Gilboa and
Schmeidler (1989)), which allows sets of additive beliefs. Whereas Savage’s subjec-
tive expected utility theory reduces uncertainty to risk, CEU and its variants gives
rise to a qualitative difference between risk and uncertainty.

This difference is important in games if we distinguish between rational and
non-rational players as in Kreps et al. (1982). A rational player is one who chooses
his strategy as to maximise utility given his beliefs. A rational player who faces
a rational opponent can anticipate her strategy if he knows her utility function
and can anticipate her beliefs. Consequently, a rational player who faces a rational
opponent faces risk, in the sense that his beliefs are given by objective probabilities
determined by best-reply considerations. Thus his beliefs are necessarily additive.

On the other hand, a rational player who faces a non-rational opponent faces
true uncertainty, if all he knows is that a non-rational player does not necessarily
choose a utility-maximising strategy. Under CEU, a rational player’s beliefs reflect
his attitude towards uncertainty. As a result, it becomes possible to base a theory
of rational decisions in games not on a player’s theory about how non-rational
opponents play, but on his attitude towards uncertainty. Since CEU was motivated
by phenomena that can be explained as uncertainty aversion — for instance the
Ellsberg paradox — we also make this assumption.

We present an equilibrium concept, called Choquet-Nash equilibrium, that for-
malizes this intuition and discuss existence and properties of these equilibria in
normal form games. We show that
– in normal form games Choquet-Nash equilibria always exist,
– not every rationalizable strategy is a Choquet-Nash equilibrium, and, conversely,

non-rationalizable strategies may be equilibria,
– strictly dominated strategies are never rational, but elimination of such strategies

cannot be iterated,
– robustness with respect to doubts about the rationality of the opponents is not

captured by payoff-dominance or risk-dominance,
– mixed strategies may or may not be robust, depending on the game in question.
On this basis we formulate two equilibrium refinements: A Nash equilibrium is called
strictly uncertainty aversion perfect if it continues to be an equilibrium as long as
the belief in the opponents’ rationality is sufficiently strong. Such equilibria need
not exist. A Nash equilibrium is called uncertainty aversion perfect if it can be
approximated by equilibria that do not require mutual knowledge of rationality. We
show that such equilibria always exist, and that these refinements differ from those



that are based on ‘trembles’ of otherwise fully rational opponents, i. e. trembling-
hand perfect, proper and strictly perfect equilibria.

This paper makes three contributions. First, we extend the analysis of Kreps et
al. (1982) (henceforth KMRW). In contrast to KMRW, we do not need to specify
a particular belief about the ‘type’ of an irrational opponent. Due to the absence
of a theory of non-rational decision-making, such a specification is necessarily ad
hoc. Moreover, the uniform distribution does not adequately model the ignorance
about an irrational opponent, because it is not invariant under irrelevant changes
of the game, for instance when adding a superfluous strategy that is a mere copy
of an existing one. In our approach, ignorance can naturally be expressed as a
non-additive probability.

More fundamentally, two difficulties arise with interpreting equilibria as ratio-
nal strategies in the KMRW framework. First, interpreting equilibrium strategies
as rational implicitly defines all non-equilibrium strategies as non-rational. Thus, a
rational player’s beliefs about an non-rational opponent should be consistent with
this definition of non-rationality. This means that his beliefs should be consistent
with any non-equilibrium strategy of the opponent. Secondly, a ‘type’ in a game
with incomplete information corresponds to a consistent infinite hierarchy of be-
liefs. Thus, in KMRW the rational player believes that the opponent possesses such
beliefs, even if he is not rational. In contrast, in our analysis an irrational opponent
is a source of genuine uncertainty, and the question what constitutes a rational
strategy is determined by a rational player’s attitude towards uncertainty. Conse-
quently, our analysis applies independently of the question whether the opponent
can be modelled as a type.

The second contribution of this paper consists in a robustness analysis of Nash
equilibria. Applying our solution concept to normal form games allows us to formal-
ize how robust a Nash equilibrium is with respect to doubts about the rationality
of the opponent. This robustness concept differs from existing ones, and shows how
robustness is not a property of an equilibrium concept in general, but rather a
property of specific equilibria in specific games.

The third contribution of this paper is that it extends the equilibrium con-
cept to games in which players have non-additive beliefs. Here we extend solu-
tion concepts proposed by Dow and Werlang (1994), Eichberger and Kelsey (1994),
Epstein (1997a), Haller (1995), Hendon et al. (1995), Klibanoff (1993), Lo (1995),
Lo (1996), Marinacci (1994), Mukerji (1994), Ritzberger (1996), and Ryan (1997).
This literature considers games in which players maximise CEU, or some variant
of CEU. These papers show that it is possible to capture strategic phenomena that
cannot be explained when players maximise subjective expected utility, and have
also uncovered the difficulties that an extension of the equilibrium concept has to
address. In our analysis we provide an explicit reason for the existence of uncer-
tainty, and on this basis some of these difficulties can be avoided. In particular, it is
not necessary to use simple capacities in the definition of an equilibrium, or to de-
cide between the different support concepts that have been proposed for capacities,
or to formulate an independence concept for capacities.1

1 After a first version of this paper was completed, I learnt of the related approach of
Sujoy Mukerji (1994). His main concern is the consistent introduction of CEU into



This paper is organized as follows. In section 2 we define the equilibrium concept
for two-player games and prove existence of Choquet-Nash equilibria. In section 3
we derive properties of Choquet-Nash equilibria, formulate the two refinements of
Nash equilibria, and compare them with standard solution concepts. In section 4
we discuss the extension to infinitely many strategies and more than two players.
Section 5 compares the equilibrium concept with other equilibrium concepts that
are based on Choquet expected utility and uncertainty aversion. Section 6 presents
an equilibrium concept that allows players to have a strict preference for mixed
strategies. Section 7 concludes.

2. Choquet-Nash Equilibrium

A game in normal form is defined by specifying the set of players N , for each player
a set of strategies Si and each player’s von Neumann-Morgenstern utility function
ui. In particular, players are assumed to be rational: when faced with uncertainty
they maximise subjective expected utility. This concept of rationality has been
axiomatized by Savage (1954).

In a game, rational beliefs must not only satisfy Savage’s axioms, but must in
addition be consistent with what players know about the structure of the game
and about each other’s rationality. In particular, if a player can anticipate which
strategies are rational and if he knows that his opponent is rational, then he can
anticipate his opponent’s play. Precise arguments along this line are developed, e.g.,
in Tan and Werlang (1988) and Aumann and Brandenburger (1995).

If rationality is not mutual knowledge the question thus arises how a rational
player should act if he knew that the opponent is not rational. In that case Savage’s
axioms imply that the rational player should have a belief given by a unique proba-
bility measure over the opponent’s actions. If neither a theory of bounded rationality
nor a stable empirical regularity of non-rational behaviour is available, there seems
to be no foundation for this belief. The idea of this paper is that a weaker rationality
concept allows further assumptions about the rational player from which rational
actions can be derived.

2.1. Uncertainty Aversion
A key axiom in subjective expected utility theory is the independence axiom (Ans-
combe & Aumann 1963, Samuelson1952). Intuitively, the independence axiom says
that if a decision maker prefers one act over another then he should also prefer a
probability mixture of the first and a third act over the same mixture of the second
and the third act: Either this probability mixture will reduce to a choice between
the first two acts, or not, in which case the decision-maker is left with the third act
in either case.2 The descriptive validity of the independence axiom is questioned by
the Allais paradox, the Ellsberg paradox and similar findings. Since its consequence

game theory, and he argues that this requires the KMRW framework. We fully agree
with this, in addition we argue in this paper that the converse also holds, i. e. non-
additive beliefs overcome the limitations of the KMRW approach described above. For
finer differences see section 5.

2 However, this interpretation equates the probability mixture with a two-stage lot-
tery, i. e. also assumes a version of the ‘reduction of compound lotteries axiom’, see
Kreps (1988)p.50 – 52 for the expected utility case.



is that a decision maker’s beliefs can be represented by a probability measure, it
also places a high demand on a player’s rationality.

CEU weakens the independence axiom (Schmeidler (1989)). Under CEU, the
independence axiom is not assumed to hold for all acts, but only for acts that are
‘comonotonic’. Two acts3 f, f ′ are comonotonic if f(ω) > f(ω′) implies f ′(ω) ≥
f ′(ω′), i.e. both acts give rise to the same preference ordering over states. In the
following figures, acts f , g and h are pairwise comonotonic, f (or g or h) and h′ are
not.

ω1 ω2

f 10 6
g 16 0
h 10 0
h′ 0 4

Fig. 1

ω1 ω2

1
2f + 1

2h 10 3
1
2g + 1

2h 13 0
1
2f + 1

2h′ 5 5
1
2g + 1

2h′ 8 2

Fig. 2

Restricting the sure-thing principle to comonotonic acts means that if the player
is indifferent between f and g then he must also be indifferent between 1

2f + 1
2h and

1
2g + 1

2h, because f, g and h are comonotonic. However, he may, e.g., strictly prefer
1
2f + 1

2h′ to 1
2g + 1

2h′. The reason is that mixtures of non-comonotonic acts can be
interpreted as “hedging”, i.e. distributing utility across states. Uncertainty aversion
means that players may rationally act as if they hedged against uncertainty. Thus,
in contrast to subjective expected utility theory, CEU allows the introduction of an
additional assumption about rational preferences over acts that characterizes the
player’s attitude towards uncertainty.4

Schmeidler (1989) has shown that behaviour that is rational in this weaker sense
can still be described by expected-utility maximisation. Players do still act as if they
possess a von Neumann - Morgenstern utility function and beliefs, and take expected
values. These beliefs, however, are no longer given by a probability measure over
events, but a capacity, i.e. non-additive measure over events. Formally, a capacity v
maps Σ into [0, 1] such that (i) v(∅) = 0, (ii) v(Ω) = 1 and (iii) E ⊆ E′ =⇒ v(E) ≤
v(E′). Property (iii) weakens the finite-additivity requirement for finitely-additive
measures: E ∩E′ = ∅ =⇒ v(E ∪E′) = v(E) + v(E′). Note that non-additive beliefs
still may, but in general need not be additive.

The expectation of a real-valued random variable X with respect to a non-
additive measure v is defined in Choquet (1953). If X takes finitely many values

3 Here, acts f ∈ F map states ω ∈ Ω into von Neumann - Morgenstern utilities. The acts
are measurable with respect to events E ∈ Σ ⊆ 2Ω .

4 This preference for randomisation argument exploits the structure of the Anscombe-
Aumann model (Eichberger and Kelsey (1996)). Also, comonotonic independence
may be too strong a requirement for uncertainty aversion (Epstein (1997b),
Ghirardato and Marinacci (1997)). In our game-theoretic context these are side issues,
however.



α1 > . . . > αn the Choquet integral is given by5

∫
Xdv :=

n∑

i=1

v(X ≥ αi) ·∆αi,

where ∆αi := αi − αi+1 and αn+1 := 0.
Formally, uncertainty aversion can be characterized in terms of the capacity

v. The capacity v displays uncertainty aversion iff it is supermodular, i.e. v(E) +
v(E′) ≤ v(E∩E′)+v(E∪E′). The ‘probability weights’ v(E) of an uncertainty averse
decision maker do not add up to 1. Maximisation of Choquet expected utility under
uncertainty aversion corresponds to allocating probability residuals to outcomes
that are worst for the player.

2.2. Equilibrium

Let (I, S, u) be a finite two-player game in normal form. If player i knew that his
opponent was non-rational, CEU implies that his belief is given by a not necessarily
additive capacity vj over Sj . Moreover, his expected utility from his pure strategy
si is given by the Choquet expectation ui(si, vj) :=

∫
Sj

ui(si, sj) dvj . We define his
payoff from a mixed strategy σi ∈ 4Si as ui(σi, vj) :=

∑
si∈Si

σi(si) · ui(si, vj).
In a game in which rationality is not mutual knowledge, player 1 will thus take

both possibilities into account: that the opponent is rational and that he need not
be. If he can anticipate the rational strategies, his overall expected utility will be the
weighted sum of his expected utility from interacting with a rational opponent, and
the Choquet expected utility from interacting with a non-rational opponent. The
weight corresponds to his degree of belief in the opponent’s rationality. In a weak
Choquet-Nash equilibrium, these rational strategies are determined endogenously.

Definition 1. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤
ε1, ε2 ≤ 1. Let v1 be a capacity on S1 and v2 be a capacity on S2. Then σ∗ is a
weak Choquet-Nash equilibrium iff (if and only if)

σ∗1 ∈ arg max
σ1∈Σ1

[ (1− ε1) · u1(σ1, σ
∗
2) + ε1 · u1(σ1, v2) ],

σ∗2 ∈ arg max
σ2∈Σ2

[ (1− ε2) · u2(σ∗1 , σ2) + ε2 · u2(v1, σ2) ].

Note that if ε1 = ε2 = 1 then each player believes that he faces a non-rational op-
ponent, and thus the question what constitutes a rational strategy is purely decision-
theoretic. On the other hand, if ε1 = ε2 = 0 then rationality is mutual knowledge.
Note also that this definition assumes that the rational players know each others
beliefs. Finally, notice that this equilibrium concept makes no assumption about
the players’ attitudes towards uncertainty, in particular, they may be uncertainty
loving.

The difference between this approach and the ‘crazy type’ approach of Kreps et
al. (1982) is this: In KMRW, the ‘irrational’ players have a different utility function
or a different strategy set. But they are fully rational as ‘types’ of a game with
5 As usual, we write v(X ≥ t) for v({ω ∈ Ω|X(ω) ≥ t}). The integrals on the right hand

side are extended Riemann integrals. If v is additive this is the usual expectation.



incomplete information. The specification of the utility function corresponds to a
belief of the rational player about the ‘irrational’ opponent’s play. In contrast, in
the present approach the rational players treat the non-rational players as part of
‘nature’, rather than as ‘types’. The specification of the rational players’ ‘beliefs’
reflect their own attitude towards uncertainty, rather than an assumption about the
opponent.

In general, when players are not expected utility maximisers, an equilibrium need
not exist (Crawford (1990), Dekel, Safra and Segal (1991)). However, the following
proposition shows that this problem does not arise under CEU.6

Proposition 1. For all ε1, ε2, v1 and v2 a weak Choquet-Nash equilibrium exists.

Proof. The proof is the standard argument due to Nash (1950). The best reply
correspondence σ∗i (σj) = arg maxσi∈Σi [ (1 − εi) · ui(σi, σj) + εi · ui(σi, vj) ] maps
the (n−1) dimensional unit simplex into itself. Since the objective function is linear
in σi, it is continuous, therefore a maximum exists and the best reply correspondence
is non-empty and convex-valued. Since ui is continuous in σj , it also has a closed
graph. By Kakutani’s Fixed Point Theorem, (σ∗1(σ2), σ∗2(σ1)) has a fixed point,
which is, by definition, a general Choquet-Nash equilibrium.

In this generality the equilibrium concept is difficult to apply, because the beliefs
εi and vi have to be specified. We therefore make three simplifying assumptions:
First, we assume that players share a common prior about the degree of mutual
knowledge of rationality. This assumption is for simplicity only, but also has two
useful side effects. It avoids any ad hoc asymmetry, and it makes the assumption that
players know each others beliefs less demanding. Secondly, we assume that players
are totally ignorant about the behaviour of a non-rational opponent. This ignorance
has two reasons: Our solution concept specifies rational strategies only, so it does
not restrict at all the range of non-rational strategies. Thus, complete ignorance
is a consistency requirement. Also, there is no exogenous theory of non-rational
decision making. As a consequence, every assumption about the shape of a rational
player’s beliefs about his non-rational opponent are ad hoc. In addition, a useful
side effect is that the assumption that players know the rational opponent’s beliefs is
less restrictive. Finally, we consider the case that the players are uncertainty averse.
Uncertainty aversion is the natural explanation of behavior observed in the Ellsberg
paradox.

Complete ignorance can naturally be captured by ‘simple capacities’:

vj(Ej) =
{

0 , if Ej ⊂ Sj ,
1 , if Ej = Sj .

If player i holds this belief vj about a non-rational opponent, he is only certain
that the opponent will choose one of his available actions, but is unable to assign
positive probability to any particular set of actions.

6 Note that this existence result also holds under uncertainty love. However, this is due
to the order of integration, see section 6.



The Choquet-expectation of a utility function with respect to a simple capacity
reflects uncertainty aversion, since all probability is allocated to the worst realiza-
tion, i. e. ∫

Sj

ui(si, sj) dvj = min
sj∈Sj

ui(si, sj).

A Choquet-Nash equilibrium is a weak Choquet-Nash equilibrium with these addi-
tional assumptions.

Definition 2. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤ ε ≤
1. Then σ∗ is a Choquet-Nash equilibrium iff7

σ∗1 ∈ arg max
σ1∈Σ1

[ (1− ε) · u1(σ1, σ
∗
2) + ε ·

∑

s1∈S1

σ1(s1) · min
s2∈S2

u1(s1, s2) ],

σ∗2 ∈ arg max
σ2∈Σ2

[ (1− ε) · u2(σ∗1 , σ2) + ε ·
∑

s2∈S2

σ2(s2) · min
s1∈S1

u2(s1, s2) ].

It follows from proposition 1 that in every finite two-player game in normal form
a Choquet-Nash equilibrium (henceforth CNE) exists. Moreover, every symmetric
game also has a symmetric Choquet-Nash equilibrium.

Definition 3. Let (I, S, u) be a finite two-player game in normal form. The game
is symmetric iff Si = Sj and ui(si, sj) = uj(sj , si). A strategy combination is
symmetric iff si = sj .

Remark 1. For all ε, in a symmetric game a symmetric Choquet-Nash equilibrium
exists.

Proof. Again, the proof is standard. The result is proved as in proposition 1, except
that the fixed point argument is applied to the best reply correspondence σ∗i (σi).

3. Properties of Choquet-Nash Equilibria

The aim of this section is to present the properties of Choquet-Nash equilibria.
Section 3.1 relates them to dominance and rationalizability. In section 3.2, we re-
late Choquet-Nash equilibria to the robustness of Nash equilibria This will lead
to the definition of two equilibrium refinements (sections 3.3 and 3.4). Section 3.5
compares them with minimax strategies in zero-sum games. Finally, section 3.6
compares them with other equilibrium refinements (trembling-hand perfect, proper
and strictly perfect equilibria).

3.1. Dominance and Rationalizability

The following result implies that, independently of the degree of mutual knowledge
of rationality, no strictly dominated strategy is rational.

7 In the remaining sections, we also use the notation
∑

si∈Si
σi(si) ·minsj∈Sj ui(si, sj) =∫

Si
minsj∈Sj ui(si, sj) dσ∗i .



Lemma 1. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤ ε ≤ 1.
Let σ∗ be a Choquet-Nash equilibrium. Then if σ∗i (si) > 0, then si is a best response
to σ∗j and ε, i. e.

si ∈ arg maxsi∈Si [ (1− ε) · ui(si, σ
∗
j ) + ε ·minsj∈Sj ui(si, sj) ].

Proof. Again, the proof is standard. If si is not a best response then some other
strategy s′i gives higher expected utility than si. Thus the player can increase his
overall utility from σ∗i by playing σ̂i(s′i) = σ∗i (si) + σ∗i (s′i), σ̂i(si) = 0 and σ̂i(s′′i ) =
σ∗i (s′′i ) for all other strategies s′′i , which contradicts the assumption that σ∗i is a best
reply.

It is important to notice, however, that strict dominance cannot be iterated, as
the game in Figure 3 shows:

L R

T 1,1 −99,0
B 0,1 0,0

Fig. 3

In this game playing L is a strictly dominant strategy for player 2. Consequently,
iterated strict dominance yields T as the unique rational strategy for player 1, if
rationality is mutual knowledge. In particular, (T, L) is the unique equilibrium and
the unique rationalizable strategy profile of the game.

However, (T, L) is not a plausible profile unless player 1 is convinced that player
2 is rational. The CNE in this game depends on ε. In every CNE, player 2 will
play L because this is his strictly dominant strategy. However, unless ε ≤ 1

100 only
strategy B is rational for player 1.

Note that this shows that non-rationalizable strategies may be CNE-strategies.
The ‘Matching Pennies’ game in figure 4 shows that, conversely, not every rational-
izable strategy is a CNE.

L R

T 1,−1 −1,1
B −1,1 1,−1

Fig. 4

Note that the best reply correspondence for a Choquet-Nash equilibrium in the
‘Matching Pennies’ game is given by

σ∗i (σj) = arg max
σi∈Σi

[ (1− ε) · ui(σi, σj) + εi · (−1) ],

which differs from the Nash best reply correspondence only by a factor and a con-
stant. Consequently, independently of ε, only the mixed strategies σ1(T ) = σ1(B) =



σ2(L) = σ2(R) = 1
2 form a CNE. This is also the unique Nash equilibrium, but every

strategy profile is rationalizable. We have thus established proposition 2:

Proposition 2. Non-rationalizable strategy profiles may be Choquet-Nash equilib-
ria. Conversely, not every rationalizable strategy profile is a Choquet-Nash equilib-
rium.

3.2. The Robustness of Nash Equilibria

The definition of a Choquet-Nash equilibrium collapses to the definition of Nash
equilibrium if ε = 0. So any Nash equilibrium is a CNE for ε = 0. We will show
that a given Nash equilibrium may also be a CNE for ε > 0, and that the highest
such ε can be regarded as a measure of robustness of a given Nash equilibrium.8 To
establish this claim, we first need the following lemma:

Lemma 2. Let (I, S, u) be a finite two-player game in normal form. Let 0 < ε ≤ 1.
Let σ∗ be a Choquet-Nash equilibrium. If σ∗ is a Nash equilibrium, then it is also a
Choquet-Nash equilibrium for all 0 ≤ ε′ ≤ ε.

Proof. Let 0 < ε ≤ 1 and 0 ≤ ε′ ≤ ε. Since σ∗ is a Nash equilibrium, ui(σ∗i , σ∗j ) ≥
ui(σi, σ

∗
j ). Since σ∗ is a CNE for ε,

(1− ε) · ui(σ∗i , σ∗j ) + ε · ∫
Si

minsj∈Sj ui(si, sj) dσ∗i ]

≥ (1− ε) · ui(σi, σ
∗
j ) + ε · ∫

Si
minsj∈Sj ui(si, sj) dσi ]

for all σi and all i. Consequently, for any α ∈ [0, 1],

α · ui(σ∗i , σ∗j ) + (1− α) · [(1− ε) · ui(σ∗i , σ∗j ) + ε · ∫
Si

minsj∈Sj ui(si, sj) dσ∗i ]

≥ α · ui(σi, σ
∗
j ) + (1− α) · [(1− ε) · ui(σi, σ

∗
j ) + ε · ∫

Si
minsj∈Sj ui(si, sj) dσi ]

for all σi. So for α = 1− ε′
ε we have α ∈ [0, 1] and

(1− ε′) · ui(σ∗i , σ∗j ) + ε′ · ∫
Si

minsj∈Sj ui(si, sj) dσ∗i
≥ (1− ε′) · ui(σi, σ

∗
j ) + ε′ · ∫

Si
minsj∈Sj ui(si, sj) dσi

for all σi, and for all i ∈ I, i. e. σ∗ is also a CNE for ε′.

On the basis of lemma 2, we can now define a measure of robustness of a Nash
equilibrium with respect to doubts about the rationality of the opponent:

Definition 4. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤
ε ≤ 1. Let σ∗ be a Nash equilibrium. Then the degree ε(σ∗) of uncertainty aversion
robustness of σ∗ is given by the largest ε for which σ∗ is a Choquet-Nash equilibrium.

Note that ε exists because the expected utility functions are continuous in ε.
As the following game shows, this measure of robustness formalizes a different

intuition about robustness than payoff-dominance and risk-dominance. The game
in figure 5 has two strict Nash equilibria:
8 See also Eichberger and Kelsey (1994).



L R

T 5,5 0,1
B 1,0 3,3

Fig. 5

The equilibrium (T,L) dominates the equilibrium (B, R) both with respect to
payoff-dominance and with respect to risk-dominance. However, ε(T, L) = 4

5 , since
if a rational opponent plays L (respectively T ) then it is only rational to play T
(respectively L) as long as ε ≤ 4

5 . On the other hand, ε(B, R) = 1, since if a rational
opponent plays R (respectively B) then it is never rational to deviate from B to T
(respectively from R to L).

We next show that strict Nash equilibria are robust with respect to doubts of
the rationality of the opponent:9

Remark 2. Let (I, S, u) be a finite two-player game in normal form. Let s∗ be a
Choquet-Nash equilibrium. If s∗ is a strict Nash equilibrium, then there exists an
ε > 0 such that s∗ is a Choquet-Nash equilibrium for all 0 ≤ ε ≤ ε.

Proof. Define for each i ∈ I

δi := max
si∈Si

[ min
sj∈Sj

ui(si, sj)− min
sj∈Sj

ui(s∗i , sj)]

αi := min
si∈Si

[ui(s∗i , s
∗
j )− ui(si, s

∗
j )]

Note that αi > 0 and δi ≥ 0. Define εi := αi

δi+αi
and ε := mini∈I εi. Note that ε > 0.

Then for any i and any si ∈ Si

(1− ε) · [ui(s∗i , s
∗
j )− ui(si, s

∗
j )]

≥ (1− ε) · αi

≥ (1− εi) · αi

= εi · δi

≥ ε · δi

≥ ε · [minsj∈Sj ui(si, sj)−minsj∈Sj ui(s∗i , sj)]

It follows from lemma 1 that only pure strategy deviations are relevant, so s∗ is a
CNE for ε, and by lemma 2 for all ε ≤ ε.

The requirement that a Nash equilibrium is strict is sufficient for ε > 0, but it is
not necessary, as the ‘Matching Pennies’ game in figure 4 shows. The non-strictness
of mixed strategy equilibria is sometimes regarded as a conceptual weakness, be-
cause the players, while having no incentive to deviate, still seem to lack a positive
incentive to choose their equilibrium strategies. This has led to a justification of
9 Note that strict Nash equilibria are pure.



mixed strategy equilibria by purification arguments, i. e. in terms of an embedding
of the original game into a game with (slight) incomplete information.10 However,
both this criticism of mixed equilibria and their defense apply equally to all mixed
strategy equilibria. Next, we show that the robustness measure ε formalizes that in
some games mixed strategy equilibria are more plausible than in other games.

L R

T 9,9 0,7
B 7,0 8,8

Fig. 6

The game in figure 6 has a mixed strategy Nash equilibrium σ∗1(T ) = σ∗2(L) = 4
5 ,

σ∗1(B) = σ∗2(R) = 1
5 . Given that the rational opponent plays σ∗j , a player’s expected

payoff from a rational opponent is independent of his own strategy. Thus a rational
player will only take into account the expected payoff from a non-rational opponent.
This payoff is 0 when he plays T (respectively L) and 7 when he plays B (respectively
R). So a rational player will always deviate to B (respectively R) if he expects a
rational opponent to play according to σ∗ and there is doubt about the opponent’s
rationality, however small it is, unless ε = 0.

The stability property of mixed strategy equilibria are given by remark 3:

Remark 3. Let (I, S, u) be a finite two-player game in normal form. Let σ∗ be
a Nash equilibrium. Let i ∈ I, si, s

′
i ∈ Si, σ∗i (si) > 0 and σ∗i (s′i) > 0. Then if

minsj∈Sj ui(si, sj) 6= minsj∈Sj ui(s′i, sj) then ε(σ∗) = 0.

Proof. If σ∗ is a CNE, both si and s′i must be best replies to ε. However, since σ∗

is also a Nash equilibrium, both si and s′i are also best replies to σ∗−i if ε = 0. So if
ε > 0 we must have minsj∈Sj ui(si, sj) = minsj∈Sj ui(s′i, sj), a contradiction.

The following example shows that even for a genuinely mixed Nash equilibrium11

we may have 0 < ε < 1, i. e. the Nash equilibrium is robust, but not trivially so:

L R

T 2,1 0,1
B 1,0 1,0

Fig. 7

10 Note, however, that the justification of Nash equilibria given in Aumann and Branden-
burger (1995) is independent of the question whether the equilibrium is pure or mixed.

11 A Nash equilibrium is genuinely mixed if at least one player chooses a non-degenerate
mixed strategy.



Consider the mixed equilibrium T and q∗ ≡ Prob(L) = 3
4 . Then player 1 will

prefer T as long as (1− ε)2 · 3
4 ≥ 1, i. e. ε ≤ 1

3 . Player 2 is always indifferent between
L and R, so ε = 1

3 . Note that for q∗ = 1
2 every p∗ ≡ Prob(T ) ∈ [0, 1] is also a

Nash equilibrium, however, for any equilibrium with p∗ > 0 we have ε = 0, i. e.
such equilibria are not robust. The reason is that if there is a positive probability,
however small, that player 2 is not rational, player 1 will prefer to play B if a
rational opponent plays q∗ = 1

2 .
Note, however, that we cannot have 0 < ε < 1 for Nash equilibria in 2×2 games

in which both players use genuinely mixed strategies. The following game shows that
0 < ε < 1 is possible even if both players use genuinely mixed strategies:

L C R

T 4,4 0,0 0,1
C 0,0 4,4 0,1
B 1,0 1,0 1,1

Fig. 8

Consider the mixed strategy Nash equilibrium p∗1 ≡ Prob(T ) = p∗2 ≡ Prob(M) =
1
2 , q∗1 ≡ Prob(L) = q∗2 ≡ Prob(C) = 1

2 . This is also a CNE as long as ε ≤ ε := 1
2 ,

because a rational player will receive 2 from a rational opponent whom he meets with
probability (1− ε), but 0 from a non-rational opponent if he plays the equilibrium
strategy. Deviating to his third pure strategy will give him 1 in either case.

So far, all robust equilibria were quasi-strict. Recall that a Nash equilibrium is
quasi-strict if every pure best reply to the equilibrium strategies of the opponent
is in the support of the equilibrium strategy Harsanyi (1973). We next show that
this is not true in general, i. e. that robustness in our sense neither implies nor is
implied by quasi-strictness of a Nash equilibrium.

L R

T 2,1 1,0
B 2,1 0,0

Fig. 9

Consider the Nash equilibrium (T, L) of the game in figure 9. It is not quasi-
strict, because B is also a best reply to L. Yet it is robust, i. e. ε = 1, because
for player 2 L is strictly dominant. Player 1 knows that a rational opponent will
play L, and in case the opponent is non-rational he will strictly prefer T to B.
This shows that robustness does not imply quasi-strictness. Conversely, the mixed
strategy equilibrium in the game in figure 6 is quasi-strict, yet it is not robust.



We have thus established proposition 3, which shows that our robustness concept
differs from quasi-strictness:

Proposition 3. Robustness and quasi-strictness are unrelated, i.e. Nash equilibria
may be robust and quasi-strict, non-robust and quasi-strict, robust and non-quasi-
strict, or neither.

It remains to consider the most important special case of non-quasi-strict equi-
libria, namely Nash equilibria in weakly dominated strategies. We show that such
equilibria may or may not be robust.

L R

T 2,2 0,2
B 2,0 1,1

Fig. 10

The Nash equilibrium (T, L) is payoff-dominant, but involves weakly dominated
strategies and is therefore not quasi-strict. For this equilibrium ε = 0, so it is not
robust. However, consider the game in figure 11:

L C R

T 2,2 0,0 0,1
B 2,0 0,0 1,1

Fig. 11

Again (T, L) is a payoff-dominant Nash equilibrium in weakly dominated strate-
gies. However, it is indeed robust. For both T and B, a rational player 1 expects
2 from a rational opponent playing his equilibrium strategy L, and 0 from a non-
rational opponent. Player 2, on the other hand, strictly prefers L to R as long as
ε ≤ 1

2 , so ε = 1
2 .

To summarize, we have shown that ε can be interpreted as a measure of ro-
bustness of a Nash equilibrium with respect to doubts about the rationality of the
opponent. This robustness concept differs from payoff dominance, risk dominance,
strictness or quasi-strictness. This leads us to suggest two refinements of Nash equi-
librium.

3.3. Strict Uncertainty Aversion Perfection

So far, we have shown how the concept of Choquet-Nash equilibrium sheds light on
the robustness of Nash equilibria. This suggests to use this robustness analysis as a
basis for equilibrium refinements. Intuitively, Nash equilibria are robust if they can
be approximated by Choquet-Nash equilibria. Since this approximation can take



different forms, we define two equilibrium refinements: strictly uncertainty aversion
perfect equilibria (section 3.3) and uncertainty aversion perfect equilibria (section
3.4).

Definition 5. Let (I, S, u) be a finite two-player game in normal form. Let σ∗ be a
strategy combination. Then σ∗ is a strictly uncertainty aversion perfect Nash
equilibrium if and only if there exists a sequence (εk)k∈IN, with 0 < εk < 1 and
limk→∞ εk = 0, such that σ∗ is a Choquet-Nash equilibrium for every εk.

We first note that the strictly uncertainty aversion perfect equilibria are those
with a strictly positive degree of uncertainty aversion robustness:

Lemma 3. Let (I, S, u) be a finite two-player game in normal form. Let σ∗ be a
Nash equilibrium. Then σ∗ is a strictly uncertainty aversion perfect Nash equilibrium
if and only if ε(σ∗) > 0.

Proof. Necessity (‘only if’) is immediate because ε ≥ εk > 0. Sufficiency (‘if’) follows
from lemma 2 by considering the sequence ( ε

k ).

Next, we show that a strictly uncertainty aversion perfect equilibrium is indeed
a Nash equilibrium. This establishes that this concept is indeed an equilibrium
refinement:

Remark 4. Let (I, S, u) be a finite two-player game in normal form. A strictly
uncertainty aversion perfect Nash equilibrium is indeed a Nash equilibrium.

Proof. Let εk > 0. Since σ∗ is a CNE for εk we have

(1− εk) · ui(σ∗i , σ∗j ) + εk ·
∫

Si
minsj∈Sj ui(si, sj) dσ∗i ]

≥ (1− εk) · ui(σi, σ
∗
j ) + εk ·

∫
Si

minsj∈Sj ui(si, sj) dσi ]

for all σi and all i ∈ I. These expected utility functions are continuous in εk, so the
inequalities also hold in the limit as εk → 0.

We next study the existence question:

Proposition 4. A strictly uncertainty aversion perfect Nash equilibrium need not
exist.

Proof. Consider the game in figure 12:

L C R

T 2,2 2,0 0,1
B 2,0 1,1 1,0

Fig. 12

Let p1 ≡ Prob(T ), p2 ≡ Prob(B), q1 ≡ Prob(L), q2 ≡ Prob(C), q3 ≡ Prob(R).
Any Nash equilibrium of this game takes the form p∗1 ≥ 1

3 , q∗1 = 1. Each such (p∗, q∗)



is an equilibrium, and there can be no equilibrium with p1 = 0 (else q∗2 = 1 and
p1 6= 0), so q∗3 = 0, and if q2 > 0 then p∗1 = 1 and q2 = 0, a contradiction.
However, none of these equilibria is strictly uncertainty aversion perfect: Player 1
knows that he can expect 2 from a rational opponent both if he plays T and B, but
from a non-rational opponent he will expect 0 from T and 1 from B. As long as
εk > 0, he will play B.

This result suggest to look for existence in a subclass of games. Surprisingly,
not even 2 × 2-games always possess a strictly uncertainty aversion perfect Nash
equilibrium, as the game in figure 13 shows:

L R

T 2,0 0,2
B 1,2 2,1

Fig. 13

This game has a unique Nash equilibria in genuinely mixed strategies p∗ ≡
Prob(T ) = 1

3 , q∗ ≡ Prob(L) = 2
3 . However, if player 1 expects a rational opponent

to play q∗, he will strictly prefer B to T , since he will achieve the same utility from
a rational opponent, but a higher utility in case the opponent is non-rational. So
ε = 0, and the claim follows from lemma 3.

Finally, the following remark characterises strictly uncertainty aversion perfect
equilibria. It will be useful when we study zero-sum games and standard equilibrium
refinements in sections 3.5 and 3.6.

Remark 5. Let (I, S, u) be a finite two-player game in normal form. Let σ∗ be a
Nash equilibrium. Then σ∗ is strictly uncertainty aversion perfect if and only if

6 ∃i ∈ I, 6 ∃si ∈ Si, 6 ∃s′i ∈ supp σ∗i :

ui(si, σ
∗
j ) = ui(σ∗i , σ∗j )

and min
sj∈Sj

ui(si, sj) > min
sj∈Sj

ui(s′i, sj).

Proof. Suppose for some player i ∈ I there exist si and s′i ∈ supp σ∗i such that
ui(si, σ

∗
j ) = ui(σ∗i , σ∗j ) and minsj∈Sj ui(si, sj) > minsj∈Sj ui(s′i, sj). Then, as long

as ε > 0, for player i a deviation from σ∗i to si is profitable, because he will expect
the same utility as σ∗i from a rational opponent, but a higher utility from a non-
rational opponent. So ε(σ∗) = 0, i. e. σ∗ is not strictly uncertainty aversion perfect.
Conversely, if these conditions hold, player i does not have a profitable deviation.

The following proposition summarizes the above results on the robustness of
Nash equilibria, in case a strictly uncertainty aversion perfect equilibrium exists:



Proposition 5. Let (I, S, u) be a finite two-player game in normal form. Let σ∗ be
a strictly uncertainty aversion perfect Nash equilibrium.

(1) Every strict equilibrium is strictly uncertainty aversion perfect. However,
strictly uncertainty aversion perfect equilibria need not be strict.

(2) Quasi-strict equilibria in general, and mixed strategy equilibria and equilibria
in weakly dominated strategies in particular, may be, but need not be, strictly
uncertainty aversion perfect.

3.4. Uncertainty Aversion Perfection
Because strictly uncertainty aversion perfect equilibria need not exist, we suggest
the following weaker refinement of Nash equilibria:

Definition 6. Let (I, S, u) be a finite two-player game in normal form. Let σ∗

be a strategy combination. Then σ∗ is an uncertainty aversion perfect Nash
equilibrium if and only if there exists a sequence (εk)k∈IN, with 0 < εk < 1 and
limk→∞ εk = 0, and a sequence of strategy profiles (σ∗k)k∈IN, such that each σ∗k is a
Choquet-Nash equilibrium for εk and limk→∞ σ∗k = σ∗.

Since this definition allows constant sequences of strategy profiles, every strictly
uncertainty aversion perfect equilibrium is indeed uncertainty aversion perfect.

Remark 6. Let (I, S, u) be a finite two-player game in normal form. An uncertainty
aversion perfect Nash equilibrium is indeed a Nash equilibrium.

Proof. Let εk > 0. Since σ∗k is a CNE for εk we have

(1− εk) · ui(σ∗i,k, σ∗j,k) + εk ·
∫

Si
minsj∈Sj ui(si, sj) dσ∗i,k ]

≥ (1− εk) · ui(σi, σ
∗
j,k) + εk ·

∫
Si

minsj∈Sj ui(si, sj) dσi ]

for all σi and all i ∈ I. These expected utility functions are continuous in εk, σi and
σj , so the inequalities also hold in the limit as εk → 0 and σ∗k → σ∗.

Proposition 6. Every finite two-player game in normal form has at least one un-
certainty aversion perfect Nash equilibrium.

Proof. Consider a sequence εk → 0. By proposition 1, there exists a CNE for ev-
ery εk. Since the strategy sets are compact subsets of finite-dimensional euclidean
spaces, by the Bolzano-Weierstraß Theorem, every sequence of CNEs σ∗k has a con-
vergent subsequence σ∗l . Since the associated sequence εl also converges to 0, the
limit of σ∗l is an uncertainty aversion perfect Nash equilibrium.

We end this section with an example of an equilibrium in pure strategies that
are not weakly dominated that is not uncertainty aversion perfect:

L C R

T 1,1 2,0 0,0
B 1,0 1,0 1,0

Fig. 14



Consider the equilibrium (T, L). The strategy T is undominated, and L is weakly
dominant. Yet (T,L) is not uncertainty aversion perfect: As long as ε > 0, a rational
player 2 will play L because it is weakly dominant. But given L, player 1 will expect
utility 1 from a rational opponent both if he plays T or B, but since ε > 0 he will
strictly prefer B.

3.5. Zero-Sum Games

Under complete ignorance, an uncertainty averse player will allocate probability
weight 1 to the outcome that is worst for himself. Intuitively, this suggests a close
relationship of Choquet-Nash equilibria with minimax strategies in zero-sum games.

We next show, however, that this is not the case12. First, consider strictly un-
certainty aversion perfect equilibria:

L R

T 0,0 2,−2
B 2,−2 1,−1

Fig. 15

In the game in figure 15, the Nash equilibrium is unique, and since the game is
zero-sum the strategies are minimax strategies. However, remark 5 implies that this
equilibrium is not strictly uncertainty aversion perfect. This example also shows
that in even in zero-sum games a strictly uncertainty aversion perfect equilibrium
need not exist.

However, in the previous game the minimax strategies are uncertainty aversion
perfect. The following example shows that not every Nash equilibrium in a zero-sum
game is uncertainty aversion perfect:

L R

T 1,−1 1,−1
B 0,0 1,−1

Fig. 16

The pair of minimax strategies (T, R) is not uncertainty aversion perfect: As
long as ε > 0, player 2 prefers to play L because L is weakly dominant.

3.6. Equilibrium Refinements

The fact that not all Nash equilibria are robust in the sense of (strict) uncertainty
aversion perfection raises the question whether perfect Nash equilibria are more
robust with respect to doubt about the rationality of the opponent. In this sec-

12 This result is due to a lack of preference for uncertainty, see section 4.



tion we present the relationship between uncertainty aversion perfection and other
equilibrium refinements.

First, note that the equilibrium (T, L) in figure 14 is proper, because C and R
are equally costly mistakes for player 2. So for ε = 1

k the strategy combinations σk

with Prob(T ) = 1− 1
k ,Prob(B) = 1

k , Prob(L) = k
k+2 , Prob(C) = Prob(R) = 1

k+2 is
an ε-proper equilibrium, and as k → ∞ we have ε → 0 and σk → (T, L). However,
as shown above, this equilibrium is not uncertainty aversion perfect. So properness
does not imply uncertainty aversion perfection.

Note also, however, that this equilibrium is not strictly perfect. Our next example
shows that strict perfection does not imply strict uncertainty aversion perfection:

L R

T 2,0 0,2
B 1,2 2,1

Fig. 17

The mixed strategy equilibrium p∗ ≡ Prob(T ) = 1
3 , q∗ ≡ Prob(L) = 2

3 is strictly
perfect, because it is completely mixed. But by remark 5, it is not strictly uncertainty
aversion perfect.

The next game shows that strictly perfect equilibria even need not be uncertainty
aversion perfect:

L R

T 2,2 0,0
M 0,0 2,2
B 1,1 1,1

Fig. 18

Consider the mixed strategy Nash equilibrium p∗1 ≡ Prob(T ) = 1
2 , q∗ ≡

Prob(L) = 1
2 . This equilibrium is strictly perfect: Let µT , µM , µB , µL, µR be any

strictly positive trembles (minimum probabilities). Then the strategy combination
σµ with p1 = 1

2 (1 − µB), p2 = 1
2 (1 − µB), p3 = µB , q1 = 1−2µL

2(1−µL−µR) , q2 = 1 − q1

is a Nash equilibrium of the perturbed game, and as µL, ... → 0 we have σµ → σ∗.
However, the equilibrium is not uncertainty aversion perfect: For player 1, as long
as ε > 0, strategy T gives 2(1− ε)qε and strategy M gives 2(1− ε)(1− qε), where qε

is the strategy of a rational player 2. In order to find a sequence of mixed strategies
for player 1 that converges to p = 1

2 , he must be willing to mix between T and M ,
which implies that in any Choquet-Nash equilibrium qε = 1

2 . But then both T and
M yield less than B, so for ε > 0 no such equilibrium exists.

Conversely, we can ask whether (strictly) uncertainty averse equilibria also sat-
isfy refinement criteria for Nash equilibria. However, the equilibrium (T,L) in figure



11 is strictly uncertainty aversion perfect, yet T is weakly dominated for player 1,
and therefore (T,L) is not trembling-hand perfect.

We have thus established a lack of relationships between robustness with re-
spect to lack of mutual knowledge of rationality and equilibrium refinements that
is summarized by the following proposition:

Proposition 7. Neither a proper equilibrium nor a strictly perfect equilibrium need
be uncertainty aversion perfect. Conversely, even a strictly uncertainty aversion
perfect equilibrium need not be trembling-hand perfect.

4. Extensions

So far, we have defined the solution concept only for 2-player games with finitely
many strategies. Typically, in economic games the strategy spaces are infinite, for
instance if firms choose prices, quantities, a location, a point in time, or a certain
probability.

The Choquet-integral of a general random variable X is defined as
∫

Xdv :=
∫ ∞

0

v(X ≥ t)dt +
∫ 0

−∞
[v(X ≥ t)− 1]dt.

As before, we define the expected utility from a non-rational opponent as ui(si, vj) :=∫
Sj

ui(si, sj) dvj and the payoff from a mixed strategy σi ∈ 4Si as ui(σi, vj) :=∫
Si

u1(si, vj) dσi.
As before, we can thus define a weak Choquet-Nash equilibrium for 2-player

games with possibly infinite strategy spaces. Under the assumptions of a common
prior about rationality, complete ignorance about non-rationality and uncertainty
aversion this reduces to:

Definition 7. Let (I, S, u) be a two-player game in normal form. Let 0 ≤ ε ≤ 1.
Then σ∗ is a Choquet-Nash equilibrium iff

σ∗1 ∈ arg max
σ1∈Σ1

[ (1− ε) · u1(σ1, σ
∗
2) + ε ·

∫

S1

min
s2∈S2

u1(s1, s2) dσ1 ],

σ∗2 ∈ arg max
σ2∈Σ2

[ (1− ε) · u2(σ∗1 , σ2) + ε ·
∫

S2

min
s1∈S1

u2(s1, s2) dσ2 ].

As an example, consider a symmetric duopoly with linear cost and demand curve.
Under Bertrand competition, setting price equal to marginal cost is a Choquet-Nash
equilibrium independently of ε. Under Cournot competition, however, the firms have
an incentive to offer less than the Cournot equilibrium output, and set higher prices,
since for any given production there is a small chance that a non-rational opponent
swamps the market and drives down profits.

The extension to n players is conceptually straightforward. However, it has to
take into account that the events that different opponents are non-rational are
independent. For instance, if there are three players, then player 1 should maximise13

max
σ1∈Σ1

[ (1− ε)2 · u1(σ1, σ
∗
2 , σ∗3)

13 We continue to make the assumptions for Choquet-Nash equilibria: common priors ε,
complete ignorance and uncertainty aversion.



+ ε(1− ε) ·
∑

s1∈S1

σ1(s1) · min
s2∈S2

u1(s1, s2, σ
∗
3)

+ (1− ε)ε ·
∑

s1∈S1

σ1(s1) · min
s3∈S3

u1(s1, σ
∗
2 , s3)

+ ε2 ·
∑

s1∈S1

σ1(s1) · min
(s2,s3)∈S2×S3

u1(s1, s2, s3) ].

In general, we can formulate the solution concept in the following way: Let I
be the player set, and for J ⊆ I let sJ be a strategy profile that specifies a pure
strategy for each player in J . Let SJ be the set of such profiles, i. e. Sj = ×i∈JSi.
Let s−J be a strategy profile that specifies a pure strategy for all players not in J .

Definition 8. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤ ε ≤
1. Then σ∗ is a Choquet-Nash equilibrium iff for every player i ∈ I

σ∗i ∈ arg max
σ1∈Σ1

[ (1− ε)|I| · ui(σi, σ
∗
−i)

+
∑

J⊆I\{i}
J 6=∅

[ ε|J|(1− ε)I\(J∪{i}) ]

· [
∑

si∈Si

σi(si) · min
sJ∈SJ

ui(si, σ
∗
−(J∪{i}), sJ) ] ],

where |J | denotes the number of players in J ⊆ I.

5. Related Literature

The aim of this section is to argue that our equilibrium concept circumvents some
of the controversial aspects of previous attempts to generalize the equilibrium con-
cept to non-additive beliefs: the definition of support of a non-additive measure,
the requirement that players’ beliefs are simple capacities, and the definition of
independence of several non-additive beliefs.

Previous solution concepts — with the exception of Mukerji (1994) and Lo (1995)
— have not distinguished between rational and non-rational players. In those mod-
els, the rational player is allowed to have non-additive beliefs about the opponent’s
play. An equilibrium is then interpreted as an equilibrium in beliefs. However,
since beliefs are non-additive, they cannot be correct, so the weaker consistency
requirement that players are not wrong is imposed on equilibrium beliefs. Following
Dow and Werlang (1994), this is formalised as the requirement that the players an-
ticipate the support of the opponent’s beliefs.14 This raises the question, however,
how the support of a non-additive capacity should be defined, and different support
concepts give rise to different equilibrium concepts. These issues are surveyed, e.g.,
in Eichberger and Kelsey (1994) and Haller (1997).

14 Klibanoff (1993) formalises an equilibrium concept for a more general class of
games on the basis of maxmin expected utility theory with set-valued beliefs
Gilboa and Schmeidler (1989). There, the weaker consistency requirement is that the
players consider the equilibrium strategies possible.



Since defining the support as the smallest set of strategies that has belief 1 un-
der uncertainty aversion does not impose any restriction on the support, Dow and
Werlang (1994) define the support as the smallest set of strategies whose comple-
ment has belief 0.15 The support, so defined, need not be unique. The approach of
Dow and Werlang (1994) models a situation in which rational players lack logical
omniscience, in that they do not draw the logical conclusions of their knowledge.

The question how to define the support of a non-additive capacity does not
arise in our model. Here, players have additive beliefs about the rational opponents.
So their expectations can be correct in the usual, literal, sense. Also, the rational
players are assumed to be logically omniscient.

In the Dow and Werlang (1994) model, the support question has a natural an-
swer in the special case, in which the non-additive beliefs are ‘simple capacities’, i.
e. capacities that uniformly distort probabilities

v(E) =
{

α · p(E) , E 6= Ω,
1 , E = Ω,

where uncertainty aversion corresponds to the assumption that α < 1. For such
simple capacities, the Choquet-integral of a random variable X takes the form∫

X dv = α ·
∫

X dp + (1− α) ·min
ω∈Ω

X(ω).

Thus, our concept of Choquet-Nash equilibrium corresponds formally to the case
where16 α = (1 − ε). However, this analogy is purely formal: A weak Choquet-
Nash equilibrium cannot be re-interpreted as a simple capacity, and for non-simple
capacities the above decomposition does not hold. We are not requiring that rational
players’ beliefs about the opponents’ play are simple, but that beliefs about rational
opponents are additive, whereas those about non-rational opponents may be non-
additive, but otherwise arbitrary (i. e. non-simple).

Finally, Dow and Werlang (1994) define their equilibrium concept for 2-player
games. Eichberger and Kelsey (1994) extend their solution concept to n-player
games and allow for the possibility that a rational player beliefs that his opponents
do not act independently. In their approach, imposing such a restriction requires an
independence concept for capacities (see, e.g., Ghirardato (1997) and Hendon et al.
(1996)) ).

In our approach, this issue also does not arise. Since rational players have addi-
tive beliefs about their rational opponents, the usual independence concept applies
and the equilibrium concept for n-player games assumes that rational players be-
lieve that their rational players act independently. This is in line with the underlying
assumption that the game form models a non-cooperative situation and is common
knowledge among the rational players.

6. Preference for Uncertainty

Recall that in section 2 we have defined the expected utility from pure strat-
egy si against a non-rational opponent by the Choquet expectation ui(si, vj) :=
15 See Marinacci (1994) for an equilibrium concept with a different definition of support.
16 This is the approach taken by Mukerji (1994). In Lo (1995) it is infinitely more likely

that the opponent is rational than that he is not.



∫
Sj

ui(si, sj) dvj . Then we defined his payoff from a mixed strategy σi ∈ 4Si as
ui(σi, vj) :=

∑
si∈Si

σi(si) ·ui(si, vj). As a consequence, the overall expected utility
is linear in the probabilities σi(si). Since vj is non-additive, the order of integra-
tion in ui(σi, vj) is important. In this section we present and analyse an alternative
equilibrium concept in which this order is reversed.

We continue to make the assumptions of a common prior about rationality,
complete ignorance about non-rational play and uncertainty aversion. Note that
then

ui(σi, vj) = min
sj∈Sj

ui(σi, sj) = min
sj∈Sj

∑

si∈Si

σi(si)ui(si, sj).

First note the following lemma:

Lemma 4.
∑

si∈Si

σi(si) min
sj∈Sj

ui(si, sj) ≤ min
sj∈Sj

∑

si∈Si

σi(si)ui(si, sj).

The inequality may be strict.

Proof. For all si and sj

min
sj∈Sj

ui(si, sj) ≤ ui(si, sj).

Therefore for all sj

∑

si∈Si

σi(si) min
sj∈Sj

ui(si, sj) ≤
∑

si∈Si

σi(si)ui(si, sj).

So this holds in particular for the smallest value of the right-hand side. To see that
the inequality may be strict, consider the following example:

L R

T 2 0
B 0 2
1
2T + 1

2B 1 1

Fig. 19

Here
∑

si∈Si

σi(si) min
sj∈Sj

ui(si, sj) = 0 < min
sj∈Sj

∑

si∈Si

σi(si)ui(si, sj) = 1.

Thus, reversing the order of integration allows players to have a strict preference
for mixed strategies in a game. The first equilibrium concept that captures this
phenomenon in strategic interaction is given by Klibanoff (1993), who based it on



maxmin expected utility theory of Gilboa and Schmeidler (1989), in which players
have set-valued beliefs. Allowing strict preference for mixed strategies gives rise to
the following definition:

Definition 9. Let (I, S, u) be a finite two-player game in normal form. Let 0 <
ε1 ≤ 1. Then σ∗ is a strong Choquet-Nash equilibrium iff

σ∗1 ∈ arg max
σ1∈Σ1

[ (1− ε1) · u1(σ1, σ
∗
2) + ε1 · min

s2∈S2
u1(σ1, s2) ],

σ∗2 ∈ arg max
σ2∈Σ2

[ (1− ε2) · u2(σ∗1 , σ2) + ε2 · min
s1∈S1

u2(s1, σ2) ].

Under uncertainty aversion, a strong Choquet-Nash equilibrium always exists.
This is essentially the same argument as in proposition 1, except that objective
function is now quasi-concave in the probabilities σi. However, the analogous so-
lution concept for uncertainty love is now no longer guaranteed to exist, since
the objective function need not be quasi-concave. As a consequence, the best-
reply correspondence need not be convex-valued (see, e.g., Crawford (1990) and
Dekel, Safra and Segal (1991)).

The main characteristic of a strong Choquet-Nash equilibrium is that in zero-
sum games, the solution concept coincides with Nash equilibrium: Since it is already
rational to play maxmin strategies against rational opponents, and since this is also
rational against non-rational opponents, it is overall rational. More generally:

Remark 7. Let (I, S, u) be a finite two-player game in normal form. Let 0 ≤
ε ≤ 1. Then every equilibrium in maxmin-strategies is also a strong Choquet-Nash
equilibrium independently of ε.

Proof. If σ∗ is an equilibrium then for all i ∈ I and all σi ∈ Σi

ui(σ∗i , σ∗j ) ≥ ui(σi, σ
∗
j ).

Since σ∗i are maxmin strategies, for all σi ∈ Σi

min
sj∈Sj

ui(σ∗i , sj) = min
σj∈Σj

ui(σ∗i , σj) ≥ min
σj∈Σj

ui(σi, σj) = min
sj∈Sj

ui(σi, sj).

Combining both inequalities gives the result.

7. Conclusion

The paper presented equilibrium concepts that formalize the idea that lack of mutual
knowledge of rationality together with a lack of a theory of non-rationality create
genuine uncertainty. However, on the basis of decision theory with non-additive, or
set-valued, beliefs, rational behaviour is still well-defined, if the attitude towards
uncertainty is specified.

The motivation for developing Choquet expected utility theory were deviations
from subjective expected utility in experiments, as in the Ellsberg paradox. This
behaviour can be parsimoniously explained as uncertainty aversion. Thus we also



formulated the solution concepts under this assumption. To what extent these solu-
tion concepts can model behaviour is an empirical question; this also holds for the
question which solution concept is relevant in a particular situation. For instance,
we see the question whether players have a strict preference for mixed strategies as
an empirical one.

The assumption of extreme uncertainty aversion is rather crude; however, in the
absence of a theory of bounded rationality that imposes restrictions on deviations
from rational play, it seems the only assumption consistent with the fact that only
rational strategies are derived.

Our results suggest robustness concepts for Nash equilibria. In so doing, we
consider mutual knowledge of rationality as a limiting case of lack thereof. This
is entirely analogous to Selten’s (1975, p. 35) view of “complete rationality as a
limiting case of incomplete rationality”. However, we would argue that robustness
with respect to ignorance about non-rational play is more plausible than robustness
with respect to ‘trembles’ of otherwise fully rational players.

The following are suggestions for future research: First, the question arises
whether there are epistemic foundations for Choquet-Nash equilibria in a model
similar to that of Aumann and Brandenburger (1995). Secondly, it will be inter-
esting to study the effects of communication and correlation on a Choquet-Nash
equilibrium in the spirit of Aumann’s (1974) correlated equilibrium. On the other
hand, the equilibrium concepts could also be weakened to rationalizability con-
cepts along the lines of Bernheim (1984) and Pearce (1984). Finally, combining our
robustness concepts with equilibrium refinements for rational players will further
narrow down the set of equilibria.

Completely new conceptual issues arise in the extension of this approach to
extensive games. There, non-additive beliefs allow the formalisation of the idea that
deviations from the equilibrium path are considered evidence of lack of rationality.
These issues are treated formally in Rothe (1999 a,b).
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