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Abstract

Strategic patenting is widely believed to raise the costs of innovating,
especially in industries characterised by cumulative innovation. This paper
studies the effects of strategic patenting on R&D, patenting and market
value in the computer software industry. We focus on two key aspects:
patent portfolio size which affects bargaining power in patent disputes, and
the fragmentation of patent rights (.patent thickets.) which increases the
transaction costs of enforcement. We develop a model that incorporates both
effects, together with R&D spillovers. Using panel data for the period 1980-
99, we find evidence that both strategic patenting and R&D spillovers
strongly affect innovation and market value of software firms.
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1 Introduction

There is an extensive empirical literature demonstrating that R&D creates positive technology
spillovers that contribute to innovation and productivity. This consensus underpins the justification
for government R&D-support policies. At the same time, however, there is a growing concern
that the patenting of innovations is itself becoming an impediment to the innovation process. The
argument is that strategic patenting activity creates patent thickets that constrain firms’ freedom of
action in R&D and thus raise the costs of innovation. The dangers of patent thickets are frequently
raised in public debates on patent reform — for example, National Research Council (2004).

The concerns have been intensified by the acceleration in patenting over the past two decades,
especially in high tech industries. During the period 1976-1996, the total number of patent appli-
cations in the U.S. grew at an average annual rate of 1.8 percent. The growth accelerated from the
mid-1980s, when there was a pro-patent shift associated with the establishment of the specialized
Court of Appeals for the Federal Circuit (CAFC) and other developments (Kortum and Lerner,
1999; Jaffe and Lerner, 2004). In the period 1986-1996, aggregate patenting grew at 3.5 percent
annually. This growth was particularly rapid in high tech industries — for example, 4.0 percent
in pharmaceuticals, 7.1 in medical instruments, 9.3 in biotechnology, 11.0 in semiconductors and
11.2 percent in software. The growth in software patenting was due in part to recent judicial deci-
sions during this period that limited the scope of software copyright protection, and extended the
patentability of software (in particular algorithms not embedded in hardware).

There is evidence that firms, especially in high-tech industries, try to resolve patent disputes by
cross licensing agreements, patent pools and other cooperative mechanisms (Lanjouw and Schanker-
man, 2004). The importance of such mechanisms is greatest in complex technology industries where
innovation is cumulative, building on component innovations from different firms (Hall and Ziedo-
nis, 2001; Ziedonis, 2003a, 2003b). In such industries, it is a widely held view that patenting
activity creates a ‘thicket’ of fragmented property rights that impedes R&D activity by constrain-
ing the ability of firms to operate without extensive licensing of complementary technologies. This

position was first enunciated by Heller and Eisenberg (1998), who labelled it the ‘problem of the



anti-commons.”! By increasing the transaction costs of R&D, patent thickets provide an incentive
for firms to patent defensively. In effect, this argument implies that patenting creates a negative
externality on other firms: by increasing the firm’s bargaining power in the form of more ‘chits
to trade’ in patent disputes, patenting by one firm raises the cost to other firms of protecting or
appropriating the rents from their innovations. Some authors have claimed that this creates a pris-
oner’s dilemma which can lead to excessive patenting in complex technology industries, including
semiconductors and software (Bessen and Maskin, 2000).

Strategic patenting encompasses two conceptually distinct issues, which have not always been
sharply distinguished in the literature. The first involves the link between patent portfolio size and
bargaining power. Having a larger patent portfolio puts a firm in a better position to bargain with
other firms when patent disputes arise. More ‘patent chits’ mean greater bargaining power and
thus more favourable outcomes in the resolution of patent disputes. The second aspect involves
the link between transaction costs and the number of potential disputants. When a firm faces
many firms with whom patent disputes may arise, transaction costs rise. Moreover, since disputes
are normally resolved bilaterally (not collectively), having to deal with many disputants makes
bargaining failures more likely and creates the ‘complements problem’ — value maximisation requires
coordinated resolution which is ignored by independent claimants (Shapiro, 2001).

Despite widespread concern over the issue, the econometric evidence on the effects of patent
thickets is limited. The two leading empirical studies are Hall and Ziedonis (2001) and Ziedonis
(2003a), both of which focus on the semiconductor industry. The Hall and Ziedonis study shows
that patenting rose sharply in the 1990’s (after controlling for R&D and other factors), especially
for capital intensive semiconductor firms. While indirect, this evidence is consistent with defensive
patenting and patent thickets, since the danger of ex post holdup would be greater for such firms.
Ziedonis (2003b) tests the hypothesis more directly by examining the relationship between firm-
level patenting and a measure of the fragmentation of patent rights. She finds that patenting is

higher (in the cross section of firms) when firms face greater fragmentation (lower concentration)

'For opposing views on the dangers of patent thickets in software, see Lessig (2001) and Mann (2005). Merges
(1996, 1999) has been a leading voice arguing that firms find ways to contract around patent thickets. Walsh, Arora
and Cohen (2003) and Walsh, Cho and Cohen (2005) present supporting survey evidence in the context of biomedical
research activity.



of patent rights among rival firms. Both of these papers focus exclusively on the impact of patent
thickets on patenting behaviour. The impact of patent thickets on the R&D decision and the market
valuation of firms remains unexplored. In addition, there is a need for a formal analytical model
that generates testable predictions about the impact of strategic patenting — both patent portfolio
size and the fragmentation of patent rights.’

This paper studies the impact of strategic patenting by technology rivals on the R&D spending,
patenting and market value of firms in the computer software industry. Like semiconductors,
software is a classic example of a complex technology in which cumulative innovation plays a
central role. In this paper we incorporate both aspects of strategic patenting — portfolio size to
capture the bargaining power, and fragmentation of patent rights to capture the transaction costs of
enforcing patent rights. We develop a model that allows us identify the two negative externalities
from patenting, as well as the positive technology spillovers from R&D. All three externalities
are related to the firm’s proximity to other firms in technology space. We measure technology
proximity using information on the distribution of the citations contained in a firm’s patents to
different technology classes. In the empirical specification of the model, we follow the approach
developed in Bloom, Schankerman and Van Reenen (2005), using multiple indicators of performance
(market value, patents and R&D) in order to help identify the three types of externalities in which
we are interested.

Using panel data on ‘software firms’ in the U.S. during 1980-99, we find evidence of both
strategic patenting and R&D spillovers. There are three key findings. First, greater patenting
activity by technology rivals significantly reduces the firm’s market value, patenting and R&D. We
interpret this finding as indicating the importance of bargaining power in resolving patent disputes.
Second, we find that higher concentration (less fragmentation) of patent rights — which corresponds
to lower transaction costs — is associated with higher market value, but lower R&D and patenting
activity. The third finding is that R&D spillovers significantly increase patenting and market value,
controlling for the firm’s stock of R&D. These three findings are all consistent with the predictions

of the model. Finally, we also find that there is a large ‘patent premium’ in the stock market for

2While not specifically testing the patent thickets hypothesis, in an unpublished empirical paper Bessen and Hunt
(2003) argue that software patenting has actually reduced the level of R&D. This highly controversial paper has been
sharply criticised by Hahn and Wallsten (2003).



these software firms, controlling for the stock of R&D and other factors. Calculations suggest that
this patent premium accounts for about 20 percent of the private return to R&D for these software
firms.

Before proceeding we want to emphasise that, in addition to technology (or knowledge) spillovers,
R&D can also create a product market rivalry or business stealing effect.? In a recent paper, Bloom,
Schankerman and Van Reenen (BSV, 2005) develop a methodology for distinguishing between tech-
nology spillovers and product market rivalry and apply it to a large panel of U.S. firms. Their iden-
tification strategy relies on two features: first, using distinct measures for distance between firms
in the technology and product market spaces, and second, using multiple outcome measures that
are affected by spillovers and product market rivalry (namely, R&D, patents and market value).
As pointed out above, the current paper follows BSV in exploiting these three outcome measures.
However, the objective of the current paper is very different in that we want to identify the effects
of strategic patenting in the context of technology spillovers. To keep the framework tractable,
we do not incorporate product market rivalry into the model or the empirical analysis. In prin-
ciple, it should be possible to construct an emcompassing model that includes strategic product
market rivarly as well as strategic patenting effects, but we do not do that here. On the empirical
side, the current paper focuses on software firms (whereas the BSV paper studies a wide range
of manufacturing and non-manufacturing industries). If demand complementarities are especially
important in software, as many believe, then it may prove empirically difficult to isolate product
market rivalry effects in this industry, but that question is beyond the scope of this paper.

The paper is organised as follows. Section 2 presents the theoretical model (details are in
Appendix 1) and summarises the empirical predictions. In Sections 3 and 4 we describe the data
set and the construction of the strategic patenting and technology spillover variables. Section 5
presents the econometric specification of the three equations in the model — market value, patenting

and R&D. The empirical results and their implications are discussed in Section 6.

3The earliest attempt to distinguish technology spillovers and product market rivalry is Jaffe 1988. Branstetter
and Sakikabara (2002) study the issue in the context of research consortia. For a theoretical and empirical analysis
of these issues, see Bloom, Schankerman and Van Reenen (2005).



2 Analytical Framework

A firm (say, firm 0) produces knowledge by investing in R&D, but it also may benefit from tech-
nology spillovers from firms that are close in technology space (technology rivals, denoted by 7).
The knowledge production function is ky = ¢(rg, ;). Its technology rivals have a similar knowl-
edge production function, k. = ¢(r;,79). We assume that ¢ is non-decreasing and concave in both
arguments. When a firm makes its R&D decision, it recognises that it generates as well as receives
technology spillovers.

The firm chooses the fraction of its knowledge that it protects by patenting (‘patent propensity’).
We let p € (0,1) denote the patent propensity and A > 1 denote patent effectiveness, i.e., the
appropriation of rents from a given innovation if it patented relative to the rents if it is not patented.
Thus A — 1 represents the patent premium.

The firm has a variable profit function defined over prices of variable inputs, w, and the stock
of knowledge, ko, which we denote by 7(0gko, w) where 6y = pgA + (1 — py). The profit function is
increasing and concave in kg, and decreasing and convex in w. For notational simplicity we suppress
the input prices in what follows.

Patenting is costly. The unit cost of a patent includes a fixed administrative fee denoted by
f, and a patent enforcement cost denoted by H. Enforcement costs depend on two features of the
patenting environment in which the firm operates. The first is the degree to which patent rights
are held by a relatively small number of other firms rather than being widely dispersed. When
patent rights are more concentrated, it is less costly for a patentee to contract with other relevant
patentholders to conduct its R&D activity, which is referred to by Shapiro (2001) as ‘navigating
the patent thicket.” The second determinant of enforcement costs is the portfolio size of the firm
relative to firms with whom it needs to negotiate in order to avoid, or resolve, disputes. Having
a larger relative portfolio size puts the firm in a better bargaining position, and facilitates patent
trading (cross licensing) arrangements to resolve disputes without resorting to expensive litigation.

To capture these ideas, we assume that the enforcement cost for firm 0 is a function of two

factors: (1) the number of patents held by firm 0 relative to firm 7, denoted by z = Z 0:3 (the

bargaining power effect), and (2) the degree of concentration of patents held by firms in similar



technology areas, denoted by ¢ (the patent thicket effect).* Formally, we let H = H(x, c), where it
is assumed that H, <0, Hy, > 0, H. <0, Hy. < 0, and H(0,0) > 0. Relative portfolio size, z, is
endogenous since the firm chooses its patent propensity p,. We treat the concentration of patents
by firms in similar technology areas, c, as exogenous to the firm.

By assuming that bargaining power depends on the relative (rather than absolute) number of
patents between a firm and its technology neighbors, we highlight the idea that it might be mutually
beneficial for firms to reduce their propensities to patent, putting aside the lower level of innovation
rents if there was a patent premium. In other words, there may be a prisoner’s dilemma aspect to
strategic patenting. In the empirical section, we will use the parameter estimates to test whether
this prisoner’s dilemma actually operates for the software firms in our sample.

The direct effect of higher concentration of patents among a firm’s technology rivals is to reduce
its enforcement costs — that is, H. < 0. However, there is also an indirect effect because higher
concentration may change the marginal value of accumulating patents to reduce enforcement costs,
which is | H |. This indirect effect can be either positive or negative — it depends on the sign
of H,.. We find it most plausible that higher concentration of patent rights reduces the marginal
value of accumulating patent portfolios — Hy. > 0 — because in such cases firms are more likely to
have other ways of ‘tacit cooperation’ apart from explicit patent trading arrangements. We will
investigate the theoretical implications of this hypothesis below and test it in the empirical section.

Firm 0 sets (ro, pg) to maximise the value of the firm:

max V' = m(6op(ro,r7)) — 10 — {fpo + H(z,c)}$(ro,7r) (1)

T0,P0

Recall that kg = ¢(ro,7,) also enters the function H(x,c) since x = SO—IZ?

-

In this specification we
assume that the enforcement cost applies both to patented and unpatented innovations. The idea is
that if a firm has more trading chits in the form of patents, it can also more easily resolve disputes

over unpatented innovations.’

‘Patent concentration is the obverse of the fragmentation of patent rights discussed in the literature on patent
thickets. In the next section we discuss the measurement of this variable.

® An alternative specification is to assume that the enforcement cost is higher for patented innovations. We can
do this by expressing unit cost as fao + {(1 + p)ao + (1 — o) } H, where p > 0. The qualitative predictions in this
specification are similar to those in the text.



The first order conditions are

Vi = d00r' — o — H) = (P4 kot — kg H, —1 =0 )
0 / ko
Vpo = ¢oi(A—D)m +fko+ko(p A VH, =0 (3)

where the superscripts on ¢ refer to the firm and subscripts 1 and 2 denote partial derivatives
with respect to the different arguments. The first term in equation (2) is the marginal benefit of
R&D net of patent enforcement costs. The second term is the reduction in marginal enforcement
cost from increasing the stock of knowledge, holding the patent propensity constant. The sum of
these benefits must equal the marginal cost of R&D. In equation (3), the firm’s choice of patent
propensity trades off the administrative cost of patenting against the increased appropriation of
innovation rent due to the patent premium and the reduction in patent enforcement costs due to
having a larger patent portfolio.

We analyse the comparative statics of the best response functions of firm 0, treating the R&D
and patenting decisions of rivals 7 as given (Appendix for details). Table 1 summarises the model’s
predictions about the impact of the patent propensity of rivals (p,, capturing bargaining power),
concentration of patent rights (¢, capturing patent thickets), and technology spillovers (r,). All
three effects have testable implications in the R&D, patents and market value equations. Thus
using multiple outcomes provides a stronger test of the model than we would have from any single

indicator.
[Table 1 about here]

We can summarize the model’s predictions as follows. First, a higher patent propensity by
technology rivals (given their R&D spending) means less bargaining power in patent disputes for a

firm. This lowers optimal R&D, patents and market value.5 Second, greater concentration of patent

5The result that more patenting by rivals reduces a firm’s own patenting (conditional on its R&D) may be
surprising. If other firms have more patents, then it may seem that the incentive to accumulate countervailing
bargaining chits would be higher. In the model, what matters is how patenting by rivals affects the firm’s marginal



rights among technology rivals means lower transaction costs for a firm in licensing complementary
patents and resolving patent disputes. This increases market value unambiguously. The direct
effect of higher concentration on R&D and patenting is also to raise R&D and patenting. However,
the indirect effect can go either way, depending on the sign of H,.. If concentration reduces the
marginal value of accumulating patents in enforcing patent rights (H,. > 0), then the direct and
indirect effects work in opposite directions and the impact on R&D and patents is ambiguous.
Conversely, if H,. < 0 then concentration must raise R&D and patenting. Therefore, if we find
that concentration has a negative impact on R&D and patenting, we can infer that H,. > 0. Third,
technology spillovers increase patents and market value, but the effect on R&D depends on how

spillovers affect the marginal product of own-R&D.

3 Data

Our data set covers the period 1976-1999 and is constructed from three sources. We use Compustat
data on public firms for information on R&D and components of Tobin’s Q: value of equities, debt
and physical assets. We use a variety of patent data from the U.S. Patent and Technology Office,
including the number of patents granted (dated by year of application), the number of backward
and forward citations, U.S. patent classifications and the identity of the assignee.” In addition to
using patent counts in the patent equation, we use these data to construct technological proximity
and technological opportunity variables.

We focus on firms whose patents are predominantly in software. Unfortunately, there is no
patent class simply called ‘software’ so we need a procedure that can sensibly identify software

patents.® One approach is to do a keyword search on the USPTO database (this is the approach

return to patent accumulation in terms of reducing patent enforcement costs. This depends on the sign of the
cross-derivative H,,, . Recall the enforcement cost H(z,c) where z = 52—:3. It follows that sign H,,, = sign
(—pokoHzx — Hy). Since H, < 0, we obtain H,,,, > 0 provided that Hy, is ‘small’ (diminishing returns to patent
accumulation for enforcement are not too strong). Thus greater patenting by rivals reduces the incentive for a firm to
accumulate patents (recall that H, < 0). In the appendix on comparative statics, we assume this holds (the resulting
predictions are verified in the empirical section).

"Following the literature, we date patents by their application year because that is more closely tied to measures
of R&D and firm value.

$For good discussions of different approaches to defining software patents, see Layne-Farrar (2005) and Hall and
MacGarvie (2006).



adopted by Bessen and Hunt, 2003). This can be difficult because many patent applications may
contain the word software or other related words but not be primarily about software itself. An
arduous alternative is to read each of the (thousands of) potential candidate patents and make a
subjective determination on each one (Allison and Tiller, 2003). A third approach is to base the
definition on a specific set of patent classes — e.g., Graham and Mowery (2003) use the classes most
common to well-known software firms such as Microsoft or Adobe. We adopt a related approach:
we define a software patent as any patent classified by the Patent Office in International Patent
Classification GO6F (‘Electric Digital Data Processing’). This single class accounts for about half
of all patents issued to the largest 100 packaged software companies, as tabulated by the trade
publication Softletter (1998).

Software (GO6F) patents are taken out by firms in many diverse industries (Schankerman and
Trajtenberg, 2006). Moreover, even ‘pure’ software firms are likely to patent outside GO6F, and
may have genuinely non-software patents. The firm with the highest specialisation in GO6F patents
for large firms in our dataset is Microsoft — yet even it has only 71 percent of its patents classified in
this category. Therefore, we define a software firm as one which has at least 45 percent of its patents
classified as software (GOGF) patents, after normalization by Microsoft’s GO6F percentage. There
are 149 publicly traded software firms that satisfy this criterion and have R&D and market value
data. Of these, 121 firms have complete data for at least two consecutive years, and these constitute
the final sample. We use all the patents held by a firm, both software and non-software, because
R&D and market value refer to the entire firm. The 121 publicly traded firms in the final sample
cover the period 1980-99 and include 29,363 patents of which 12,507 are software patents. This
sample accounts for about 39 percent of all GO6F patents issued to public firms during this period.’
About two-thirds of the firms (82 of 121) are classified in SIC 7372 (‘prepackaged software’), the
remainder falling into various computer, communications and semi-conductor classes. Appendix 2

provides a list of the firms in our sample, together with their primary industry (SIC) classification.

Tn the full Compustat data set of public firms, there are 3441 firms holding 31,950 GO6F patents. More than
a third of these patents (12,612) are held by five large firms: IBM, Hitachi, Hewlett Packard, Motorola, and Texas
Instruments. Of these five firms, only IBM satisfies the software patent threshold we use (46 percent of its patents are
in the GOGF class); the others are well below a 30 percent cutoff. Excluding IBM dramatically reduces the percentage
of GO6F patents captured by the sample, from 39 percent to only 18 percent. We check robustness of our empirical
results by rerunning all of the econometric experiments and computations using a 50 percent threshold to define the
sample, which excludes IBM. The results were very similar to those reported in Section 6.
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Finally, we must be careful to identify all patents held by each parent firm for whom we have
R&D and value information. A parent firm may register a patent in its own name or in the name
of one of its subsidiaries. The fact that subsidiaries can be bought and sold makes matching the
patent to data from the parent firm more difficult. Hall, Jaffe, Trajtenberg (2005) matched patent
assignees to the parent firm for patents for the period 1963-99 using 1989 ownership patterns. The
resulting database is known as the ‘NBER patent database’ since it resides at NBER. However,
for the group of software firms in which we are interested (some of which were established in the
1990’s), the 1989 match is antiquated. Therefore, for all firms that recorded at least one software
patent between 1980 and 1999, we performed a new match of that firm to its parent and all its
subsidiaries, based on 1999 ownership patterns. We then linked all patents of the subsidiaries to
the parent company to produce a consolidated account of patent activity of our sample firms. For
every assignee in the NBER patent database that had at least one GO6F patent assigned to it, we
checked whether the assignee was a parent firm or a subsidiary to some parent firm in 1999. If
the firm was a subsidiary, we treated all patents of that subsidiary to be the patents of the parent
firm. If the assignee was a parent firm, then we included it in our dataset if three conditions are
met: the firm is publicly traded, we have Compustat data for it, and the firm meets the 45%
GO6F-to-total-patents cutoff, which is our lower limit for calling it a ‘software firm’. Appendix 2
provides details on the how the matching was done.

Table 2 presents descriptive statistics for the sample.

[Table 2 about here]

A few points are worth noting. First, the sample firms are large and R&D intensive. The mean
market value is $2.46 billion but the distribution is sharply skewed (median = $97 million). The
mean R&D stock is nearly six times as large as the physical capital stock. Second, Tobin’s Q is
very high, as compared with other industries. This mainly reflects the fact that software firms use
relatively little physical capital as compared to R&D, but also the over-valuation in the high tech
bubble of the 1990s. Third, there is substantial variation in the patent propensity of technology
rivals (Patprop). It is also worth noting (not reported in the table) that Patprop rose sharply

after 1994, after several court decisions significantly weakened the copyright protection previously
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available to software inventions.! The mean Patprop rose from 0.028 in the period 1980-94 to
0.133 for 1995-99. Finally, the 4-firm citation concentration measure (Citecon) indicates that
patent citations are not dramatically fragmented — the sample mean is 0.47, which indicates that
firms cite about eight other firms, on average. This concentration index does not differ between

the pre- and post-1994 periods.

4 Measuring strategic patenting and technology spillovers

While our sample cover only software firms, these firms have patenting activity in other technology
fields as well. Thus we need to take into account the potential technology spillovers from R&D done
by these firms in all of their areas of activity. The standard approach (Jaffe, 1986) is to measure
technological proximity between firms as the uncentered correlation coefficient between their patent
distributions across patent classes, and then to measure spillovers as a weighted sum of R&D by
other firms using this proximity measure. We follow a similar approach except that, instead of
using the distribution of patenting by each firm, we use the distribution of a firm’s backward patent
citations across different patent classes to measure technological proximity. The backward patent
citations of a firm ¢ as of period ¢ include all citations to previous patents (except a firm’s own
patents) listed in firm ¢’s patents up to year ¢. Since the citations in a patent reflect the preceding
patents that an inventor is directly drawing on, this approach has strong appeal. To our knowledge
this is the first time the citations-based proximity measure has been implemented.

Formally, let W, = {wik}le be the distribution of firm 7's backward citations across patent
classes — i.e., w; is the share of firm i's total citations to preceding patents that fall into patent

class k. Then technological proximity between firm ¢ and j is

Wi'W;
(W/W:)2 (WIW;)3

Tij

Self-cites are excluded. As a robustness check, we also constructed the standard Jaffe measure based

on the distribution of patents. The cross-firm correlation between the two technology proximity

198ce Computer Associates Int’l Inc. v. Altai Inc. 23 USPQ.2d 1241 (2nd Cir. 1992), Apple Computer Inc. wv.
Microsoft Corp. 35 F. 3d 1435 (9th Cir. 1994), and Lotus Development Corp v. Borland Int’l Inc., 49 F. 3d 807 (1st
Cir. 1995.) For details on the latter, see Lerner and Zhu (2005).
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measures is 0.69 (the econometric results are similar to those we report in Section 6 when we use
the patent-based measure).
We measure technology spillovers as the weighted sum of other firms’ R&D stock, G, using

these technology proximity weights:

Spillover;; = ZTijGjt (4)
J#i
The R&D stock is constructed by initialising the stock at the beginning of the sample period and
using a 15 percent depreciation rate.!'!

To capture the patent portfolio effect of strategic patenting, we compute the weighted average
of the ‘patent propensity’ (the patent-R&D ratio) of other firms that are rivals in technology space.
The idea is that, given the stock of own R&D and technology spillovers, firms facing technology
rivals with higher patent propensities will find themselves at a disadvantage in bargaining over

patent disputes. Let Zj; = %iit denote the patent propensity of firm j,where PS is the stock of

patents defined in the same way as the R&D stock, G. The patent propensity measure we use is'?

Tij

Patprop;; = Z 72 g
J#i Y

J7#i

Zj (5)

To capture the patent thicket effect of strategic patenting, we want a measure of how many
rivals a firm must negotiate with in order to preserve freedom of operation in its R&D activity. For
this purpose, we use a concentration index of a firm’s patent citations — that is, the degree to which
patents cited by firm i (called ‘backward citations’) are held by relatively few firms. The idea is
that when a firm’s patent citations are more concentrated among a few technology rivals, that firm
will have lower transaction costs in dealing with any patent disputes that may arise. To construct

this concentration index of patent citations, we first identify the firm which owns (patent assignee)

"'This is conventional procedure (see Hall, Jaffe, and Trajtenberg, 2005). Initial stock is defined as the intial sample
value of R&D divided by the sum of the depreciation rate and the average growth in R&D in the first three years of
the sample. We experimented with variations of this method and other depreciation rates with similar results.

12We also experimented with an alternative measure that does not normalise the weights. Empirical results are
similar to those reported in the text. However, the non-normalised measure results in a higher Patprop when there
are more technological competitors, in addition to when the average competitor patent propensity is higher. As such,
this measure blurs the distinction between the effects of patent propensity and concentration.
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each patent that firm ¢ cites in any of the patents it holds as of year ¢t. From this information, we
compute the share of firm ¢'s backward citations that is accounted for by each of its cited firms.
Self-cites are excluded. We then compute the 4-firm concentration measure for each firm in each
year (this varies over time as patents are accumulated).

Formally, let s;5¢ (i # j) denote the share of the total number of citations by firm ¢ that refer
to patents held by firm j, cumulated up to year ¢ and arranged in descending order. The 4-firm

concentration measure is

4
Clitecony = Z Sijt (6)

j=1
We also experimented with two alternative measures — an 8-firm and a Herfindahl index of concen-

tration. The econometric results are similar to those reported in Section 6.

5 Econometric Specification

5.1 Market Value (Tobin’s-Q) Equation

In the empirical specification, we follow the approach of Bloom, Schankerman and Van Reenen
(2005) in using three outcome measures — market value, patents and R&D. In this section of the
paper we discuss the econometric specification of these equations.

We adopt the representation of the market value function originally proposed by Griliches

In (Z)it — In g + In <1 + Y <i>t) (7)

where V is the market value of the firm, A is the stock of tangible assets, G is the stock of R&D, and

(1981):

the superscript v indicates that the parameter is for the market value equation.!> The parameter
kit 18 the shadow price of physical capital, and Y is the ratio of the shadow price of R&D capital
to the shadow price of physical capital. The deviation of V/A (‘Tobin’s average Q’) from unity

depends on the ratio of the R&D stock to the tangible capital stock (G/A) and the determinants

3For a good discussion of issues arising in such specifications, see Hall, Jaffe and Trajtenberg (2005).
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of ki;. We parameterize the latter as™

Inky; = p7lnPatpropy—1 + B3 InCiteconiy—1 + 85 In Spillover;—;

+ XY BY + €Y+ Y + v (8)

where £7 is a full set of four-digit industry dummies, n;y a full set of time dummies, X}, denotes
other control variables such as industry demand and technological opportunity (explained below),
and v}, is an idiosyncratic error term.

The specification of the value function is nonlinear in the parameter 4*. If (G/A) were ‘small,’
we could approximate In (1 + Y (%)Z t) by (%)Z ; » but this will not be adequate for many high tech
firms (Hall and Oriani, 2004). Therefore, we approximate In (1 + 7Y (%)Z t) by a higher-order series
expansion, which we denote by ®(G/A). We found that a fifth order polynomial is satisfactory.

Taking these elements together, our basic empirical market value equation is:

|4
In (A) = P®((G/A)it—1) + 5] In Patpropit—1 + 5 In Citeconji—1 + (35 In Spilloveris—1  (9)
it

+ X518 + 7 +nf + o

We want to emphasise two points about this specification. The first point is that the interpre-
tation of the Spillover variable can be difficult because of the reflection problem (Manski, 1991).
Any variable that shifts the incentive for a firm to perform R&D and thus its market value will
also be likely to affect other firms that operate in similar technology fields. Thus a positive corre-
lation between R&D by technology rivals and the market value (or R&D decisions) of a firm can
arise either from genuine technology spillovers or from common, unobserved demand or technology
opportunity shocks. Our defences against this problem are: (1) we include controls for demand
and technological opportunity (discussed below); (2) the spillover variable is based on stocks of

R&D, which should mitigate correlation with contemporaneous shocks; (3) we lag the independent

MYWe introduce the spillover and strategic patenting variables in the simplest, additive specification. An alternative
is to allow these variables to affect market value only through their impact on the R&D stock. While appealing, this
interactive specification is more demanding on the data. Our approach can be thought of as an approximation to a
more complicated specification.

15



variables, which should also reduce the problem; and (4) we are particularly interested in testing
the strategic patenting coefficients 57 and 85, which should be less directly affected by the reflection
problem. These remarks also apply to the patent and R&D equations below.

We control for the effects of demand and technological opportunity in three different ways. First,
we include a full set of year dummies in all specifications. Second, we include two lag values of
firm sales to pick up remaining demand shocks.!® Finally, we construct a measure of technological
opportunity as the total patenting in a technology class weighted by firm i’s closeness to that class,
as measured by its backward citations. The idea is that firms cite patents similar in nature to its
own, and if there is a large amount of patenting in areas it cites, it is an active technological field.
Let W; = {wik}le be the distribution of firm i's backward citations across patent classes (w;
is the share of firm i's total patent citations to preceding patents that fall in class k), and PSjx;
be the patent stock of firm j in class k£ at time t. We define technological opportunity for firm 4
as Techoppys = Y Zj 2 WikPSjk. Two lagged values of T'echopp are included in the regression
equations. '

The second point about the specification involves firm fixed effects. Since the software firms in
our sample are classified into different SIC industries, we include four-digit industry dummies to pick
up unobserved heterogeneity. Ideally we would want to include fixed firm effects in the specification,
but when did so we found that it very hard to pin down any of the coefficients of interest. In a
recent paper, Hall, Jaffe and Trajtenberg (2005) reach a similar conclusion. The reason is that going
to the ‘within-firm’ dimension means that we are trying to explain variation over time in market
value (around the firm mean), which can be very noisy. In a first-differenced specification, the
variation over time would be very close to unpredictable, under the efficient markets hypothesis.”
The ‘within-firm’ estimator is not equivalent to first-differences, so it is possible in some samples

to exploit fixed firm effects successfully (this depends on the time series properties of the data).

Using a much broader sample of firms, Bloom, Schankerman and Van Reenen (2005) are able to

15We also constructed an industry sales measure for each firm, equal to a weighted average of the sales in each of
the four-digit SIC classes in which the firm operates. The weights are constructed from Compustat information on
the distribution of firm sales across SIC classes during the period 1993-2001. Results using this control are similar.

16We also experimented with measures using citations rather than patents, and flows rather than stock measures.
Empirical results were similar to those reported in the text.

'"Strictly speaking, under the (weak form) efficient market hypothesis, the market value in period ¢ should not be
predictable with information publicly available at ¢ — 1.
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estimate a market value equation with fixed firm effects, but in the current study we are not able
to do so.

Following Hall, Jaffe and Trajtenberg (2005), we also estimate an extended version of the model
that allows for the stock market to value the patents held by a firm, above and beyond its valuation
of the firm’s R&D. There are basically two reasons such a patent premium may be present. First,
patenting may enhance the ability of the firm to appropriate rents from any given innovation
outputs, relative to alternative methods of protection. Second, patents contain (noisy) information
about innovation output and as such may contain additional information about the expected profit
stream of the firm, above and beyond measures of R&D input.'® It is important to include the
stock of R&D in the estimating equation, however, since some innovations may not be patented.

The extended specification of the model treats the stock of patents, denoted by PS, in the same

way as the stock of R&D:

1% e . [ PS
o <A>@-f1“it““ (1” (AL” <A>it>

where we expect 0¥ > 0 if there is a patent premium in the stock market. For estimation we

approximate this term by adding a (fifth order) polynomial ¥(PS/A) to equation (10).!

5.2 Patent Equation

Because patents are counts, we use a version of the negative binomial count data model that allows

for fixed effects.2? The first moment of the estimator is

E(Py|Xi) = exp{8}In Patprop;_1+ B5InCitecon;i—1 + Bg In Spillover;_1

+XP B+ &7 o} (10)

18 A related interpretation is worth noting. Given the costs involved, we expect patents to be taken out on the more
valuable innovations, other things equal. Thus the patent premium may reflect the additonal market value associated
with above-average quality R&D.

We do not include an additional polynomial in the interaction term
available data.

208ee Blundell, Griffith and Van Reenen (1999) and Hausman, Hall and Griliches (1984) for discussions of count
data models of innovation.

%PTf because it is too demanding on the
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Writing this first moment as E(Pj|X;:) = exp(x},57), for shorthand, the variance is V(P;) =
exp(z},6P) + aexp(2z},5P) where the parameter « is a measure of over-dispersion. The Poisson
model restricts the mean to equal the variance, which corresponds to the special case o = 0. The
Negative Binomial estimator relaxes this assumption (empirically, overdispersion is important in
our data). We estimate the model by maximum likelihood. We allow for unobserved firm hetero-
geneity using the approach developed by Blundell, Griffith and Windmeijer (2002) and Blundell,
Griffith and Van Reenen (2003) This uses pre-sample information on patents to control for het-
erogeneity. The alternative approach of Hausman, Hall and Griliches (1984), using conditional
maximum likelihood, is only consistent for strictly exogenous regressors, which does not hold for

our specification.

5.3 R&D Equation

We write the R&D equation as:

InRy = ¢"InRy_1+ B InPatpropi—1 + B51n Citeconiz—1

+3% In Spillovery—1 + XJ{_1 85 + & +nj + v, (11)

where & is a full set of firm dummies, n} a full set of time dummies, X, denotes other control
variables such as industry demand, and v}, is an idiosyncratic error term. In the R&D equation
we include fixed firm effects to capture unobserved heterogeneity.?! This specification allows for
dynamics in R&D investment by including a lagged dependent variable. As in the market value
equation, unobserved, transitory shocks to demand are captured by the time dummies and a dis-
tributed lag of firm sales, and firm level variables on the right hand side of the R&D equation are

lagged by one period to mitigate endogeneity problems.

2IThe time dimension of the company panel is relatively long, so the ‘within groups bias’ on weakly endogenous
variables (Nickell, 1981) is likely to be small. The average number of continuous time series observations is 9.1
(median is 7.0).
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6 Empirical Results

6.1 Market Value Equation

[Table 3 about here]

Table 3 presents the parameter estimates for the market value equation. The basic specification
in column 1 strongly supports the predictions of the model. First, not surprisingly we find that
a firm’s (lagged) R&D stock is strongly related to its market value. Using the coefficients on the
polynomial in G/A, we find that a 10 percent increase in the stock of R&D is associated with a 8.4
percent increase in value. Evaluated at the sample means, this implies that an extra $1 of R&D
generates an increase of 96 cents in market value.?? This estimate for software firms is very similar
to previous studies that do not focus on software — e.g., Hall, Jaffe & Trajtenberg (2005) estimate
a marginal return to R&D of 86 cents. However, as we show below, this figure underestimates the
full marginal return to R&D for sotftware firms because there is a large indirect return in the form
of a patent premium on innovation output.

The second finding is that R&D by technology-related rivals generates positive spillovers that
are valued by the stock market. The coefficient on Spillover is positive and statistically significant,
implying that a 10 percent increase in the pool of technology spillovers is associated with a 1.7
percent increase in a firm’s market value. In absolute terms, the coefficient implies that $1 of
additional Spillover is associated with an increase in market value of 13 cents. In other words, an
extra dollar of technology spillover is worth (in terms of market value) about 13 percent as much as
a dollar of own R&D for these software firms. This estimate of the impact of technology spillovers
(relative to own R&D) is larger than previous estimates that are based on samples covering a
range of different industries (e.g., Hall, Jaffe and Trajtenberg, 2005; Bloom, Schankerman and
Van Reenen, 2005), which is consistent with the widely-held view that cumulative innovation is
particularly important in software.

We now turn to the effect of the strategic patenting variables. The third finding is that firms

which face technological rivals with higher patent propensities have lower market value. The coef-

22We compute the elasticity of market value with respect to R&D stock as eyg = %@'(%) where @' is the derivative
of the polynomial ®. The marginal value of R&D is 2% = L &'($).
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ficient on Patprop is negative and statistically significant, implying that a 10 percent increase in
rivals’ patent propensity reduces a firm’s value by 1.3 percent.

The fourth finding is that firms whose patent citations are more concentrated in fewer technology
rivals have systematically higher market value. This finding is consistent with the hypothesis
that higher concentration of patent rights should reduce the transactions costs of settling patent
disputes. The coefficient on Citecon is statistically significant and implies that a five percentage
point increase in the four-firm citation concentration ratio (this is a 10 percent increase at the
sample mean) would raise market value by 1.7 percent. These two findings strongly support the
model’s predictions about strategic patenting — there is evidence both that patent portfolio size
(bargaining power) and transaction costs associated with the fragmentation of property rights affect
the market value of firm.

Finally, the coefficients on the firm sales and technological opportunity variables show that mar-
ket value is positively related to the growth in demand and the growth in technological opportunity,
as measured by aggregate patenting activity in the patent classes in which the firm operates. This
is confirmed by noting that the estimated coefficients on the first and second lags of firm sales are
nearly equal in magnitude but opposite in sign. The same holds for the coefficients on the first and
second lags of the Techopp variable.

The basic specification relates market value to the firm’s stock of R&D, as a proxy for knowl-
edge. Since firms typically do not patent all of their innovation output, R&D input is more a
more encompassing measure of knowledge than simply using patents. However, as Hall, Jaffe and
Trajtenberg (2005) point out, there may also be a patent premium in the stock market for those
innovations that the firm chooses to patent —i.e., their private value would be less if not patented.
To test this for software firms, we add to the empirical specification a (fifth-order) polynomial
in the ratio of the patent stock to stock of fixed assets (denoted by PS/A), analogously to our
treatment of R&D (column 2). We find clear evidence of a patent premium. Using the estimated
coefficients on the polynomial in PS/A (evaluating at the sample means), we compute an elasticity
of market value with respect to the stock of patents, denoted by ey pg, at 0.31 — a 10 percent

increase in the patent stock is associated with a 3.1 percent rise in market value, holding the stock
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of R&D constant.?? In this extended specification, we also estimate an elasticity of market value
with respect to the R&D stock, denoted by ey, at 0.71. Taken together, these findings imply
constant returns to scale in the value equation — a 10 percent increase in both the stocks of R&D
and patents is associated with about a 10.2 percent increase in market value. Nonetheless, allowing
for a patent premium in the specification of the market value equation has almost no effect on
the other coefficients in the model — in particular, the coefficients on the technology spillovers and
strategic patenting variables remain virtually unchanged.

As we indicated earlier, the full return to an increase in R&D includes both the direct market
valuation of R&D plus the indirect return through the patent premium. Formally, we can express
the total elasticity of market value with respect to R&D stock as Eyvg = evg + ev,ps eps,g. We
use the parameter estimates on the polynomial terms in G/A and PS/A (column 2 in Table 3) to
compute the elasticities ey and ey, pgs. To get the elasticity of patents with respect to R&D, eps q,
we use the coefficients estimated in the patent equation which are presented later (column 2 in Table
4). This computation yields the following decomposition: Eyg = 0.71 4+ 0.31 x 0.60 = 0.90. That
is, once we account for both the direct impact of R&D and the effect through the patent premium, a
10 percent increase in the stock of R&D raises market value by 9.0 percent. From this we conclude
that the patent premium accounts for 21 percent of the total elasticity effect of R&D (= 0.31 x
0.60/0.90).2* This finding shows that patents are important as a means of appropriating innovation
rents in software.

One other interesting implication of the empirical results is worth noting. We found patenting
by its technology rivals reduces a firm’s market value (the coefficient on Patprop is negative). As
we pointed out in the introduction, however, some researchers (e.g., Bessen and Maskin, 2000) have
suggested that patent regimes in complex technology industries may create a prisoner’s dilemma

in which firms could be better off by collectively reducing their levels of patenting. In our context,

Z3We compute the elasticity of market value with respect to patent stock as ey ps = Pqu\Il'(Png) where ¥’ is the
derivative of the polynomial W. It is interesting to note that Hall and MacGarvie (2006), using a very different sample
(covering firms doing any software patenting, rather than ’software’ firms as we define them) estimate an elasticity
of market value with respect to patents per R&D dollar of 0.3, which is very similar to our finding.

?We can also do the decomposition in terms of the marginal return to R&D (instead of elasticities). Note that
% = g% + %%%, where the last three terms constitute the patent premium. We compute the first three
derivatives from the estimated coefficients of the polynomial ® and W. Using the relationship between the stock and
flow of patents, we get % = T‘Jlré where r and § are the real interest rate and depreciation rate (we set r = .05,

0 = .15). We find that the patent premium accounts for 25 percent of the full marginal return to R&D.
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this hypothesis implies that a proportional increase in patenting by all firms would reduce the
market value of the individual firm, holding R&D for all firms constant. In Table 3, this requires
that the sum of the coefficient on Patprop and the elasticity on own patent stock (computed
from the polynomial in PS/A) should be negative. The parameter estimates do not support this
claim — using the estimates from column 2, we find that the sum of these elasticities is positive
(—=0.12 4+ 0.31 = 0.19).

The scope of software patent protection was gradually increased, and that of software copyright
protection reduced, in a series of court decisions during the 1980s, culminating in two key decisions
in 1994 and 1995 (for case references, see note 10). These decisions made it increasingly desirable
for firms to protect software algorithms using patents rather than by copyright as they had done
previously. As noted in the introduction, this led to a sharp increase in software patenting. We
want to investigate whether the changes in patent policy toward software raised the shadow price
on patents and R&D, or increased the importance of the strategic patenting variables. To examine
this, we re-estimated the market value equation separately for the pre-1994 and post-1994 periods
(columns 3 and 4 in Table 3).2°

There is no evidence that the shadow price of R&D changed as a result of the change in patent
regime. We cannot reject the null hypothesis that the coefficients on R&D are the same in both
periods (p-value = 0.20). However, we strongly reject the hypothesis that the coefficients on
patents remained constant over the two periods (p-value < .01). Nonetheless, the elasticity of
market value with respect to the stock of patents, implied by the coefficients, does not change
very much between periods — it is estimated at 0.50 in the 1980-94 period and 0.39 for 1995-99.
Similarly, the estimated marginal value of a patent is not sharply different between the periods —
$5.3 million versus $3.9 million. However, we find that the coefficients on both strategic patenting
variables increased substantially in the post-1994 period. The point estimates of the Patprop and
Clitecon coeflicients are not statistically different from zero in the earlier period, but in the later

period they are both larger (in absolute value) and statistically significant.

25 The are more observations in the second (shorter) sub-period because data are available for more firms. However,
when we restrict the analysis to those firms that also appear in the first sub-period, we get very similar results. This
point also applies the analysis of the patent equation in Section 6.2.
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In summary, we conclude that the change in patent regime was associated with a sharp increase
in the importance (as measured by the coefficients) of the strategic patenting variables. At the
same time, despite a large increase in the level of patenting during this later period, we do not
find a sharp reduction in the impact of patents on market value. Evidently, whatever diminishing
returns that was associated with the intensification of software patenting appears to have been

largely countervailed by the increased value from the strengthening of software patent protection.

6.2 Patent Equation

[Table 4 about here]

Table 4 presents the results for the patent equation.?S In the regressions we allow for unobserved
firm heterogeneity using the approach developed by Blundell, Griffith and Windmeijer (2002) which
conditions on pre-sample patent counts.?” The alternative approach of Hausman, Hall and Griliches
(1984) for including firm fixed effects is only consistent for strictly exogenous regressors, which does
not hold for our specification.

Not surprisingly, we find that patenting is significantly related to the firm’s stock of R&D, but
there are sharp decreasing returns both in the model without and with the control for unobserved
firm heterogeneity (columns 1 and 2). Note that the coefficient on the pre-sample patents variable
is positive and statistically significant (this holds in all specifications), which confirms that unob-
served firm heterogeneity in patenting behaviour is important. Using the specification with the
pre-sample control, the elasticity of patents with respect to the R&D stock is 0.60 and statistically
significant. This finding is broadly in line with the extensive empirical literature on patent pro-

duction functions.?® Also note that the coefficients on our measures of technological opportunity

26Tn all the empirical specifications in the table, the estimate of the over-dispersion coefficient, «, is significantly
different from zero. This result rejects the Poisson model for patents (e = 0) in favor of the Negative Binomial
specification.

?T"We also estimated the model using citation rather than patent counts (to capture variation in patent quality),
and conditioning on pre-sample patent citations. The empirical results were very similar to those reported in the
table.

28The R&D elasticity drops sharply if we include firm size in the regression, which is not surprising since R&D
stock is highly correlated with firm size. The case for including firm size here is not compelling. Conditional on
R&D (i.e., the number of innovations generated), the decision to patent will depend on the incremental profits from
patenting relative to protecting those innovations by alternative means. This will depend in part on the incremental
sales associated with patenting, not the level of total sales which is what we observe.
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(T'echopp) are surprising — they suggest that the growth in ‘technological opportunity’ reduces cur-
rent patenting (the coefficients are about equal in magnitude and opposite in sign). But recall that
Techopp measures the aggregate patent activity in the patent classes in which the firm operates.
Thus the estimated coefficients point to a ‘fishing out’ interpretation — when aggregate patenting
growth is higher, the firm is less likely to generate patented innovations from its stock of R&D.?’

We now turn to the key variables of interest. Overall, the empirical results support the hypoth-
esis that both technology spillovers and strategic patenting variables affect the decision to patent.
First, we find strong R&D spillovers in patenting once we control for unobserved firm heterogeneity
(column 2). The coefficient on Spillover is positive and highly significant. The spillover effect is
substantial: a ten percent increase in technology spillovers is associated with a 6.4 percent increase
in patenting, holding the firm’s own R&D stock constant.

Second, we find evidence that firms do less patenting, conditional on their R&D, when they
face technology rivals with higher patent propensities. The point estimate on Patprop is negative
and strongly significant in the specification with the pre-sample patents control. This finding is
consistent with the view that firms are in a worse bargaining position in resolving patent disputes
with rivals that have large patent portfolios, which thereby reduces the profitability of patenting.
The effect is substantial — the point estimate implies that a 10 percent increase in the average
patent propensity of technology rivals is associated with a reduction in patenting by the firm of 4.5
percent.

Third, there is strong evidence that greater concentration of citations (lower patent transaction
costs) affects the level of patenting. Greater citations concentration is associated with a statistically
significant reduction in patenting by the firm. This finding is consistent with the evidence for
semiconductors from Ziedonis (2003a), who finds that greater fragmentation (lower concentration)
of patent rights increases patenting, conditional on R&D. In the context of our model, this finding

implies that greater concentration reduces the marginal value of accumulating a patent portfolio in

29We experimented with alternative lags on Techopp and found that the ‘fishing out’ result is robust — higher
past growth in aggregate patenting reduces the firm’s patenting, conditional on its R&D. One possible alternative
explanation is that this result reflects resource constraints in a given field of expertise within the patent office. If a
backlog of patent applications in a field builds up, the probabilty that any given new patent application is granted
within a given time declines. Since our patent measure refers to patent grants, dated by their year of application,
this explanation would work only if firms delay their applications to the patent office as a consequence of the backlog,
which seems unlikely.
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order to enforce patent rights (in the model, H,. > 0).The point estimates are nearly identical, and
statistically significant, in the specifications without and with the the pre-sample patent control.
The effect is large — for example, the point estimate in column (2) implies that a 5 percentage point
increase in citations concentration (equivalent to a 10 percent increase at the sample mean) reduces
patenting by 12.8 percent.

As with the market value equation, we want to test whether the change in judicial treatment
of software patentability increased the impact of patent portfolios or patent thickets on patenting
behaviour. To examine this hypothesis, we estimate the patent equation separately for the pre-
1994 and post-1994 periods (columns 3 and 4). The key results on R&D spillovers and the strategic
patenting variables hold for both sub-periods, but we do not find any significant change between the
two periods. While the point estimates on Spillover and Citecon are larger in the later sub-period,

and the coefficient on Patprop is lower, the differences are not statistically significant.

6.3 R&D Equation
[Table 5 about here]

Finally, we turn to the parameter estimates for alternative specifications of the R&D equation.
Overall, the results (Table 5) provide support for the hypothesis that the strategic patenting vari-
ables — especially the concentration of patent rights, Citecon — affect the R&D decision. We discuss
each of the key findings in turn, looking across the specifications to check robustness.

First, we do not find strong evidence that technology spillovers affect the R&D decision, once
we control for firm fixed effects. In the static specification with industry fixed effects, but not firm
effects (column 1), we get a positive and significant coefficient on the Spillover variable (elasticity of
0.21). This also holds when we add dynamics to the specification without fixed effects (column 2),
the implied long run elasticity of technology spillovers rising to 0.40. However, when we add fixed
firm effects either to the static or dynamic specification (columns 3 and 4, respectively), the point
estimate of the spillovers coefficient becomes negative but statistically insignificant.?’ Moreover,

the firm fixed effects are jointly significant (p-value <.001). As an empirical matter, R&D at the

30Tt is worth noting that these negative point estimates for the fixed effect specifications do not appear when we
use the smaller sample based on a 50% software (GO6F) patent threshold, which excludes IBM. In the latter case,
the point estimates are 0.19 for column 3 and 0.21 for column 4, but neither is statistically significant.
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firm level is highly persistent and one needs either firm effects or dynamics in the specification to
capture it. Picking up this persistence with dynamics allows us to pin down a positive effect of
technology spillovers, but not if we use fixed effects. However, we emphasize that this finding that
technology spillovers do not affect the R&D decision is consistent with the model — it indicates
that such spillovers do not materially affect the marginal product of own R&D. Nonetheless, recall
from Sections 6.1 and 6.2 that spillovers strongly increase the number of patents and market value,
indicating that such spillovers do raise the average product of the recipient firm’s R&D.

Second, there is only mixed evidence that R&D investment is affected by the patent propensities
of technology rivals. While the point estimates of coefficient on Patprop are negative, as predicted
by the model, and robust to introducing dynamics and fixed firm effects in the model (columns 2
and 3, respectively), they are not generally statistically significant. Thus it does not appear that
patent portfolio accumulation by technology rivals is an important deterrent to doing R&D.

However, the R&D decision is significantly affected by the degree of concentration of patent
rights, i.e., by the level of patent transaction costs. In the static model without fixed effects
(column 1), we find that greater citations concentration (Citecon) is associated with a statistically
significant reduction in R&D. This result holds up when we introduce dynamics or fixed firm effects
in the regression (columns 2 and 3, respectively), and the size of the effect is substantial. In the
static specification with fixed effects, the estimate implies that a 5 percentage point increase in
citations concentration (this is a 10 percent increase at the sample mean) reduces R&D by 1.4
percent (the implied long run impact of this change in the dynamic specification is much larger,
at 4.2 percent). As before, however, when we introduce both fixed effects and dynamics the point
estimate is broadly similar but no longer statistically significant.

In the model, the effects of higher concentration of patent rights on the level of R&D and
patents are ambiguous. The direction of the effect depends on how citations concentration affects
the marginal value of having a larger patent portfolio in order to enforce patent rights (i.e., on
the cross derivative of the patent enforcement cost function, H,.). As explained in Section 2, our
finding that higher concentration of patent rights reduces R&D implies that H,. > 0. This means
that there is a smaller gain from having a larger patent portfolio when patent rights are more

concentrated among rival firms. This finding is consistent with our expectations, since tacit forms
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of cooperation are more likely to develop in such cases and these make large patent portfolios less
important as threats to resolve disputes.

Finally, it is interesting to note that the coefficients of the time dummies show no evidence that
R&D changed systematically over the sample period. We cannot reject the null hypothesis that
the coefficients on the year dummies are jointly zero in any of the specifications of the model. This
finding suggests that the expansion of patentability over software during the 1980s and early 1990s
was not associated with any major changes in R&D investment by these software firms as of the
end of our sample period. Whether the expansion of software patentability will eventually intensify
innovation incentives remains an important, but open, question. Nonetheless, we emphasise that
our findings contradict the controversial claim by Bessen and Hunt (2003) that the expansion of
software patenting led firms to reduce R&D over this period.

Table 6 concisely summarizes our main findings on market value, patents and R&D by comparing
the predictions from the model with the empirical results from Tables 3-5. There is a close match
between the theoretical predictions and the empirical findings for the key technology spilllover

variable (Spillover) and the strategic patenting variables (Patprop and Citecon).

[Table 6 about here]

7 Conclusion

This paper studies the impact of strategic patenting and technology spillovers on R&D investment,
patenting activity and market value of firms in the computer software industry. Software is a
classic example of a complex technology in which cumulative innovation plays a central role, and
where there is growing concern that patent thickets may impede innovation. We develop a model
to analyse and estimate the impact of strategic patenting and technology spillovers. The model
incorporates two distinct aspects of strategic patenting — patent portfolio size (patent propensity)
to capture the firm’s bargaining power in patent disputes and licensing, and concentration of patent
rights among rivals to capture the transaction costs of enforcing patent rights. Using panel data
for the period 1980-99, we find clear evidence that strategic patenting and technology spillovers are

present.
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There are four key empirical findings in the paper. First, there are large, positive technology
spillovers from R&D for software firms. Second, we find that patenting by technology rivals reduces
the firm’s R&D investment, patenting and market value. Third, greater concentration (less frag-
mentation) of patent rights among rivals reduces both R&D and patenting by the firm — reflecting
less need to have an arsenal of patents to resolve disputes when there are fewer players — but it
increases market value because transaction costs are lower. Finally, we find that there is a large
patent premium in the stock market valuation of these software firms, which accounts for about

twenty percent of the overall private returns to R&D investments.
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Appendix 1. Comparative Statics

The first order conditions are

k
Ve = SO0 — S — H} = (02 2) (ks — kod3)Hy — 1 =0

T

ko
prkr

T

Voo = (A= 1DkoII] — fhko — ko( VH, =0

where superscripts on functions II and ¢ refer to the firm and subscripts 1 and 2 denote partial

derivatives with respect to the different arguments. To simplify notation, we supress the arguments

in functions, but it should be borne in mind that H = H ( z Ozj , ¢). Differentiating totally we obtain

dp,
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where, using the first order conditions and after considerable algebra, we obtain the following

expressions:
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K2k, poko
VPOPT = (ka )Q{H + kaT CM} <0
0 - poko
Vporf = ()\ - 1)90k0¢0 - kaTQ (k7¢(2) - k0¢1){Hx + ﬁHmz} <0
k‘2
Ve = —p—%Tch <0

Second order conditions imply Vyyr, < 0, Vo po < 0, and Vigry Viop, — Vi2 po > 0. We can also
show that V., > 0 provided that ¢) >> ¢7 (spillovers are not too large) and H,, is sufficiently
small.3! Under these same two conditions, we can unambiguously sign Viep, < 0,V < 0 and
Vpor» < 0, as indicated above. However, we cannot sign V;,,, without further restriction.?? Finally,
it Hye > 0 then V), . < 0 but V;,. cannot be signed. If H;. <0 then V. > 0 and V, . > 0.

In addition, using the envelop theorem we get the following results for the value of the firm:

ovo pokd

avoo_ H,

dp- o2k, e =0

oV 5 k
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Tr ¢1 Pr ke
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dc

#1Using the first order condition for p,,we obtain

ko 0 - poko
k2 (kropy — kooy){Hx + p_(:k: Hyu}

Viopo = —

which is positive if ¢ >> ¢3 and H,, is sufficiently small (i.e., elasticity of Hy.is less than unity).
21f there is no spillover effect (¢y = ¢1p = Boy = 0), we get Vi, > 0. If we have spillovers but no strategic
patenting effect (Hy = Hzz = 0), we also get V;r, > 0, provided dimimishing returns in the profit function are not

too large.
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Appendix 2. Construction of the Sample

We began with two main data sets: the CorpTech data (purchased from Corporate Technology
Information Services) and the GO6F (‘software’) patent database. The CorpTech data cover more
than 15,000 companies (parent companies and subsidiaries) which report some involvement in a
software-related activity (product classification) over the period 1990-2002. Of the firms covered
by CorpTech, 12 percent are publicly traded firms. We focus exclusively on public firms in order
to use market value and other balance sheet information for the empirical analysis.

The first step was to match subsidiaries to their parent companies. Subsidiaries and parent
firms are identified in the CorpTech data by ‘type of ownership’ variables. The CorpTech data set
includes the firm identifier (CUSIP), but this information was missing for many firms. All public
companies with missing CUSIP’s were checked manually (primarily from company websites) and
the information was added where available.

The second step was to match the firms in CorpTech (both parents and subsidiaries) to the
assignees in the GO6F patent database. This first required that we get the CUSIP for the assignee
of each GO6F patent. This was done by matching the GO6F patent number to the NBER database.
The next step was to match the GO6F patents to the CorpTech database using the company CUSIP.
This matching was done under the supervision of Josh Lerner at the Harvard Business School. The
matching was done for each CorpTech firm using name recognition software and followed up by two
independent rounds of manual checks (one under Josh Lerner and the other by Irina Danilkina of
the Law and Economics Consulting Group)..

For this study, we need to match the data for the public firms in CorpTech to all of their patents,
not just their GO6F patents. In principle, this could be done by matching the CorpTech and NBER
patent data, using the CUSIP in each data set. The NBER data include all USPTO patents (up
to 1999) and CUSIP numbers from the Hall, Jaffe and Trajtenberg (2004) match, which is based
on publicly registered firms in 1989. However, for our purposes this match is antiquated, given the

substantial entry and rapid growth of the software industry in the 1990s. We found 1,198 public
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firms with CUSIP’s in CorpTech that do not show up in the NBER dataset. These are firms that
were born or became public after 1989. So while the second step above provides a good match
of firms and their GO6F patents, there remained no reliable match of firms to their non-software
patents. If we were to use this match and include all firms with at least one GO6F patent, there
would be 70 firms with a total of 18,628 software patents and 127,553 total patents. The vast
majority of these firms have very low software to total patent ratios. Using our 45% software to all
patent ratio cutoff, we would be left with only 15 firms covering 11,561 software patents and 28,041
total patents. Using the 50% cutoff (which excludes IBM), there would remain 14 firms with 4,905
software patents and 8,736 total patents.

It is clear that the match using the 1989 ownership patterns in the NBER patent database was
outdated for our purposes, as many software firms were established or became public after 1989.
Thus the third step was to do a new match between the CorpTech and NBER databases. The
focus was to identify patents in the NBER database whose assignees were public firms either born
or becoming public after 1989. The matching was done manually, as follows. For each of the 1,198
public companies in the CorpTech data with CUSIP numbers that do not appear in the NBER
data, we searched the NBER database for matching assignees. This match was done using the
‘Soundex’ command in SAS to find similar sounding names (including spellings, different abbrevi-
ations etc.). This procedure yielded 514 additional name matches. Because many similar sound-
ing names may not be the same firms at all (e.g., Andromedia vs Andromeda, FoundryNetworks
vs.FoundryManagement etc.), each name that differed was manually checked (using company web-
sites) to see if the ‘matched’ companies were in fact the same. Fifty of the 514 provisional matches
were discarded, leaving 464 confirmed firm matches. Finally, for all these firms, both the names of
the parent and all its subsidiaries were checked in the NBER patent assignee list. This procedure
results in the final sample of 445 firms with at least one GO6F patent. We then applied the 45%
threshold for the ratio of GO6F to total patents in order to identify what we call ‘software firms’.

This yielded the final sample of 121 firms used in the paper.
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TABLE 1
PREDICTIONS OF THE MODEL

Endogenous Variable

Exogenous Variable R&D, 1 Patents, po Market value, V,
Rivals’ Patent Propensity, p. Negative Negative Negative
(bargaining power
hypothesis)

Patent concentration, ¢ Ambiguous Ambiguous Positive
(patent thicket hypothesis)
R&D spillovers, r; Ambiguous Positive Positive

" If this coefficient is negative, then H,.> 0. If the coefficient is positive, we can not infer the
sign of Hy. .




TABLE 2
DESCRIPTIVE STATISTICS

Variable Mnemonic Mean Median Standard
deviation

Market value, $m \Y% 2462 97.0 10,886
Tobin’s Q V/A 6.5 4.3 6.7
R&D flow, $m R 188.0 14.7 739
Stock R&D/fixed capital G/A 5.7 2.2 18.2
Patent flow P 26.2 0 162.4
(positive values only) (61.9) (2) (245.3)
Sales, $m S 2891 109.7 12,111
Stock of fixed capital, $m A 1189 20.4 5880
Technology spillovers, $m Spillover 20,717 20,067 11,615
Patent propensity of Patprop 0.080 0.075 0.064

technology rivals

4-firm patent citation
concentration index Citecon 0.47 0.38 0.25

Notes: The sample is an unbalanced panel covering 121 firms over the period 1980-99. The cells are
computed using all non-missing observations over the sample period. Dollar figures are in 1999 values.



TABLE 3

MARKET VALUE EQUATION

) (2) (3) “4)
Dependent variable: Baseline Patent Patent Patent
Log(V/A) 1980-99 Premium Premium Premium
1980-99 1980-94 1995-99
Log Spillover 0.167** 0.187%** 0.168%** 0.155%
(.050) (.049) (.074) (.091)
Log Patprop .., -0.129% -0.122* -0.013 -0.276%**
(.074) (.073) (.11) (.12)
Citecon ¢ 0.344%* 0.460%* 0.188 0.713%*
(.11) (.11) (.16) (.16)
Log Firm sales 0.185%* 0.196** 0.021 0.253%*
(.065) (.065) (.12) (.067)
Log Firm sales (, -0.178%* -0.160%* -0.012 -0.183%*
(.062) (.062) (.12) (.063)
Log TechOpp . 2.301%* 2.449%* 5.025%* 0.670
(.70) (.70) (.95) (.84)
Log TechOpp -2.202%* 2.377%* -4.842%* -0.740
(.68) (.68) (.92) (.80)
(G/A) (.1 0.092%* 0.074%* 0.045%* 0.139%*
(.013) (.014) (.024) (.035)
(G/A)? -0.003%* -0.002%* -0.002%* -0.008**
(.0005) (.0004) (.001) (.003)
(G/A)® . x 10° 0.027** 0.024%* 0.020%* 0.195%
(.005) (.005) (.010) (.11)
(G/A)* (. x 10° -0.109%* -0.099%* -0.085%* -2.330
(.020) (.018) (.038) (1.46)
(G/A)® x 10° 0.149%* 0.138%* 0.120%* 10.300
(.027) (.025) (.046) (6.7)
(PS/A) (., 0.712%* 1.373%% 0.967**
(21) (.40) (22)
(PS/A) -0.348%* -0.846%* -0.622%*
(.16) (.30) (.15)
(PS/A) (., 0.065* 0.202%* 0.143%*
(.039) (.079) (.038)
(PS/A)* -0.005 -0.021%* -0.013%*
(.004) (.008) (.003)
(PS/A)° (1 x 10° 0.146 0.734%* 0.377**
(.11) (.29) (.10)




Industry dummies Yes Yes Yes Yes
(p-value: zero effects) (<.01) (<.01) (<.01) (<.01)
Year dummies Yes Yes Yes Yes
(p-value: zero effects) (.066) (.073) (.47) (.10)
No. observations 865 865 399 466
R’ 0.49 0.51 0.61 0.52

Notes: Tobin’s Q is defined as market value of equity plus debt, divided by the stock of fixed capital.
Estimation is by OLS. Newey-West standard errors (in brackets) are robust to heteroskedasticity and

first-order serial correlation. Dummy variables are included for observations where Citecon or lagged
R&D stock is zero. * denotes significance at the 10% level, ** at the 5% level.



TABLE 4

PATENT EQUATION

Dependent variable: (N (2) 4 &)
Patent Count No initial Initial Initial Initial
conditions conditions conditions conditions
1980-99 1980-99 1980-94 1995-99
Log Spillover 0.106 0.637** 0.542%%* 1.040%**
(.096) (.12) (.15) (:23)
Log Patprop 0.210 -0.453** -0.808** -0.501
(.24) (:22) (:33) (41
Citecon -2.540%* -2.553** -2.171%* -2.785%*
(.38) (.34) (.42) (.47)
Log R&D Stock ¢ 0.761** 0.599%** 0.578** 0.626**
(.036) (.043) (.065) (.052)
Log TechOpp -4.238%* -6.328%* -9.394** -6.686**
(2.07) (1.83) (3.14) (2.21)
Log TechOpp ., 4,593 %* 5.982%* 9.627%* 5.386%**
(2.08) (1.80) (3.06) (2.04)
Log Pre-sample patents 0.368** 0.346** 0.272%**
(.052) (.076) (.073)
Over-dispersion, a 1.161%* 1.336** 1.005%* 1.423*
(.14) (.12) (.15 (.17
Industry dummies Yes No No No
(p-value: zero effects) (<.01)
Year dummies Yes Yes Yes Yes
(p-value: zero effects) (<.01) (<.01) (.028) (<.01)
No. observations 991 991 472 519
Pseudo R* 0.27 0.26 0.27 0.27

Notes: ‘IC’ denotes the pre-sample control for initial conditions. Estimation is based on the Negative
Binomial model. Standard errors (in brackets) are robust to heteroskedasticity. Dummy variables are
included for observations where Citecon or lagged patent flow is zero. The initial conditions in
columns (2)-(4) are estimated with ‘pre-sample mean scaling approach’ of Blundell, Griffith and Van
Reenen (1999). * denotes significance at the 10% level, ** at the 5% level.



TABLE 5
R&D EQUATION

Dependent variable: (1) 2) 3) 4)
Log R&D Static, no Dynamic, no Static, Dynamic
firm effects firm effects firm effects firm effects
1980-99 1980-99 1980-99 1980-99
Log Spillover ¢ 0.214%** 0.104%** -0.156 -0.102
(.096) (.036) (.14) (.096)
Log Patprop ¢ -0.033 -0.060 -0.091 -0.075
(.10) (.056) (.075) (.059)
Citecon -1.016** -0.198%* -0.281* -0.124
(.17 (.095) (.17 (.14)
Log R&D ¢, 0.756** 0.410%*
(.033) (.058)
Log firm sales ¢ 0.952%** 0.467** 0.709** 0.496**
(.078) (.048) (.075) (.075)
Log Firm sales , -0.219%* -0.284%* 0.029 -0.077*
(.069) (.039) (.065) (.048)
Log TechOpp ¢, 0.906 -0.161 -0.070 -0.283
(1.03) (.54) (.82) (.63)
Log TechOpp ., -1.162 0.087 -0.074 0.173
(1.04) (.51 77 (.61)
Industry dummies Yes Yes No No
(p-value: zero effects) (<.01) (<.01)
Firm dummies No No Yes Yes
(p-value: zero effects) (<.01) (<.01)
Year dummies Yes Yes Yes Yes
(p-value: zero effects) (.88) (.52) (.70) (.71)
No. observations 866 866 866 866
R? 0.90 0.96 0.96 0.97

Notes: Estimation is by OLS. Newey-West standard errors (in brackets) are robust to heteroskedasticity
and first-order serial correlation. The sample includes only firms which performed R&D continuously
in at least two adjacent years. A dummy variable is included for observations where Citecon is zero.

* denotes significance at the 10% level, ** at the 5% level



TABLE 6
COMPARISON OF EMPIRICAL RESULTS WITH MODEL’S PREDICTIONS

Partial correlation of:  Theory Empirics Consistency

0Vy/op,  Market value with
Patprop Negative -0.12%* Yes

0V/oc Market value with
Citecon Positive 0.50%** Yes

oV/or, Market value with
Spillover Positive 0.19** Yes

Oko/Op- Patents with Patprop Negative -0.45%%* Yes

Jko/Oc Patents with Citecon Ambiguous  -2.59%* N/A

oko/or, Patents with Spillover  Positive 0.64%* Yes
Oro/0p, R&D with Patprop Negative -0.091 Yes
Ory/oc R&D with Citecon Ambiguous  -0.28%* N/A
Ory/Or, R&D with Spillover Ambiguous -0.16 N/A

Notes: The empirical results are taken from the market value equation with a patent premium (column
2, Table 3), the patent equation with the pre-sample control (column 2, Table 4), and the static R&D
equation with fixed firm effects (column 3, Table 5). * denotes significance at the 10% level, ** at the
5% level.



APPENDIX TABLE
LIST OF SAMPLE FIRMS (FIRST HALF)

Cusip SIC  Company Name Cusip  SIC  Company Name

004334 3663 Accom, Inc. 205638 7372 Compuware Corp.

004930 7372 Activision, Inc. 206186 7372 Concord Communications, Inc.
00651F 3661 Adaptec, Inc. 206710 3571 Concurrent Computer Corp.
00724F 7372 Adobe Systems, Inc. 208547 7372 Consilium, Inc.

00826M 7372 Affinity Technology Group, Inc. 232462 7372 CyberCash, Inc.

036384 7372 Ansoft Corp. 233326 7372 DST Systems, Inc.

037833 7372 Apple Computer, Inc. 238016 3625 Data Translation, Inc.
037935 3829 Applied Microsystems Corp. 253798 3577 Digi International, Inc.
043412 3661 Asante Technologies, Inc. 25387R 3577 Digital Video Systems, Inc.
04362P 7372 Ascential Software Corp. 281667 7372 ].D. Edwards & Company
045327 7372 Aspen Technology, Inc. 292475 3669 Emulex Corp.

052754 7379 Auto-trol Technology Corp. 36227K 7372 GSE Systems, Inc.

052769 7372 Autodesk, Inc. 362555 3669 Gadzoox Networks, Inc.
05367P 7372 Avid Technology, Inc. 370253 7372 General Magic, Inc.

055921 7372 BMC Software, Inc. 40425P 7372 HNC Software Inc.

073308 7375 Be Free, Inc. 451716 7372 1KOS Systems, Inc.

073325 7372 BEA Systems, Inc. 45666Q 7372 Informatica Corp.

079860 7379 BellSouth Information Systems 45812Y 7371 Integrated Surgical Systems, Inc.
109704 7372 Brio Technology, Inc. 458140 3674 Intel Corp.

111412 7372 BroadVision, Inc. 458153 7372 IntelliCorp, Inc.

12487Q 7375 CCC Information Services Inc. 458176 7372 Starfish Software, Inc.
126349 7372 CSG Systems, Inc. 458683 7371 Intergraph Corp.

127387 7372 Cadence Design Systems, Inc. 459200 7372 IBM Corp.

14167A 7372 MCS-Simione Central, Inc. 46060X 7372 Internet Security Systems, Inc.
162813 7372 CheckFree Corp. 461202 7372 Intuit, Inc.

17275R 3669 Cisco Systems, Inc. 46145F 7372 ITG, Inc.

177376 7372 Citrix Systems, Inc. 465754 7372 i2 Technologies, Inc.
204493 3571 Compaq Computer Corp. 514913 7372 Landmark Graphics Corp.
20482G 7375 CompuServe Interactive Services | 51506S 7372 Landmark Systems Corp.
204912 7372 Computer Associates International | 524651 7372 Legato Systems, Inc.
204925 7372 Computer Network Tech Corp. 530129 7372 Liberate Technologies




APPENDIX TABLE

LIST OF SAMPLE FIRMS (SECOND HALF)

Cusip SIC Company Name Cusip SIC  Company Name

545700 7372 Lotus Development Corp. 826565 7372 Sigma Designs, Inc.
553903 3572 MTI Technology Corp. 827056 7371 Silicon Graphics, Inc.
555904 7372 GLOBE!rotter Software, Inc. 827068 7372 Silicon Valley Research, Inc.
556100 7372 Macromedia, Inc. 834021 3571 SofTech, Inc.

587200 7372 Mentor Graphics Corp. 852192 7372 Spyglass, Inc.

589378 7371 Mercury Computer Systems, Inc. | 859205 7372  Sterling Commerce, Inc.
589405 7372 Mercury Interactive Corp. 86211A 7372 Storage Computer Corp.
589981 7372 Merge Technologies Inc. 862685 3577 Stratasys, Inc.

594918 7372 Microsoft Corp. 866810 3572 Sun Microsystems, Inc.
604567 7371 MIPS Technologies, Inc. 871130 7372 Sybase, Inc.

641074 7372 Nestor, Inc. 871503 7372 Symantec Corp.

64108P 7375 Netcentives Inc. 871607 7372 Synopsys, Inc.

641149 7372 Netscape Communications Corp. | 871926 7372 SystemSoft Corp.

64120N 3577 Network Computing Devices, Inc. | 879101 8742 1EX Corp.

669937 7372 Novadigm, Inc. 879516 7372 Telescan, Inc.

670006 7372 Novell, Inc. 885535 3669 3Com Corp.

68370M 7372 Open Market, Inc. 88553W 7372 3DO Co. (The)

68389X 7372 Oracle Corp. 887336 7372 Timeline, Inc.

699173 7372 Parametric Technology Corp. 895919 3577 Trident Microsystems, Inc.
705573 7372 Pegasystems, Inc. 896121 3669 Tricord Systems, Inc.
712713 7372 PeopleSoft, Inc. 903891 3571 Ultradata Systems, Inc.
719153 7372 Phoenix Technologies Ltd 923429 7372 Verifone, Inc.

741379 7372 Preview Systems, Inc. 923436 7372 VERITAS Software Corp.
743312 7372 Progress Software Corp. 92343C 7372 Verity, Inc.

74838E 7372 Quickturn Design Systems, Inc 92672P 7372 Viewpoint Corporation
750862 3577 Rainbow Technologies, Inc. 973149 7372 Wind River Systems, Inc.
75409 7372 Rational Software Corporation 980903 7372 Workgroup Technology Corp.
811699 3663 SeaChange International, Inc. 984149 7372 Xybernaut Corp.

813705 7372 Secure Computing Corp. G8846W 7372 3Dlabs, Inc.

815807 7372 Segue Software, Inc.

The SIC codes are defined as follows: 3571 Electronic Computers, 3572 Computer Storage Drives,
3577 Computer Peripheral Equipment, 3625 Relays and Industrial Controls, 3661 Telephone and
Telegraph Apparatus, 3663 Radio & Television Broadcasting and Communications Equipment, 3669
Communication Equipment, 3674 Semiconductors and Related Devices, 3829 Measuring and
Controlling Devices, 7371 Computer Programming Services, 7372 Pre-packaged Software, 7375
Information Retrieval Services, 7379 Computer Related Services, 8742 Management Consulting

Services.






