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ROBUST COVARIANCE
MATRIX ESTIMATION:
HAC ESTIMATES WITH LONG
MEMORY/ANTIPERSISTENCE
CORRECTION

P.M. ROBINSON
London School of Economics

Smoothed nonparametric estimates of the spectral density matrix at zero fre-
quency have been widely used in econometric inference, because they can con-
sistently estimate the covariance matrix of a partial sum of a possibly dependent
vector process. When elements of the vector process exhibit long memory or anti-
persistence such estimates are inconsistent. We propose estimates which are still
consistent in such circumstances, adapting automatically to memory parameters
that can vary across the vector and be unknown.

1. INTRODUCTION

We discuss a form of “automated” inference that extends a familiar feature of
modern econometric practice to incorporate a flexible form of modeling that
has attracted considerable recent interest. Heteroskedasticity and autocorrela-
tion consistent (HAC) covariance matrix estimation is commonly employed in
inference based on statistics that involve a partial sum of vector-valued random
variables that are not assumed serially uncorrelated or homoskedastic; “long-
run” covariance matrix estimation is another name for the same kind of pro-
cedure. Such statistics do not themselves attempt to correct for supposed
autocorrelation or heteroskedasticity, but rather the aim is to robustify infer-
ence. Popular econometric references include Newey and West (1987) and
Andrews (1991), and the methods go back to earlier statistical references, such
as Jowett (1955), Hannan (1957), and Brillinger (1979). The autocorrelation
typically presumed is 7(0), in the sense that, for homoskedastic covariance sta-
tionary processes, there is a finite and positive definite spectral density at zero
frequency. These properties fail in the case of long memory or antipersistent
processes, and the usual HAC estimates are then inconsistent, leading to asymp-
totically invalid tests and inconsistent interval estimates.
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172 P.M. ROBINSON

We robustify the estimates to ensure consistency in the event of long mem-
ory or antipersistence. It is not required that we know whether either of these
features pertains, and consistency in the 7(0) case is preserved. We deal with a
vector process whose components can have memory parameters that are possi-
bly different and unknown.

The following section briefly discusses HAC estimation that presumes 1(0)
behavior. Section 3 develops our robustified version. The paper stresses meth-
ods, avoiding detailed regularity conditions or proofs.

2. COVARIANCE MATRIX ESTIMATION FOR /(0) SERIES

Consider a p X 1 vector-valued sequence x,, t = 0,%1,.... For the purpose of a
concise discussion we take the elements of x, to be jointly covariance station-
ary, later mentioning possible departures. We assume x, has zero mean and abso-
lutely continuous spectral distribution matrix. Defining the autocovariance
matrices

y(j) = Exoxj,  j=0,%1,...,

the spectral density matrix f(A), A € (=, 7], is given by
y(i) = | s an

and is Hermitian nonnegative definite.
For n = 1 define the arithmetic mean

n
x=n" Exr.
t=1

The covariance matrix of X is

n—1 :

e _ J . .

Exx' =n 1[7(0)+':S (1—';>{7(1)*'7(—1H}~ 2.1
j=1

If £(A) is continuous at A = 0, Fejér’s theorem indicates that

nE(xx') = 2@f(0), asn— oo. 2.2)

Under a variety of additional conditions, n'/2% satisfies a central limit theorem,
so that, if £(0) is also positive definite,

n'2x — N(0,27f(0)), asn — oo. 2.3)
Note that

2af(0) = > y(j).

j==0



ROBUST COVARIANCE MATRIX ESTIMATION 173

Large sample inference based on X thus requires consistent estimates of f(0).
These could result from an assumed parametric model for y(j),j = 0,+1,...,
or equally for f(A), A € (—m,7], an obvious example being a stationary and
invertible autoregressive moving average process of prescribed orders. How-
ever, if either of the orders is underspecified, or both are overspecified, f(0)
will be inconsistently estimated.

As the Weierstrass approximation theorem hints, this theoretical drawback
can be overcome if the autoregressive or moving average orders are regarded
as increasing, slowly, with sample size n. In particular Berk (1974) justified
the consistency of autoregression-based spectral density estimates. The auto-
regressive order can here be thought of as a smoothing number. Such estimates
have been employed and modified in the HAC econometric literature, but this
has been more influenced by spectral density estimates developed still earlier
in the statistical literature, entailing an alternative form of smoothing and based
on quadratic functions of the data, in particular weighted autocovariance spec-
tral estimates (see, e.g., Grenander and Rosenblatt, 1957; Parzen, 1957). We
shall discuss instead a closely related class of quadratic estimate, stressed by
Brillinger (1975), that is not much used by econometricians in the HAC con-
text but yields more conveniently to the necessary modifications required in
the following section than weighted autocovariance forms, which have already
been extensively discussed in the econometric literature.

Define the periodogram matrix

I(\) = L(ix,e"’)‘)<§,x,e"”). 2.4)
=1

2mn \ o)

For an integer m € [1,n/2], introduce a sequence of nonnegative weights w;,,,
j=0,...,m, such that w_; ,, = w;,, and 27 _ w;, = 1. Define

j=—m

fO)= X wI(A) 2.5)

j==m

for A; = 2mj/n. The simplest version of (2.5) takes equal weights, w;,, = 1/
(2m + 1). Under suitable conditions on {x,}, on the w;,, and on m (such that m
increases with n but more slowly), we have

f(0) =, £(0), asn— oo.

Various rules have been suggested for choosing the bandwidth m, possibly to
satisfy some optimality criterion, such as cross-validation, and also rules of
thumb. Optimality theory for choice of the w, is also available. The estimates
considered by Brillinger (1975) are more general than (2.5), allowing weighted
summation over all Fourier frequencies A;. However, the weights must again
concentrate around zero to an extent that increases slowly with sample size,
and the form (2.5) fits in conveniently with that of narrow-band estimates of
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memory parameters, which have predominated in the semiparametric memory
estimation literature relevant to the following section. For each choice of weights
{w;} one can effectively find a choice of lag weights, approximately related to
the w;,, by Fourier transformation, that can be employed in a corresponding
weighted autocovariance spectral estimate of f(0), which typically has very sim-
ilar asymptotic properties to those of its weighted periodogram twin (2.5). Note
that the stated conditions on the w;,, guarantee that f (0) is nonnegative definite.
It is possible to refine (2.5) by employing different bandwidths and weights
across the elements, though the nonnegative definite property is less easy to
enforce. Refinements such as prewhitening and tapering are also available to
reduce bias in £(0) due to “leakage” from remote frequencies.

The description HAC appears to stress “heteroskedasticity” at least as much
as “autocorrelation,” but whereas there is explicit allowance for the latter in
f (0) and rival estimates, there is none for the former, and the robustness to
heteroskedasticity essentially just appeals to long-standing limit theorems for
nonidentically distributed variates. For example, in the special case of serially
uncorrelated x,, such that Ex,x; = (,, suppose O = n ' X", Q, — Q as
n — oo. Then from (2.5), Ef(0) = 2m) ' 3", w;,,& — (2m)"'Q. Even the
usual covariance matrix estimate motivated by uncorrelated, homoskedastic var-
iates, O = n~' 3", x,x/, satisfies EQ = O — Q as n — oo and so can also be
called heteroskedasticity-consistent. The econometric HAC literature has stressed
mixing conditions, and extensions thereof, that are designed mainly to describe
dependence but also allow a degree of heterogeneity. It would be possible to
allow for such heterogeneity in the discussion of the following section, but
because again no explicit correction for heteroskedasticity is involved we pre-
fer the simplicity of presentation gained by maintaining the covariance station-
arity assumption.

3. COVARIANCE MATRIX ESTIMATION FOR NON-/(0) SERIES

Of crucial importance in the preceding discussion was the 7(0) assumption, that
f(A) be continuous and positive definite at A = 0. To relax this requirement,
suppose that

F(A) ~ h(A)Gh(A), as A — 0+, 3.1)
where G is a finite, positive definite matrix with (a, b)th element g,
h(A) = diag{e™ ™2\~ ... eib™2 )\~ b}, A3.2)

for d; € (—%,% ,J =1,...,p, the overbar means complex conjugation, and ~
means that the ratio of real parts, and of imaginary parts, of corresponding ele-
ments of the matrices on the left- and right-hand sides of (3.1) tends to 1. If
dy=---=d,=0,(3.1) holds with G = f(0) under the /(0) assumption. Slightly
more generally, if d, + d;, = 0, for some a, b, the (a, b)th element of f(A), f,;,(A),
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satisfies f,,(0) = g, ,cos(7/2)(d, — d), which can again be consistent with
fa»(X) being continuous at A = 0. For d, + d;, > 0, on the other hand, f,,(A)
diverges as A — 0+, whereas for d, + d;, < 0, f,,(0) = 0. Of course when
a# b, f,,(0) = 0 also occurs, for any d,,d,, if g,, = 0. The d; are called “mem-
ory parameters.”

To motivate (3.1) and (3.2), Theorem III-1 of Yong (1974) gives

(1 —e?)d ~ e lldm/2)d " a5 )\ — 0+. 3.3)

The left-hand side is the frequency response function of the fractional differ-
ence operator. An important special case of f(A) satisfying (3.1) is the spectral
density matrix of a stationary, noncointegrated and invertible fractionally inte-
grated autoregressive moving average system, with possibly distinct memory
parameters d,...,d,.

Although, in a nonparametric setting, we do not want to impose such a para-
metric model, nevertheless we need to supplement (3.1), when at least one d; is
nonzero, by an assumption that is easily satisfied in that parametric model. We
have to approximate the right side of (2.1) for large n, and this can be achieved
by approximating y(j) + y(—j) for large j. For some a, b such that d, + d, #
0, denote by y,,(j) the (a, b)th element of y(j). For A close to zero, f,;(A) has
real part

1 I &
Re{ £V} = 5= 70 + 3= S ya () + v (—)}cos .

On the other hand, from (3.1) it follows that
ar
Re{f., (M)} ~ g A% % cos ) (d,—d,), as—0+. (3.4

An important topic in the trigonometric series literature concerns the asymp-
totic behavior of Fourier coefficients that provides the power law behavior found
in (3.4), a detailed reference being Yong (1974). Consider a function

[e'e}

r(A) = D s(j)cosjA

Jj=1

for A close to zero. Yong (1974, Theorems III-1, ITI-10, ITI-12, and III-17) gives
conditions on the s(j) such that, for some 8 # 0,

s(j) ~Bj™" asj— oo (3.5
is equivalent to

’87T a—1
r(A) ~ ——————(- A", asA— 0+, 3.6)

2T —
(a)cos 5
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when o € (0,1). Yong (1974, Theorem II1-27) shows that if
r(0) =0, (3.7)

(3.5) implies (3.6) for a € (1,3).

We apply these properties with s(j) = y,(j) + vu(—j), r(A) =
27Re{ f,,(MV)}, and @« = 1 — d, — d,,. We deduce from (3.4) and (3.6), reflec-
tion formula for the gamma function, and trigonometric identities that

_ 2mg,(sinwd, + sinwd,)
" T'(d,+d,)sin(d, +d,)

T
2978 4, COS 5 (da— db)

T
r(d,+d,)cos Py (da + db)

1 1
= 271~ do db){r(da)m ~a T T@yra- dh)}’

to give three alternative expressions. Note that if d, + d;, < 0, (3.4) implies
fu»(0) = 0, so (3.7) is indeed relevant. On the other hand, for d, + d, > 0, the
conditions of Yong (1974) can be checked in the case of plausible autocovari-
ance sequences.

We can now deduce that

n—1 .
Yap(0) + (1 - i){m(j) + Yar (=)} ~ 2784, q(d,, dy)nat (3.8
Jj=1

as n — oo, where

sin 7ru + sin v
T(u+v+2)sinm(u+v)

q(u,v) = (3.9)
in which we arbitrarily employ the first and the three equivalent expressions
for 8 from before. This follows by approximating sums by integrals, though in
the case d, + d, < 0 (implying X7~ . v.,(j) = 0) one first writes the left side
of (3.8) as

o 1 n—1
= 3 0al) + ViD= B i)+ Y

We deduce (cf. (2.2))

D,E(x%')D, = 27G ° Q(d,,...,d,), asn— o, (3.10)
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where
D, = diag{n /2~ n1/2=d}

Q(dy,...,d,) is the p X p matrix with (a, b)th element ¢(d,,d,), and ° denotes
Hadamard product. Because the right side of (3.10) is the limit of a sequence
of nonnegative definite matrices, it also is nonnegative definite. If it is positive
definite we can deduce under suitable additional conditions (e.g., if x, is a lin-
ear process in stationary, conditionally homoskedastic martingale differences)

D,x—,N0,27G°Q(d,,...,d,)) (3.11)

(cf. (2.3)).

The preceding discussion strictly covers only elements such that d, + d,, # 0O,
but (3.8) applies when d, + d;, = 0 for some a,b, because from the second
equality of (3.9) it agrees with f,,(0) = g,,cos(7/2)(d, — d,) (which follows
from (3.4)). This includes the case d, = d, = 0, and in the full 1(0) case d, =
-+ =d, = 0, (3.10) reduces to (2.2). Thus (3.10) generalizes (2.2); indeed
q(u,v) is continuous at u + v = 0 (and all u,v € (—3,3)).

Given estimates a71, vy c?,, and G such that

(logn)(d,—d;) —>,0, j=1,...,p, G-, G, (3.12)
J J p

P

we can replace (3.11) by the useful result
{2776 ° Q(L/ili [ERR] ij)}_(l/Z)Dnij %d N(O’ Ip);

where D, = diag{n />, ...,n1/2=%} and I, is the p X p identity matrix. The
rate requirement in (3.12) is due to the need to approximate the norming fac-
tors n'/2~4 by the n/?~4,

An acronym has become almost obligatory. The best that emerged to describe
our robustified variance estimate of X,

D, '{2mnG°Q(d,,....d,)}D,", (3.13)

was MAC: memory autocorrelation consistent. Partly for reasons given at the
end of the previous section, and partly for the sake of an acronym that slips
easily off the tongue, reference to “H” for “heteroskedasticity” is suppressed.

Robinson (1998) proposed HAC estimates for parameter estimates in regres-
sion models in which regressors and disturbances can satisfy a condition like
(3.1), and thus need not be 1(0), though the product of regressors and distur-
bances is 7(0). His HAC estimates are nonparametric but do not require a user-
chosen bandwidth.

Estimates of the cij satisfying (3.12) under suitable conditions are readily avail-
able, such as log periodogram, local Whittle, and averaged periodogram esti-
mates, all of which are “semiparametric” in character, being based principally
on the local-to-zero model (3.1). Like (2.5), they involve functions of the peri-
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odogram /(A;) at low frequencies such that j =1 — m,...,m — 1, with m satis-
fying rather similar conditions to those that would be required for (2.5) in
Section 2. As a result, the cij estimates converge more slowly than the n'/? para-
metric rate, but nevertheless the slow rate in (3.12) is easily justified.

With respect to G, in view of (2.5), (3.1), and (3.2), it is natural to consider

G= i h(A) " T(A)R(A) ! (3.14)

where
h(A) = diag{e ™2\~ ... e ™2 )=},

Under conditions familiar from the semiparametric memory parameter estima-
tion literature, (3.14) will satisfy (3.12). To make the procedure more fully auto-
matic, rules for choice of m in (3.14), and of bandwidths in the d, estimates,
are required. These issues have been discussed in the literature (see, e.g., Hur-
vich and Beltrao, 1994; Robinson, 1994a; Hurvich, Deo, and Brodsky, 1998;
Henry and Robinson, 1996; Hurvich and Deo, 1999).

The MAC estimate (3.13), with G given by (3.14), is guaranteed nonnega-
tive definite. To see this, note first that (3.14) is nonnegative definite. Thus it
follows from Schur (1911, p. 14) that it suffices to show that Q(d,,...,d,) is
nonnegative definite for all d; € (— 3, j =1,...,p. But from the previous
development it is clear that

. 1 o J . .
0(d,...,d,) = lim —— DH{Y*(O) + <1 - —>{7*(1) + 7*(—1)}}D
n—oo LTTN j=1 n
3.15)

where y*(j) = [7_f*(A)e?" dA, surely that f*(A) satisfies (3.1) with g, = 1,
all a,b (so G is now taken to be nonnegative definite, with rank 1), and y*(j)
has the same asymptotic behavior as y(j) with g,, = 1, all a, b. But the term in
square brackets in (3.15) is n ' [7_f*(A)|2/=, e"™|* dA, which is clearly non-
negative definite, for all n, because f*(A) can be chosen nonnegative definite
for all A.

Even in the expectation that all d; are zero, MAC estimates might be useful
rivals to long autoregressive and weighted autocovariance (or periodogram) HAC
estimates, these latter having the reputation of being appropriate in the pres-
ence of, respectively, (finite) peaks and (nonzero) troughs in f(A) at A = 0.

The present topic was also discussed in the case of scalar x, by Beran (1989)
and Robinson (1994b). The first author, however, employed parametric mem-
ory parameter estimates, whereas the second author employed semiparametric
averaged periodogram memory parameter estimates and noted the need for the
rate condition in the first part of (3.12). The estimate (3.14) extends one of
Robinson (1995) in the scalar case, in which w;,, =1/(2m + 1) and was employed
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in a different context by Robinson and Yajima (2002). Robinson (1994b) con-
sidered covariance matrix estimates in the case x, = (1,¢,...,t?"!)e,, where e,
is a scalar long memory process, this being relevant to inference on least squares
estimates in polynomial-in-time linear regression with long memory or anti-
persistent disturbances. For the same kind of disturbances, Robinson (1997)
considered covariance matrix estimates for a vector of scalar fixed-design non-
parametric regression estimates at finitely many fixed points. The rates of con-
vergence in these situations, and the forms of the limiting covariance matrices
of the normalized statistics, differ from those found in the present paper, which
is motivated by other situations in econometrics. In a fractional cointegration
context, in which two distinct memory parameters are involved, Kim and Phil-
lips (1999) proposed estimates of the long-run covariance matrix in which sta-
tionary fractional sequences are filtered in the time domain and the resulting
1(0) long-run covariance matrix estimate rescaled.

Many econometric statistics are functionals of partial sums of vector vari-
ates, which themselves can be products of other nonlinear functions of under-
lying variates, for example, generalized-method-of-moments estimates, including
least squares estimates for linear regression models with stochastic regressors.
Consider an estimate 6 of a vector-valued parameter 6 of dimension no greater
than p. Typically we can consider a linearization 6 — 6 = T,x, where, when 0 is
only implicitly defined, this requires an initial consistency proof (which should
itself allow for possible long memory or antipersistence) and 7, is a matrix-
valued statistic. If, for some matrix E,, E,T,D, converges in probability to a
finite limit U of full row rank, we would deduce from (3.11) that E,,(6 — 6) —,
N(0,27U(G ° Q(d,,...,d,))U"), whence the previous discussion is relevant.
However, in case the d; are not all identical, lack of commutativity can obstruct
this argument; the analysis could be preceded by a test of equality of the d;,
employing known limit distribution theory for semiparametric memory esti-
mates. In this kind of setting, moreover, when a typical element of x, is a non-
linear function of underlying variates such as a product of an explanatory variable
and a disturbance, it is important to bear the following in mind. If some or all
of the underlying variates have long memory, it is still possible at one extreme
that x, can be I(0) and at the other that X has a nonnormal limit distribution
(see Robinson, 1994c¢). Note also that disturbances will have to be replaced by
residuals to produce proxies for x, that can be used in the estimation of the d;.
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