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Abstract

There is much evidence that price-adjustment frequencies vary widely across industries. This
paper shows that inflation persistence is lower with heterogeneity in price stickiness than
without it, taking as given the degree of persistence in variables affecting inflation.
Differences in the frequency of price adjustment mean that the pool of firms which responds
to any macroeconomic shock is unrepresentative, containing a disproportionately large
number of firms from industries with more flexible prices. Consequently, this group of firms
is more likely to reverse any initial price change after a shock has dissipated, making inflation
persistence much harder to explain.
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1. Introduction

It is widely accepted that there are large differences in the frequency of price adjustment
between industries.! This paper studies the implications of this phenomenon for the behaviour
of inflation, and shows that the assumption of a common degree of price stickiness frequently
used in macroeconomic models is not innocuous. Heterogeneity in price stickiness has the ef-
fect of reducing inflation persistence relative to what would occur with homogeneity, holding
constant the persistence of other macroeconomic variables affecting inflation.

This reduction in inflation persistence occurs because when there are differences in the
frequency of price adjustment between industries, the group of firms that responds to any mac-
roeconomic shock with a price change is not representative of all firms in the economy. Instead,
it contains a disproportionately large number of firms drawn from industries with more flexible
prices. But these firms are then more likely to reverse any price changes they have made once
the shocks that gave rise to those price changes have dissipated.

In the case where all industries have equally sticky prices, it is just as likely that prices
which were left fixed after a shock move at a later time in the direction of those prices that were
initially adjusted, than it is the latter subsequently moving in the direction of the former. With
heterogeneity on the other hand, there is a greater likelihood that prices which were initially
changed gravitate back towards those that remained fixed than vice versa. This increased tend-
ency for prices to change direction once any shocks have passed reduces inflation persistence,
thus making it much harder for theoretical models to explain observed inflation persistence
once heterogeneity is accounted for. The extent of the inflation persistence puzzle is therefore
underestimated in theoretical work that makes the simplifying assumption of equally sticky
prices in all industries.

Recent discussions of inflation persistence have drawn a helpful distinction between in-
trinsic and extrinsic sources of persistence.? Intrinsic inflation persistence is the persistence in
inflation that is generated directly by whatever frictions or imperfections underlie the short-run
Phillips curve, and does not depend on there being any persistence in those variables which
are the determinants of inflation. Intrinsic persistence can arise from various sources, such as
backward-looking rules of thumb for price setting (Gali and Gertler, 1999), indexation of prices
to past inflation (Christiano, Eichenbaum and Evans, 2005), relative contracting models for
wages (Fuhrer and Moore, 1995), or firms preferring to change older rather than newer prices
Sheedy (2007a). On the other hand, extrinsic inflation persistence is whatever persistence is

already present in the determinants of inflation (for example, in variables such as unemploy-

IThis is attested in the survey evidence of Blinder, Canetti, Lebow and Rudd (1998), and in studies such as
Bils and Klenow (2004) and Dhyne, Alvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker, Liinnemann, Rumler
and Vilmunen (2006) using very large databases of prices of individual goods for the U.S. and the Euro area
respectively.

2A similar taxonomy is employed by Fuhrer (2006) and Angeloni, Aucremann, Ehrmann, Gali, Levin and
Smets (2006) among others.



ment, the output gap, unit labour costs, or the growth rate of the money supply), and which is
not itself directly explained by the ideas on which the Phillips curve is founded. This extrinsic
persistence is inherited by inflation and it feeds into overall inflation persistence along with any
intrinsic persistence.

This paper takes an otherwise standard New Keynesian model of price setting, the Calvo
(1983) model, and adds heterogeneity in the frequency of price adjustment across a potentially
large number of industries. It is well known that the New Keynesian Phillips curve resulting
from Calvo pricing with homogeneity implies no intrinsic inflation persistence, and this aspect
of the model has received much criticism.> This paper shows analytically that adding hetero-
geneity (an arbitrary non-degenerate distribution of price-adjustment frequencies) to the model
actually makes the problem worse because it always generates the opposite of inflation persist-
ence, that is, a tendency for above-average inflation to be followed by below-average inflation,
a feature that can be thought of as negative inflation persistence. Thus holding the level of
extrinsic persistence constant, heterogeneity diminishes overall inflation persistence.

The intuition for this result can best be understood by considering a transitory (serially
uncorrelated) shock to one of the determinants of inflation, for example, an increase in unit
labour costs. The one-period rise in costs induces some fraction of firms to increase their
prices, but others keep theirs fixed. With homogeneous Calvo pricing and the New Keynesian
Phillips curve, there is a one-off jump in inflation in response to the shock, which means that
the price level rises and then immediately reaches a plateau. There is no inflation persistence.

The equilibrium rate of inflation that occurs once the shock has dissipated can be under-
stood in terms of two countervailing effects.* First there is the “catch-up” effect of firms that
did not change their money prices initially, but subsequently want price increases to bring them
back into line with the now-higher general price level. The second is the “roll-back™ effect
of firms that did initially raise their prices, but now find they are too high relative to the gen-
eral price level, and consequently want price cuts to bring themselves into line with others.?
When the catch-up effect is larger than the roll-back effect, there continues to be above-average
inflation; and when the roll-back effect is dominant, inflation now falls below average. With
homogeneous Calvo pricing, the two effects always exactly cancel out for transitory shocks.

The addition of heterogeneity into the story upsets the precarious balance between the
catch-up and roll-back effects. Now the group of firms that want to catch up is disproportion-
ately drawn from industries with stickier prices; and the group that wants to roll back features a
preponderance of firms from industries with more flexible prices. This clearly strengthens the
roll-back effect at the expense of the catch-up effect. Because the roll-back effect now dom-
inates, inflation actually falls below average after the shock. A spell of higher-than-average

inflation is thus followed by a spell of lower-than-average inflation. Since positive inflation

3See the detailed derivation and discussion of the New Keynesian Phillips curve in Woodford (2003).

4A similar intuition is also used to explain the results of Sheedy (2007a).

Note that whenever a fraction of firms changes price, the average percentage change in their prices alone must
necessarily exceed the overall inflation rate.



persistence is nothing other than positive autocorrelation in the inflation time series, the swing
from above to below average means that inflation persistence is actually negative with hetero-
geneous price stickiness and transitory shocks.

Earlier work on incorporating heterogeneous price stickiness into New Keynesian models
has focused on the implications for optimal monetary policy (Aoki, 2001; Benigno, 2004).
More recent studies by Carvalho (2006) and Dixon and Kara (2005) have addressed the ef-
fects of such heterogeneity on short-run macroeconomic dynamics. In addition, de Walque,
Smets and Wouters (2006) have argued that heterogeneity in price stickiness combined with
changes in industry-specific technology could be an additional source of cost-push shocks at
the aggregate level.

The approach of the current paper differs from these studies in a number of respects. First,
analytical results on short-run dynamics are presented rather than relying on simulations of
calibrated models.® Second, unlike the work by Carvalho and by Dixon and Kara, the focus
here is on inflation persistence, instead of persistence in real variables such as output and un-
employment. Moreover, this paper looks specifically at intrinsic inflation persistence as well as
overall persistence. The advantage of this is that the effect of heterogeneity on intrinsic inflation
persistence may be a structural feature of the economy if there are inherent reasons for the dif-
ferent price-adjustment frequencies prevailing across industries. On the other hand, the amount
of overall inflation persistence is sensitive to assumptions made about aggregate demand, the
conduct of monetary policy, the persistence of the shocks hitting the economy, among many
other things. In addition, when addressing certain issues such as the cost of disinflation, it is
crucial to focus only on intrinsic persistence.

The analysis in the current paper has some connection to the work on heterogeneity by
Alvarez, Burriel and Hernando (2005). They show that estimates of the hazard function for
price changes (the probability of a price change as a function of the age of the current price)
using microeconomic data are biased towards detecting a negative slope when there is het-
erogeneity in the stickiness of the prices that make up the sample. And in a macroeconomic
context, Sheedy (2007a) shows that upward-sloping hazard functions generate positive intrinsic
inflation persistence and downward-sloping ones negative intrinsic persistence. While there is
no formal equivalence between a model with heterogeneity and one with a downward-sloping
hazard function, there is a close connection between the two which helps to explain the intuition
for the results presented here.

It is important to contrast the analysis presented in this paper with that of Altissimo, Mojon
and Zaffaroni (2007). They argue that heterogeneity can increase inflation persistence because
the overall inflation rate is an average of many industry-specific inflation rates, each with a

different degree of persistence.” However, such a claim depends on the shocks to industry-

®Calibrations are used in this paper to assess the quantitative significance of heterogeneity, but the direction of
its effect is established analytically.
"This conclusion is based on Granger’s (1980) aggregation theorem.



level inflation rates being independent across sectors. This clearly does not apply when any
macroeconomic shocks are present, such as monetary policy shocks. Furthermore, even if
this explanation does contribute to understanding the observed persistence of economy-wide
inflation, it could not automatically be used to draw conclusions about the dynamic effects of
macroeconomic shocks, which is one of the principal motivations for the study of inflation
persistence. The results presented below in this paper are directly applicable to analysing the
effects of macroeconomic shocks.

The plan of the paper is as follows. Section 2 sets out the model and studies firms’ profit-
maximizing price-setting decisions when prices are not changed continually. Section 3 then
aggregates firms’ behaviour across industries with different degrees of price stickiness to ob-
tain a Phillips curve, and derives analytical results on intrinsic inflation persistence and inflation
dynamics. Section 4 then presents a calibration of the model to assess the quantitative signific-

ance of the results. Finally, section 5 draws some conclusions.

2. The model

2.1 Assumptions

The economy contains a continuum of firms producing differentiated goods. Firms producing
goods with similar costs of production, similar degrees of substitutability to customers, and
similar frequencies of price adjustment are grouped together into industries. There are n > 2
industries and each firm belongs to one and only one industry. Industry i has size 0 < w; < 1, as
measured by the proportion of the economy’s firms that are based within it. The industry sizes
w; must therefore sum to one. Firms in the economy are distributed along the unit interval,

which is partitioned into separate industries as follows,

n i-1 i
Ja=01n . = [ wj,zwj) 1)
i=1 j=1

Jj= J:l

with ©; denoting the set of firms in industry i.
Firms’ customers (households, government, other firms) allocate their spending between
different products to minimize the cost of buying a given amount of a basket of goods. Baskets

of goods at the industry and economy level are defined using Dixit-Stiglitz aggregators,
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where Y,(7) is the output of firm : € [0, 1) at time ¢, Y}, is industry i output, and Y, is aggregate
output. The parameters & > 1 and &5 > 0 are respectively the elasticities of substitution

between the products of firms within one industry, and between the products of different sectors



of the economy.® Customers’ expenditure minimization for the basket of goods at the industry

level implies that firms face the following demand functions,

P,(1)
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where P,(1) is the money price charged by firm ¢ and P;, is the industry i price index. Sim-

ilarly, expenditure minimization for the economy-wide basket of goods implies the following

industry-level demand functions:

1
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In the above, P; is the industry i price level from (3) and P, denotes the economy-wide price

level. By putting together the demand functions in (3) and (4), the following consolidated

demand function for firm 7 in industry i (1 € £;) is obtained:

P\ (P
Y,(z):( P(’)) (7) Y, 5)

Firm 7 in industry i can produce output Y,(z) at total real cost C (Y,(1); Y}, Zi),

. Zi V()"
C (Yt(l); Yt > Zit) = 1+ 7[7 Iy*ﬂcy (6)
cy t

where Y, is the Pareto efficient level of output common to all firms in the absence of any
industry-specific shocks, Z;, represents other exogenous factors influencing costs in industry
i, and 7., > 0 is the elasticity of real marginal cost Cy (¥,(2); Y, Z;) with respect to an in-
dividual firm’s output Y,(z). The efficient level of output Y; is characterized by the condition
that real marginal cost is equal to one in the absence of any exogenous shocks (Z;; = 1), that
is, Cy (Y/; Y, 1) = 1. The efficient level of output is taken as given: a function of exogenous
productivity and preference factors that are not modelled explicitly here.

Since each good is produced by only one firm and is an imperfect substitute for rival
products, all firms have some market power and are price setters in the market for their own
good. Prices are set in money terms, with P,(z) being the money price at time ¢ of the good
produced by firm 1. Let 0,(1) = P,(1)/P; and po;; = P;;/P, be the implied relative prices of the
products of firm 7 and industry i respectively. Total real profits at time ¢ for firm 7 in industry

i are given by the profit function F(o, (1); 0ir, Y;, Y7, Zir), Which is obtained by subtracting total

8The most plausible case is where & > &g so products from the same industry are more substitutable than the
products of different industries, though this assumption is not actually necessary for any of the results.



real cost C (Y;(1); Y;', Z;;) from the level of total real revenue implied by demand function (5):
F (00 0in Y Y7 Zi)) = 00) 1077°Y, = C (o)) ™0 Y, ¥}, Zin) (7

By substituting in the functional form for the cost function (6), and defining the aggregate

output gap Y, = Y,/ Y, the profit function (7) can be written as:

F (0001 Y ¥} Zi) = {g(z)“ffng‘gs - :ncyg;(z)‘e“1*%if*‘gs)““"’”y?""zit} v, ®

Not all firms change their money prices in every time period. Let A, denote the set of firms
that make a price change at time 7. The frequency of price adjustment is modelled using the
assumption of Calvo (1983) price-setting, but allowing for heterogeneity between industries.
Every firm in industry i has a constant probability «; = P (5/7(, | Q,-) of changing price in any
given time period. Some industries have stickier prices than others so there is a dispersion of
price-adjustment probabilities. The precise nature of this distribution of probabilities over in-
dustries does not need to be specified, but without loss of generality, it is convenient to number
the industries in increasing order of price flexibility, so industry 1 has the stickiest prices and
industry n the most flexible prices. In addition to this, it is assumed for simplicity that no in-
dustry has completely sticky or completely flexible prices, and no two industries have exactly
the same probabilities of price adjustment. These assumptions are not very restrictive since all
the results apply to economies arbitrarily close to any of these cases. The above statements
are summarized by the following chain of inequalities for the industry-specific probabilities of
price adjustment {a;}! :

O<a<am<- < <a,<1 9

Finally, when firms do change price, their prices are set to maximize the discounted value
of the stream of profits they generate. Future profits are discounted using the nominal interest

rate.’

2.2 Profit-maximizing price setting

Firms anticipate that the prices they choose are likely to remain sticky for at least some period
of time. This means that they must take into account the effect on expected future profits when
choosing a new price. At time ¢, consider a firm in industry i that is deciding what price to set.
Its choice of price in money terms is denoted by R;, and is referred to as a reset price. The reset
price is selected to maximize the discounted value of the stream of future profits generated by
the price. In addition to the discounting of future profits by financial markets, it is necessary
to contemplate the possibility that another new reset price will have been chosen before some

of these future profits are realized. Using the Calvo pricing assumption, the probability that

The conclusions of this paper are not affected by making other assumptions about asset markets.



a firm in industry ¢ which changes price at time ¢ will still be using the same price in period

T > tis given by (1 — @;)"". The objective function for firms that incorporates both sources of

maxZ(l - a)™E, [(]‘[ I;]F(I;—Q Yo, Y:,z,-r)] (10)

s=t+1

discounting is

where [E,[-] denotes the mathematical expectation conditional on all available information in
period t, II, = P,/ P, is the gross inflation rate between ¢t — 1 and ¢, 7, is the gross nominal
interest rate also between periods 7 — 1 and ¢, and F(0,(1); 0ir, Y1, Y, Zir) is the single-period real
profit function defined in (7). The first-order condition characterizing the profit-maximizing

i t L 1 o P Y EITY F Ty S 1o T

The derivative of the single-period profit function F(o,(1); 01, Y1, Y;', Zir) in (8) with respect to a
firm’s own relative price o,(1) is given by

Fo(0/0); 0 Y2, Y, Zi) = (1 — Sf){Qt(Z) for
(12)

S 1 cy c
(8 )Q (l)gf(lﬂh)) 1 (é‘f &s)(1+7, )y’l )Ztht}
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where &;/(gf — 1) 1s firms’ desired (gross) markup of price on marginal cost if prices were fully
flexible. Since & > 1 this markup is always well defined and greater than one. By defining
G, = Y,/Y,_; to be the gross growth rate of aggregate output Y;, and r; = R;;/ P, to be the reset
price of industry i relative to all other prices in the economy, an expression for industry i’s

profit-maximizing relative reset price r;, = R;;/ P, is obtained from equations (11) and (12):

1
Gsnraf+(l+£fﬂc)') (e1—¢ )(1+T7€ ) ey Trar— Teicy
-1 Zr (=)™ 'E, [(Hs 1T 1, Qi ) Y Zie
Gsﬂsgf &—&,
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(13)

riy =

Since the cost and demand conditions faced by two firms in the same industry are identical,
equation (13) shows that all firms changing price at the same time in the same industry choose
a common profit-maximizing reset price.

Now let D, denote the distribution of the duration of price stickiness at time 7. Because of
the Calvo pricing assumption that the probability of price adjustment in industry i is always «;,
the proportion of firms P (D, = j|€2,) in that industry which are using a price set j periods ago
will eventually converge to a;(1 — a;)/.!1° It is assumed that the economy has already reached

10A formal proof of convergence to this unique stationary distribution is given in Proposition 4 of Sheedy
(2007a).



this unique stationary distribution of the duration of price stickiness. Since all firms in the same
industry that change price at the same time choose identical reset prices, the industry price index

P;, from (3) can be written in terms of current and past reset prices from that industry:

o =21
Py = (Z ai(l - ai)JR};j;) (14)
=0

The equations for the economy-wide price level P, from (4) and the industry price levels from
(14) can be recast in terms of relative prices o;, = P;;/P;, relative reset prices r; = R;;/P; and

gross inflation rates 71, = P,/ P,_;:

n 00 j-1
JEN 1-g; _ i l-¢ g—1
1= 21 woy ™, or = ZO il - aYrl u_ol m ] (15)
= J= =

For given stochastic processes for the output gap {V,}, real output growth {G,}, nominal
interest rates {7,}, and exogenous cost-push shocks {Z;}, equations (13) and (15) determine
relative prices o;, relative reset prices r;, and the overall gross rate of inflation /7, = P,/P,_y,
with the level of any money price being indeterminate unless a nominal anchor is specified.
However, it is impossible to find an exact solution of these equations in most cases, so instead
the equations are log-linearized around a steady state in order to obtain a first-order accurate
approximation to the solution.!' A steady state where inflation and real output growth are zero
is chosen for simplicity.!? Full details of the steady-state values of all variables are given in
appendix A.1.

In what follows, a bar over a variable denotes its steady-state value, and a sans serif letter
denotes the log deviation of the corresponding roman letter from its steady-state value. When
a variable is indeterminate in the steady state (such as any money price) the sans serif letter
denotes just the logarithm of the variable. Hence, G denotes the steady-state gross growth rate
of aggregate output, and G, = log G, — log G is the log deviation of the growth rate from its
steady-state value. On the other hand, P, = log P; is just the log of the general price level P,.
In addition to this convention, &, = log I, — log IT denotes the log deviation of the economy-
wide inflation rate, p; = logo;, — logo the log deviation of industry i’s relative price, y;, =
log Y, — log Y the log deviation of the output gap, and z;, = log Z;; — log Z: the log deviation
of the industry-i cost-push shock.

Appendix A.1 shows how log-linearized versions of the economy-wide and industry-level

price indices in (4) and (14) can be derived from (15):

P, = Z w;Pj; , P, = Z ai(l - CYi)jRi,t—j (16)
i=1 J=0

"'This is standard practice in many New Keynesian models. See Woodford (2003) for further details.
12These assumptions can be relaxed without substantially altering the results.



The aggregate price level is a weighted average of industry-specific price levels, which are in
turn weighted averages of current and past reset prices. When prices are sticky, the current
price indices obviously depend on past pricing decisions, with the weights on the past decaying
more rapidly in industries with more flexible prices (higher ;).

It is also shown in appendix A.1 that the log-linearized version of the profit-maximizing

reset price equation (13) is

Ri =1 -801-a)) Zﬁj(l - a’)j]Et[PiT — NpPis+j + MyYeej T ’IZZ,-,H,,'] (17)

J=0

where 1, 17, and 1, are positive constants with 77, > 7, defined in equation (A.6) of appendix
A.1, and the parameter 0 < 8 < 1 is the steady-state real interest rate expressed as a discount
factor. The industry-specific profit-maximizing reset prices R;, depend on weighted averages of
current and expected future price levels P;., relative prices p;;, output gaps Y., and exogenous
cost-push shocks z;;. They are increasing in the industry-specific price levels because firms
compete with each other on price, increasing in the output gap and cost-push shocks because
these factors would otherwise erode desired markups, and decreasing in the industry-specific
relative prices because as all industries face the same cost function and demand function, in
the long run they should all respond to macroeconomic developments in the same way. The
negative dependence on relative prices is needed ultimately to correct any divergence that arises
because of differences in the speed of price adjustment. When prices are sticky, equation (13)
highlights the need for profit-maximizing firms to take account of both current and expected
future conditions, with the weights attached to the future decaying more slowly in industries

with stickier prices (lower «;).

3. The Phillips curve and inflation persistence

3.1 Aggregation

The next step is to aggregate the profit-maximizing behaviour of firms derived in section 2.2
into a Phillips curve determining economy-wide inflation. To set up a system of equations
that determines the overall inflation rate, it is convenient to use vector and matrix notation to
represent as a block the pricing equations for all industries. In what follows, boldface letters are
used to denote the n X 1 vectors of the corresponding industry-specific variables. For example,
P, is the vector of industry-specific (log) price levels P;, and R, is the vector of (log) reset
prices R;;. The vector of relative prices p;, is given by p,, and the vector of inflation rates 7;, by
.

If w is the vector of industry sizes w;, the aggregate price level equation in (16) can be
written as P, = w’P, in vector notation. Relative prices can be expressed as p, = P, — ¢P,,

where ¢ is an n X 1 vector of 1s, or equivalently, p, can be obtained by premultiplying the price-



level vector P, by an n X n matrix R. This matrix is defined by R = I — «w’, with I denoting the
n X n identity matrix.

The following result shows how the set of equations for the profit-maximizing reset prices
(17) and for the price indices (16) can be combined to obtain a relationship between the vectors
of industry-specific price levels P, and cost-push shocks z,, and the aggregate output gap Y,.
This aggregate supply relationship can also be stated in terms of a series of industry Phillips
curves, relating the vectors of industry-specific inflation rates 7, and relative prices p, to the

aggregate output gap and the vector of cost-push shocks.

Proposition 1 By combining equations (16) and (17) there exists an n X n positive definite
and diagonal matrix K, and an n X n positive definite matrix M, such that the aggregate supply
relationship between the vector of prices P, and the output gap 'y, is given by:

P, = M (P + BE/Pus + K(yyey, +n.2,)) (18)

An equivalent system of industry Phillips curves involving industry-specific inflation rates T,

and relative prices p; is:

7, = BB + KLy, + 0.2, — 1,p,) (19)

The diagonal matrix K = diag{x;}\_, contains the industry-specific component of the short-
run Phillips curve slopes, denoted by «; for industry i. These satisfy the following chain of
inequalities:

O<k)<ky <+ " <Ky <Kp< (20)

Industries with more flexible prices (larger a;) have steeper short-run Phillips curves because
prices are quicker to rise in those industries when the output gap is higher or a cost-push shock

occurs.
Proof. See appendix A.6. [

Equations (18) and (19) can be averaged over industries using the weights in the vector w
to obtain the overall price level P, = w’P, and economy-wide inflation rate r, = w’m,.

According to equation (18), the current price level vector P, depends positively on its past
and expected future values, and positively on the output gap y, and cost-push shocks z,. The
lagged price vector P,_; appears because some firms will continue to use past prices in the
current time period. This directly affects the period ¢ price index, as well as the decisions of
firms changing price at time 7. Current pricing decisions are also influenced by expectations of
future prices E,P,,; because firms anticipate that their own prices may remain sticky for some
time and thus overlap with prices that will be newly set in the future.

When the relationship between nominal and real variables is recast as a set of industry

Phillips curves in (19), these take on a form with some similarities to that of the standard New

10



Keynesian Phillips curve (NKPC), which is itself given by:

7 = PEm. 1 + K(’]th +1.2) (21)

This is the economy-wide Phillips curve that would be obtained were all the price-adjustment
probabilities equal. In both (19) and (21), current inflation depends positively on expected fu-
ture inflation because when firms anticipate that their own prices are likely to remain sticky
during a period in which others’ prices are rising, they want larger price increases today to
keep pace. The key difference between (19) and (21) is the appearance of a vector of relative
prices p, with negative coefficients when there is heterogeneity in the speed of price adjust-
ment between industries. The rationale for this term is to ensure that relative prices between
industries do not diverge in the long run when there are no permanent shifts in preferences or
productivity to warrant such divergence. This is needed with heterogeneity because the ini-
tial response of inflation in different industries to common shocks will vary, and without the
negative dependence on relative prices, there is no guarantee that this initial divergence will
eventually be reversed. This is analogous to a vector error correction model with relative prices
as the cointegrating vector. Current growth rates of the variables must depend negatively on
the cointegrating vector to ensure that any deviation from the cointegrating relationships is
ultimately transitory.

Like the NKPC in (21), the system of equations (19) for an economy with heterogeneity
has no explicit dependence on past inflation because of the assumption of Calvo price setting
in each industry, and at first glance, it might appear that there are no state variables at all. But
this is not true because the current vector of inflation rates 7r, and the current vector of relative
prices p, cannot move independently of one another. Taking as given the past vector of relative
prices p,_i, current relative prices are necessarily given by p, = p,_; + R, since p, = RP, and
m, = P, — P,_;. Thus past relative prices should be counted as a state variable in (19).

While past economy-wide inflation is not in itself a state variable, it should not be thought
that it exerts no influence on relative prices, with these being affected only by idiosyncratic
factors. When there are differences in the speed of price adjustment, shocks affecting economy-
wide inflation will call forth different price responses across industries, which disturb the relat-
ive price vector. When this vector then becomes a state variable for next period’s inflation, past
economy-wide inflation can influence current inflation through this channel.

A more precise examination of this mechanism requires that the determinants of prices and

inflation be decomposed into forward- and backward-looking components.

Proposition 2 For each non-degenerate distribution of price-adjustment frequencies {a;}"_,
there exists a unique n X n matrix A with n distinct, real, and positive eigenvalues (n — 1 inside

the unit circle, one equal to unity) such that the equation for the vector of price levels P, in (18)
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can be expressed as:

P, = AP + A Y (BAYKE,[nty..; + n:2..)] @2)

J=0

The equation for the vector of inflation rates , in (19) is equivalent to:

m =~ = A)py + A D) (BAYKE [0y, + 1.2, ] (23)

J=0

The forward-looking components in (22) and (23) are the same for both prices and inflation,
depending on current and expected future values of the output gap y, and cost-push shocks
z,. The backward-looking component for prices depends on the past vector of industry price
levels P,_j, whereas for inflation only the past vector of relative prices p,_ is needed because
all the equations of the model are homogeneous of degree zero in nominal variables. The
vector of inflation rates must depend negatively on the vector of past relative prices to iron out
discrepancies between the inflation responses of different industries to common shocks in the

long run.
Proof. See appendix A.7. [ |

The forward-looking components of equations (22) and (23) resemble the “solved for-

wards” version of the New Keynesian Phillips curve given in (21):

[0e]

7= ) BB+ 0:21e] (24)

J=0

But unlike the standard New Keynesian Phillips curve, the presence of heterogeneity across
industries implies that there is now a backward-looking component of inflation in (23) as well.

The nature of this component is analysed in the following section.

3.2 Intrinsic inflation persistence

Intrinsic inflation is defined as the backward-looking component of equation (23) averaged
across all n industries. As a result of this definition, intrinsic inflation refers to any inflation
that occurs purely as a result of firms’ past price-setting decisions. All other inflation is caused
by current or expected future fluctuations in the output gap, or by cost-push shocks. Let m1, =
—w’'(I — A)p,-; be the level of intrinsic inflation at time 7. Since the weighted average of the
relative price vector p, is always zero by definition (w’p, = 0), intrinsic inflation mr, can be
written as:

1, = wAp (25)
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With the New Keynesian Phillips curve (24) implied by homogeneous Calvo price setting it
is clear that inflation has no backward-looking component and so intrinsic inflation is always
ZEero.

At time ¢, intrinsic inflation m1, is predetermined and depends on the vector of past relative
prices p;_;, which are the state variables for current inflation. While it may seem surprising
that intrinsic inflation depends on past relative prices rather than past inflation rates, the relative
price vector p,_; is systematically related to the history of inflation rates {r,_;, 7,5, ...} among
other things. This dependence occurs with heterogeneous price stickiness because shocks that
affect the economy-wide inflation rate will call forth a range of price responses across industries
and thus perturb relative prices.

In order to understand the relationship between actual inflation and intrinsic inflation, the
forward-looking component of equation (23) is split into two parts, one depending on the output
gap Y,, the other on the exogenous cost-push shocks z,, which are then averaged across all n
industries using the vector of industry weights w. The values of these two components at time

t are denoted by y, and 3, respectively, and expressions for them are obtained from (23),

v =mwA Y BAKEY.; . 3 =nwA Y BAYKEzZ,, (26)

j=0 j=0

where k is the n x 1 vector of industry-specific Phillips curve slopes k;. The cost-push compon-
ent 3, depends on current and future vectors of cost-push disturbances z; to the extent that these
can be anticipated. This comprises both economy-wide and idiosyncratic shocks. Similarly, the
aggregate demand component y, in (26) is a sum involving current and expected future output
gaps Y;. The expression for y, can be written as a linear combination of current and future

output gaps, all of which have positive coefficients:

Proposition 3  The aggregate demand component y, defined in (26) can be expressed as fol-

lows

V= D B (27)
Jj=0

using a sequence of weights {y1;}%2,. For any non-degenerate distribution of price-adjustment
frequencies {a;}_,, each of the weights u; is strictly positive and the sequence decays at a faster
rate than 3, that is, 0 < pj.; < pu; for all j > 0.

Proof. See appendix A.8. [

Therefore y, is increasing in all current and expected future output gaps, and the weights
on future output gaps decay more rapidly with heterogeneous price stickiness than in the New
Keynesian Phillips curve (24) implied by homogeneous Calvo pricing. This is because firms
that respond to expected future developments today are more likely to be drawn from indus-

tries with greater price flexibility, and hence will have a higher probability of changing price
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again before these developments are actually realized. Thus their need to change price now is
correspondingly diminished.
The decomposition given in equation (23), together with the definitions in (25) and (26),

implies that the determinants of economy-wide inflation 7, can be stated succinctly as:
m=un 4y, + 3 (28)

Actual inflation 7, is the sum of intrinsic inflation o1, and the aggregate demand y, and cost-
push 3, components. This confirms the interpretation of intrinsic inflation as the rate of inflation
that would occur purely as a result of the history of firms’ pricing decisions, independently of
any current or expected future fluctuations in aggregate economic activity or cost-push shocks.

A second interpretation is that the level of intrinsic inflation constitutes a constraint on what
monetary policy can achieve in the short run. Intrinsic inflation mr, is predetermined, and the
cost-push component 3, is exogenous and cannot be affected by monetary policy. The remaining
variables in (28) are the policymaker’s goals: current inflation 7r,, and current and future output
gaps Y, in y,. Therefore (28) shows that intrinsic inflation m, determines the inflation rate that
is consistent with the complete elimination of current and future output gaps when cost-push
shocks are absent, taking the history of firms’ pricing decisions as given. In other words, in the
case where 3, = 0, the goal y, = 0 can be achieved if and only if 7, = m,. Reducing actual
inflation below its current intrinsic level requires y, < 0, and since all the u; coefficients in (27)
are strictly positive, this can only happen if there is currently a recession, or one is expected
in the future. Hence there is a real cost of bringing down the inflation rate below its current
intrinsic level.'?

Equation (25) gives the rate of intrinsic inflation 1, at a point in time. It is then important
to know how the series {m1,} evolves over time — and in particular, its persistence — because
the time path of 1, is the sequence of inflation rates that must be accommodated if aggregate
output is to be stabilized in all future periods, assuming no further cost-push disturbances.
The time path of intrinsic inflation is found by solving the system of difference equations that
comprises ; = —(I-A)p,_; and p; = p,_ + R, (the first of these being equation (23) with the
aggregate output and cost-push terms set to zero; the second from the definition of inflation and
p: = RP,), starting from a given vector p,, of relative prices at time #). The solution of these
difference equations is denoted by 7, ; = III(j; p;,), and since p,j-1 = p,, + R Zi;]l ks 1t

can be constructed recursively as follows for j > 1:

j-1
po+R [Z I (k; Po)]] (29)

k=1

HI(j; po) = —I = A)

3Note that the cost referred to here is related to the sacrifice ratio: the cumulated loss of economic activity
needed to achieve a reduction in inflation. For a full analysis using a utility-based loss function which also takes
into account price distortions, see Aoki (2001) and Sheedy (2007b).
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The time path of intrinsic inflation {III(j; po)}7, is defined by taking the weighted average of
the solution in (29) across the n industries, so II1(j; pp) = w’II(j; po). Hence, starting from
a time period 7y and taking p,, as given, intrinsic inflation in period #, + j is given by m,,; =
III(j; p;,) under the assumption that all intrinsic inflation has been accommodated in the interim
periods and no further cost-push shocks have occurred. This means that {I1I(; pto)}‘;.‘;1 has the
interpretation of being the only sequence of economy-wide inflation rates from time 7, + 1
onwards that is consistent with the complete elimination of output gaps over the same horizon,
assuming no further cost-push shocks occur after period .

The time path of intrinsic inflation is of course sensitive to the initial relative price vector
P1,-1, Which can be affected by any number of economy-wide or industry-specific disturbances.
But it is possible to give a precise analytical characterization of the persistence of intrinsic
inflation with heterogeneous price stickiness when the economy starts from its steady state
but is then perturbed by some temporary aggregate disturbance such as a cost-push shock that
affects all industries, or a change in the output gap brought about by monetary policy. Suppose
the economy starts from its steady state at time 7, — 1 with relative price vector p;,_; equal to
zero, and then an unanticipated aggregate disturbance occurs in period 7. If the disturbance is
expected to last for only one period then it follows from from equation (23) that the vector of
inflation rates 7r,, is proportional to Ax. Since the economy was in its steady state at f, — 1 with
pn-1 = 0, the relative price vector p,, is proportional to RAk. To focus attention on the effect
of heterogeneity on intrinsic inflation persistence, the size of the shock is normalized so that its
initial impact is to raise economy-wide inflation by 1%.'* If the shock’s impact effect on the
vector of industry-specific inflation rates is A« then this is achieved by scaling down its size by
a factor w’Ak. Thus the persistence of intrinsic inflation can be assessed by examining the time
path of intrinsic inflation starting from relative-price vector p;, = (w’Ak)'RAk. The impulse

response function 1i(j) of intrinsic inflation j periods after a shock is defined using (29):
n(j) = I (j: (w'Ak) ' RAK) (30)

The construction of this impulse response function for intrinsic inflation makes it identical
to the impulse response function of inflation to a white-noise aggregate cost-push shock in
an economy where monetary policy completely stabilizes the output gap. The normalization
guarantees 1m(0) = 1 in all cases, so the value of () for j > 1 can be used to assess the extent
of persistence in intrinsic inflation.

The following result shows that the model with heterogeneous price stickiness always gen-
erates negative intrinsic inflation persistence after a cost-push shock. More precisely, the im-
pulse response function of intrinsic inflation is always negative except in the very first period

when the shock occurs.

“Obviously this means that nothing can be said here about how heterogeneous price stickiness affects the
response of the economy to shocks immediately on impact. This question is beyond the scope of the current work.
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Theorem 1 For any non-degenerate distribution of price-adjustment probabilities {a;}!_ |, the

impulse response function 1( j) of intrinsic inflation defined in (30) has the following properties,
n() <0 -, o)l <(G-DI -, jlgglo n(j) =0 (D

for all j > 1. While the intrinsic impulse response function is initially positive (it is normalized
to 1%, so n(0) = 1), it becomes and stays negative in all future periods. It is everywhere

decreasing in magnitude and eventually tends to zero.
Proof. See appendix A.10. [ |

Theorem 1 has some surprising implications. First, in the case of heterogeneous price stick-
iness, there is an intrinsic tendency for inflation to switch from above-average to below-average
(or vice versa) once a shock has dissipated. Thus the only way to avoid inflation having neg-
ative autocorrelation with heterogeneity is to introduce some positive extrinsic persistence in
either the cost-push shock or the output gap to offset the negative intrinsic inflation persistence.
The basic reason for this is that with heterogeneity, the firms that respond to macroeconomic
shocks are disproportionately drawn from industries with more flexible prices, so when these
shocks dissipate firms are more likely to reverse price changes than when all industries have
equally sticky prices.

A second unusual implication concerns the cost of disinflation, or rather the absence of
such a cost. One interpretation of the impulse response function of intrinsic inflation is that it
represents the time-path of inflation after a temporary cost-push shock that is consistent with
the complete stabilization of the output gap in all current and future periods. While higher-
than-average inflation must be tolerated in the period when a shock occurs, once the shock has
gone, inflation can fall without cost. Indeed, it can actually fall below average immediately
afterwards without any loss of output, and moreover if it merely returned to average, a boom
would occur. This is because heterogeneity in price stickiness creates a natural tendency to
disinflation as those firms whose price increases have created inflation in the past are the most
likely to cut prices once the factors that induced them to raise price are no longer present.
Therefore, heterogeneity in price stickiness actually makes the task of disinflation even easier
than in an economy with a New Keynesian Phillips curve, which is itself widely believed to
understate the actual cost of lowering inflation.

In the special case where industries are not subject to idiosyncratic shocks, there is a more

direct way of seeing the presence of negative intrinsic inflation persistence:

Proposition 4 Suppose that cost-push shocks are identical in all industries, that is, 2, = 1z,.

[Se]

j=1
in (25) is expressible exactly in terms of the history of inflation rates { m,_y , 1, , ...} for the

Then there exists a sequence of coefficients {y;}>., such that current intrinsic inflation m, defined
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whole economy:

oI, = Z Y it (32)
j=1

Now suppose the dynamics of the driving variables 1y, + n.z, from (23) can be modelled
using any stationary AR(1) process (with either positive, negative or no autocorrelation). For
any non-degenerate distribution of price-adjustment probabilities {a;}"_,, it follows that all the

coefficients of lagged inflation in (32) must be negative, that is, y; < 0 for all j > 1.
Proof. See appendix A.9. [

This result shows that the effect of heterogeneity in price stickiness on inflation dynamics is
similar to that created by having lags of inflation in the Phillips curve with negative coefficients.

This reinforces the finding that heterogeneity implies negative intrinsic inflation persistence.

3.3 Inflation dynamics

The previous section has studied the effect of heterogeneity on intrinsic inflation persistence.
But actual inflation persistence also results from persistence that is already present in driving
variables such as unit labour costs or the output gap. This section generalizes the earlier results
by showing that for a given amount of extrinsic persistence, heterogeneity in the frequency of
price adjustment reduces the overall amount of inflation persistence. Thus while inflation may
have either positive or negative autocorrelation depending on whether negative intrinsic per-
sistence outweighs positive extrinsic persistence, it is always possible to conclude that hetero-
geneity unambiguously reduces the overall inflation persistence resulting from macroeconomic
shocks, ceteris paribus.

In what follows, the output gap y; and the cost-push shocks z, are consolidated into the nx 1
vector X; = n,ty, + n;Z;, which is the vector of real marginal costs for each industry. Further-
more, only shocks to the aggregate economy are considered, so that X, = ¢x,. Consequently,

the expression for the inflation rates 7r, in equation (23) becomes:

= (= A)pii + A ) (BAVKEX,, (33)

j=0

In this framework, extrinsic persistence is defined as any autocorrelation in the driving variable
{x;}, and overall inflation persistence is autocorrelation in the stochastic process for economy-
wide inflation {z,}. It is generally supposed that the driving variable will exhibit positive auto-
correlation.

A first step in understanding the effects of heterogeneity on overall inflation dynamics is
obtained by making a comparison with the standard New Keynesian Phillips curve. Taking the
time-series properties of {X,} as given, the rate of inflation implied by a New Keynesian Phillips

curve with discount factor 0 < 8 < 1 and short-run slope « > 0 is denoted by IL,(5, «), and is
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obtained by solving:
IL(B, k) = BEIL;11(B, k) + kX; (34)

It turns out that actual inflation 77, in an economy with heterogeneity can be expressed in terms
of a combination of current and past inflation rates implied by n hypothetical New Keynesian

Phillips curves for economies without heterogeneity. This is proved in the following theorem.

Theorem 2 There exist a set of n hypothetical discount factors 0 < B; < 1 and short-run
slopes k; > 0 such that actual inflation {n,} is obtained from the current and past inflation
rates calculated using the corresponding hypothetical New Keynesian Phillips curves defined

in equation (34):
;= IL(B, k) + Z ciOHt(Bia K;) — Z cint—j(Bia K;) (35)
i=2 =1

For each non-degenerate distribution of price-adjustment frequencies {a;}!_,, all the coefficients
¢;; are strictly positive. Hence all past inflation rates enter the equation (35) with negative

coefficients.

Proof. See appendix A.11. [

Each of the IT,(5;, %;) is the inflation outcome in an economy with a New Keynesian Phillips
curve, which imparts no intrinsic persistence to inflation. Thus the variables {I1,(3;, k;)} display
the same amount of overall persistence as the extrinsic persistence found in the driving vari-
able {x,}. However, actual inflation in the economy with heterogeneity is a linear combination
of current and past values of these series, with all the coefficients on past values being neg-
ative. This reduces overall (positive) inflation persistence relative to what would occur were
no heterogeneity present. It could even lead to negative persistence overall were the positive
persistence in the driving variable {x,} sufficiently weak.

A more precise illustration of this result can be given in the case where the stochastic
process for the driving variable {X;} is modelled as a stationary AR(1) process with positive
autocorrelation:

X =X 1 +v;, ., v ~IID0,0%) (36)

The autoregressive coefficient satisfies 0 < a < 1. Without heterogeneity, the evolution of in-
flation would be determined by a New Keynesian Phillips curve of the form (21). It is straight-
forward to show that the NKPC implies that the impulse response function of inflation to a
cost-push shock is simply proportional to the impulse response function of x, itself. Let _# ()
denote the impulse response function for inflation in the economy without heterogeneity after
a cost-push shock that initially increases inflation by 1%, where j is the number of periods
that have elapsed since the shock occurred. For such an AR(1) process as (36), this impulse

response function is then given by _#(j) = o/,
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When heterogeneity is present, the stochastic process for inflation in terms of the shock v,
and thus inflation’s impulse response function, can be obtained by substituting (36) into (33) to

obtain a representation for {x,} of the form,

RIS (37)

/=0

where 11 is a positive constant introduced because the impulse response function under hetero-
geneity .# () is normalized so that .Z(0) = 1.

A comparison of inflation persistence with and without heterogeneity in price stickiness can
be made by studying the shape and relative rates of decay of the impulse response functions
Z(j)and _Z (j) for the same cost-push shock.

n
=1

the driving variable {X;} is given by (36) for any 0 < a < 1, the impulse response function

Theorem 3  For any non-degenerate distribution of price-adjustment frequencies {«;}"_,, when
A (j) for inflation with heterogeneity necessarily decays more rapidly than the impulse response
F (j) without heterogeneity,

I < L0 (38)

forall j > 1. Furthermore, there are in general two patterns for the impulse response function
J(j) of inflation in the case of heterogeneity:

(i) “Inverted hump-shaped” — . (j) starts positive; it then declines and becomes negative;
it then declines further and has a turning point; finally it increases, but remains negative,
while it tends to zero.

(ii) “Fast monotonic decay” — 7 (j) starts and remains positive, declines monotonically to
zero, but at a faster rate than ¢ (j).

There is a threshold for the extent of extrinsic persistence a below which the economy is in case

(i), above which it is in case (ii), and at which intrinsic and extrinsic persistence exactly cancel

out with the impulse response function under heterogeneity equal to zero for all j > 1.
Proof. See appendix A.12 [

In all cases, the impulse response function of inflation exhibits less persistence with hetero-
geneity than without it. This is manifested in the more rapid decay of the former relative to the
latter. The faster decay occurs because the negative intrinsic persistence implied by heterogen-
eity cancels out some of the positive extrinsic persistence, leading to lower overall persistence.
When the (positive) extrinsic persistence is sufficiently weak, the negative intrinsic persistence
dominates and the impulse response function switches from positive to negative at some point,
taking on an inverted hump shape. But when extrinsic persistence is dominant, the impulse
response function remains monotonic, but still decays more rapidly relative to the case of ho-

mogeneity.
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4. Quantitative significance of the results

While the results of section 3 clearly establish the qualitative effects on inflation of introdu-
cing heterogeneity in price stickiness, the quantitative importance of the results remains to be
assessed. This is done by calibrating a model with a range of industries that mimics the dis-
persion of price-adjustment frequencies found for the U.S. by Bils and Klenow (2004). The
calibrated model is then used to obtain both the impulse response function of intrinsic infla-
tion and the overall impulse response function of inflation in the presence of some extrinsic
persistence.

The Bils and Klenow dataset is derived from the U.S. Bureau of Labor Statistics (BLS)
survey of individual prices, which underlies the construction of the Consumer Price Index
(CPI). They present average monthly frequencies of price adjustment for 350 product categor-
ies (entry-level items, or ELIs), for the years between 1995 and 1997. Each of these categories
is treated as a separate “industry” for the purposes of this paper. Hence n is set to 350, and the

distribution {a;}?_, of price-adjustment probabilities is taken directly from Bils and Klenow’s

n
i=1

the Consumer Expenditure Survey (CEX). The ELIs in the Bils and Klenow dataset comprise

results.’> The distribution of industry sizes {w;}", is derived from the share of each ELI in
68.9% of the total consumer expenditure according to the CEX. Here it is assumed that their res-
ults are representative of the whole U.S. economy, so industry sizes w; are set as proportional
to the CEX weights.!® When this distribution is used, the weighted average of the monthly
relative frequency of price adjustment across industries is 0.261, and the standard deviation
is 0.189. This means that in every month approximately one quarter of firms change price,
though there is considerable variation across product types. A histogram of the distribution of
price-adjustment probabilities is plotted in Figure 1.

The other parameters of the model are determined as follows. The discount factor S is
set to 0.998 so that it is consistent with a 2% annual real interest rate when one time period
is equal to a month.!” The intra-industry elasticity of substitution & is set to 6, yielding an
average markup of price on marginal cost of 20%.'® The inter-industry elasticity of substitution
&s 1s generally thought to be lower than &, reflecting the belief that a larger price change is
required to induce consumers to substitute between unrelated products than those that have
similar characteristics. In the optimal monetary policy analysis of Aoki (2001), & 1s effectively
set to 1 because a Cobb-Douglas functional form is used for the aggregator of goods produced
by different industries. Here a value of 0.75 is used, the mid-point of the range estimated by
Fisher, Fleissig and Serletis (2001) using very broad product categories. The elasticity 7., of
a firm’s real marginal cost Cy (Y;(2); Y;', Z;;) with respect to a change in its own output Y;(z)

15Column “Freq” of Table Al in Bils and Klenow (2004).

16Column “Weight” of Table A1 in Bils and Klenow (2004), rescaled so that the weights sum to 100%.

"The steady-state annual real interest rate is equal to (1/8)'2 — 1.

18Recall that equation (12) implies that the average (gross) markup is given by &;/(g; — 1), which is equal to 1.2
when & = 6.
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is one of the determinants of real rigidity in the sense of Ball and Romer (1990) (real rigidity
is decreasing in 7.,). In order to explain why firms keep their prices sticky when menu costs
are small, Ball and Romer argue that a high degree of real rigidity is needed. Introducing a
comparable degree of real rigidity here requires setting the parameter 7., to 0.1. Knowledge of
1y together with & and &5 then allows the value of the coefficient 77, appearing in (17) and (19)
to be obtained.!® The values of all the calibrated parameters are listed in Table 1.

Finally, to calculate the overall impulse response function of inflation (in addition to just
the impulse response function of intrinsic inflation) it is necessary to make an assumption about
the extent of extrinsic persistence. Extrinsic persistence is modelled by assuming the driving
variable X, is an AR(1) process, as in equation (36). Two values of the autoregressive parameter
a are considered: low extrinsic persistence (a = 0.7) and high extrinsic persistence (a = 0.95).

The impulse response function of inflation is calculated both with and without heterogen-
eity present to isolate the impact of heterogeneity in price stickiness on inflation persistence.
The model without heterogeneity assumes that there is just one common probability of price
adjustment that applies to all firms (as in the standard Calvo model). This probability is taken
to be the average @ of the distribution {e;}!_, used in the case of heterogeneity, as given in Table
1.

First consider intrinsic inflation persistence alone. The impulse response function of in-
trinsic inflation is the only path of inflation that is consistent with complete stabilization of
the output gap after a (positive) white-noise cost-push shock has occurred. It thus reveals how
much inflation in future time periods is direcly caused by the price adjustments that happen on
impact, separate from any future inflation created by changes in aggregate demand or persistent
changes in costs. Figure 2 plots the impulse response of intrinsic inflation for the two cases of
homogeneous and heterogeneous price stickiness. To focus attention on the issue of persist-
ence, the impulse response functions are scaled so that they both begin at 1%. This is done
because measures of persistence are independent of scale and because studying the size of the
impact effect of shocks is not the goal of this paper. With homogeneity this impulse response
function returns to zero in the period after the shock, illustrating the lack of intrinsic inflation
persistence generated by the standard Calvo model. With heterogeneity, the effects of the shock
do not die away immediately, but the subsequent effect is clearly negative because the intrinsic
inflation falls and stays below zero from one period after the shock onwards. Immediately
after this reversal, the negative effect on intrinsic inflation is equivalent to more than 40% of
the initial positive impact when the shock occurred. Thus there is a noticeable and significant
change from positive to negative in the impulse response function of intrinsic inflation when
heterogeneity is present, as compared to an immediate return to zero without heterogeneity.

Figure 3 makes the comparison between the cases of homogeneity and heterogeneity in
the presence of some extrinsic persistence. Here the autoregressive parameter a in (36) is set

to 0.7, a fairly low value when one time period is equal to a month. As was the case with

19See equation (A.6) in appendix A.1 for details.
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intrinsic persistence, the addition of heterogeneity makes a substantial difference to overall
inflation persistence. The impulse response function with heterogeneity decays almost twice
as fast than that with homogeneity, and switches from positive to negative before returning to
zero in the long run. It thus has the “inverted hump shape” referred to in Theorem 3. For higher
degrees of extrinsic persistence the pattern eventually switches to one of monotonic decay in
both cases, but the decay under heterogeneity continues to be much more rapid. This illustrated
by Figure 4 for the case where a = 0.95, a much higher degree of extrinsic persistence. The
effect of heterogeneity is approximately to halve inflation persistence. Therefore, Figures 2, 3
and 4 together indicate that the qualitative features identified in section 3 are also likely to be
quantitatively important with a distribution of price-adjustment frequencies that matches what

was found by Bils and Klenow for the U.S. economy.

5. Conclusions

This paper has shown that differences in the frequency of price adjustment between industries
unambiguously reduce overall inflation persistence relative to what would occur if all indus-
tries shared the same price-adjustment frequency. By viewing overall inflation persistence as
deriving from two sources, intrinsic persistence from the Phillips curve itself, and extrinsic
persistence from serial correlation in variables that affect inflation, it has been shown that het-
erogeneity in price stickiness actually implies negative intrinsic persistence. This explains why
for the given level of extrinsic persistence, heterogeneity lowers overall inflation persistence.

In addition to the analytical results establishing the direction of heterogeneity’s effect on
persistence, this paper also assesses its quantitative impact. A calibration of the model using
U.S. microeconomic evidence on the dispersion of price-adjustment frequencies shows that the
effect of heterogeneity on inflation dynamics is quantitatively important. The microeconomic
evidence indicates a significant amount of negative intrinsic persistence, and the paper shows
that this translates into a substantial reduction in overall inflation persistence relative to the case
of no heterogeneity.

But while there is overwhelming microeconomic evidence supporting the model’s assump-
tion of a range of price-adjustment frequencies, much less support is found for the macroeco-
nomic implications of this heterogeneity. The nature of this puzzle can be understood by going
back to some of the criticisms of the New Keynesian Phillips curve posed by Mankiw (2001). If
a non-degenerate distribution of price-adjustment frequencies is added to an otherwise standard
New Keynesian model, these criticisms of the NKPC apply even more forcefully to the model
with heterogeneity.

First, the New Keynesian Phillips curve is only consistent with a given amount of inflation
persistence if a similar degree of persistence is found in the determinants of inflation. With
heterogeneity, the situation is made worse because inflation is now less persistent than its de-

terminants. Thus more serial correlation in inflation’s driving variables must be explained to
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justify a given level of inflation persistence.

Second, the New Keynesian Phillips curve does not imply a cost of disinflation. When
heterogeneity is introduced, the cost of disinflation is even lower than it otherwise would be
under the NKPC. This means that a disinflation which is costless with the NKPC would actually
stimulate economic activity in the model with heterogeneity.

Third, the New Keynesian Phillips curve does not explain why monetary policy has its
greatest effect on inflation with a longer lag than it does for real variables such as aggregate
output.?’ Once heterogeneity is introduced, inflation’s impulse response function to a monetary
policy shock decays more rapidly than it would with the NKPC, and so the peak effect on
inflation comes even sooner.

The intuition for these macroeconomic implications is straightforward. When inflation oc-
curs as the result of a macroeconomic shock, the underlying price changes come from a group
of firms which is not generally representative of all firms in the economy. Because some in-
dustries have more flexible prices than others, the group of firms changing price is likely to
be drawn disproportionately from those industries with more flexible prices. But this means
that the firms which did change their prices in response to a shock are also the most nimble in
reversing any price changes once the shock has dissipated. This makes inflation less persistent
and disinflation easier to achieve without cost than it otherwise would be.

The problem is that the basic New Keynesian model to which heterogeneity has been added
contains no source of (positive) intrinsic inflation persistence that can outweigh the negative
intrinsic persistence implied by heterogeneity. It is usually the case that at least some positive
intrinsic persistence, such as that resulting from backward-looking rules of thumb for price
setting or indexation, must be added to the standard New Keynesian Phillips curve to fit the
macroeconomic evidence on inflation dynamics. The results of this paper suggest that when
heterogeneity is present, the need for these sources of intrinsic persistence, or alternatively for
the model presented in Sheedy (2007a), is even greater still. Thus, more research on sources
of positive intrinsic inflation persistence is required if the microeconomic evidence on price

setting is to be reconciled with what is known about aggregate inflation dynamics.

20See Christiano, Eichenbaum and Evans (1999) for evidence on this from a structural VAR study of monetary
policy shocks. This stylized fact is also widely accepted by central banks.
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Table 1: Calibrated parameter values

Description Parameter Value
Number of industries n 350
Mean price-adjustment probability (monthly) a 0.261
Standard deviation of price-adjustment probabilities Ta 0.189
Discount factor (monthly) B 0.998
Intra-industry elasticity of substitution & 6
Inter-industry elasticity of substitution Es 0.75
Elasticity of marginal cost w.r.t. output Ney 0.1
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Figure 1: Distribution of price-adjustment probabilities
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Source: Bils and Klenow (2004).

Figure 2: Impulse response functions for intrinsic inflation with and without heterogeneity
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Notes: The impulse response function of intrinsic inflation in the case of heterogeneity is obtained from
equation (30) using the method described in section 3.2. The calibrated parameters of the model are given
in Table 1 and the distribution of price-adjustment frequencies {a;}?_, is plotted in Figure 1. The impulse
response function of intrinsic inflation with homogeneity is obtained immediately from the properties of the
New Keynesian Phillips curve in (21) and (24). Both impulse response functions are scaled to 1% at time 0
to focus on comparing persistence.
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Figure 3: Impulse response functions for inflation with and without heterogeneity in the
case of low extrinsic persistence (a = 0.7)
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Notes: The impulse response function in the case of heterogeneity is obtained from equations (33) and (36)
using the calibrated parameters from Table 1 and the distribution of price-adjustment frequencies {a;}?_,

plotted in Figure 1. The impulse response function with homogeneity is obtained by solving (24) and (36).
Both impulse response functions are scaled to 1% at time 0 to focus on comparing persistence.

Figure 4: Impulse response functions for inflation with and without heterogeneity in the
case of high extrinsic persistence (a = 0.95)
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Notes: The impulse response function in the case of heterogeneity is obtained from equations (33) and (36)
using the calibrated parameters from Table 1 and the distribution of price-adjustment frequencies {a;}7_,
plotted in Figure 1. The impulse response function with homogeneity is obtained by solving (24) and (36).
Both impulse response functions are normalized to 1% at time O to aid comparison.
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A. Technical appendix

A.1 Steady state and log linearizations

The steady state around which the first-order approximations of the model’s equations are taken
is characterized by a constant inflation rate, constant real output growth, a constant nominal

interest rate, and the absence of cost-push shocks:

Ht:ﬁ ) Gl:C_; 9 It:I b ZII:ZIZI (A'l)

For simplicity it is assumed that the constant rates of inflation and real output growth are zero,
so the steady-state gross inflation rate is /7 = 1, and the steady-state gross real growth rate is
G = 1. It is assumed that the steady-state real interest rate is positive, which requires that the
steady-state gross nominal interest rate satisfies 7 > 1. It is more convenient to represent the
interest rate as a discount factor, so define 8 = 7', which must satisfy 0 <8 < 1.

The aim is to find the steady-state values of r;, = 7, 0;; = 0; and Y, = Y. Since IT = 1,
the second part of (15) shows that 7; = g, for all i. By evaluating (13) at the steady state (A.1)
and using the fact that 7; = g;, it is seen that 7; = 7 and 9; = 0 for all i. Then by substituting
0; = o into the first part of (15), it follows that 6 = 1, and hence 7 = 1. Finally by substituting
these results back into (13), the steady-state output gap is found. In summary, the steady state

implied by the assumptions is:

_ 1\
r=1 ., &=1 y:(& ) (A2)
&t
The equations of the model are now log-linearized around the steady state defined by (A.1)
and (A.2). All second- and higher-order terms are suppressed in the following equations and

throughout the paper. By log-linearizing the price level equations in (15):

n o0 j-1
Dwpi=0 ,  py=) a(l-a) {r,-,,_j -, n,_k} (A3)
i=1 j=0

k=0

Using the properties of the steady state in (A.1) and (A.2), and the definitions of o;; = P;/P,
and r;, = R,/ P,, it follows that p;, = P;, — P,, r;, = R, — P,, and 7, = P, — P,_;. Hence the results
in (16) can be deduced from equation (A.3).

Now consider a log linearization of the reset price equation (13),

T

1= B(1 - ) - .
it = Tgl‘ncy Z; B - ay)) I]Ez[ ;11 {Gs + (8f +(1+ 8f77cy)) Ty — Is}
v el (A4)
+ (8f - 88)(1 + ncy)pi‘r + ncny +2Zir — Z {Gs + &g — Is} - (81‘ - Ss)pir]
s=t+1
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where i, = log 7, — log I denotes the log deviation of the gross nominal interest rate 7,. This

expression can be simplified as follows:

_ -0 -a)

liy = 1+ &m Z (ﬁ(l - a'i))T_t (8f - Ss)ncypir + ncyYT + Zjr + (1 + gfncy) Z s (AS)
cy —

s=t+1
By substituting r; = R; — P, and 1, = P, — P,_; into (A.5) and rearranging, the expression for

Ri: given in (17) is obtained with the coefficients 7,, 17, and 7, defined as follows:

1 +neyes Ty 1
T W=7 UK

n (A.6)

I + neye I + neye 1+ NeyE

This completes the necessary log linearizations.

A.2 Proof of Lemma 1

Take the i-th eigenvalue ¥ of S = KR with corresponding eigenvector v; # 0. Since R =

I - ww’, the requirement Sv; = £°V; is equivalent to:
Kv; - Kuw'v) = &v; (A7)

Let vj; denote the j-th element of the n X 1 eigenvector Vv;, and V; = w’v; the weighted average
of the elements of v; using the industry sizes w; as weights. Because K = diag{x;}’_, and
V; =(Vi, ..., Vy ), equation (A.7) can be stated as «;(v;; — V;) = {fvji forall j=1,...,n.

By collecting the terms involving v;; on the left-hand side, this becomes
(kj = & Vi = k9 (A.8)

again forall j=1,...,n.

Now consider the special case where the eigenvalue {7 is exactly equal to one of the Phillips
curve slopes, that is, ¢ lS = k¢ for some £. Since «x, > 0 from the inequalities in (A.51), equation
(A.8) implies that v; = 0. Because (A.51) shows that all the Phillips curve slopes «; are distinct,
it must be the case that x; # {f for all j # €. It then follows from (A.8) thatv;; = O forall j # ¢
because V; = 0. Consequently, the weighted average v, = w’v; is simply equal to w,v;. And
moreover since w, > 0, the fact that v; = 0 means that v,; is also zero. Thus, all the elements of
v; must be zero if &7 = k, for some ¢. But this would imply that V; is the zero vector and hence
cannot be an eigenvector, contrary to the supposition. Therefore, the case where the eigenvalue
% is exactly equal to one of the Phillips curve slopes can be ruled out, so ¢* # «; for all j.
Thus, an expression for the elements of the eigenvector v; can be obtained directly from (A.8)

K

W:@:g% (A.9)
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for all j and i. From this formula it is immediately apparent that were the weighted average
V; equal to zero then v; would be the zero vector, and again could not be an eigenvector. Thus
v, # 0, and as the eigenvalues are only determined up to a scalar multiple, V; can be set to
1 without loss of generality. This ensures that all the eigenvectors can be normalized so that
w'v; = 1.

By taking a weighted sum using w; of the elements v;; in formula (A.9) and making use of
the normalization }7_; w;v;; = 1, the following necessary condition is obtained that must be

satisfied by any eigenvalue £

n Kj
D w—Lr =1 (A.10)
=1 Kj— gi
Because the industry sizes w; sum to 1, (A.10) is equivalent to:
n {S
wi——=0 (A.11)
,Z:; k=

It is clear that an eigenvalue of zero is always consistent with equation (A.11). Now consider
any non-zero eigenvalue 7 # 0. As the eigenvalue is non-zero and is known not to equal any
of the Phillips curve slopes «; exactly, an equivalent version of equation (A.11) can be obtained
by multiplying both sides by £? T (ke = %) to obtain:

n

Zn:w, H(Kg—gf) =0 (A.12)

=1 =1
t+j

Define the following scalar polynomials f;(z) and f(z) with reference to the expression in (A.12):

fz) = § a)jfj(Z) > fj(Z) = I [(Kf -2) (A.13)
j=1 (=1
t#]

It is clear from the construction in (A.13) that equation (A.12) is equivalent to f({ f) = 0, making
this a necessary condition for any non-zero eigenvalue of S. It is also apparent that each ;(z)
and hence f(z) is a polynomial of degree n— 1, with a corresponding set of n—1 roots. Because it
is known that the n X n matrix S has n eigenvalues, and that a zero eigenvalue is consistent with
necessary condition (A.11), it follows that zero must always be an eigenvalue of § and that the
polynomial equation f(£? ) = 0 is necessary and sufficient for the remaining n — 1 eigenvalues.
Let the zero eigenvalue be ordered first so that £{ = 0 without loss of generality. The other

eigenvalues ¢ IS for i > 2 are the roots of {(z) = 0. The definition of the polynomial f;(z) in
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(A.13) implies the following expression when it is evaluated at the Phillips curve slopes «;:

H?:l(Kt’_Kj) lf l:]
filk) = ] (A.14)
0 if Q%)

Therefore the polynomial f;(z) is zero when evaluated at any Phillips curve slope except that
corresponding to the j-th industry, and hence f(x;) = w;f;(k;). The sign of this expression can

be obtained from (A.14) using the chain of inequalities for the Phillips curve slopes in (A.48):

Jj-1 n
) = | | —xo | | e =) >0 (A.15)
t=1

=j+1

Since w; > 0 it must be the case that (—1)"'§(x;) > O for all i. Thus the function f(z) alternates in
sign as it is evaluated at each of the Phillips curve slopes «; in sequence. Because the function
f(z) is a polynomial, it is continuous and hence the intermediate value theorem can be applied to
the intervals of the real line in which f(z) changes sign. Foreachi = 2, ..., n, there consequently
exists a {® € R with k_; < ¥ < k; such that f({¥) = 0. This yields the set of n real eigenvalues,
and the chain of inequalities (A.51) follows from (A.48).

It is clear from (A.51) that all the eigenvalues are distinct, and because of this, the set of n
eigenvectors is linearly independent. That the elements of these eigenvectors are real numbers
can be seen from the formula in (A.9) and the fact that the eigenvalues themselves are real
numbers. And since {7 = 0, the expression for the elements of the eigenvectors in (A.9)
implies that v;; = 1 for all j, so the vector of 1s is the eigenvector corresponding to the zero
eigenvalue. Finally, note that v; = ¢ is consistent with the normalization w’v; = 1. This

completes the proof of the lemma.

A.3 Proof of Lemma 2

Let Y(z) = |W(z“)| be the determinantal equation of the matrix polynomial ¥(z). Using the
definition of ¥(z) in (A.54), if zj is a root of the determinantal polynomial, that is Z(zy) = O,
then it is also true that:

M= (55" + o) 1| =0 (A.16)

Therefore, z; is a root of Z(z) = 0 if and only if M = Zy '+ Bz is an eigenvalue of M. When
z # 0 the equation z~!' + Bz = ¢™ is equivalent to the following quadratic equation:

B -Mz+1=0 (A.17)
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For a given value of ¥, the quadratic equation (A.17) has two roots. The lower branch of the

quadratic root function is denoted by 2({):

(- NP - 48

2(0) = 25

(A.18)
If M > 1 + B then it follows that £° — 48 > (1 — )* > 0, and so the roots of the quadratic
equation (A.17) are both real numbers. It is also clear that 2(1 +8) = 1, and /M > 1+
implies 0 < 2(M) < 1. Thus, the lower branch (A.18) is chosen because the root is always on
or inside the unit circle when the inequalities in (A.57) are satisfied. The first derivative of the
quadratic root function 2(¢) in (A.18) is

2') = L (1 - L) (A.19)
2B 2-48

and 2'(¢M) is strictly negative whenever ¢ > 1+f. By defining {* = 2(£M), these properties

together with the inequalities for ¢ in (A.57) establish the corresponding chain of inequalities

(A.59) for the real numbers .

Let D* = diag{¢™}", be the n X n diagonal matrix of the ¢* values. The matrix A is
constructed so that it has n eigenvalue—eigenvector pairs {* and v;. This is done by defining A =
VD*V~!. Because (A.59) implies that A has no zero eigenvalue, A is certain to be invertible.
The definition of the eigenvalues ¢* as roots of the quadratic equation in (A.17) also ensures
that B¢ iAz — MM 41 = 0 for all i. Because D and D are both diagonal matrices, this set of n

scalar quadratic equations can be stated as the following matrix quadratic equation:
gD —D"D +1=0 (A.20)

The matrices A and M share the same set of eigenvectors v;, or in other words, they are
simultaneously diagonalizable. Premultiplication of (A.20) by V and postmultiplication by V™'
thus demonstrates that the following matrix quadratic equation is always satisfied by M and
A:

BA> = MA +1=0 (A.21)

Because A is non-singular, equation (A.21) implies that M = A™! + BA.

Define the n X n linear matrix function A(z) = I — Az using the matrix A as constructed
above. Then the brackets of the matrix product A8z )A~! A(z) in (A.58) are multiplied out as
follows:

A -BAZHA A= Az) = (A" +BA) - Iz - BIZ! (A.22)

By comparing the coefficients of each power of z in (A.22) with the those of the matrix
function ¥(z) in (A.54), and using the expression for M in (A.21), it is clear that ¥(z) and

A(Bz A A(z) are the same matrix function. Therefore, all the claims of the lemma are veri-
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fied.

A.4 Proof of Lemma 3

The matrix of eigenvectors V is invertible according to Lemma 1, so there is a unique solution
given by % = V™'k. Since this x satisfies Vx = k, the expression for the elements v ;i of matrix

V given in (A.9) can be used to write out the system of equations determining x explicitly,

n

Kix
Z il (A.23)
where the above holds for all i = 1,...,n and recalling that the eigenvectors have been nor-

malized in accordance with Lemma 1 so that v; = 1. Because (A.48) implies that «; is strictly

positive, nothing is lost by cancelling it from both sides of (A.23):

> %o (A24)
- K; —

The following identity is used to solve the system of equations in (A.24):

n H%;l(/(h - {1 )
=R UBUEEES)

1l
—_

(A.25)

The above holds for all i = 1, ..., n, and the first step is to verify this identity before using it to
find an explicit formula for x;. Since it is known from (A.51) that all the eigenvalues ¢ f of S
are distinct, the identity in (A.25) can be multiplied by the non-zero product []}_, H;‘;ll 04 ,f - IS)
to obtain an equivalent expression (which is also required to hold for all i):

Z( 1y ]_[ ]_[ ﬂ(xh -G - = ]_[ ]—[@k ) (A.26)

h=1 k=1 I=1 k=1 I=1
h#i k#j 1#j

A special type of matrix known as a Vandermonde matrix is very useful in verifying the
identity (A.26). For a given sequence of n numbers {{°}7,, the n X n Vandermonde matrix
({{k }k=1) is defined as,

1 - ng”‘l

S g Bt
v(g)=. 7 . 7 (A27)

i é«.s gs;l—l

where the i-th row of the matrix is a geometric progression in 7. The determinant of the
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Vandermonde matrix in (A.27) is equal to the following expression:?!

n

k-1
v (g )| = & -4 (A.28)
=1

k=1

It is clear from this formula that the identity in (A.26) can be restated in terms of determinants

of Vandermonde matrices,
V()| = Z( D (1 v el j]‘[(m—@ (A.29)
ot

where the above must hold for all i. Let &; denote the cofactor of V ({{ ,f }Zzl) in (A.27) corres-

ponding to the n-th column and the j-th row:

n-2
i
s, s
€= (1) -g_l {fs_ln ) (A.30)
j+1 T {j+1
15 - §S”‘2

It is immediately apparent from (A.27) and (A.30) that € is equal to (—1)"*/ multiplied by
the determinant of the Vandermonde matrix V ({{ ,f Yo ¢ f }), which is generated from the se-

quence {{} };_, with the j-th element deleted:

= (-1

V(M) (A31)

The cofactors ¢; of the matrix V ({§ ,f }Z:]) have the property that determinant ‘(V ({{ ,f }221)‘
can be obtained by multiplying each &; by the j-th element in the n-th column of V ({g“ ,f }Z:])
and summing along the n-th column. But when the cofactors are multiplied by elements from

a different row, the sum is equal to zero:??

o _ it h=01,...n-2 .32
Zg {'q/ @) it h=n-1 (A2

To make use of this result, the product appearing in equation (A.29) is expanded as a sum of

21See Bellman (1960) for a proof.
22See any text on linear algebra, for example, Anton (1994).

33



powers of £ f,

]—[ (k1 = & )—Z( 'Rty (A.33)

h=1,h#i

where the coeflicients &;,, are given by sums of products of the Phillips curve slopes {«;}"_;:

n—1-h
K= D) K, (A.34)
V(l1seeslp-1-1) k=1
GE(Leni=Li+ 1.}
Note in particular that &;,_; = 1 for all i. By substituting the expression for the product in
(A.33) into (A.29), that identity is now equivalent to:
n—1 N
v (15| = =21 1)”&;,2( D |V (€ )| (A35)

Using equation (A.31), the determinants on the right-hand side of the identity (A.35) can be

replaced by terms involving the cofactors ¢’

V()| = Z( 1R, Zésh%” (A.36)

Then the results for the sums of cofactors stated in (A.32) imply that the identity in (A.36) is

equivalent to:
[V (128 3)| = S [V (15 120)] (A37)

But this statement is clearly true since the coefficient &;,_; in (A.34) is known to equal one for
all i. Therefore, the original identity (A.25) must be true.
The identity (A.25) is now used to verify that the following proposed solution to the system

of equations in (A.24) is correct:

n S
%, = —H,’j:l(K: éf's) (A38)
M (& - &)
k#j

By substituting this claim into equation (A.24) and cancelling the term (x, — £°) from both
numerator and denominator, the identity (A.25) is obtained. Thus the solution given in (A.38)
must be correct for all values of k; and £° .

Finally, by using the chain of inequalities for the sequences {x;}7, and {{°}% in (A.51), it
can be seen that the numerator of (A.38) contains j — 1 negative terms and n — j + 1 positive,
and the denominator contains j — 1 negative and n — j positive. Hence, it is shown that »; > 0

for all j, completing the proof.

34



A.5 Proof of Lemma 4

Define the n X 1 vector x; using the expected values of a scalar time-series {X,}:
X, = ) (BA) KEX i (A.39)
k=0

If X, = ¢X, then equation (22) implies that the vector of price levels P, can be expressed in terms
of x;:
P, = AP,_; + Ax, (A.40)

Repeated backward substitution of (A.40) shows that P, can be written in terms of a sum

involving current and past values of x;:
P,=) A'x, (A41)
Jj=0
The expression for X, is then substituted into (A.41) to obtain:

P,= > A Y (BAYKE, % ik (A.42)

=0 k=0

It is shown in Lemma 2 that the matrix V diagonalizes A, which means that A = VDAV,
where D is the matrix of eigenvalues of A. The matrix V also diagonalizes all powers of A
because A* = VDMV!. By using this fact and the definition # = V™' k, equation (A.42) is seen
to be equivalent to (A.69a). Equation (A.69b) is then obtained by first-differencing (A.69a).

The equations for the aggregate price level P, = w’P, and inflation rate n, = w’m, are
deduced from their counterparts (A.69a) and (A.69b) by first noting that Lemma 1 implies that
each of the columns v; of V is normalized so that w’v; = 1 and hence w’V = ¢’. This together
with the fact that D® is a diagonal matrix, and ¢ {\ = 1, yields equations (A.70a) and (A.70b),

completing the proof.

A.6 Proof of Proposition 1

The first step is to use the assumption of Calvo pricing for each industry to obtain recursive
versions of the price level and profit-maximizing reset price equations. As can be checked by
repeated backward substitution, the following equation is equivalent to the expression for the
industry i price level P;, given in (16):

Pi=(1-a)P; +aR; (A.43)
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Likewise, repeated forward substitution shows that the following is a recursive version of the

equation for the reset price R;; in (17):

Ri = (1 — a)ER;;11 + (1 =B — a)(Pj; — MePic + MY + 1:Zir) (A.44)
Substitute equation (A.43) into (A.44) to eliminate the terms involving the reset price R;;:

ai(l - B — @)

1—01'

(1 +pB)P; =Py +BEP; 111 +

(=MpPir + 1MyY: + M:Zit) (A.45)

The coeflicient of the term in parentheses on the right-hand side of (A.45) is the industry-
specific component of the slope of the short-run Phillips curve. This depends on the steady-
state discount factor 8 and the probability of price adjustment «; in industry i. Hence define
the following function % (@) giving the industry-specific slope « in terms of a particular price-

adjustment frequency a:

1-601-
A= AL (A.46)
-«
This function has the property that if 0 < @ < 1 then 0 < J# (@) < co. It has derivative
1 -4 -y
H'() = ————— A47
@ =— "0 (A47)

which satisfies #”(a) > 0 for 0 < @ < 1, implying that . («) is a strictly increasing function.
So if x; = J (a;) denotes the slope of the industry i Phillips curve then from the chain of

inequalities for ¢; in (9), a similar chain of inequalities for «; is obtained:
O<k)<ky<: " <Ky <Kp< (A.48)

Let x be the n X 1 vector containing these industry-specific slopes, and let K = diag{x;}’_, be
the n X n diagonal matrix containing these slopes along its principal diagonal.
Using the definition of the matrix K and the vectors of price levels P, and reset prices R;,

the n equations in (A.45) can be stated as
(1+BP, +n,Kp, = P_; + BEP..; + K (nyey, +n.2,) (A.49)

where ¢ is an n X 1 vector of Is. Since the relative price vector p, is given by p, = RP,, the
left-hand side of (A.49) is equivalent to MP,, with M = (1 +)I+1,KR being an n X n matrix.
It is easily checked that the matrix R = I — tw’ has the property that R* = R. Hence R is
idempotent and must therefore also be positive semi-definite. Furthermore, the parameter 7,
is strictly positive and the matrix (1 + B)I is positive definite, as is K from (A.48). By taking
these facts together, the matrix M must be positive definite. Multiplying both sides of (A.49)
by M yields equation (18).
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To state the pricing equations in terms of inflation rates and relative prices, note that the
coeflicients of the money price levels on both sides of equation (A.45) have the same sum. This
means that by cancelling a unit root in the money price level, the equation can be restated in

terms of the industry-specific inflation rate m;, = P;, — P;,_; and the relative price p;, as follows:

7t = BEm 11 + Ki(—1p0i + 1yY: + 0:Zit) (A.50)

Using the definitions of the matrix K and the vectors of inflation rates 7r, and relative prices
p:, equation (19) is immediately obtained from (A.50). This establishes all the claims of the

proposition.

A.7 Proof of Proposition 2

The first step in obtaining the forward- and backward-looking components of the Phillips curve
is to analyse the properties of the n X n matrix & = KR, in particular, its eigenvalues and
eigenvectors. A scalar /5 € C is said to be an eigenvalue of S if there exists a non-zero n X 1
vector V € C” such that Sv = ¢°v. The i-th eigenvalue and eigenvector are denoted by ¢; and

v;. The following result characterizes the properties of these eigenvalues and eigenvectors.

Lemma 1 The matrix S has n distinct, real, and non-negative eigenvalues (¢ € R, which are
without loss of generality ordered to form an increasing sequence. Exactly one eigenvalue is
zero and the others are interlaced with the sequence of Phillips curve slopes k; according to the

following chain of inequalities:
0=0 <k <8 <k <L <+ <kyy <L <k, <0 (A.51)

There also exists a corresponding set of n linearly independent and real-valued eigenvectors
v; € R", and the eigenvector associated with the zero eigenvalue is a vector of 1s. The eigen-

vectors can be normalized so that w'V; = 1 for all i.
Proof. See appendix A.2. [

The eigenvectors of S are collected into an n X n matrix V= (v, --- , V, ). The linear
independence of the set of eigenvectors guaranteed by Lemma 1 ensures that V is non-singular.
If D° = diag{{f }%_, is the diagonal matrix of eigenvalues of S, then eigenvalue-eigenvector
relationship can be stated as SV = VD®. Because V is invertible, this means that the matrix S

can be diagonalized as follows:
V'SV =D’ (A.52)

The equations for the price level vector P, in (18) are equivalent to the following expression

since the matrix M is non-singular:

MP, = P,_| + BE,P,,, + Ky, +1.2) (A.53)
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By introducing the lag operator L, the forward operator IF (where IF = IL™!), and the n X n
matrix function ¥(z) defined by,

U()= M-Iz -pI7! (A.54)
the pricing equations in (A.53) can be expressed as follows:
E[#@L)P,] = Kty + n:2) (A.55)

The matrix function ¥(z) is factorized using the diagonalization of the n X n matrix M.
Since § = KR, the definition of M given in Proposition 1 is equivalent to M = (1 +8)I+1,S.
This allows the diagonalization of M to be obtained easily from that of §, which was found in
Lemma 1. Note that (A.52) implies that

VMV =(1+pI+n,D° (A.56)

and since the right-hand side is a diagonal matrix, the same matrix of eigenvectors V diagon-
alizes both & and M. The matrix of eigenvalues of M is thus obtained from the right-hand
side of (A.56), and is denoted by the diagonal matrix D¥ = (1 + B)I + n,D°. If £™ is the i-th
eigenvalue of M then DY = diag{¢}", and {M = (1 + p) + 1,{5. Because 7, is a positive
constant, the inequalities for £ in (A.51) imply the corresponding chain of inequalities for the
ek

1+8="<g < <M <M <00 (A.57)

The next result constructs a factorization of the matrix function ¥(z) using this diagonalization.

Lemma 2 There exists an n X n non-singular matrix A such that the linear matrix function
A(z) = 1 — Az factorizes the matrix function W(z) defined in (A.54) as follows

U(z) = ABz HA T A®2) (A.58)

for all z € C\{0}. The matrix A has n distinct, real, and positive eigenvalues {* € R satisfying

the following chain of inequalities:
1=>0>>0,>050 (A.59)

There are n — 1 eigenvalues inside the unit circle and one eigenvalue equal to unity. The matrix

A shares the same eigenvectors as S and M.
Proof. See appendix A.3. [

By substituting the factorization (A.58) of ¥(z) into (A.55), the following expectational

38



difference equation is obtained:
E, (I - BAF)A (I - AL)P,| = K(ney, + 1:2,) (A.60)

Because Lemma 2 demonstrates that matrix A has no eigenvalues outside the unit circle and
since 0 < B < 1, the matrix SA has only eigenvalues strictly inside the unit circle. Thus the

inverse of (I — BAT) has the following convergent Taylor series expansion:
— BAF)™! = Z BIAF (A.61)

Hence, multiplication of both sides of (A.60) by (I — BAIF)~'A yields the following expression,

which is equivalent to the set of pricing equations in (22):

P, = AP, + A ) (BAYKE[nty.,; + .21 (A.62)

Jj=0

Next, note that because S and A are simultaneously diagonalizable (sharing the same mat-
rix of eigenvectors V), the results of Lemmas 1 and 2 imply that ¢ is an eigenvector of A
corresponding to the eigenvalue of unity. Finally, observe that the price level vector P, can be
decomposed into a relative price vector p, and an overall price level component as P, = p,+¢P,.
It follows that I — A)P,_; = (I — A)p,_1, and therefore

P,—AP_ =m + - A)p, (A.63)

where m, = P, — P,_; has been used. By substituting (A.63) into (A.62), the set of pricing
equations (23) in terms of inflation rates and relative prices is obtained. This completes the

proof.

A.8 Proof of Proposition 3

The aggregate demand component y, from (27) is constructed using (26). Since Lemma 2
shows that A and § are simultaneously diagonalizable, the matrix V of eigenvectors of S can
also be used to diagonalize powers of A, and so A/ = VDMV, By substituting this into the
definition of y, from (26):

= W'V Y DYV IKEy,., (A.64)
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Using the result of Lemma 1 that w’V = ¢/ and the definition % = Vik, equation (A.64)
becomes: .
’ j j+1
Vi =1yt Zﬁ’DA“ ®E Y1 (A.65)
Jj=0
Since D* is a diagonal matrix, equation (A.65) can be written explicitly as follows:
o] ' n -
Y =Ty Z,Bj (Z %i§;\1+ ]]Etyﬁ-j (A.66)
Jj=0 i=1

By comparing this with (27), it is clear that u; is given by:

n

=B Y wgt" (A.67)

i=1
To establish the sign of this expression, the following result is needed:

Lemma 3 The system of equations Vx = Kk has a unique solution, and each element of the

n X 1 solution vector % is strictly positive.
Proof. See appendix A 4. [

Together, equation (A.67), the inequalities in (A.59), the result of Lemma 3, and the fact
that 0 < 8 < 1 and n, > O imply that ¢; > O for all j. To establish the claim about the rate of

decay of the sequence {u j};io’ note that (A.67), (A.59) and Lemma 3 imply:

| " (1 = EHENT!
B /Jﬁ—.l _ 21_2%( gz )gl > O (A68)

B .
H; p %ifiA]H

This implies that 0 < u;,; < Bu; for all j > 0, completing the proof of the proposition.

A.9 Proof of Proposition 4

Suppose that there are only aggregate cost-push shocks, that is, z, = ¢z, and that the overall set
of determinants of inflation X, = n,y,+n.Z, follows a stationary AR(1) process, so X; = aX,_; +v;.
The coeflicient a satisfies |a| < 1 and {v,} is a white noise shock, v, ~ T7D(0,c2).

The following result is useful in proving this proposition:

Lemma 4 Suppose X, is the n X 1 vector defined by X, = n,y, + n,Z,. If all elements of the

vector X, are identical and equal to X, so that X, = tX, then the following expressions for the
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vectors of price levels P, and inflation rates 7, can be obtained,

P, =V Y DM Y (BDNAE, X, ju (A.692)
=0 k=0
x, = VD" Z(BDA) *E X,k — V Z(I D)D" Z(ﬁDA) HE,_ Xk (A.69b)
j=1

where the n x 1 vector ¥ = V'k has been defined. Similarly, expressions for the aggregate

price level P, and inflation rate n, can be deduced,

n

-3

i=1 j

N BEVE %0 (A.702)

k=0

,Mg

I
S o

m= ) s Z(ﬁf VEx— Y2 D (1= S BB (ATOD)
=1 i=2 =1 k=0
where x; is the i-th element of the vector x.

Proof. See appendix A.S. [ |

Since {x,} is an AR(1) process, E, X, = a*x,, and hence:
DB Exear = (1 - fal) "%, (A7)
=0

Note that since 0 < {* < 1,0 < 8 < 1 and || < 1, the term (1 — BaZ™)™! is strictly positive.
Using (A.71), equation (A.70b) implies that the stochastic process for economy-wide inflation

{m,} is given by:
o= > w1 = Bagy T x = D D1 = NN (= Bagy v (A72)
i=1 =2 J=1

As p,_; is a relative price vector, it must be the case that w’p,_; = 0, and so the definition
of the current level of intrinsic inflation mr, in (25) is equivalent to mr, = —w’(I — A)p,_;. Since
Lemmas 1 and 2 show that ¢ is an eigenvector of A with a corresponding eigenvalue of one, it
follows that (I - A)p,_; = (I - A)P,_;. And because V diagonalizes A, the matrix I — A can
be written as (I — A) = V(I - D)V, Together with the normalization of the eigenvectors
w'V = ¢/, the definition 2 = V 'k, and equation (A.69a), the current inertial component of

inflation 1, is equal to:
n (o) 1 (o)
m == > (=N Y N BEYV B X1 (A73)
i=1 =0 k=0

By substituting the expression for the sum from (A.71) into (A.73) and noting that { = 1
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intrinsic inflation 11, can be written as:
m = ) {— Doail=ghHeMa - ﬁa(iA)‘l} Xe_; (A74)
=1 i=2

The expression for inflation from (A.72) in terms of the history of {X,} is then substituted into

the alternative definition of intrinsic inflation from (32) to give:

b n Jj-1 n
=) {w [Z M1 —ﬁafm—‘) - ; Yik (22 (1 - ZHeM —ﬁam-‘)} X_; (A.75)

j=1 i=1 = i=

The two expressions for 1, in (A.74) and (A.75) are equivalent when all the coefficients of the
history { X,_1 , X,—» , ... } are the same in both equations. A recursive formula for the sequence

{;}iL, 1s obtained by equating coeficients:

~.

__Tiaw( =N a - g

7 S %M1 = Bag)

| (z;;zx,-a — M1 = By

Y xilM1 = Bagty! ]yf‘k (A.76)

>~
Il

1

Since (1 —Baf™)™' > 0,%; > 0and {* > 0 forall i, and {* < 1 for i > 2 are obtained from the
inequalities in (A.59) and Lemma 3, the value of vy, is negative, and by induction, so are all the

other coefficients y; for j > 1. This completes the proof of the proposition.

A.10 Proof of Theorem 1

The impulse response function for intrinsic inflation can be obtained as the usual impulse re-
sponse function under the assumption of a common white-noise cost-push shock for all in-
dustries if the shock and any resulting intrinsic inflation are fully accommodated, so that
there are no output gap fluctuations. Formally, this means that y, = 0 and z, = ¢v,, where
v ~ T1D(0, 0'3) is a white-noise shock. The impulse response function of intrinsic inflation
{m( j)}‘J’f;0 can then be obtained from the coefficients of the MA(oco) representation of inflation x,
in terms of the shock v,,

7= a ) m(vie (A.77)
j=0

where the multiplicative factor i is introduced because the impulse response function of in-
trinsic inflation is normalized so that m(0) = 1. The MA(eo) representation of inflation can be
obtained by making use of the results in Lemma 4.

The complete accommodation of the white-noise cost-push shock and of any resulting in-
trinsic inflation that characterizes the impulse response of intrinsic inflation formally requires
that r; = 1, + 3, at all times. From (28) this is clearly equivalent to y, = 0 in all time periods,
which in turn by using equation (27) means that y, is always zero. Thus if X, = n,¢y, + 1.2, then

X; = n,Lv;, and so Lemma 4 can be applied with X, = n,v,. Since {v,} is a white noise process,
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E,x,+x = 0 for all k > 1. Hence equation (A.70b) implies the following MA(co0) representation

= (nz Z x,-g“] Vi — i (nz Z (1 =M ) Vij (A.78)

i=1 j=1 i=2

for inflation:

By comparing the above with equation (A.77) and equating coefficients of v,, the impulse re-

sponse of intrinsic inflation is given by:

Gl it j=0 (A.79)
H] = ne (1=t ,j .
_% it j=1,2,...

The multiplicative constant in (A.77) is set to 1 = 1, )\, %,-{L.A because the normalization
m(0) = 1 has been adopted. Since all the x; are strictly positive according to Lemma 3, and
as (A.59) shows that (l.“ > 0 for all i and {iA < 1 fori > 2, the fact that n(j) < O forall j > 1
can be deduced from the expression for the impulse response function of intrinsic inflation in
(A.79). This completes the proof of the theorem.

A.11 Proof of Theorem 2

If the expression for the hypothetical New Keynesian Phillips curve in (34) with discount factor
[ and short-run slope « is iterated forwards, then the following equation for the inflation rate
I1,(B, k) is obtained:

LG, &) = & Z BEX..; (A.80)
=0

By substituting equation (A.80) into the result (A.70b) from Lemma 4, the actual inflation rate
can be written in terms of the current and past inflation rates generated by n hypothetical New

Keynesian Phillips curves:
n (S i1
7= (B, 20) + L EMTBER %) = (=N Y N T Bt %) (A.81)
i=2 j=1

To verify the claim in (35), the discount factors used in the hypothetical NKPCs are set to
Bi = B¢, and the slopes to &; = ;. The results from (A.59) and Lemma 3 ensure that the
inequalities 0 < B: <B < 1and0 < & < oo are satisfied. The coefficients ¢;; from (35) are then
given by ¢ = ¢* > 0, and ¢;; = (1 - {{\){i"j_l > 0 for j > 1 and i > 2. This completes the

proof.

A.12 Proof of Theorem 3

All the results of this theorem are derived under the assumption that the aggregate forcing
variable X, follows a stationary AR(1) process, as given in equation (36), with non-negative

serial correlation (0 < a < 1). By iterating (36) backwards, X, is expressed as a sum of current
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and past white-noise shocks v;:

- Z v, (A.82)
=0

Thus the impulse response function of X, to a shock v, is the geometric series {a/ };‘;0. The cor-
responding impulse response function _# (j) of inflation in the case of homogeneity is simply
proportional to this. As _#(j) is normalized so that #(0) = 1, it follows from (A.82) that
_Z(j) = o/. The analysis below derives the corresponding impulse response function .# () of
inflation with heterogeneous price stickiness for the same stochastic process (36) of the cost-
push shock.

Equation (36) implies that the conditional expectation of future X, is given by E,x,x = a*x,
for all £ > 0. This formula for the conditional expectation can be used together with (A.82)
and equation (A.70a) from Lemma 4 to obtain an expression for the aggregate price level P, in

terms of the history of white noise shocks {v;, v,_1,...}:

Z igAﬁli(ﬁizA)kiak Urjl (A.83)

=1 j=0 k=0 1=0

By changing the order of summation in the above, the following alternative formula for P, is

Z % (Z(Ba{ ) )Z[ A Z(a/{ ) ]v, j (A.84)

The geometric sums appearing in (A.84) can be eliminated from the expression for the price

o [ n %l{iA é«iAJ'"'l — ol
P, = Z(Z et ( e S (A.85)

j=0 \i=1

found:

level as follows:

The stochastic process for economy-wide inflation 7, = P, — P,_; is then obtained by first-
differencing (A.85):

(& ol (A—ad -1 -
Y P B I A

j=0 \i=1

In equation (37), the MA(o0) representation of inflation is denoted by n, = x Zjio F (P,
where the positive constant x is introduced to ensure that .#(0) = 1. By comparing this with

(A.86), the coeflicient .#(j) and the constant i are given by:

"ol (=l = (1 =N "l
I(j) = Z ﬁaé"( . ] , HEZJW (A.87)

The first claim to prove is that .#(j) < _#(j) forall j > 1. Since #(j) = o/ and {} = 1,
the formula for .# () in equation (A.87) can be used to show that this inequality holds if and
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only if:

n J i
2 %if?(lﬁa_f) (iAA - ZJ] >0 (A.88)
i=2 i i

This expression is indeed positive for all j > 1 because 0 < § < 1 and 0 < a < 1 hold by
assumption, the inequalities in (A.59) demonstrate that 0 < ¢* < 1 for all i > 2, and Lemma
3 shows that »; > O for all i. Finally, Z.Aj — o/ and ¢* — a must always have the same sign for
j = 1 because both ¢ lA and a are non-negative and less than one for i > 2. This establishes that
# (j) decays more rapidly than _# (j).

The next part of the theorem concerns the shape of the impulse response function .7 (j) with
heterogeneity. Define the following function {(7; £, a) of continuous time 7 > 0 with parameters
0<{<landO<a<1:

i = Lo “)“; - fll —O¢ (A.89)

The coefficient .#(j) from (A.87) can be written as a sum of terms involving f(j; ¢ l.A, a) for each

eigenvalue {* of A,

@=L L (A.90)
Nl Balt ’
where .# (1) is treated as a function of continuous time for convenience, even though the results
only involve .# (1) evaluated at a discrete set of points. Note that the inequalities 0 < 8 < 1,
0 < a < 1, together with those in (A.59) and Lemma 3 imply that the coeflicients of the
functions f(t; ¢ I.A, a) in (A.90) are strictly positive.
By repeatedly differentiating the function f(7;{, a) in (A.89) with respect to time 7, the

following expression is found for the k-th order derivative, denoted by iO(r; 2, a):

¢(loga™) (1 = @)a” = (log & H*(1 = O

(k) (e _(_
19, 0) = (-1) e

(A91)

Note that {¥(7; ¢, a) and all its derivatives are continuous functions of time 7. It can be seen
from (A.91) that (=1)*{®(0) > 0 for all k, and lim,_,, {¥(r) = 0, given the parameter restric-
tions 0 < ¢ < 1 and 0 < a < 1. Equation (A.90) implies that the time derivatives of .#(7) can
be obtained from those of f(7; {, a), again with a sum involving the derivatives evaluated at all

n eigenvalues {:

) Lo g K)(rr #A
S (T)=;me @M (A.92)
i=1 i

Thus all the derivatives of .#(7) inherit continuity from f(7;{, a). And using the equivalent
results for {¥(r; £, a) derived above, equation (A.92) implies that (—1)*.#®(0) > 0 for all k and
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lim,_,., #® (1) = 0. By substituting (A.91) into (A.92) and rearranging:

-1 k
r_ [loeg) Ay AT
o we |Gmee - (B a-o
By — (1) N i
7 9) = (-)(loga )ngl—ﬁag‘ 7

(A.93)

This expression for .# ®(7) can be used to deduce the following inequalities involving the k-th
and (k + 1)-th order derivatives of .7 (1),
SNy < -8 (keven)

(loga=h+t | _ L0 (kodd)

(A.94)

where the direction of the inequality depends on whether & is odd or even.

Since .#(0) is known to be positive, there are two mutually exclusive and exhaustive pos-
sibilities. First, that .# (1) remains strictly positive for all 7 > 0. Second, that there is at least
one point in finite time at which .# () is non-positive.

First consider the case where .7 (1) is everywhere positive. The inequality in (A.94) then
implies that .#’(7) is negative for all 7, which in turn implies .#"” () is positive everywhere, and
so on. So in this case, (—1)*.#®(r) > 0 for all 7 > 0 and all k. Thus all even-order derivatives
of . (7) are positive everywhere, and all odd orders are negative everywhere. This means that
4 (1) is everywhere positive and decreasing, which corresponds to “case (ii)” in the statement
of the theorem.

Now consider the case where .# (1) is non-positive somewhere. Since .#(7) is a continuous
function, there must exist a smallest 7y > 0 where the function is first equal to zero. It can then
be deduced that .# () must be negative in a neighbourhood to the right of 7, because inequality
(A.94) implies that were the function not to become negative immediately after passing 7,
then it would necessarily be decreasing in this range, which is not possible since it has already
reached zero at 7.

Observe that once .# (1) has become negative after 7y, it cannot become positive again for
larger values of 7. Were this to happen, because .#(7) is a continuous function there would
have to be a point where .#(7) cuts the horizontal axis from below. However, the inequality
(A.94) shows that as soon as the function becomes positive, it would immediately become
decreasing, which is not possible for a continuously differentiable function. Thus .#(7) cutting
the horizontal axis from below can be ruled out, and hence .# (1) must remain negative for all
T > 7¢. Finally, because .# (1) is negative after 7, the fact that it is a continuously differentiable
function which tends to zero as T — oo means there must exist a first turning point 7 > 7
where .#’(1;) = 0. Hence, while .#’(7) is initially negative, it must become positive at some
point.

These arguments are now generalized to apply to all the derivatives of .# (7). Start with
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the k-th derivative .#®(r), where k is odd [even]. This derivative is known to be initially
negative [positive], but suppose that it becomes positive [negative] for the first time immediately
after point 7, > 0. Using a version of the earlier argument, the inequalities in (A.94) imply
that .#® (1) is increasing [decreasing] in a neighbourhood to the right of 7;, and must remain
positive [negative] for all 7 > 7. Because the k-th derivative tends to zero as T — oo, and since
it is a continuous function, there must exist a first point 74,; > 7, where .#**D(r;,;) = 0. Thus
the (k + 1)-th derivative of .# (1) starts positive [negative], but becomes negative [positive] for
the first time after 7.

This argument can be applied inductively to deduce that there exists a sequence of points
0<t19)<T <7y <--- < oosuch that (-=1)*.#®(r) > 0 if and only if T < 7;. Hence the
function .# (1) is positive and decreasing before 7(, negative and decreasing between 7, and
71, and negative and increasing after 7;. This corresponds to “case (i)” in the statement of the
theorem, and necessarily occurs whenever “case (ii)” does not.

Finally, note that when a — 1, the function f(7; £, a) in (A.89) becomes:
liHll f(r;l,0) =" (A.95)

This is positive for all 7, and since (A.90) shows that .#(7) is a linear combination of the
functions f(t; ¢ iA, a) with positive coefficients, .# (1) must also be positive everywhere in this
limiting case. Thus for a sufficiently close to 1, the impulse response function .# () is always
in “case (i1))”. When a — 0, the extrinsic persistence in the shock disappears, and the actual
impulse response function .#(j) tends to the impulse response function of intrinsic inflation
i(j). But the properties of i(j) derived in Theorem 1 demonstrate that it falls within “case (1)”.

Thus all the claims of the theorem are proved.
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