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Abstract 
 
 

In a model of career concerns for experts, when is the principal hurt from observing 

more information about her agent? This paper introduces a distinction between 

information on the consequence of the agent's action and information directly on the 

agent's action. It is the latter kind that can hurt the principal by engendering 

conformism, which worsens both discipline and sorting. The paper identifies a 

necessary and sufficient condition on the agent signal structure under which 

transparency on action is detrimental to the principal. The paper also shows the 

existence of complementarities between transparency on action and transparency on 

consequence. The results are used to interpret existing disclosure policies in politics, 

corporate governance, and delegated portfolio management. 
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1 Introduction

There is a widespread perception, especially among economists, that transparency is a beneficial

element in agency relationships because more information about the agent makes the agent more

accountable to the principal. This perception has been confirmed by theoretical results (e.g.

Holmström [15]) and is consistent with empirical evidence (e.g. Besley and Burgess [2] in politics

and Dyck and Zingales [9] in corporate governance).

This would lead one to conclude that transparency ought to be the governing principle in

agency relations. Whenever it is technologically feasible and not extremely expensive, the prin-

cipal should observe everything that the agent does. However, as we shall argue, in practice we

observe systematic deviations from transparency in important agency relationships in politics,

corporate governance, and delegated portfolio management.

In politics, the principle of open government has made great inroads in the last decades but

there are still important areas in which public decision-making is, by law, protected by secrecy.

In the United States, the “executive privilege” allows the president to withhold information from

the Congress, the courts, and the public (Rozell [30]). While the executive privilege cannot be

used arbitrarily and fell in disrepute during the Watergate scandal, the Supreme Court recognized

its validity (US vs. Nixon, 1974). In the European Union, the most powerful legislative body, the

Council, has a policy of holding meetings behind closed doors and not publishing the minutes

(Calleo [4]). Over thirty countries have passed Freedom of Information Acts, which establish

the principle that a citizen should be able to access any public document. There are, however,

important types of information, such as pre-decision material, that are often exempt from this

requirement (Frankel [14]).1

In corporate governance, violations to the transparency principle are so widespread that some

legal scholars argue that secrecy is the norm rather than the exception in the relation between

stakeholders and managers (Stevensons [33, p. 6]): “Corporations — even the largest among them

— have always been treated by the legal system as ‘private’ institutions. When questions about

the availability of corporate information have arisen, the inquiry has typically begun from the

premise that corporations, like individuals, are entitled to keep secret all information they are

able to secure physically unless some particular reason for disclosure [...] could be adduced in

support of a contrary rule. So deeply embedded in our world view is this principle that it is not

at all uncommon to hear serious discussions of a corporate ‘right to privacy’.”

In delegated portfolio management, investors have typically limited information on the com-

position of the fund they own. Currently, the US Securities and Exchange Commission requires

disclosure every six-months (a snapshot of the fund holdings). It would be easy and almost

1Section 7 returns to these non-disclosure policies and re-interprets them in the context of the present model.
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costless to have more frequent disclosure by requiring mutual funds to publicize their portfolio

composition on the internet. Yet, there is strong resistance from the industry to proposals in the

direction of more frequent disclosure (Tyle [34]).

What are the reasons behind this observed lack of transparency?2 One obvious candidate

explanation is that information revealed to the principal would also be revealed to a third party

who will make use of it in ways that hurt the principal. In the political arena, voters may choose

to ignore information pertaining to national security to prevent hostile countries from learning

them as well. In the corporate world, shareholders may wish to keep non-patentable information

secret rather than risk that the competitors learn it. In delegated portfolio management, real

time disclosure could damage a fund because its investment strategy could be mimicked or even

anticipated by competitors.3

The “third-party rationale” for keeping information secret presumably entails a tradeoff be-

tween damage from information leaks and weaker incentives for the agent. This paper is instead

concerned with a rationale for secrecy that stems purely from incentive considerations. The

conjecture is that in some circumstances revealing more information about the agent makes the

agent’s interest less aligned with the principal’s interest.

This paper uses a model of career concerns for experts (Scharfstein and Stein [32], Prendergast

and Stole [29], Ottaviani and Sørensen [25]). The main idea is that what differentiates a good

agent from a bad agent is his ability to understand the state of the world, which can be interpreted

as expertise, intelligence, or vision. Expert models have been used to represent phenomena in

the three fields from which we draw examples: politics, corporate governance, and delegated

portfolio management.

There are two periods: the current period and the future period. In the current period, an

agent (the expert) is in charge of taking an action on behalf of the principal. The agent has no

intrinsic preferences among possible actions, ie there is no moral hazard in a classical sense. The

agent receives a signal about the state of the world, whose precision depends on the agent’s type.

The action, together with the state of the world, determines a consequence for the principal. At

the end of the current period, the principal forms a posterior about the agent’s type, based on

information available, and she decides whether to keep the current agent or replace him with

2We focus on normative explanations. Obviously there is also a positive explanation. Transparency is indeed

the optimal policy but the existing institutions are suboptimal. The status quo persists perhaps because of the

entrenched interests of the current agents or because of the inertia of complex institutional arrangements. If the

positive explanation is correct, it is then essential to make the case in favor of transparency as strong as possible

by studying the validity of potential objections to the transparency principle. The present paper may be seen as

a contribution in that sense.
3However, the SEC proposed reform allows for a time lag — usually sixty days — that is judged to be sufficient

to neutralize free riding and front running.
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another, randomly drawn, agent. In the future period, the agent who is in charge faces a similar

decision problem. The wage of the agent cannot be made contingent on the agent’s current

performance. The agent maximizes the probability of keeping his job. The principal cares about

the consequence in the current period (discipline component) and the consequence in the second

period, which in turn depends on the ability of the principal to screen agents by type (sorting

component).

We distinguish between two kinds of information that the principal can observe: information

about the action that the agent took and information about the consequence of the agent’s action.

Suppose for now that the principal always observes the consequence but may or may not observe

the action (and that a consequence can be generated by more than one action-state pair, so the

principal cannot retrieve the action from the consequence). More information about the action

can hurt the principal.4

To understand this, first note that, even if the principal knows the consequence of the agent’s

action perfectly, she still stands to gain from knowing the action because knowing which particular

action-state pair has generated the observed consequence helps the principal understand the

agent’s type. Direct information on the agent’s action thus has a potential positive sorting effect.

This effect, however, is based on the assumption that the agent’s behavior is constant, but clearly

an agent who realizes that his action is going to be observed faces a different incentive structure.

A crucial observation is that, in a generic model, the possible realizations of the agent’s signal can

be ranked in order of smartness, that is, according to the posterior on the agent’s type given the

realization of the signal. Good agents are more likely than bad agents to receive smart signals. If

in equilibrium the agent’s action is informative of his signal, then also all the possible actions can

be ranked in order of smartness. The posterior on the agent’s type depends on the consequence

but also on the smartness of the action. This creates a contradiction. If the smartness component

is too strong, the only possible equilibrium is one in which actions cannot be ranked in order of

smartness, i.e. an uninformative equilibrium. The agent disregards his private signal and acts in

a purely conformist way. If this is the case, the principal is clearly better off committing to keep

the action concealed.

This leads to a necessary and sufficient condition under which revealing the agent’s action

leads to conformism. The condition has to do with the relative smartness of the realizations of the
4This is not the first work to show that in career concerns models the principal may want to commit not to

observe certain types of information (see the section on Related Literature). For instance, in Holmström’s [16]

seminal paper better a priori information about the agent’s type reduces the agent’s incentive to exert effort (more

information worsens discipline but it clearly improves sorting). One contribution of this paper is to find one

kind of disclosure that is detrimental to both discipline and sorting. Also, the mechanism through which action

transparency generates its negative effect is through misreporting rather than slacking.
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agent’s signal. If one realization is much more smart than the others, then the chain of negative

effects describe above takes place and there are only conformist equilibria. In mathematical

terms, the condition is expressed as a bound on the relative informativeness of the different

realizations of the agent’s signal. This condition implies that the more advantageous it is for the

principal to commit to concealment ex ante, the more advantageous it is for her to renege on her

commitment ex post and observe the agent’s action for sorting purposes.

We also show that there is a complementarity between transparency on action and trans-

parency on consequence. The optimal probability that action is observed is nondecreasing in the

probability that the consequence is observed. This is because an agent who pretends to have

observed the smart realization by playing the action corresponding to the smart realization has a

lower probability of obtaining a good consequence than an agent who actually observed the smart

realization. Thus the cost of pretending to have observed the smart realization is increasing in

the probability that consequence is observed.

The plan of the paper is as follows. The main argument is developed in a simplified en-

vironment in which there are two states of the world, two actions, two consequences, and two

realizations of the agent signal. This allows for a full characterization of the equilibrium set,

which in turn leads to precise welfare results. Later in the paper, we study a very general model

and we prove extended versions of some results obtained in the binary model. Section 2 in-

troduces the baseline career concern game and shows how it can be interpreted as the reduced

form of two economic situations. Section 3 contains the analysis of the baseline model. We first

present a simple example in which revealing the agent’s action generates complete conformism

to the detriment of discipline and sorting. We characterize the set of perfect Bayesian equilibria

under the two information scenarios: concealed action and revealed action. The characterization

is then used to perform a welfare analysis. Section 4 studies the complementarity between action

observation and consequence observation. Section 5 allows the agent to know know his own type

or have at least some information about it. Section 6 analyzes the general version of the model.

Section 7 concludes by using the results of the paper to interpret some existing institutional

arangements in politics, corporate governance, and delegated portfolio management.

1.1 Related literature

There are many works that are somehow related to how agency relationships are affected by

changes in the underlying information structure. In “classical” moral hazard principal-agent

problems, the question has been resolved by Holmström [15]. Observing an additional signal can

never hurt the principal and it is strictly beneficial if and only if the principal does not already

observe a signal that is a sufficient statistic for the additional signal.
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On the contrary, the literature on career concerns has already several examples in which more

information about the agent’s behavior hurts the principal. There are three main approaches

to model career concerns, depending on whether the agent’s type is seen as ability to exert

effort (Holmström [16]), congruence of preference with the principal (the multi-period version of

Crawford and Sobel [6]), or ability to observe a signal about the state of the world (see references

below). In the first approach, actions are costly from the point of view of the agents and the

ones that are more beneficial to the principal are more costly for the agent. The second and

third approaches typically give rise to cheap talk models, in which the agent faces no direct cost

when he takes an action (obviously, the agent can face an indirect cost through the reaction of

the principal).

For the first approach, Holmström [16] already provides an example of one kind of information

that worsens discipline. If the principal has more prior information about the agent’s type, the

agent has less incentive to work hard in the current period to signal his type. When one focuses

attention to information about the agent’s performance, rather than the agent’s type, the question

of comparing information structures is studied in a general way by Dewatripont, Jewitt and Tirole

[8]. They first present two examples in which a more precise signal about the agent’s performance

reduces discipline. They then find general sufficient conditions under which an additional signal

increases effort.

Not unrelated to the first approach is Crémer [7], who studies optimal transparency when

contracts are renegotiable. He shows that, in a two-period agency model where renegotiation is

possible, the principal may be hurt by a decrease in the cost of observing the agent’s performance.

This is because improving the ex post information of the principal makes a commitment not to

renegotiate less credible.

None of the papers in the first approach present examples in which more information worsens

both discipline and sorting. There appears to be a trade-off between discipline and sorting. For

instance, in Holmström [16] knowing the agent’s type destroys effort exertion but makes screening

trivial. In the model that is used in the present paper there is no effort exertion and the rationale

behind the potentiallly negative effect of transparency in entirely different.

For the second approach, the question of comparing information structures is briefly discussed

by Morris [22, p 18-19]. There, an agent observes a signal about the state of the world and makes

a report to the principal. The principal makes a decision after hearing the agent’s report. Then,

the state of the world is revealed. A market then forms a posterior on the basis of the agent’s

report and on the observation of the state. Morris compares this situation with the situation in

which the market observes neither the signal nor the state (because principals are short-lived).

He shows that observing the state and the signal improves sorting and may improve or worsens
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the current period decision: while the bad type’s decision is more aligned with the principal’s

preference, the good type may be induced to take an extreme action to separate himself from

the bad type (the “political correctness” effect).5

The third approach — the expert agent model (Scharfstein and Stein [32], Zwiebel [35], Pren-

dergast and Stole [29], Ottaviani and Sørensen [24] [25], Levy [19]) — is the one that is used here.

To the best of my knowledge, there is no paper in this stream comparing the effect of revealing

different kinds of information. It is typically assumed that the principal (or the market) observes

the agent’s action. For instance, in Prendergast and Stole [29], the agent’s action — the invest-

ment decision — is publicly observed, and in Ottaviani and Sørensen [25] the agent’s “action” is

the message that the expert sends to the evaluator and it is, by definition, observed. However,

there are also models, like Zwiebel [35], in which the agent’s action is not observable.6

Two papers present examples in which more information worsens both discipline and sorting.

Prendergast [28] analyzes an agency problem in which the agent exerts effort to observe

a variable which is of interest to the principal. The principal too receives a signal about the

variable and the agent receives a signal about the signal that the principal received. This is not

a career concern model and the principal can offer payments conditional on the agent’s report.

Prendergast shows that the agent uses his information on the principal’s signal to biases his report

toward the principal’s signal. Misreporting on the part of the agent causes a loss of efficiency.

Avery and Meyer [1] ask whether in a career concerns for advisors who may be biased (second

approach) it is beneficial from the point of view of principal to keep track of the advisor’s past

recommendations. They argue that in certain circumstances observing past recommendations

worsens discipline and does not improve sorting. Although the setup is quite different, the

intuition is similar to the present paper. If the advisor knows that his recommendations affect

his future career prospects, he may have an incentive to pool on one type of recommendation

independently of his private information.7

Ely and Välimäki [11] and Ely, Fudenberg, and Levine [10] ask under what conditions incen-

tives for reputation are bad. Ely and Välimäki construct a model with a long-lived expert who

can be either a strategic type who is good or a commitment type who is bad and they reach the

5Maskin and Tirole [21] use a career concern model of the second kind to explore the issue of the optimal

degree of accountability for public decision-makers. In their model, the principal observes the agent’s choice with

certainty and the consequence of the choice with a certain probability.
6 In Ottaviani and Sorensen [25], it is immaterial to think about the agent’s decision as message transmitted

to the principal or an action taken on behalf of the principal. This is not true anymore in the present model when

the action is not observed.
7Avery and Meyer assume that only the action is observable, not the consequence. The question of whether the

distinction between information on action and information on consequence is crucial also in the second approach

is still open. See Conclusions.
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striking result that an increase in the repution motive (i.e. a lower discount rate for the agent)

reduces the payoffs of all players. Ely, Fudenberg, and Levine generalize Ely and Välimäki’s

setup to identify a set of conditions under which the bad effects of reputation arise.

Finally, it is worth mentioning a link with the bargaining literature. Perry and Samuelson

[26] analyze how the outcome of delegated bargaining depends on whether offers are observable to

principals or not. Fingleton and Raith [13] study career concerns for delegated bargaining when

the type of bargainers determine their ability of understanding the opponent’s valuation. They

ask whether bargaining behind closed doors is better or worse from the viewpoint of the principal.

If bargaining occurs secretly, the principal is not able to observe offers but only acceptances. Thus,

also their paper questions the optimality of transparency in expert models. However — besides

the fact that their model is developed in a context of bargaining — their distinction between

acceptance and offer does not correspond to our distinction between consequence and action (if

the offer is accepted, everything is observed).8

2 Model

We first write the agency problem in a detail-free reduced form. We then show how the reduced

form corresponds to two economic situations (“expanded forms”), one in which the bargaining

power is on the principal side, the other in which it is more on the agent side.

The model presented in this section restricts attention to a binary action space, state space,

signal space, and consequence space. Section 6 examines the general case.

2.1 Reduced form

There are a principal and an agent. The agent’s type θ ∈ {g, b} is unknown to both players.
The probability that θ = g is γ ∈ (0, 1) and it is common knowledge. The state of the world is
x ∈ {0, 1} with Pr(x = 1) = p ∈ (0, 1). The random variables x and θ are mutually independent.

The agent selects an action a ∈ {0, 1}. The consequence u (a, x) is 1 if a = x and 0 otherwise.
The principal does not know the state of the world. The agent receives a private signal

y ∈ {0, 1} that depends on the state of the world and on his type. Let qxθ = Pr (y = 1|x, θ). We
assume that

0 < q1g < q1b < q0b < q0g < 1. (1)

This means that the signal is informative (Pr (x = 1|y) is increasing in y and Pr (x = 0|y) is
8See also Seidmann [31] for a complete information model of collective decision making in which a non-disclosure

policy leads to better outcomes.
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decreasing in y) and that the signal is more informative for the better type (Pr (x = y|y, g) >
Pr (x = y|y, b)).

These assumptions alone are not sufficient to guarantee that the signal is useful. For instance,

if the prior p on x is very high or very low, it is optimal to disregard y. To make the problem

interesting, we also assume that the signal y is decision-relevant, that is:

(q1gγ + q1b (1− γ)) p+ ((1− q0g) γ + (1− q0b) (1− γ)) (1− p) > max (p, 1− p) . (2)

We can show:

Proposition 1 Condition (2) holds if and only if

Pr (x = 1|y = 1) > Pr (x = 0|y = 1) ,

and

Pr (x = 0|y = 0) > Pr (x = 1|y = 0) .

Proof. We have

Pr (x = 1|y = 1) > Pr (x = 0|y = 1)
(q1gγ + q1b (1− γ)) p > (q0gγ + q0b (1− γ)) (1− p),

yielding

(q1gγ + q1b (1− γ)) p+ ((1− q0g) γ + (1− q0b) (1− γ)) (1− p) > 1− p,

and

Pr (x = 0|y = 0) > Pr (x = 1|y = 0)
((1− q0g) γ + (1− q0b) (1− γ)) (1− p) > ((1− q1g) γ + (1− q1b) (1− γ)) p,

yielding

((1− q0g) γ + (1− q0b) (1− γ)) (1− p) + (q1gγ + q1b (1− γ)) p > p.

The mixed strategy of the agent is a pair α = (α0,α1) ∈ [0, 1]2, which represents the proba-
bility that the agent plays a = 1 given the two possible realizations of the signal.

We consider two cases: concealed action and revealed action. In the first case, the principal

observes only the consequence u. In the second case, she observes also the action a.9

9Section 4 will allow for hybrid disclosure policies, in which the action is observed with a probability ρa and

the consequence is observed with ρu.
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The principal’s posterior probability that the agent’s type is g is π (I), where I is the infor-

mation available to the principal. With concealed action, the posterior is

π̃ (u) = Pr (θ = g|u) = γ Pr (a = x|α, x, θ = g) Pr(x)
Pr (a = x|α, x) Pr(x) .

With revealed action, the principal is able to infer x from a and u. The agent’s posterior,

assuming that a is played in equilibrium with positive probability, is

π (a, x) = Pr (θ = g|a, x) = γ Pr (a, x|θ = g) Pr(x)
Pr (a, x) Pr(x)

.

If action a is not played in equilibrium, perfect Bayesian equilibrium imposes no restriction on

π (a, x).

The payoff to the agent is simply the posterior π (I). The payoff to the principal depends

on the consequence and on the posterior: u (a, x) + v (π (I)), where v is a convex function of π

(as we shall see in the “long forms”, convexity is a natural assumption if the principal uses the

posterior for her hiring and firing decisions). Given any equilibrium strategy α∗, the ex ante

expected payoff of the agent must be γ, while the ex ante expected payoff of the principal is

w (α∗) = Ea,x (u (a, x) + v (π (I)) |α∗). As the agent’s expected payoff does not depend on α∗,

the expected payoff of the principal can also be taken as total welfare.

A perfect Bayesian equilibrium of this game (whether the action is concealed or revealed) is

a mixed-strategy profile (α∗0,α∗1) and a posterior π (I) for all possible information sets I, such

that α∗0 is a best-response for an agent with y = 0, α∗1 is a best-response for an agent with y = 1,

and π (I) is consistent with Bayesian updating given (α∗0,α∗1). We sometimes refer to a perfect

Bayesian equilibrium simply as an “equilibrium”. An equilibrium is informative if α∗0 6= α∗1 and

pooling if α∗0 = α∗1. An informative equilibrium are separating if either α∗0 = 0 and α∗1 = 1 or

α∗0 = 1 and α∗1 = 0. An informative equilibrium is semi-separating if it is not separating, ie if at

least one of the two agents uses a mixed strategy. An informative equilibrium is perverse if the

agent chooses the ‘wrong’ action given his signal: α∗0 > α∗1.

Let Erevealed and Econcealed be the sets of perfect Bayesian equilibria in the two possible

information scenarios. Given the existence of babbling equilibria, it is clear that the sets are

nonenmpty. Let Wrevealed be the supremum of w (α∗) in Erevealed and let Wconcealed the corre-

sponding value when the action is concealed. The main question that we shall ask is whether

Wrevealed ≥Wconcealed.

Attention should be drawn to two assumptions. First, assuming that the agent maximizes

the posterior π(I), rather than an arbitrary function of the posterior π(I), is not without loss of

generality (see Ottaviani and Sørensen [25] for a discussion of this point). As we shall see, the

assumption is arbitrary in Expanded Form I but it is somewhat more natural in Form II. The
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assumption is made by most papers in career concerns because it makes the analysis simpler.10

Second, the agent does not know his own type (again, Ottaviani and Sørensen [25] discuss

this point). If the agent knew his own type, he could use his action choice as a costly signal of

how confident he is of his own information. Section 5 looks at an extension in this sense.

2.2 Expanded form I: Competing agents.

This form is suited to represent a political game, in which agents are competing parties or

candidates and the principal is the electorate (see Persson and Tabellini [27] for a discussion of

retrospective voting models). In this two-period model, there are two agents and one principal.

One agent, the incumbent, is available in the first period. The other agent, the challenger, appears

at the end of the first period. The type of the incumbent is θ ∈ {g, b}, where the probability
that θ = g is γ. The type of the challenger is θc ∈ {g, b}, where the probability that θ = g is γc.
The principal, as well as the two agents, do not observe the agents types. While γ is known, γc
is itself a stochastic variable with distribution f , which is revealed at the end of the first period.

In the first period, the incumbent is in charge of a binary policy decision a ∈ {0, 1}. The state
of the world is x ∈ {0, 1}. The agent observes a signal y ∈ {0, 1} according to the conditional
probability q described above. We make an additional assumption on q:

q1bp+ (1− q0b) (1− p) > max (p, 1− p) . (3)

This guarantees that, even in the worst-case scenario (when it is learnt that the agent is for

sure a bad type), the signal y is decision-relevant. Condition (3) implies the decision-relevance

condition (2). Without this assumption, it may be the case that second-period efficient decision

making requires choosing the same action independently of the signal.

The consequence u is 1 if the action matches the state and zero otherwise. At the end of the

first period the challenger appears and γc is learnt. The principal observes the consequence, and

possibly the action as well. She then chooses whether to keep the incumbent or replace him with

the challenger.

In the second period, the agent that has been retained faces a decision problem that is similar

to the first period. He selects action â ∈ {0, 1} to match state x̂ ∈ {0, 1}, where the probability
that x̂ = 1 is still p. The agent receives ŷ a signal about x̂ that is distributed according to qyθ

described above. The consequence û is 1 if the action matches the state and zero otherwise.

The payoff to the principal is u+δû, where δ ∈ (0,∞), which captures both the discount rate
and the relative importance of the two periods. A δ > 1 occurs when the second period is more

10See Footnote 16 on page 36 for a discussion of which results are likely to be unaffected if one drops the linearity

assumption.
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important than the first. The payoff to each agent is 1 if he is hired for the second period and

zero otherwise (the benefit that the incumbent receives in the first period is normalized to zero).

Clearly, this model describes a world of very incomplete contracts. An agent who is hired gets

a fixed rent that the principal cannot control. In particular, the principal cannot offer transfers

that are conditional on observed performance.

We assume that at the beginning of the first period the interim probability on the challenger’s

type, γc, is uniformally distributed on the unit interval — that is fc is a uniform distribution with

support (0, 1). This restriction guarantees that the payoff of the incumbent is linear in the

posterior.

To summarize, the timing is as follows:

1. The incumbent observes signal y and selects action a.

2. The consequence u is realized. The challenger appears: his prior γc is realized and observed

by all. In the concealed action case, the principal observes u. In the revealed action case,

the principal observes a and u. The principal forms a posterior π on the incumbent’s type

and chooses between the incumbent and the challenger.

3. The agent that has been retained observes signal ŷ and selects action â.

4. The consequence û is realized.

We start by analyzing the two last stages, which are straightforward. In the second period,

the agent that is retained has no career concerns and he is indifferent with regards to the action

he takes. Thus, any strategy is a continuation equilibrium. In line with the rest of the literature

on career concerns, we restrict attention to the continuation equilibrium in which the agent acts

in the interest of the principal. Given (3), independently of his belief on his own type, the agent

selects â = ŷ. Let γ̂ be the probability that the agent that is retained for the second period is

good, as computed by the principal at the beginning of the second period (γ̂ = π if the incumbent

is confirmed, γ̂ = γc if the challenger is hired). The second-period expected utility of the principal

is:

E (û|γ̂) = Pr (ŷ = x̂|γ̂) = γ̂ ((1− p) (1− q0g) + pq1g) + (1− γ̂) ((1− p) (1− q0b) + pq1b)
= (1− p) (1− q0b) + pq1b + γ̂ ((1− p) (q0b − q0g) + p (q1g − q1b)) (4)

= Q̄+Qγ̂.

Thus, E (û|γ̂) is linear and increasing in γ̂. The principal chooses to retain the agent with the

higher probability of being a good type. Therefore, γ̂ = max{π, γc}, which is a convex function
of π. Thus, the principal’s payoff t is a convex function of π. Then, we have proven that given

11



the continuation payoff in the second period, the subgame in the first period can be represented

by the reduced form presented above.

2.3 Expanded form II: Competing principals

This form could be taken as a simple representation of a market for skilled labor. Several firms

compete to hire a worker with a unique talent. If the firms were identical, it would not matter

from an efficiency point of view which firm hires the worker. So, to make sorting relevant from

a social viewpoint, we look at an asymmetric setup.

There are three firms (principals), A, B, and C, and one worker (agent). Again, there are

two periods. In the first period there is only principal A. As before a, x, y, and u denote first-

period variables while â, x̂, ŷ, and û are for the second-period. In the second period, the three

principals compete to hire the agent. A principal who does not hire the agent gets a payoff of

zero. Principals B and C are “small”: they do not incur fixed costs and their payoff is 1 if the

consequence matches the state and zero otherwise. Principal A is “large”. In order to become

active in the first period, she has to pay an upfront cost f ∈ (0, 1). If the action matches the
state she gets 2. Otherwise she gets zero. We also keep assumption (3).

Timing is as follows:

1. The first-period state x is realized. The agent works for Principal A. He observes y and

chooses a.

2. The consequence u is observed by everyone. In the revealed action case, also a is observed.

Each principal makes a wage offer to the agent.

3. The agent chooses one of the three principals. The second-period state x is realized. The

agent observes ŷ and chooses â. The consequence for the principal who hired the agent is

û = 1 if â = x̂ and zero otherwise. If the principal is A, she receives 2û−f . If the principal
is B or C, she receives û.

As before, we focus attention on continuation equilibria in which, whenever indifferent, the

agent chooses his action in order to maximize the payoff of the principal who hired him. In the

second period, the probability that the agents matches the action â to the consequence û is,

similarly to (4), a linear function of the posterior of the agent π: Q̄+Qπ. In the bidding game

at stage 2, Principal A is willing to pay up to 2
¡
Q̄+Qπ

¢− f , while the other two principals are
willing to pay up to Q̄ + Qπ. Excluding dominated strategies, the equilibrium bid is Q̄ + Qπ.

Principal A hires the agent if and only if

π ≥ f − Q̄
Q

.

12



The expected payoff of A given π is max
¡
Q̄+Qπ − f, 0¢. Thus, her expected payoff is convex

in the agent’s posterior. The agent’s payoff is instead just the equilibrium bid Q̄+Qπ, and it is

therefore linear in the posterior. Again, given the continuation payoffs in the second period, the

first period is strategically equivalent to the reduced form above.

2.4 Smart realization

We introduce a notion that corresponds to a mental experiment. Suppose the principal could

observe the agent signal y directly. Which of the two realizations of the signal y is better news

about the agent type? This corresponds to comparing Pr(θ = 1|y = 1) with Pr(θ = 1|y = 0).
We exclude the nongeneric case in which the two probabilities are identical. In such a sit-

uation, the posterior about the agent must be equal to the prior and the signalling game is

uninsteresting. Pr(θ = 1|y = 1) > Pr(θ = 1|y = 0) we say that y = 1 is the smart realization

of the agent signal. If Pr(θ = 1|y = 1) < Pr(θ = 1|y = 0), we say that y = 0 is the smart

realization. The following result relates smartness to the primitives:

Proposition 2 The smart realization is y = 1 if and only if

q0b − q0g
q1g − q1b <

p

1− p.

Proof. Note that:

Pr(θ|y) =
Pr(y|g) Pr(g)

Pr(y|g) Pr(g) + Pr(y|b) Pr(b)
=

(Pr(y|1, g) Pr(1) + Pr(y|0, g) Pr(0))Pr(g)
(Pr(y|1, g) Pr(1) + Pr(y|0, g) Pr(0))Pr(g) + (Pr(y|1, b) Pr(1) + Pr(y|0, b) Pr(0))Pr(b)

Pr(θ = 1|y = 1) = (q1gp+ q0g (1− p)) γ
(q1gp+ q0g (1− p)) γ + (q1bp+ q0b (1− p)) (1− γ)

Pr(θ = 1|y = 0) = ((1− q1g) p+ (1− q0g) (1− p)) γ
((1− q1g) p+ (1− q0g) (1− p)) γ + ((1− q1b) p+ (1− q0b) (1− p)) (1− γ)

Then, π(y = 1) is greater than π(y = 0) if and only if

(q1gp+ q0g (1− p)) γ
(q1gp+ q0g (1− p)) γ + (q1bp+ q0b (1− p)) (1− γ)

> γ

or

q1gp+ q0g (1− p) > (q1gp+ q0g (1− p)) γ + (q1bp+ q0b (1− p)) (1− γ)

q1gp+ q0g (1− p) > q1bp+ q0b (1− p)
(q1g − q1b) p > (q0b − q0g) (1− p)
q0b − q0g
q1g − q1b <

p

1− p

13



If the two states of the world are equiprobable, Proposition 2 requires that

q1g − q1b > (1− q0g)− (1− q0b).

That is, the difference between the probability that the good type gets the right signal and the

probabilty that the bad type gets the right signal must be greater if x = 1 than if x = 0. Then,

observing y = 1 raises the agent’s posterior above γ while observing y = 0 decreases it.

If the two states have different probability, then the inequality is:

p (q1g − q1b) > (1− p) ((1− q0g)− (1− q0b)) .

3 Analysis

In this section, we begin with a simple example of how revealing the agent’s action generates

conformism. We then analyze separately the concealed action scenario and the revealed action

scenario. We conclude by identifying a necessary and sufficient condition on the primitives of the

game under which action revelation is the optimal policy.

3.1 An example

Suppose that γ = 1
2 , p =

1
2 , q0b = q1b =

1
2 , q0g =

1
2 , and q1g = 1. A bad agent receives an

uninformative signal. A good agent observes the state x = 1 with certainty and gets pure noise

if the state is x = 0. It is easy to check that y = 1 is the smart realization.

This informational setup can be taken to represent a situation in which x = 0 is “business as

usual” and x = 1 is a structural change in the environment. If there is a structural change, ability

matters: only good agents spot the change. If instead the world follows the usual pattern, a good

agent has no informational advantage over a bad agent. In political and corporate governance, this

captures the idea that leadership is tested in turbulent times. In delegated portfolio management,

it corresponds to the notion that what tells a good manager from an mediocre one is the ability

to identify new trends in stock prices.

This asymmetry between signals creates a problem. The signal y = 0 is bad news for the

ability of the agent. More likely than not the agent is one that cannot spot changes in the world.

If the agent reports his signal truthfully, the principal will use it against him. This leads to

conformism: the agent has an incentive to tell the principal that the world has changed whether

or not he actually thinks so.

We now argue that in this example the only equilibrium behavior with revealed action involves

complete conformism and it is damaging to the principal. We say “argue” rather than “prove”
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because in this section we restric attention to pure-strategy equilibria (separating or pooling).

The rest of the paper will confirm the intuition obtained here.

Suppose that there exists a separating equilibrium in which, if y = 1 the agent chooses a = 1

and if y = 0 he chooses a = 0. We will show that with revealed action such an equilibrium cannot

exist. The principal’s belief π (a, x) in such a separating equilibrium is:

π (1, 1) = 2
3 , π (1, 0) = 1

2

π (0, 1) = 0 π (0, 0) = 1
2

The belief when a = 1 dominates the one when a = 0, in the sense that for any realization of x,

π (1, x) ≥ π (0, x). Then,

E (π (1, x) |y = 0) > E (π (0, x) |y = 0) ,

which means that the agent who observes y = 0 has a strict incentive to report a = 1. This

generates a contradiction.

A similar non-existence argument applies to the perverse separating equilibrium in which

a = |1− y|. The only possible equilibria are then pooling equilibria in which no information is
revealed (either the agent always plays a = 0 or he always plays a = 1). It is easy to check the

existence of such equilibria and that the principal is indifferent among them (because x = 1 and

x = 0 are equiprobable).

Thus, with revealed action, the best equilibrium for the principal is one in which her expected

payoff in the current period is 12 and her posterior is the same as her prior.

Instead, in the concealed action scenario there exists a separating equilibrium in which the

agent plays a = y . To see this, compute the agent posterior in such an equilibrium:

π̃ (1) =
1
2

¡
1 + 1

2

¢
3
4 +

1
2

=
3

5
π̃ (0) =

1
2

¡
0 + 1

2

¢
3
4 +

1
2

=
2

5
.

The agent maximizes his expected posterior by maximizing the expected value of u. As the signal

y is decision-relevant, this means that the optimal strategy is a = y.

In this separating equilibrium, the probability that the principal gets utility 1 in the first

period is

Pr (u = 1) =
1

4

1

2
+
1

4
1 +

1

4

1

2
+
1

4

1

2
=
5

8
.

Thus, with concealed action, the principal receives an expected payoff of 58 in the first period and

she learns something about the agent type.

To sum up, by committing to keep the action concealed, the principal gets a double benefit.

On the discipline side, she increases her expected payoff in the current period because the agent

follows his signal. On the sorting side, she improves the precision of her posterior on her agent

type. As her utility is convex in the posterior, this can only be beneficial.
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3.2 Concealed action

We now begin the analysis of the game introduced in Section 2. In this section we look at what

happens when the principal observes only the consequence u, which turns out to be the easier

part.

The principal’s posterior after observing the consequence is π (u) = Pr(θ = g|u). The agent
observes his signal y and maximizes Ex [π (u (a, x)) |y].

The main result is:

Proposition 3 With concealed action, there exists a separating equilibrium.

Proof. Consider a separating equilibrium in which a = y. The posterior is

π̃ (u = 1) =
γ (pq1g + (1− p) (1− q0g))

γ (pq1g + (1− p) (1− q0g)) + (1− γ) (pq1b + (1− p) (1− q0b)) ;

π̃ (u = 0) =
γ ((1− p) (1− q1g) + pq0g)

γ ((1− p) (1− q1g) + pq0g) + (1− γ) ((1− p) (1− q1b) + pq0b) .

From (1), we see that π̃ (u = 1) > γ > π̃ (u = 0). The agent chooses a to maximize Pr (u = 1|a, y).
Because of decision relevance (2), this is achieved by selecting a = y.

The analysis of the concealed action case is straightforward. There exists a separating equi-

librium in which the agent follows his signal and the principal puts a higher posterior on an agent

who obtains u = 1 than on one who fails. There may be other equilibria: uninformative, perverse

separating, semi-separating. But the separating equilibrium above is clearly the best from the

viewpoint of the principal.

3.3 Revealed action

We now consider the case in which the principal observes the action a as well, which turns out

to be the harder case because we need to deal with semi-separating equilibria.

We begin by excluding a certain class of mixed-strategy equilibria. There cannot exist an

informative equilibrium in which the agent plays a strictly mixed strategy both when y = 0 and

y = 1:

Proposition 4 There cannot exist an informative equilibrium in which α0 ∈ (0, 1) and α1 ∈
(0, 1).

Proof. Assume that there exists an equilibrium in which:

α0 ∈ (0, 1),α1 ∈ (0, 1),α0 6= α1,
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The agent must be indifferent between the two actions for both realizations of y :

Pr (x = 0|y = 1) (π (0, 0)− π (1, 0)) = Pr (x = 1|y = 1) (π (1, 1)− π (0, 1)) , (5)

Pr (x = 0|y = 0) (π (0, 0)− π (1, 0)) = Pr (x = 1|y = 0) (π (1, 1)− π (0, 1)) . (6)

There are two cases:

(π (0, 0)− π (1, 0)) (π (1, 1)− π (0, 1)) ≤ 0 (7)

(π (0, 0)− π (1, 0)) (π (1, 1)− π (0, 1)) > 0 (8)

If (7) holds, note that in an informative equilibrium it cannot be that both π (0, 0) = π (1, 0) and

π (1, 1) = π (0, 1). But then we have a contradiction because the two sides of (5) have different

signs.

If (8) holds, subtract (6) from (5)

(Pr (x = 0|y = 1)− Pr (x = 0|y = 0)) (π (0, 0)− π (1, 0)) (9)

= (Pr (x = 1|y = 1)− Pr (x = 1|y = 0)) (π (1, 1)− π (0, 1)) .

But by assumption (1) signals are informative on x:

Pr (x = 0|y = 1)− Pr (x = 0|y = 0) < 0;

Pr (x = 1|y = 1)− Pr (x = 1|y = 0) > 0.

Then, (8) creates a contradiction in (9).

This kind of result is common to many signalling games. If there existed an informative

equilibrium in which both α0 and α1 are interior, the agent would always be indifferent between

playing 0 or 1. But this can be true only if signals are uninformative, which contradicts our

assumptions on q, or if posteriors are flat, which cannot be true in an informative equilibrium.

We now provide another result on the characterization of the equilibrium set. If there exists

an informative equilibrium, then there must also exist a (non-perverse) separating equilibrium:11

Proposition 5 There exists an equilibrium in which α0 6= α1 if and only if there exists an

equilibrium in which α0 = 0 and α1 = 1.

Proof. We begin by expressing beliefs in terms of primitives and strategies. It is useful to

make the dependence on strategies explicit (we use Π rather than π):

Π (1, x,α0,α1) =
(α1qxg + α0 (1− qxg)) γ

(α1qxg + α0 (1− qxg)) γ + (α1qxb + α0 (1− qxb)) (1− γ)
; (10)

Π (0, x,α0,α1) =
((1− α1) qxg + (1− α0) (1− qxg)) γ

((1− α1) qxg + (1− α0) (1− qxg)) γ + ((1− α1) qxb + (1− α0) (1− qxb)) (1− γ)
.(11)

11A similar equilibrium characterization result is found in Ottaviani and Sorensen [24, Lemma 1]. Their setup

is a special case of the present one because the agent signal y is symmetric. Using our notation, this corresponds

to the restriction q1θ = 1− q0θ for θ ∈ {b, g}.
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To simplify notation in the proof, we use the following (slightly abusive) notation for special

cases of Π (a, x,α0,α1):

Π (a, x) ≡ Π (a, x,α0 = 0,α1 = 1)

Π (a, x,α1) ≡ Π (a, x,α0 = 0,α1)

Π (a, x,α0) ≡ Π (a, x,α0,α1 = 1)

Throughout the proof, assume without loss of generality that y = 1 is the smart realization.

If y = 0 is the smart realization, just switch 0 and 1 for a, x, and y. Let us start by focusing on

informative equilibria in which α0 < α1 (non-perverse equilibria).

We begin with a result on separating equilibria. The necessary and sufficient conditions for

the existence of a non-perverse separating equilibrium are:

Pr (x = 1|y = 0) (Π (1, 1)−Π (0, 1)) ≤ Pr (x = 0|y = 0) (Π (0, 0)−Π (1, 0)) (12)

Pr (x = 1|y = 1) (Π (1, 1)−Π (0, 1)) ≥ Pr (x = 0|y = 1) (Π (0, 0)−Π (1, 0)) (13)

Claim 1: The inequality (13) is always satisfied. There exists a separating equilibrium if and

only if (12) holds.

Proof of Claim 1: (13) rewrites as:

Pr (x = 1, y = 1)

µ
Pr (g, y = 1, x = 1)

Pr (y = 1, x = 1)
− Pr (g, y = 0, x = 1)

Pr (y = 0, x = 1)

¶
≥ Pr (x = 0, y = 1)

µ
Pr (g, y = 0, x = 0)

Pr (y = 0, x = 0)
− Pr (g, y = 1, x = 0)

Pr (y = 1, x = 0)

¶
or

Pr (g, y = 1, x = 1) + Pr (g, y = 1, x = 0) = Pr (g, y = 1)

≥ Pr (y = 1, x = 1)

Pr (y = 0, x = 1)
Pr (g, y = 0, x = 1) +

Pr (y = 1, x = 0)

Pr (y = 0, x = 0)
Pr (g, y = 0, x = 0) .

But

Pr (y = 1, x = 1)

Pr (y = 0, x = 1)
Pr (g, y = 0, x = 1) +

Pr (y = 1, x = 0)

Pr (y = 0, x = 0)
Pr (g, y = 0, x = 0)

=
Pr (y = 1|x = 1)
Pr (y = 0|x = 1) Pr (g, y = 0, x = 1) +

Pr (y = 1|x = 0)
Pr (y = 0|x = 0) Pr (g, y = 0, x = 0)

≥ Pr (y = 1|x = 0)
Pr (y = 0|x = 0) (Pr (g, y = 0, x = 1) + Pr (g, y = 0, x = 0))

=
Pr (x = 0|y = 1)Pr (y = 1)
Pr (x = 0|y = 0)Pr (y = 0) (Pr (g, y = 0, x = 1) + Pr (g, y = 0, x = 0))

≥ Pr (y = 1)

Pr (y = 0)
Pr (g, y = 0) ,

18



where the two inequalities are due to assumption (1). This shows that a sufficient condition for

(13) is

Pr (g, y = 1) ≥ Pr (y = 1)
Pr (y = 0)

Pr (g, y = 0)

But this corresponds to Pr (g|y = 1) ≥ Pr (g|y = 0), which is equivalent to the condition that
y = 1 is smart. The claim is proven.

From Proposition 4, there cannot exist an equilibrium in which 0 < α0 < α1 < 1. There

can be two cases: either α0 = 0 and α1 ∈ (0, 1] or α0 ∈ [0, 1) and α1 = 1. Claims 2 and 3 deal

with the two cases separately. Together, the claims prove that there exists an equilibrium with

α0 < α1 only if there exists an equilibrium with α0 = 0 and α1 = 1.

Claim 2: There cannot exist an equilibrium in which α0 = 0 and α1 ∈ (0, 1).
Proof of Claim 2: Suppose there exists an equilibrium in which α0 = 0 and α1 ∈ (0, 1]. It

must be that

Pr (x = 1|y = 1) (Π (1, 1,α1)−Π (0, 1,α1)) = Pr (x = 0|y = 1) (Π (0, 0,α1)−Π (1, 0,α1)) . (14)

Note that Π (0, x,α1) = Π (0, x) and

Π (0, x,α1)

=
(Pr(y = 0|g, x) + (1− α1) Pr(y = 1|g, x)) Pr(g)

Pr(y = 0|x) + (1− α1) Pr(y = 1|x)

=

Pr(y=0|g,x) Pr(g)
Pr(y=0|x) Pr(y = 0|x) + (1− α1)

Pr(y=1|g,x)Pr(g)
Pr(y=1|x) Pr(y = 1|x)

Pr(y = 0|x) + (1− α1) Pr(y = 1|x)
= A (x,α1)Π (0, x) + (1−A (x,α1))Π (1, x) ,

where

A (x,α1) ≡ Pr(y = 0|x)
Pr(y = 0|x) + (1− α1) Pr(y = 1|x) .

Condition (14) rewrites as

Pr (x = 1|y = 1)A (1,α1) (Π (1, 1)−Π (0, 1))
= Pr (x = 0|y = 1)A (0,α1) (Π (1, 0)−Π (0, 0)) ,

which in turn is expressed as

Pr (x = 1|y = 1) (Π (1, 1)−Π (0, 1)) = Pr (x = 0|y = 1) A (0,α1)
A (1,α1)

(Π (0, 0)−Π (1, 0)) .
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Note that

max
α1

A (0,α1)

A (1,α1)
= max

α1

Pr(y = 0|x = 0)
Pr(y = 0|x = 1)

Pr(y = 0|x = 1) + (1− α1) Pr(y = 1|x = 1)
Pr(y = 0|x = 0) + (1− α1) Pr(y = 1|x = 0)

=
Pr(y = 0|x = 0)
Pr(y = 0|x = 1)

Pr(y = 0|x = 1) + Pr(y = 1|x = 1)
Pr(y = 0|x = 0) + Pr(y = 1|x = 0)

=
Pr(y = 0|x = 0)
Pr(y = 0|x = 1) .

A necessary condition for (14) to hold is then

Pr (x = 1|y = 1) (Π (1, 1)−Π (0, 1)) ≤ Pr (x = 0|y = 1) Pr(y = 0|x = 0)
Pr(y = 0|x = 1) (Π (0, 0)−Π (1, 0)) .

This rewrites as

Pr (x = 1)Pr (y = 1|x = 1)Pr (y = 0|x = 1) (Π (1, 1)−Π (0, 1))
≤ Pr (x = 0)Pr (y = 1|x = 0)Pr(y = 0|x = 0) (Π (0, 0)−Π (1, 0)) ;

Pr (x = 1) (Pr(y = 0|x = 1)Pr(g, y = 1|x = 1)− Pr (y = 1|x = 1)Pr(g, y = 0|x = 1))
≤ Pr (x = 0) (Pr(y = 1|x = 0)Pr(g, y = 1|x = 0)− Pr (y = 0|x = 0)Pr(g, y = 0|x = 0)) ;

Because θ and x are independent,

Pr (x = 1) (Pr(y = 0|x = 1)Pr(y = 1|g, x = 1)− Pr (y = 1|x = 1)Pr(y = 0|g, x = 1))
≤ Pr (x = 0) (Pr(y = 1|x = 0)Pr(y = 0|g, x = 0)− Pr (y = 0|x = 0)Pr(y = 1|g, x = 0)) ;

By recalling that Pr(y|x) = γ Pr(y|g, x) + (1− γ) γ Pr(y|g, x), and with some simplification, we
get

Pr (x = 1) (Pr(y = 0|b, x = 1)Pr(y = 1|g, x = 1)− Pr (y = 1|b, x = 1)Pr(y = 0|g, x = 1))
≤ Pr (x = 0) (Pr(y = 1|b, x = 0)Pr(y = 0|g, x = 0)− Pr (y = 0|b, x = 0)Pr(y = 1|g, x = 0)) ;

p ((1− q1b) q1g − q1b (1− q1g))
≤ (1− p) (q0b (1− q0g)− (1− qb0) q0g) ;

p (q1g − q1b) ≤ (1− p) (q0b − q0g) ;

q0b − q0g
q1g − q1b ≤

p

1− p,
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which contradicts smartness.

Claim 3: If there exists an equilibrium in which α0 ∈ [0, 1) and α1 = 1, there exists an

equilibrium in which α0 = 0 and α1 = 1.

Proof of the claim: A necessary condition for the existence of an equilibrium in which α0 ∈
[0, 1) and α1 = 1, is that for some α0 ∈ [0, 1),

Pr (x = 1|y = 0) (Π (1, 1,α0)−Π (0, 1,α0)) ≤ Pr (x = 0|y = 0) (Π (0, 0,α0)−Π (1, 0,α0)) . (15)

We have Π (0, x,α0) = Π (0, x) and

Π (1, x,α0)

=
(Pr(y = 1|g, x) + α0 Pr(y = 0|g, x)) Pr(g)

(Pr(y = 1|x) + α0 Pr(y = 0|x))

=

Pr(y=1|g,x)Pr(g)
Pr(y=1|x) Pr(y = 1|x) + α0

Pr(y=0|g,x) Pr(g)
Pr(y=0|x) Pr(y = 0|x)

(Pr(y = 1|x) + α0 Pr(y = 0|x))
= B (x,α0)Π (1, x) + (1−B (x,α0))Π (0, x) ,

where

B (x,α0) =
Pr(y = 1|x)

(Pr(y = 1|x) + α0 Pr(y = 0|x)) .

We can rewrite (15) as

Pr (x = 1|y = 0)B (1,α0) (Π (1, 1)−Π (0, 1)) ≤ Pr (x = 0|y = 0)B (0,α0) (Π (0, 0)−Π (1, 0)) ,

which in turn holds only if

Pr (x = 1|y = 0) (Π (1, 1)−Π (0, 1))min
α0

B (1,α0)

B (0,α0)
≤ Pr (x = 0|y = 0) (Π (0, 0)−Π (1, 0)) . (16)

But

min
α0

B (1,α0)

B (0,α0)
= min

α0

Pr(y = 1|x = 1)
Pr(y = 1|x = 0)

Pr(y = 1|x = 0) + α0 Pr(y = 0|x = 0)
Pr(y = 1|x = 1) + α0 Pr(y = 0|x = 1) = 1,

Then (16) rewrites as (12). If (15) holds, (12) holds, and by Claim 1 there exists a n equilibrium

in which α0 = 0 and α1 = 1.

We complete the proof by considering perverse informative equilibria. Suppose there exists

an equilibrium in which α0 > α1, with beliefs Π (a, x,α0,α1). For y ∈ {0, 1}, if a is played in
equilibrium it must be that:

a ∈ argmax
ã

X
x∈{0,1}

Pr (x|y)Π (ã, x,α0,α1)
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However, if such equilibrium exists, there also exist an equilibrium in which the agent plays

α̂0 = α1 and α̂1 = α0, and beliefs are

Π̂ (a, x, α̂0, α̂1) = Π (1− a, x,α0,α1)

The agent’s strategy is still a best response: if a is played in equilibrium

a ∈ argmax
ã

X
x∈{0,1}

Pr (x|y) Π̂ (ã, x,α0,α1)

Thus, if there exists a perverse informative equilibrium, there exists a non-perverse informative

equilibrium, and — as we see from Claims 2 and 3 — there exists a non-perverse separating

equilibrium.

Proposition 5 says that if the equilibrium set contains some kind of informative equilibrium

then it must also contain a non-perverse separating equilibrium. This is a useful characterization

because the existence conditions for semi-separating equilibria are hard to find, while the existence

conditions for separating equilibria are — as we shall see — straightforward.

The proposition is arrived at in two steps. First, we show that for every perverse informative

equilibrium (one in which the agent plays α0 > α1, ie knowingly chooses the wrong action), there

exists a specular non-perverse informative equilibrium. Second, if there exists a non-perverse

informative equilibrium, there must also exist a separating equilibrium.

The intuition for the second step has to do with the choice of the agent who observes the

non-smart realization (the “non-smart agent”). The incentive of the non-smart agent to follow

his own signal depends on the proportion of non-smart agents who follow their own signal. To

fix ideas, take y = 1 to be the smart action and suppose that α1 = 1. The question is how the

posterior depends on the proportion of non-smart agents who pretend to be smart: α0. Note that

α0 does not affect the posteriors when a = 0 because only non-smart agents play a = 0. Instead,

the higher α0, the less information the principal can gather about the agent’s type when a = 1.

As α0 → 1, when a = 1 the state x provides no information about the agent’s type (because x

and θ are independent). In this case, a non-smart agent should certainly choose a = 1. This line

of reasoning holds for any α0: the higher α0, the stronger the incentive for a non-smart agent

to play a = 1. But then, if the agent is indifferent between a = 0 and a = 1 for some α0, he

must strictly prefer a = 0 for α0 = 0: if there exists a semi-separating equilibrium, there exists

a separating equilibrium.

At an even more abstract level, the intuition is that a non-smart agent who chooses to imitate

a smart agent creates a positive externality for other conformist non-smart agents, who are now

better able to hide among smart agents without getting punished if they get the consequence

wrong. Then, a non-smart agent is most likely to want to follow his own signal when all other

non-smart agents are following their signals.
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The proposition does not imply that there do not exist semi-separating equilibria. It is

possible to find games in which there exist both a separating equilibrium and a semi-separating

equilibrium.

Now that we know that the condition for the existence of an informative equilibrium is the

same as the condition for the existence of a separating equilibrium, it is not hard to find such

condition.

Proposition 6 There exists an informative equilibrium if and only if

p

1− p
γq0g + (1− γ) q0b
γq1g + (1− γ) q1b

≤ q0b − q0g
q1g − q1b ≤

p

1− p
γ (1− q0g) + (1− γ) (1− q0b)
γ (1− q1g) + (1− γ) (1− q1b) . (17)

Proof. The necessary and sufficient conditions for the existence of an equilibrium in which

α0 = 0 and α1 = 1 are (12) and (13). We first show that (12) holds if and only if the first

inequality in (17) holds.

Note that

π (1, x)− π (0, x) =

µ
Pr(y = 1|g, x)
Pr(y = 1|x) −

Pr(y = 0|g, x)
Pr(y = 0|x)

¶
Pr(g)

=
Pr(y = 1|g, x) (1− Pr(y = 1|x))− (1− Pr(y = 1|g, x)) Pr(y = 1|x)

Pr(y = 1|x) Pr(y = 0|x) Pr(g)

=
Pr(y = 1|g, x)− Pr(y = 1|x)
Pr(y = 1|x) Pr(y = 0|x) Pr(g)

Then,

Pr (x|y = 0) (π (1, x)− π (0, x)) =
Pr(y = 0|x) Pr(x)

Pr(y = 0)

Pr(y = 1|g, x)− Pr(y = 1|x)
Pr(y = 1|x) Pr(y = 0|x) Pr(g)

=
Pr(g)

Pr(y = 0)
Pr(x)

µ
Pr(y = 1|g, x)
Pr(y = 1|x) − 1

¶
Then, (12) holds if and only if

Pr(g)

Pr(y = 0)

µ
Pr(1)

Pr(y = 1|g, 1)
Pr(y = 1|1) + Pr(0)

Pr(y = 1|g, 0)
Pr(y = 1|0) − 1

¶
≤ 0

⇔ Pr(1)q1g (q0g Pr(g) + q0b Pr(b)) + Pr(0)q0g (q1g Pr(g) + q1b Pr(b))

− (q0g Pr(g) + q0b Pr(b)) (q1g Pr(g) + q1b Pr(b)) ≤ 0

⇔ Pr(1)q1g (q0g Pr(g) + q0b Pr(b)) + Pr(0)q0g (q1g Pr(g) + q1b Pr(b))

− (Pr(0) + Pr(1)) (q0g Pr(g) + q0b Pr(b)) (q1g Pr(g) + q1b Pr(b)) ≤ 0

⇔ Pr(1) (q1g − (q1g Pr(g) + q1b Pr(b))) (q0g Pr(g) + q0bPr(b))
+Pr(0) (q0g − (q0g Pr(g) + q0b Pr(b))) (q1g Pr(g) + q1b Pr(b)) ≤ 0

⇔ Pr(1) (q1g − q1b) Pr(b) (q0g Pr(g) + q0b Pr(b)) + Pr(0) (q0g − q0b) Pr(b) (q1g Pr(g) + q1b Pr(b)) ≤ 0
⇔ Pr(1) (q1g − q1b) (q0g Pr(g) + q0b Pr(b)) ≤ Pr(0) (q0b − q0g) (q1g Pr(g) + q1b Pr(b))
⇔ q0b − q0g

q1g − q1b ≥
p

1− p
Pr(b)q0b +Pr(g)q0g
Pr(g)q1g +Pr(b)q1b
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The proof that (13) is equivalent to the second inequality in the proposition is similar to the

argument above and it is omitted.

To understand Proposition 6, note that

p

1− p
γq0g + (1− γ) q0b
γq1g + (1− γ) q1b

< 1 and
γ (1− q0g) + (1− γ) (1− q0b)
γ (1− q1g) + (1− γ) (1− q1b) > 1.

We can link condition (17) with the condition for the smart signal found in Proposition 2.

Both impose bounds on the term

q0b − q0g
q1g − q1b ,

which is the relative informativeness of the two y’s. The smartness condition establishes which

signal is more informative. The condition in Proposition 6 says whether one signal is much more

informative than the other.

If, for instance, y = 1 is the smart signal, then

q0b − q0g
q1g − q1b <

p

1− p (18)

We can disregard the second inequality in Proposition 6 because it is implied by (18). Instead,

the inequality

q0b − q0g
q1g − q1b ≥

p

1− p
γq0g + (1− γ) q0b
γq1g + (1− γ) q1b

(19)

can hold or not. If it holds, there is no informative equilibrium because y = 1 is “too smart” to

allow for separation. If the equilibrium were informative, the agent who observes y = 0 would

always want to pretend he observed y = 1. If instead the inequality (19) does not hold, separation

is possible because the agent who observes y = 0 prefers to increase his likelihood to get u = 1

rather than pretend he has y = 1.

If we revisit the example presented earlier, we can now formally verify the result that there

is no informative equilibrium. Recall that in that example γ = 1
2 , p =

1
2 , q0b = q1b =

1
2 , q0g =

1
2 ,

and q1g = 1. The smartness condition (18) is

0
1
2

< 1.

The smart signal is y = 1. There exists an informative equilibrium if and only if (19) is satified.

That is,

0 ≥ 1
1
2
1
2 +

1
2
1
2

1
21 +

1
2
1
2

=
2

3
,

which shows that informative equilibria are impossible.
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If instead the smart signal had been less smart, an informative equilibrium would have been

possible. For instance, modify the example by assuming that if x = 0, the good type receives an

informative signal: q0g = 1
6 . The existence condition (19) becomes

1
2 − 1

6

1− 1
2

≥ 1
1
2
1
2 +

1
2
1
6

1
21 +

1
2
1
2

,

that is, 23 ≥ 4
9 . Indeed, one can show that, holding the other parameters constant, there exists

an informative equilibrium if and only if q0g ≤ 1
4 .

3.4 When should the action be revealed?

We are now in a position to compare the expected payoff of the principal in the best equilibrium

under concealed action with her expected payoff in the best equilibrium with revealed action. As

we saw in Section 2, ex ante social welfare corresponds to the expected payoff of the principal

because the expected payoff of the agent is constant.

From Proposition 3, the best equilibrium with concealed action is a separating equilibrium

with a = y.

What happens with revealed action depends on condition (17). If the condition holds, there

exists a separating equilibrium with a = y. The agent behavior is thus the same as with concealed

action but the principal gets more information. The variance of the agent posterior increases and

the principal’s payoff, which is convex in the posterior, goes up. Compared to concealed action,

the discipline effect is the same but the sorting effect improves. Thus, the principal is better

off.12

If instead condition (17) fails, there is no informative equilibrium and the best equilibrium is

one where the agent chooses the action that corresponds to the most likely state. The discipline

effect worsens because the agent disregards useful information. sorting too is affected negatively

because in an informative equilibrium the posterior is equal to the prior. Thus, the principal is

worse off. We summarize the argument as follows:

12Proof that screening is better when a is observed:X
x,y

Pr(x, y)v (π (y, x))

= Pr(y = x)
X
x

Pr(x)v (π (x, x)) + Pr(y 6= x)
X
x

Pr(x)v (π (1− x, x))

≥ Pr(y = x)
X
x

Pr(x)v (π̃ (1)) + Pr(y 6= x)
X
x

Pr(x)v (π̃ (0))

=
X
x,y

Pr(x, y)v (π (u (x, y)))
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Proposition 7 If (17) holds, revealing the agent’s action does not affect discipline and improves

sorting. If (17) fails, revealing the agent’s action worsens both discipline and sorting. Hence, the

principal prefers to reveal the action if and only if (17) holds.

It may also be interesting to see if there is a tension between what is optimal ex ante and what

is optimal ex post. Suppose we are in a separating equilibrium. After the agent has chosen his

action, the principal always benefits from observing the action because she can use the additional

information for sorting purposes. However, before the agent has chosen his action, the principal

may want to commit not to observe the action ex post. In which way is the benefit of ex ante

concealment connected to the incentive for ex post observation?

Suppose that the smart signal is y = 1. As we saw above, a policy of concealment is optimal

if and only if (19) fails. The incentive to commit is simply represented by the variable c which

takes value 0 if (19) holds and 1 if it fails.

In a separating equilibrium, the benefit of observing a ex post is

r =
X
x,y

Pr(x, y)v (π (y, x))−
X
x,y

Pr(x, y)v (π̃ (u (y, x))) .

To make a simple comparative analysis exercise, we fix p and γ. We also hold constant the

following expressions: the probability that a good agent gets the signal right:

Pr (y = x|g) = pq1g + (1− p)(1− q0g) ≡ s;

and the probability of the signal given the state, non-conditional on the agent type,

Pr (y = 1|x) = qxgγ + qxb (1− γ) ≡ qx for x = 1, 2.

Note that this also implies that Pr(y = x) and Pr(y = x|b) are constant. This leaves one degree
of freedom on q, which can be represented without loss of generality with movements of the ratio
q0b−q0g
q1g−q1b . This degree of freedom corresponds to the relative informativeness of the two realizations

of y.

We show that there exists a tension between the ex ante incentive to commit not to observe

a and the ex post benefit of observation:

Proposition 8 The incentive to commit ex ante c and the benefit of observing the action ex post

r are both nondecreasing in q0b−q0g
q1g−q1b .

Proof. c depends on whether (19) holds. As the right-hand side of (19) is constant, c is

nondecreasing in q0b−q0g
q1g−q1b .

26



Let us now consider r. As s is constant, an increase in q1g must be accompanied by an

increase in q0g. As qx is constant, an increase in qxg is associated to a decrease in qxb. Thus, a

decrease in q0b−q0g
q1g−q1b corresponds to an increase in q1g and q0g and a decrease in q1b and q0b.

Given that a = y, the posteriors are

π (1, 0) =
q0gγ

q0gγ + q0b (1− γ)
;

π (0, 0) =
(1− q0g) γ

(1− q0g) γ + (1− q0) (1− γ)
;

π (1, 1) =
q1gγ

q1gγ + q1b (1− γ)
;

π (0, 1) =
(1− q1g) γ

(1− q1g) γ + (1− q1b) (1− γ)
.

A decrease in q0b−q0g
q1g−q1b generates an increase in π (1, 1) and π (1, 0) and a decrease in π (0, 1) and

π (0, 0). The assumption that Pr(y = x|g) is constant means that π̃ (u) is constant as well.
The benefit of observing a when the agent plays a = y isX

x,y

Pr(x, y)v (π (y, x))−
X
x,y

Pr(x, y)v (π̃ (u (y, x))) .

Given that π̃ (u) is constant, we only consider the first part, which we rewrite as

V = Pr(y = x)
X
x̃

Pr(x̃)v (π (x̃, x̃)) + Pr(y 6= x)
X
x̃

Pr(x̃)v (π (1− x̃, x̃)) .

It is easy to check that π (1, 1) > π (0, 0) and π (1, 0) > π (0, 1). As v is convex, a decrease in
q0b−q0g
q1g−q1b increases both

P
x Pr(x)v (π (x, x)) and

P
x Pr(x)v (π (1− x, x)).

There is a tension between the ex ante benefit of concealed action and the ex post of revealed

action. If the agent plays according to his signal, the principal can infer whether the agent

received the smart signal or not. The more “smart” the smart signal is, the more useful the

information. In a highly asymmetric situation, ex post the principal stands to gain a lot from

knowing the agent’s action. But the agent realizes this and wants to hides the fact that he

receives the non-smart signal. This kills the separating equilibrium and damages the principal

in terms both of discipline and sorting. Thus, if the smart signal is “very smart”, the principal

is better off if she can commit to concealed action.

4 Complementarity between Observing Action and Consequence

We have so far asked whether revealing the agent’s action is a good idea, but we have maintained

the assumption that consequences are always observed. In some cases, especially in the political

arena, the principal may not be able to fully evaluate the consequences of the agent’s behavior
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or may be able to do it with such a time lag that the information is of limited use for sorting

purposes. Take for instance a large-scale public project, such as a reform of the health system.

Its main provisions are observable right away, but it takes years for its effects to develop. In the

medium term, the public knows the characteristics of the project that has been undertaken (the

action) but cannot yet judge its success (the consequence).

This section looks at what happens when consequences are not necessarily observed. The

focus will be mostly on the complementarity between transparency on action and transparency

on consequence. However, first, we examine the simple case in which the consequence goes totally

unobserved.

The game is as in the reduced form except that the principal observes either only a or nothing

at all. If the action is observed, it is easy to see that in equilibrium the choice of action must be

uncorrelated with the agent’s signal (otherwise one action would have a higher posterior and all

agents would choose it — contradiction). The best equilibrium for the principal is an uninformative

equilibrium in which the agent chooses the most likely action. No sorting occurs. If instead the

action is not observed, the best equilibrium is one in which the agent chooses a = y. No sorting

occurs but the first-period decision is better. Therefore, when u is not observed, the principal’s

expected payoff is certainly higher when a is concealed.

This observation contrasts with the result obtained in the previous section that, when the

consequence is observed, revealing the action may a good idea, which seems to point to a com-

plementarity between observing consequences and revealing actions. As we shall now see, this

complementarity is indeed present in a general way.

Let ρu ∈ [0, 1] be the probability that u is observed and ρa ∈ [0, 1] be the probability

that a is observed. At stage 2 there are thus four possible information scenarios according to

whether the consequence and/or the action is observed. The previous section considered the

cases (ρu = 1, ρa = 1) and (ρu = 1, ρa = 0).

To simplify matters, we restrict attention to pooling and separating equilibria. We assume

that y = 1 is the smart signal and we look at the separating equilibrium in which a = y and

the pooling equilibrium in which the agent plays the most likely action. The pooling equilibrium

always exists. For every pair (ρu, ρa), we ask whether the separating equilibrium exists.13

Proposition 9 For every ρu there exists ρ
∗
a (ρu) ∈ (0, 1] such that the game has a separating

equilibrium if and only if ρa ≤ ρ∗a. The threshold ρ∗a is nondecreasing in ρu.

Proof. Suppose that the agent chooses a = y. Let π(a, x), π (u(a, x)), π(a), and γ be the

13 It is not clear whether the analogue of Proposition 4 can be proven for this more complex case. Although

examples have not been found, one cannot exclude that there exists a semi-separating equilibrium when a separating

equilibrium does not exist.
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posterior evaluated by the principal in the four possible information scenarios. Note that because

we hold fixed the agent equilibrium strategy (a = y), these posteriors do not depend on (ρu, ρa)

but only on the information scenario that is realized. Given a and y, the expected posterior for

the agent is

E (π|a, y) = ρuρaEx(π(a, x)|y) + ρu (1− ρa)Ex(π(u(a, x)|y) + (1− ρu) ρaπ(a) + (1− ρu) (1− ρa) γ.

Note that the last two addends do not depend on x, and therefore on y. A necessary and sufficient

condition for the existence of a separating equilibrium is E (π|0, 0) ≥ E (π|1, 0), which rewrites
as:

(1− ρa) ρu (Ex(π(u(0, x)|y = 0)−Ex(π(u(1, x)|y = 0))
≥ ρa (ρu (Ex(π(1, x)|y = 0)−Ex(π(0, x)|y = 0)) + (1− ρu) (π(a = 1)− π(a = 0)))

or

(1− ρa) ρu∆1 ≥ ρa (ρu∆2 + (1− ρu)∆3) . (20)

Note that ∆1, ∆2, and ∆3 do not depend on (ρu, ρa). It is easy to see that ∆1 > 0 and that

∆3 > 0. By (1), we see that

Ex(π(1, x)|y = 0)−Ex(π(0, x)|y = 0)
< EyEx(π(1, x)|y)−EyEx(π(0, x)|y) < Ex(π(1, x)|y = 1)−Ex(π(0, x)|y = 1).

As EyEx(π(a, x)|y) = π(a), we have that ∆3 > ∆2. We rewrite (20) as

1− ρa
ρa

≥ ρu∆2 + (1− ρu)∆3
ρu∆1

.

On the right-hand side, the numerator is decreasing in ρu and the denominator is increasing.

The left-hand side is decreasing in ρa.

Proposition 9 has two parts. First, given a probability that the consequence is observed,

ρu, there exists a threshold ρ∗a (ρu) such that there exists a separating equilibrium if and only if

the probability of observing the action is below the threshold. For any level of transparency on

consequences, ρu, there exists a threshold ρ∗a (ρu) such that there exists a separating equilibrium

if and only if the level of transparency on action is within the threshold. Second, the threshold

is nondecreasing in ρu. More transparency on consequence allows for more transparency on

action without creating incentives for conformism. This is because conformism is deterred by the

threat of failure. The agent may impress the principal when he chooses the action associated to

the smart signal, but he is going to be punished if the action does not match the state of the

world. The risk of punishment is directly proportional to the probability that the consequence

is observed.
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5 When the Agent Knows His Own Type

So far we have assumed that the agent does not know his own type. In this section we remove

this restriction and see what happens (in one example) when the agent has some self-knowledge.

The agent receives a signal about his own type, which may be more or less informative. The

two extreme cases are when the agent knows his type perfectly and when he has no information

about it.

The objective of this section is to probe the robustness of the results obtained with no self-

knowledge. As we shall see, self-knowledge may reduce the incentive to behave in a conformist

way. Two points will be made. First, if the agent is perfectly informed about his own type, then

we show that there is an informative equilibrium. The good agent follows his signal while the

bad agent still behaves in a conformist manner. This is because an agent who knows that he has

a more precise signal has more of an incentive make decisions according to it. This result may

lead one to suspect that conformism is a non-robust feature of the case in which the agent has

no self-knowledge at all. However, the second point of this section is that if the signal the agent

receives about his own type is informative but weak, there still exists no informative equilibrium.

Thus the results appear to be robust to some self-knowledge but not to a lot of it.14

We modify the baseline model as follows. Before observing the signal y about the state x,

the agent receives a signal z ∈ {0, 1} about his own type θ. The signal z has distribution

Pr(z|θ) =
(
k if z = θ

1− k if z 6= θ

with k ∈ £12 , 1¤. If k = 1
2 , the signal is uninformative and we return to the baseline model. If

k = 1, the agent knows his own type. Also, z and x are mutually independent, and z and y are

mutually independent conditional on x and θ. The rest of the game is as in the baseline model.

A strategy profile is then (αyz)y∈{0,1},z∈{b,g}, where αyz is the probability that an agent with

signal y and self-knowledge z plays a = 1.15

14The question of how well individuals assess their own skills is mostly open. The available evidence suggests

that people display some self-knowledge, but also that they overestimate their own ability (see Malmendier and

Tate [20] for a study on CEO overconfidence). It would be interesting — but outside the scope of the present work

— to allow for systematic deviations between the agent’s and the principal’s priors on the agent’s type.
15The type of the agent can now take four possible values while the message space, which still corresponds to

the action space, is binary. One may argue that this is an unnatural restriction and that the message space should

be enriched to have the same dimension as the action space. However, trading off generality for comparability and

simplicity, we choose to keep the set-up used in the rest of the paper.

Also, if the agent is allowed to send another binary cheap talk signal, it is easy to see that there cannot exist a

separating equilibrium in which a reveals y and the additional cheap talk signal reveals z, because the agent would

always prefer to state z = 1 rather than z = 0 (π (a, x, z = 1) > π (a, x, z = 0) for any a and x, because everything

else equal a higher z is good news about θ).
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In order to make the two main points of this section, it is sufficient to restrict attention to

the example discussed in Section 3.1. Thus: γ = 1
2 , p =

1
2 , q0b = q1b =

1
2 , q0g =

1
2 , and q1g = 1.

We show that if the agent knows his own type (k = 1) there is a new type of equilibrium in

which an agent with self-knowledge z = g plays in the efficient way (a = y), while an agent with

z = b randomizes between the two actions:

Proposition 10 If k = 1, there exists an informative equilibrium in which an agent with z = 1

plays a = y and an agent with z = 0 plays according to α0 = α1 =
1
8

¡
1 +
√
41
¢ ' 0.92.

Proof. Given k = 1, consider strategy 0 = α0g ≤ α0b = α = α1b ≤ α1g = 1. The posteriors

are:

π (1, 1) =
1

1 + α
;

π (0, 1) = 0;

π (1, 0) =
1

1 + 2α
;

π (0, 0) =
1

3− 2α .

If the agent knows his type, the conditional probability of x given y is

Pr (x = 1|y = 1, z = g) =
2

3
;

Pr (x = 1|y = 0, z = g) = 0;

Pr (x = 1|y = 1, z = b) = Pr (x = 1|y = 0, b) = Pr (x = 1|b) = 1

2
.

In order for α ∈ (0, 1), the bad agent must be indifferent between a = 0 and a = 1:

Pr (x = 1|z = b)π (1, 1) + Pr (x = 0|z = b)π (1, 0)
= Pr (x = 1|z = b)π (0, 1) + Pr (x = 0|z = b)π (0, 0) ,

yielding

1

1 + α
+

1

1 + 2α
= 0 +

1

3− 2α ,

with solution α = 1
8 +

1
8

√
41.

It is easy to verify that for an agent with g it is a best response to play a = y.

An agent who knows he is bad also knows that his signal y provides no information about

the state x. He evaluates Pr(x) according to the prior and he chooses the action according to

whether Ex (π (a, x)) is higher for a = 0 or a = 1. Instead, an agent who knows he is good

receives an informative signal about x and he uses Pr (x|y). That is why a bad agent randomizes
while a good agent follows his own signal. An increase in the probability that a bad agent chooses
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a = 1 worsens the posteriors π (1, x) and improves the posteriors π (0, x). Thus, there exists a

probability such that the bad agent is indifferent between the two actions. However, at the same

point the good agent strictly prefers to follow his own signal. This determines an informative

equilibrium in which the good agent follows his own signal.

In Section 3 we saw that, when the agent does not observe his type, this example has no

informative equilibrium. We now show that this is still true when the agent has limited self-

knowledge.

Proposition 11 If k <
√
7− 2 ' 0.64, there exists no informative equilibrium.

Proof. Assume that k ∈ (0, 1). For future reference, the posteriors for a generic strategy
profile are:

π (1, 1) =
2kα1g + 2 (1− k)α1b

(1 + k)α1g + (1 + k)α1b + (1− k)α0g + kα0b ;

π (0, 1) =
2− (2kα1g + 2 (1− k)α1b)

4− ((1 + k)α1g + (1 + k)α1b + (1− k)α0g + kα0b) ;

π (1, 0) =
kα1g + (1− k)α1b + kα0g + (1− k)α0b

α1g + α1b + α0g + α0b
;

π (0, 0) =
2− (kα1g + (1− k)α1b + kα0g + (1− k)α0b)

4− (α1g + α1b + α0g + α0b)
.

One of the following must hold: α1b > α0b, α1b = α0b, or α1b < α0b. For every equilibrium

in which α1b < α0b there exists a specular equilibrium in which α1b > α0b. Thus we restrict

attention to the first two cases. The proof proceeds by showing that in each of the two cases

there exists no informative equilibrium if k is below a certain threshold.

Suppose that there exists an equilibrium in which α1b > α0b. It must be that

Pr (x = 1|y = 0, z = b) (π (1, 1)− π (0, 1)) ≤ Pr (x = 0|y = 0, z = b) (π (0, 0)− π (1, 0))(21)

Pr (x = 1|y = 1, z = b) (π (1, 1)− π (0, 1)) ≥ Pr (x = 0|y = 1, z = b) (π (0, 0)− π (1, 0))(22)

This implies that:

π (1, 1) ≥ π (0, 1) (23)

π (0, 0) ≥ π (1, 0) (24)

To see this: if (23) holds but (24) does not, (21) must be false; if (24) holds but (23) does not,

(22) must be false; and if neither (23) nor (24) hold, the fact that (21) holds implies that (22)

must be false. Given (21) and (22),

Pr (x = 1|y = 0, z = g) (π (1, 1)− π (0, 1)) < Pr (x = 0|y = 0, z = g) (π (0, 0)− π (1, 0))(25)

Pr (x = 1|y = 1, z = g) (π (1, 1)− π (0, 1)) > Pr (x = 0|y = 1, z = g) (π (0, 0)− π (1, 0))(26)
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Thus 0 = α0g ≤ α0b < α1b ≤ α1g = 1. For (25) to hold, it must be π (1, 0) < π (0, 0), implying

2kα1g + 2 (1− k)α1b + 2kα0g + 2 (1− k)α0b < α1g + α1b + α0g + α0b;

(2k − 1)α1g + (2k − 1)α0g < (2k − 1)α1b + (2k − 1)α0b;
α1g + α0g < α1b + α0b.

This means that α1b + α0b > 1. By an argument similar to Proposition 4, it cannot be that

0 < α0b < α1b < 1. Hence, α1b = 1. We then know that 0 = α0g ≤ α0b < α1b = α1g = 1, and the

posteriors are

π (1, 1) =
2k + 2 (1− k)

2k + 2 (1− k) + 1 + kα0b ;
π (0, 1) = 0;

π (1, 0) =
k + (1− k) (1 + α0b)

k + (1− k) (1 + α0b) + (1− k) + k (1 + α0b)
;

π (0, 0) =
2− (k + (1− k) (1 + α0b))

4− (k + (1− k) (1 + α0b) + (1− k) + k (1 + α0b))
.

We see that

Pr (x = 1|y = 0, z = b) =
Pr (x = 1, y = 0, z = b|θ = g) + Pr (x = 1, y = 0, z = b|θ = b)

Pr (y = 0, z = b|θ = g) + Pr (y = 0, z = b|θ = b)

=
1
2k

1
2k +

1
2

=
k

1 + k

Then a necessary condition for α0b < 1 is

k (π (1, 1)− π (0, 1)) + (π (1, 1)− π (0, 1)) ≤ 0,

which rewrites as

−4k + (6k − 3)α0 + 2k2α20 ≥ 0,

which, given that k ≥ 1
2 , cannot hold if

−3 + 6k + 2k2 − 4k < 0,

with solution

k <
1

2

³√
7− 1

´ ∼= 0.82.
Thus, if k < 1

2

¡√
7− 1¢, there is no equilibrium in which α1b > α0b.

Next consider an equilibrium in which α1b = α0b. By an argument similar to the one use

above, it is easy to see that 0 ≤ α0g ≤ α0b = α1b ≤ α1g ≤ 1. It cannot be that 0 < α0b = α1b < 1.
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Either 0 = α0g = α0b = α1b ≤ α1g = 1 or 0 ≤ α0g = α0b = α1b = α1g = 1. It is easy to exclude

the first case (because a = 1, which is smart and optimal, is too appealing to an agent with y = 1

and z = b).

We are then left with the possibility that 0 ≤ α0g ≤ α0b = α1b = α1g = 1. The posteriors are:

π (1, 1) =
2k + 2 (1− k)

2k + 2 (1− k) + k + (1− k) + (1− k)α0g + k ;
π (0, 1) = 0;

π (1, 0) =
k + (1− k) + kα0g + (1− k)

3 + α0g
;

π (0, 0) = k.

Note that

Pr (x = 1|y = 0, z = g) =
Pr (x = 1, y = 0, z = g|θ = g) + Pr (x = 1, y = 0, z = g|θ = b)

Pr (y = 0, z = g|θ = g) + Pr (y = 0, z = g|θ = b)

=
1
2 (1− k)

1
2 (1− k) + 1

2

=
1− k
2− k .

A necessary condition for α0g < 1 is

(1− k) (π (1, 1)− π (0, 1)) + (π (1, 0)− π (0, 0)) ≥ 0,

which rewrites as

3− 4k − k2 + ¡1− 2k + k2¢α0 ≤ 0,
which cannot hold if

3− 4k − k2 > 0,

with solution k <
√
7− 2 ' 0.64..

As 12
¡√
7− 1¢ > √7− 2, the proof is complete.

If the agent has self-knowledge, we know that an agent who thinks he is above average has

a stronger incentive to follow his signal. Still, if self-knowledge is weak, this is not enough to

overcome the agent’s desire to make the principal believe that he received the smart signal. The

proof of this fact — even just for the example — is quite convoluted because it involves excluding

all the possible cases of informative equilibria.

6 General Case

The baseline model had strong restrictions on the action space, signal space, consequence space,

and state space, which were all assumed to be binary. This section considers a general setup. We
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shall see that some of the results proven earlier can still be proven in this more general version. In

particular, we can still say a lot about the existence or non-existence of separating equilibria (what

we cannot study, because of sheer complexity, is the existence of other informative equilibria).

In particular we are able to give support to the two main messages of this paper. First, if one

of the possible realizations of the agent signal is “too smart”, then there exists no separating

equilibrium. Second, transparency on action generates conformism, and it does especially if there

is little transparency on consequence. In other words, we prove results that correspond, at least

partially, to Propositions 6 and 9.

Let u ∈ U , a ∈ A, x ∈ X, y ∈ Y where U , A, X, and Y are finite sets. Additionally,

U is real-valued. For analytical tractability, we still assume that θ ∈ {b, g}. For every x, let
p (x) = Pr(x). For every x, y, and θ, let qθ (y|x) = Pr (y|x, θ). The distributions p and q are
assumed to have full support. The consequence is given by u = ω (a, x). Also define

q (y|x) = qg (y|x) γ + qb (y|x) (1− γ) .

We make two additional assumptions

A1 (Decision Value of Signal) There exists a∗ : Y → A such that, for all a, y, u,X
x:ω(a∗(y),x)≥u

q (y|x) p (x) ≥
X

x:ω(a,x)≥u
q (y|x) p (x)

Assumption A1 says that there exists a decision function a∗ which is optimal in a strong

sense: for every u, the probability of obtaining at least u is higher if the agent use a∗ than if he

uses any other decision function. The assumption implies that a∗ is optimal in the usual sense:

for every y,

a∗(y) ∈ argmax
a

X
x

ω (a, x) Pr (x|y) .

A2 (Sorting Value of Signal) The decision function a∗ also satisfies, for every u0 ≥ u and y,P
x:ω(a∗(y),x)=u0 qg (y|x) p (x)P
x:ω(a∗(y),x)=u0 qb (y|x) p (x)

≥
P
x:ω(a∗(y),x)=u qg (y|x) p (x)P
x:ω(a∗(y),x)=u qb (y|x) p (x)

This second assumption says that, in an equilibrium in which the agent uses a∗, the ratio be-

tween the probability that a good agent plays a certain a and obtains a certain u and a bad agent

plays the same a and obtains the same u is increasing in u. It is akin to the monotone likelihood

ratio condition in moral hazard. It guarantees that a higher type of agent who implements the

optimal decision rule a∗ is more likely to produce a good consequence.
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We now come to what the principal observes. Let ρu ∈ [0, 1] be the probability that u is
observed and ρa ∈ [0, 1] be the probability that a is observed. The two events are independent
(so, for instance, the probability that the principal sees a but not u is (1− ρu) ρa).

The following result parallels Proposition 9. A separating equilibrium is more likely to exist

when there is more transparency on consequence and less transparency on action:

Proposition 12 Take ρ0u ≤ ρu and ρ0a ≥ ρa. Under A1 and A2, there exists an equilibrium in

which the agent uses a∗ under (ρ0u, ρ0a) only if there exists an equilibrium in which the agent uses

a∗ under (ρu, ρa).16

Proof. For future reference, note that

Pr (u|a, y) =
P
x:ω(a,x)=u q(y|x)p(x)P

x q(y|x)p(x)
.

Suppose the agent uses a∗. The posteriors in the four possible information scenarios are:

π (a, u) =


P
y:a∗(y)=a

P
x:ω(a∗(y),x)=u qg(y|x)p(x)γP

y:a∗(y)=a
P
x:ω(a∗(y),x)=u q(y|x)p(x) if a is played in equilibrium

unrestricted otherwise

π (u) =

P
y

P
x:ω(a∗(y),x)=u qg (y|x) p (x) γP

y

P
x:ω(a∗(y),x)=u q (y|x) p (x)

π (a) =


P
y:a∗(y)=a

P
x qg(y|x)p(x)γP

y:a∗(y)=a
P
x q(y|x)p(x) if a is played in equilibrium

unrestricted otherwise

π (∅) = γ

Given (ρu, ρa), there exists an equilibrium in which the agent uses a∗ if and only if, for every

y,

a∗ (y) ∈ argmax
a

X
u

Pr (u|a, y) (ρuρaπ (a, u) + ρu (1− ρa)π (u)) + (1− ρu) ρaπ (a) + (1− ρu) (1− ρa)π (∅) ,

Claim 1: For every a and y,X
u

(Pr (u|a∗ (y) , y)− Pr (u|a, y))π (u) ≥ 0.

16Given that this section is about generality, one may ask how much Proposition 12 depends on the assumption

that the agent’s utility is linear in the posterior. Suppose instead that the agent’s payoff is given by some nonde-

creasing function of the posterior: w (π). It turns out that the part of the proposition about action revelation is

still true. One can prove (an appendix is available from the author) that, for any ρu and for any ρ0a > ρa, there

exists an equilibrium in which the agent uses a∗ under (ρu, ρ
0
a) only if there exists an equilibrium in which the

agent uses a∗ under (ρu, ρa). Instead the strategy used to prove the other part of the proposition — the one about

consequence revelation — does not extend beyond a linear w. It is not clear whether this failure can be fixed by

using another line of proof or it is actually due to a failure of this second part for nonlinear utility functions.
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Proof of Claim 1: Note that

Pr (U ≥ u|a, y) =
P
x:ω(a,x)≥u q(y|x)p(x)P

x q(y|x)p(x)
By A1,

Pr (U ≥ u|a∗ (y) , y)
Pr (U ≥ u|a, y) =

P
x:ω(a∗(y),x)≥u q(y|x)p(x)P
x:ω(a,x)≥u q(y|x)p(x)

≥ 1.

Thus, Pr (·|a∗ (y) , y) first—order stochastically dominates Pr (·|a, y).
By A2, for every y, P

x:ω(a∗(y),x)=u qg (y|x) p (x)P
x:ω(a∗(y),x)=u qb (y|x) p (x)

is nondecreasing in u. Hence, it easy to see thatP
x:ω(a∗(y),x)=u qg (y|x) p (x)P
x:ω(a∗(y),x)=u q (y|x) p (x)

is also nondecreasing in u. This means that

π (u) =

P
y

P
x:ω(a∗(y),x)=u qg (y|x) p (x) γP

y

P
x:ω(a∗(y),x)=u q (y|x) p (x)

is also nondecreasing in u.

The proof of the claim is completed by a standard argument combining first—order stochastic

dominance and monotonicity.

Claim 2: Suppose ρ0a > ρa. There exists an equilibrium in which the agent uses a∗ under

(ρu, ρ
0
a) only if there exists an equilibrium in which the agent uses a∗ under (ρu, ρa).

Proof of Claim 2: Suppose not. Then, there exists a y and an a /∈ a∗ (y) such thatX
u

Pr (u|a∗ (y) , y) (ρuρaπ (a∗ (y) , u) + ρu (1− ρa)π (u)) + (1− ρu) ρaπ (a
∗ (y)) (27)

<
X
u

Pr (u|a, y) (ρuρaπ (a, u) + ρu (1− ρa)π (u)) + (1− ρu) ρaπ (a) ;

and X
u

Pr (u|a∗ (y) , y) ¡ρuρ0aπ (a∗ (y) , u) + ρu
¡
1− ρ0a

¢
π (u)

¢
+ (1− ρu) ρ

0
aπ (a

∗ (y)) (28)

≥
X
u

Pr (u|a, y) ¡ρuρ0aπ (a, u) + ρu
¡
1− ρ0a

¢
π (u)

¢
+ (1− ρu) ρ

0
aπ (a) .
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Subtracting (27) from (28),

ρu
X
u

(Pr (u|a∗ (y) , y)− Pr (u|a, y))π (u) (29)

−
Ã
ρu

ÃX
u

(Pr (u|a∗ (y) , y)π (a∗ (y) , u)− Pr (u|a, y)π (a, u))
!
+ (1− ρu) (π (a

∗ (y))− π (a))

!
< 0

However, by Claim 1, in order for (27) to hold, it must be that

ρu
X
u

(Pr (u|a∗ (y) , y)π (a∗ (y) , u)− Pr (u|a, y)π (a, u)) + (1− ρu) (π (a
∗ (y))− π (a)) < 0

But the right-hand side of (29) is positive — contradiction.

Claim 3: Suppose ρ0u < ρu. There exists an equilibrium in which the agent uses a∗ under

(ρ0u, ρa) only if there exists an equilibrium in which the agent uses a∗ under (ρu, ρa).

Proof of Claim 3: Suppose not. Then, there exists a y and an a /∈ a∗ (y) such that (27) holds
and X

u

Pr (u|a∗ (y) , y) ¡ρ0uρaπ (a∗ (y) , u) + ρ0u (1− ρa)π (u)
¢
+
¡
1− ρ0u

¢
ρaπ (a

∗ (y)) (30)

≥
X
u

Pr (u|a, y) ¡ρ0uρaπ (a, u) + ρ0u (1− ρa)π (u)
¢
+
¡
1− ρ0u

¢
ρaπ (a) .

implyingX
u

Pr (u|a∗ (y) , y) (ρaπ (a∗ (y) , u) + (1− ρa)π (u))− Pr (u|a, y) (ρaπ (a, u) + (1− ρa)π (u))(31)

< ρa (π (a
∗ (y))− π (a))

If π (a∗ (y)) ≥ π (a), (30) implies thatX
u

Pr (u|a∗ (y) , y) (ρaπ (a∗ (y) , u) + (1− ρa)π (u))− Pr (u|a, y) (ρaπ (a, u) + (1− ρa)π (u)) > 0,

and there is a contradiction in (31) because the left-hand side is positive and the right-hand side

is negative.

If π (a∗ (y)) < π (a), we find a contradiction as follows. Note that

X
u

Pr (u|a, y)π (a, u) =
(

π (a) if a is played in equilibrium (ie ∃y, a ∈ a∗ (y) )
unrestricted otherwise

Hence, if a is played in equilibrium,X
u

(Pr (u|a∗ (y) , y)π (a∗ (y) , u)− Pr (u|a, y)π (a, u)) = π (a∗ (y))− π (a) > 0,
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If a is played in equilibrium, then we can always set π (a, u) = 0 for all u’s andX
u

(Pr (u|a∗ (y) , y)π (a∗ (y) , u)− Pr (u|a, y)π (a, u)) ≥ π (a∗ (y))− π (a) > 0.

In both cases, the combination ofX
u

(Pr (u|a∗ (y) , y)π (a∗ (y) , u)− Pr (u|a, y)π (a, u)) > 0

and Claim 1 shows that the left-hand side of (27) is positive, which generates a contradiction.

Claims 2 and 3 together prove the proposition.

By Proposition 12, if there exists an equilibrium in which the agent uses the optimal decision

rule a∗ with given ρu and ρa, the same equilibrium exists also if we take a higher ρu and a lower

ρa.

The intuition behind the result is straightforward. Assumption A1 guarantees that the de-

cision rule a∗ is optimal. Assumption A2 implies that, if the agent plays a∗, a good agent is

more likely to get a high consequence than a bad agent. If only the consequence is observed (the

extreme case in which ρu = 1 and ρa = 0), the agent’s incentives are aligned with the principal’s

objective function. A better consequence is good news for the agent’s type. Observing the action

can only upset this incentive alignment. The contribution of the proposition lies in showing that

this comparative statics result also holds for any ρu and ρa are interior. An increase in ρu and a

decrease in ρa can only make the agent less willing to follow the optimal decision rule a
∗.

If we are willing to make a mild assumption on the optimal decision rule, we get a full

characterization of the existence region:

Corollary 13 Suppose that A1 and A2 hold and that, for some y0 and y00, a∗ (y0) 6= a∗ (y00).

Then, for every ρu there exists a ρ∗a (ρu) such that an equilibrium in which the agent uses a∗

exists if and only if ρa ≤ ρ∗a (ρu). Moreover, ρ∗a (1) > 0, ρ∗a (0) = 0, and ρ∗a is nondecreasing in

ρu.

Proof. Given that for some y0 and y00, a∗ (y0) 6= a∗ (y00), there cannot exist an equilibrium in

which the agent plays a∗ when ρu = 0 and ρa > 0. However, there exists one when ρu = ρa = 0.

Thus, ρ∗a (0) = 0. When ρu = 1 and ρa = 0, it is easy to check that A1 and A2 imply existence.

Hence, ρ∗a (1) > 0. The rest of the corollary is immediate given Proposition 12.

There are two possible cases. First, for every ρu and ρa there exists an equilibrium in which

the agent plays a∗. Second, there are two regions: one containing (ρu = 1, ρu = 0) in which the

agent plays a∗, the other containing (ρu = 0, ρu = 1) in which there is no equilibrium in which

the agent plays a∗. The two regions are divided by ρ∗a (ρu) which is nondecreasing in ρu.
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Lastly, we look at smartness. The notion of smart realization becomes more complicated in

the general setup but it can still be applied. In the simpler model used in the rest of the paper,

we saw that if one realization of the agent signal y is exceedingly smart, in the sense that it is

a very good signal for the agent’s type, then there may not be a separating equilibrium because

an agent would laways pretend to have observed the smart realization. As we shall see, this line

of reasoning is still valid in the general case.

We keep A1 and A2, and, to simplify things, we assume that the optimal decision rule a∗ is

such that, for every y, a∗(y0) is a singleton and a∗(y0) 6= a∗(y00) whenever y0 6= y00.
Given y00, y0 ∈ Y , we say that realization y00 is uniformly more smart than realization y0 if,

for all x, x̃ ∈ X,
qg (y

00|x)
qb (y00|x) >

qg (y
0|x̃)

qb (y0|x̃) . (32)

Uniform smartness is a strong condition because it imposes an inequality on likelihood ratios

even when the likelihood ratios refer to different states of the world. We can then show a partial

analogous to Proposition 6:

Proposition 14 Suppose ρa = ρu = 1. If there exists y
00, y0 ∈ Y such that y00 is uniformly more

smart than y0, then there exists no equilibrium in which the agent plays a∗.

Proof. From the proof of Proposition 12, we have that

π (a∗(y), u) =

P
x:ω(a∗(y),x)=u qg (y|x) p (x) γP
x:ω(a∗(y),x)=u q (y|x) p (x)

If y00 is smart with respect to y0, the definition of smartness (32) implies that for any u, ũ ∈ UP
x:ω(a∗(y00),x)=u qg (y

00|x) p (x)P
x:ω(a∗(y00),x)=u q (y

00|x) p (x) >
P
x:ω(a∗(y0),x)=ũ qg (y

0|x) p (x)P
x:ω(a∗(y0),x)=ũ q (y

0|x) p (x) .

Therefore, π (y00, u) > π (y0, ũ) for any u and ũ. But this, in turn, means thatX
u

Pr
¡
u|a∗ ¡y00¢ , y0¢π ¡a∗ ¡y00¢ , u¢ >X

u

Pr
¡
u|a∗ ¡y0¢ , y0¢π ¡a∗ ¡y0¢ , u¢ ,

which shows that there exists no equilibrium in which the agent plays a∗.

This result is easily understood. We are looking for an equilibrium in the revealed action

scenario in which the agent’s action fully reveals the agent’s signal. The principal knows the agent

signal y and the consequence u. But the uniform smartness condition implies that observing y00

and any u is better news about the agent type than observing y0 and any ũ. The agent then

prefers a∗ (y00) over a∗ (y0) no matter what distributions a∗ (y00) and a∗ (y0) induce over the the

consequence u.
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Proposition 14 differs from Proposition 6, which was proven for the baseline model, in two

respects. First, in the baseline model we provided a condition for the existence of any informative

equilibrium, while here we can only say something about separating equilibria. This prevents

us from using Proposition 14 to draw welfare conclusions. Second, Proposition 6 provided a

necessary and sufficient condition, while uniform smartness is just a sufficient condition.

To elaborate on this point, we provide an example that shows that uniform smartness is not

too strong. There are games in which some realizations of the signal are uniformly more smart

than others. Suppose that X = A = Y = {1, 2, 3} and U = {0, 1}. Also, p(x) = 1
3 for all x and

γ = 1
2 . The signal distribution is

qb (y|x) x = 1 x = 2 x = 3

y = 1 .5 .5 .5

y = 2 .2 .2 .2

y = 3 .3 .3 .3

qg (y|x) x = 1 x = 2 x = 3

y = 1 .5 .0 .0

y = 2 .3 .8 .3

y = 3 .2 .2 .8

which gives likelihood ratios:

qg(y|x)
qb(y|x) x = 1 x = 2 x = 3

y = 1 1 0 0

y = 2 3
2 4 3

2

y = 3 2
3

2
3

8
3

Hence y = 2 is uniformly more smart than y = 1.

The consequence function is assumed to be:

ω (a, x) x = 1 x = 2 x = 3

a = 1 1 0 0

a = 2 0 1 0

a = 3 0 0 1

By combining qb (y|x) and qg (y|x), we get:

q (y|x) x = 1 x = 2 x = 3

y = 1 .50 .25 .25

y = 2 .25 .50 .25

y = 3 .25 .25 .50

By combining q (y|x) and ω (a, x), the optimal decision function is

a∗(y) =


1 if y = 1

2 if y = 2

3 if y = 3
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Given a∗, one can easily check that A1 and A2 are satisfied.

If the agent plays according to a∗, the posteriors are

π (a, u) u = 0 u = 1

a = 1 0 1
2

a = 2 3
5

4
5

a = 3 2
5

8
11

For every u and ũ, π (2, u) dominates π (1, ũ). The agent prefers to play y = 2 rather than y = 1.

Note that y = 2 is not uniformly more smart than y = 3. Still, E (π (2, u) |y = 3) >
E (π (2, u) |y = 2).

7 Conclusion

This paper has identified a set of circumstances under which committing to concealing a certain

kind of information can make the principal better off. First, the principal and the agent must be

unable to sign performance-related contracts. Second, the agent should be an expert, in the sense

that his career depends on how able he is perceived to understand the state of the world. Third,

the information about the agent’s behavior should be separable into a part that is directly utility-

relevant for the principal and a part that is not. If these conditions are met, then revealing the

non-directly utility-relevant signal may make the agent behave in a more conformist way, which

worsens both discipline and sorting.

Are the theoretical results obtained in this paper useful for understanding existing institu-

tional arrangements? The idea that more information about non-directly utility-relevant infor-

mation may induce the agent to behave in a suboptimal way because of career concerns is clearly

present in political writings. In its famous 1974 ruling related to the Watergate case (US vs.

Nixon), the US Supreme Court uses the following argument to defend the principle behind ex-

ecutive privilege: “Human experience teaches us that those who expect public dissemination of

their remarks may well temper candor with a concern for appearances and for their own interest

to the detriment of the decision-making process.” Britain’s Open Government code of practice

uses a similar rationale when it provides that “internal discussion and advice can only be withheld

where disclosure of the information in question would be harmful to the frankness and candour

of future discussions.” (Campaign for Freedom Information [5, p. 3]).

More precise implications can be extracted from Proposition 9. The optimal degree of action

revelation is increasing in the degree of consequence revelation. We should expect transparency

on decisions to go hand in hand with transparency on consequences. In particular, an action,

or the intention to take an action, should not be revealed before the consequences of the action
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are observed. Indeed, Frankel [14] reports that all the 30-plus countries that have adopted an

open government code allow for some form of short-term secrecy while the decision process is

still ongoing. For instance, Sweden, the country with the oldest and, perhaps the most forceful,

freedom of information act, does not recognize the right for citizens to obtain information about a

public decision until that decision is implemented. Working papers and internal recommendations

that lead to a decision are released only when voters begin to have a chance to form an opinion

on the consequence of the decision in question.17

The result on complementarity has also another implication. If, for exogenous reasons, citizens

are less likely to observe the consequence, optimal institutional design dictates less transparency

with regards to action. This may help explain why EU-level bodies are less transparent than the

corresponding institututions at the national level. The meetings of the highest legislative body

of each EU country are usually public, while, as we saw earlier, the Council of the European

Union meets behind closed doors. There is no doubt that Europeans find it easier to evaluate

the consequences of policy in areas that are typically under national jurisdiction (health, pen-

sions, education, transports, etc...) rather than areas mainly under EU control (harmonization

policy, competition policy, agricoltural subsidies, etc...). According to our results, the exogenous

differential of information on payoff-relevant observables (laws) is optimally associated to a differ-

ential of information on non-payoff-relevant observables (positions during meetings). A Council

in which debates were public would risk to give its members so strong an incentive to conform

to citizens’ expectations that its meetings would lose their information aggregating function.18

Lastly, we briefly relate our theory to transparency in corporate governance and delegated

portfolio management. Regarding the former, shareholders receive information about the man-

agement of their firm from the accounting reports that the firm makes. Clearly, accounting

involves a great deal of aggregation both across time and across areas. Accounting research has

been active on the issue of the optimal degree of disaggregation. One point that is particularly de-

bated, both among researchers and policy-makers, is whether a firm should provide disaggregated

data about its productive segments (segment disclosure) on a quarterly basis or just on a yearly

basis (Leuz and Verrecchia [18]). Currently, in the US there is no legal requirement for quarterly

segment disclosure: some firms follow a disclosure policy and others do not. Evidence on whether

17A historical example of this transparency policy is the US Constitutional Convention. George Mason refers to

the secrecy of the Convention meetings as “a proper precaution” because it averted “mistakes and misrepresenta-

tions until the business shall have been completed, when the whole may have a very different complexion from that

in which the several parts might in their first shape appear if submitted to the public eye” (Farrand [12, 3:28,32])
18The view that keeping Council meetings secret is desirable is often found in the writings of scholars of European

politics. For instance, Calleo [4, p. 270-271] states that “Whether making Council debates more open is, of course,

debatable. Discrete decision making, dominated by expert advisers, has its advantages, especially in periods of

prolonged economic difficulty.”
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segment disclosure improves firm performance is inconclusive (Botosan and Harris [3]). Without

quarterly segment disclosure, shareholders still have information about short term consequences

(from quarterly aggregated reports). What they have difficulty with is inferring the strategy

that the firm is following, especially with regard to resource allocation across productive areas.

Segment disclosure can then be seen as an improvement in transparency over action. Thus, the

present theory provides an additional angle to evaluate the optimality of segment disclosure.19

In delegated portfolio management, there have been proposals to increase the frequency with

which mutual funds are required to disclose their portfolio composition, which in the US is now

six months. The Investment Company Institute (the fund managers’ association) [34] rejects

proposals for increasing the frequency of portfolio disclosure arguing that an increased frequency

risks hurting investors because “[it] would focus undue attention on individual portfolio securities

and could encourage a short-term investment perspective.” The Institute also argues that there

does not seem to be much demand by investors for more information on portfolio holdings. It

is easy to use the framework developed here to back up the Institute’s argument. The action of

a fund manager is his investment strategy. The consequence is return to investors. Returns are

observable but also volatile. In the long term they are a reliable signal of the fund manager’s

quality but in the short term they contain a lot of variance. If the action is observable in the

short term, there is a risk that fund managers will behave in a conformist way, ignoring their

private investment and following the strategy that is a priori a better signal of their competence.

We conclude by pointing to two possible extensions. First, as we argued in the Related

Literature section, there are two ways of modeling cheap talk with career concerns: the expert

model which is used here and the biased advisor model of Morris [22]. It would be interesting to

know to what extent the results presented here carry over to the biased advisor model. Obviously,

in the biased advisor model one must assume that the advisor knows his own type. One can

envision situations in which observing only the consequence induces good advisor to follow their

signals and bad advisors to act in a biased way. When the action is observed as well, good and

bad advisors may pool on the “politically correct” action, which leads to a breakdown of both

discipline and sorting. The question is under what circumstances this situation is more likely to

arise.

Second, this paper has considered action revelation and consequence revelation. We have

allowed for randomization, but we have not allowed for systematic biases. For instance, one

action could be revealed with a higher probability than another action. It would be interesting

to know whether the principal benefits from the introduction of such asymmetric information

19Most existing work in accounting theory predicts that firms should adopt transparency policies, but see Nagar

[23] for a reason why risk averse managers may want to limit disclosure.

44



structures.20

References

[1] Christopher Avery and Margaret M. Meyer. Designing hiring and propotion procedures when

evaluators are biased. Working paper, 1999.

[2] Timothy Besley and Robin Burgess. The political economy of government responsiveness:

Theory and evidence from India. Working paper, 2001.

[3] Christine A. Botosan and Mary S. Harris. Motivations for a change in disclosure frequency

and its consequences: An examination of voluntary quarterly segment disclosures. Journal

of Accounting Research 38(2): 329—353, 2000.

[4] David P. Calleo. Rethinking Europe’s Future. Princeton University Press, 2001.

[5] The Campaign for Freedom of Information. Freedom of Information: Key Issues. 1997 (avail-

able on www.cfoi.org.uk/pdf/keyissues.pdf).

[6] Vincent Crawford and Joel Sobel. Strategic information transmission. Econometrica 50:

1431—1451, 1982.

[7] Jacques Crémer. Arm’s length relationships. Quarterly Journal of Economics 110(2): 275—

295, 1995.

[8] Mathias Dewatripont, Ian Jewitt, and Jean Tirole. The economics of career concerns, Part

I: Comparing information structures. Review of Economic Studies 66(1): 183—198, 1999.

[9] Alexander Dyck and Luigi Zingales. Why are private benefits of control so large in certain

countries and what effects does this have on their financial development? Working paper,

2001.

[10] Jeffrey Ely, Drew Fudenberg, and David K. Levine. When is reputation bad? Mimeo, 2002.

[11] Jeffrey Ely and Juuso Välimäki. Bad reputation. Mimeo, 2001.

[12] Max Farrand (ed.). The Records of the Federal Convention of 1787. Yale University Press,

1967.
20Leaver [17] develops an expert model in which the agent knows his type and she considers the possibility that

only one of the two actions is observed with positive probability. The model, which is applied to a regulatory

setting, shows that a regulated industry can control the behavior of its career-motivated regulator by creating a

biased information structure.

45



[13] John Fingleton and Michael Raith. Career concerns for bargainers. Working paper, October

2001.

[14] Maurice Frankel. Freedom of information: Some international characteristics.

Working paper, The Campaign for Freedom of Information, 2001 (available on

www.cfoi.org.uk/pdf/amsterdam.pdf).

[15] Bengt Holmström. Moral hazard and observability. Bell Journal of Economics 10: 74—91,

1979.

[16] Bengt Holmström. Managerial incentive problems: A dynamic perspective. Review of Eco-

nomic Studies 66(1): 169—182, 1999.

[17] Clare Leaver. Bureaucratic minimal squawk: Theory and evidence. Working paper, Univer-

sity College London, February 2002.

[18] Christian Leuz and Robert E. Verrecchia. The economic consequences of increased disclosure.

Journal of Accounting Research 38(supplement): 91—124, 2000.

[19] Gilat Levy. Strategic consultation in the presence of career concerns. STICERD Discussion

Paper TE/00/404, London School of Economics, 2000.

[20] Ulrike Malmendier and Geoffrey Tate. CEO overconfidence and corporate investment. Work-

ing paper, Harvard University, 2002.

[21] Eric Maskin and Jean Tirole. The politician and the judge: Accountability in government.

Working paper, Toulouse University, 2001.

[22] Stephen Morris. Political correctness. Journal of Political Economy, forthcoming.

[23] Venky Nagar. The role of the manager’s human capital in discretionary disclosure. Journal

of Accounting Research 37(supplement): 167—185, 1999.

[24] Marco Ottaviani and Peter Sørensen. Information aggregation in debate: Who should speak

first? Journal of Public Economics 81: 393—421, 2001.

[25] Marco Ottaviani and Peter Sørensen. Professional advice. Working paper, September 2001.

[26] Motty Perry and Larry Samuelson. Open- versus close-door negotiations. RAND Journal of

Economics 25(2): 348—59, 1995.

[27] Torsten Persson and Guido Tabellini. Political Economics. MIT Press, 2002.

46



[28] Canice Prendergast. A theory of “Yes Men”. American Economic Review 83(4): 757—770,

1993.

[29] Canice Prendergast and Lars Stole. Impetuous youngsters and jaded oldtimers. Journal of

Political Economy 104: 1105—34, 1996.

[30] Mark J. Rozell. Executive Privilege: The Dilemma of Secrecy and Democratic Accountability.

Johns Hopkins University Press, 1994.

[31] Daniel Seidmann. Imperfect delegation and the norm of consensus. Newcastle University,

2002.

[32] David Scharfstein and Jeremy Stein. Herd behavior and investment. American Economic

Review 80: 465—479, 1990.

[33] Russell B. Stevenson, Jr. Corporations and Information: Secrecy, Access, and Disclosure.

Johns Hopkins University Press, 1980.

[34] Craig S. Tyle. Letter to the SEC on the frequency of mutual fund portolio holdings disclosure.

Investment Company Institute, 2001 (http://www.ici.org/port_holdings_com.html).

[35] Jeffrey Zwiebel. Corporate conservatism and relative compensation. Journal of Political

Economy 103(1): 1—25: 1995.

47


	439Titlepage.pdf
	London School of Economics and Political Science
	Abstract



