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NARROW-BAND ANALYSIS OF NONSTATIONARY PROCESSES!

By P. M. ROBINSONZ AND D. MARINUCCI

London School of Economics

The behavior of averaged periodograms and cross-periodograms of a
broad class of nonstationary processes is studied. The processes include
nonstationary ones that are fractional of any order, as well as asymptot-
ically stationary fractional ones. The cross-periodogram can involve two
nonstationary processes of possibly different orders, or a nonstationary
and an asymptotically stationary one. The averaging takes place either
over the whole frequency band, or over one that degenerates slowly to zero
frequency as sample size increases. In some cases it is found to make no
asymptotic difference, and in particular we indicate how the behavior of
the mean and variance changes across the two-dimensional space of inte-
gration orders. The results employ only local-to-zero assumptions on the
spectra of the underlying weakly stationary sequences. It is shown how the
results can be applied in fractional cointegration with unknown integration
orders.

1. Introduction. In the analysis of time series that are believed prone
to nonstationarity, the behavior of bilinear and quadratic forms is of prime
interest. For univariate time series, Gaussian rules of inference lead to consid-
eration of quadratic forms, and Gaussian methods developed by Whittle (1951)
and others in stationary short-range dependent environments were extended
to unit root nonstationary ones by Box and Jenkins (1971), with limit the-
ory developed by Dickey and Fuller (1979) and many subsequent authors. In
case of multivariate time series, the Gaussian approach covers not only jointly
dependent modelling but also linear regression, and in either case bilinear and
quadratic forms arise. Again, limit theory for stationary short-range depen-
dent vector processes has been extended to unit roots, activity in this direction
fuelled by considerable econometric interest in the possible existence of coin-
tegrated structures, positing the existence of a linear combination of related
unit root series which has short-range dependence.

The scope of time series analysis has considerably expanded with the devel-
opment of methods and theory for stationary and nonstationary long-range
dependent or fractional processes. A fractional view of time series regards
the stationary short-range dependent and unit root processes as mere points
(at B = 0 and B = 1, respectively) on the real line of processes indexed by
integration order B. For univariate processes, a loose definition of integration
order (the article employs a more general one) is “that degree of differencing

Received July 1999; revised May 2001.

1Supported in part by ESRC Grant R000235892.

2Supported in part by a Leverhulme Trust Personal Research Professorship.

AMS 2000 subject classifications. Primary 62M10; secondary 60G18, 62M15.

Key words and phrases. Nonstationary processes, long range dependence, least squares
estimation, narrow-band estimation, cointegration analysis.

947



948 P. M. ROBINSON AND D. MARINUCCI

needed to convert a stationary or nonstationary process to one with spectral
density that is positive and continuous at zero frequency.” Limit theory for
Whittle estimates of parametric stationary long-range dependent series has
been developed by Fox and Taqqu (1986) and others, while recently cointegra-
tion of multiple nonstationary fractional time series has been considered by
Chan and Terrin (1995), Jeganathan (1999, 2001), Dolado and Marmol (1998)
and others, though this topic is still in its infancy.

Narrow-band frequency domain analysis has been a major focus of the
long-range dependence literature. A stationary long-range dependent univari-
ate series is usually thought of as having a spectral pole at zero frequency,
with spectral density behaving like A~2# nearby, where A indicates frequency,
and 0 < B < % Methods of estimating B8 based on a band of frequencies
around zero that degenerates slowly as sample size increases were consid-
ered by Geweke and Porter-Hudak (1983), Kinsch (1986, 1987) and Robinson
(1994a, b, 19954, b), the asymptotic theory of the latter author imposing few
or no conditions on spectral behaviour away from zero frequency and thereby
demonstrating a signal advantage of such ‘semiparametric’ methods.

The main theoretical concern of Robinson (1994a) was the convergence of
the discretely averaged periodogram of a univariate series, over a degenerating
band of Fourier frequencies, but one of his applications of this theory was
to cointegration of bivariate stationary long-range dependent series {y,, z,,
t =0,=£1,...}. It was envisaged that whereas y, and z, each has integration
order B € (0, %), there exists an unknown » such that the unobservable series
i in
(1.1) Ye =02+ {;

has integration order « < B. The ¢, by construction thus have the character
of regression errors, at least after mean-correction, but there is no prior rea-
son to suppose that they possess the classical property of orthogonality with
z;, Cov({,, 2;) = 0. Were y,, 2z, nonstationary, but ¢, stationary, or “less nonsta-
tionary” than y,, z,, such that the signal-to-noise ratio Y.} ; {2/ Y} ; 2? con-
verges stochastically to zero as sample size n tends to infinity, the least squares
estimate (LSE) of » would be consistent, as demonstrated by, for example,
Stock (1987), in case y,, z, have a unit root but ¢, is short-range dependent
(¢ = 0,8 = 1). When y,, z, are stationary, however, the LSE is generally
inconsistent when there is correlation between z, and ¢,. However, Robinson
(1994a) showed that the narrow-band least squares estimate (NBLSE) of v,
namely the ratio of the real part of the averaged cross-periodogram of y,, z,
to the averaged periodogram of z,, averaging across the m lowest Fourier fre-
quencies where m — oo but m/n — 0 as n — o0, is consistent for v. This
is due to the spectrum of z, dominating that of {, near zero frequency, since
a < B, even though the respective variances (equivalently, the spectra inte-
grated over the whole sampling frequency band) are both finite and positive.
Robinson (1994b) discussed optimal choice of m.

Cointegration of stationary long range-dependent series has been of inter-
est in a financial context, for example for the three-dimensional vector of
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exchange rates between three currencies. However, financial series may also
be nonstationary, as is typically believed to be the case with macroeconomic
ones, while cointegration has also been of interest in other fields, such as
ecology, where nonstationarity can arise, and in general not only are integra-
tion orders likely to be unknown, but also we may not even know whether or
not the series is stationary. Thus, given its superiority over the LSE in sta-
tionary environments, there is interest in analyzing the performance of the
NBLSE in nonstationary ones.

Cointegration provides a motivation for the theoretical contribution of the
present paper, an examination of the averaged cross-periodogram, and the
sample covariance, of a bivariate series, one element of which is nonstation-
ary and the other is either nonstationary or (asymptotically) stationary. We
derive and compare leading terms in the asymptotic bias and variance of these
statistics, leading to a qualitative classification of behavior depending on inte-
gration orders of the time series, for example, whether the integration orders
sum to less than one or greater than one is important, while the case when one
of them is zero and the other unity (familiar from the unit root cointegration
literature) is seen to be quite special. Our modelling of the series is notably
general. They are linear filters of short-range dependent series. The filters
have desirable commutativity properties and cover standard fractional differ-
encing, and in general produce low frequency stochastic trends. Consequently,
it is the low frequency behavior of the short-range dependent innovations that
is important, as our results and conditions stress; in the spirit of Robinson
(1994a, b) our conditions entail only mild restrictions at zero frequency and
have little implication for higher frequencies.

Our results clarify the extent to which the (cross-) periodogram averaged
over all Fourier frequencies, equivalently the sample (co-) variance, is approx-
imated by the average over only frequencies near zero, possibly an asymptoti-
cally negligible proportion of the sampling frequencies. Intuitively, this is due
to a dominance of low frequency contributions. When the limit distribution of
the sample (co-) variance can be characterized by means of invariance prin-
ciples for nonstationary fractional series, of Marinucci and Robinson (2000),
we may thence simply deduce limit distributional behavior of the averaged
(cross-) periodogram. When applied to cointegration, we can then characterize
the limit distributions of both the LSE and NBLSE. These distributions, and
rates of convergence, reflect integration orders. Over some range of these, the
LSE and NBLSE have the same limit distribution and convergence rate, but
over another they do not, the NBLSE suffering from less bias and consequently
even converging faster.

The following section defines the basic averaged (cross-) periodogram statis-
tic and its implementations of particular interest. Section 3 demonstrates an
approach to modelling nonstationary and asymptotically stationary sequences,
with derivation of useful properties. Sections 4 and 5 cover, respectively asym-
ptotics for the mean and variance of the averaged (cross-) periodogram under
this type of model. Section 6 applies the results to the LSE and NBLSE
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for cointegrated nonstationary series. Sections 7-9 give proofs of results of
Sections 3-5, respectively.

2. The averaged cross-periodogram. For a sequence {;,, ¢t =1,...,n,
we define the discrete Fourier transform
1 itA
where Y, will always denote Y} ;; with also a sequence &, t =1,...,n, we

define the (cross-) periodogram

I;:() = w(Dwe(—A).

Denoting by A; = 2 j/n, for integer j, the Fourier frequencies, and by 1(-)
the indicator function, we define the averaged (cross-) periodogram,

j=l
for integers [, m such that 0 </ < m < n/2, noting that I, has period 2,
that Ne{l,,(1)} is symmetric about A = 0 and A = 7, and that I,.(7) is
real-valued. We have for all such m,

(2.3) F (1, m) = F (0, m) — £,

with the notation @ = n=! Y, a;, so that omission of zero frequency entails a
sample mean correction. We shall always consider only [ = 0 or [ = 1, though
properties for other fixed (as n — oo) values of [ are the same as those for [ = 1.
On the other hand, the final term in (2.2) can make a non-zero contribution
only when m = n/2, for which n must be even. Defining 72 = [n/2], where [-]
denotes the integer part, the orthogonality of the complex exponential implies
that, irrespective of whether n is even or odd,

~ ~ 27 O 1
2.4) Fue(0,) = == 3 I1e(0)) = — Y Gk
j=1 t

the sample second (cross-) moment, so that from (2.3), F,.(1, n) is the corre-
sponding statistic based on deviations from sample means.

The real part operator in (2.2) is redundant when m = 7i, but not in other
cases of interest. We shall sometimes generalize m = 7 to

(2.5) m < n; m-— o0 asn-— oo,

but more often contradict m = 72 by
1

(2.6) m < n; —+E—>O as n — oo,
m n

so that F ¢¢ 18 based on a degenerating band of frequencies.

Under (2.6), F ¢¢ has principally been of interest in connection with esti-
mating the (cross-) spectral density of covariance stationary processes. As a
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matter of notation, if ¢;, &, ¢t = 0,41, ..., are jointly covariance stationary
with a (cross-) spectral density f.,(A), the latter satisfies

2.7) COV(gO,gj)=E(g0—Ego)(gj—Ego)zfnfgf()\)eiﬂd)\, j=0,%1,...,

where Il = [—7, w]. Under regularity conditions and (2.6), an?'\“(l, m)/m
consistently estimates f,(0) [see Brillinger (1975)]. When the latter is infi-
nite (so {; has long-range dependence), Robinson (1994a, b) studied asymp-

totic properties of F ¢(1, m), with multivariate generalization given by Lobato

(1997). We are concerned, however, with F ¢¢(l, m) when neither ¢, nor ¢, is
stationary, though one of them can be asymptotically stationary; the follow-
ing section describes such processes and their properties. An identity readily
deduced from (2.2),

(2.8) Fo(l,m)=F, (1,7)-F,(m+1,7), m=<3a,

is important in our context because the second term on the right is sometimes
asymptotically dominated by the first; this is not the case when ¢, &, are both
asymptotically stationary.

Relative to the literature on quadratic forms of stationary long-range depen-

dent processes, following Fox and Taqqu (1985), F ¢¢(l, i) cover very special-

ized quadratic forms and we can envisage how F ¢¢(l, m), for general m, can
likewise be generalized. On the other hand the possible bilinear aspect, with
allowance for nonstationary ¢, &, or a mixture of asymptotically stationary
and nonstationary processes, represents in itself a considerable theoretical
development, not only when m < 7 [where indeed the forms considered in
the stationary literature do not even quite cover F :¢(0, m), say] but even
when m = 7. As it is, our simple forms can be used to approximate ones with
a factor o(A ;) in the summand of (2.2), where o(A) is nonzero and sufficiently
well behaved at A = 0, while the allowance for poles and zeros in ¢(A) would
affect the character of the results more interestingly, as would tapering, but
require a considerably more lengthy discussion. Our possibly bivariate set-
ting means that results for the averaged periodogram matrix are immediately
covered for vector series with possibly different integration orders. Note also
that while the stationary quadratic form literature focusses directly on limit
distributional properties, our leading concern is with comparison of F ce(l, m)
satisfying (2.5) and (2.6) through their first and second moments. These com-
parisons vary considerably with « and B, and to the extent that F ce(l, m)

approximates the “time domain” statistics F\{g(l, i) [see (2.3), (2.4)], func-
tional limit theory for vector nonstationary fractional processes of Marinucci
and Robinson (2000) can be used to characterize limit distributional theory,
as mentioned in Section 6.
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3. Nonstationary sequences. We first define classes of weight seque-

nces which will generate classes of nonstationary, including asymptotically
stationary, processes.

DEFINITION 3.1. ®(a) is the class of sequences {¢§“), t=0,1,...} such that

(3.1) Y =1t =0),
and for o > 0, as ¢t — o0,

(@ N ta—l
(3.2) : @)’

_ o(_wi“”)
t b

where “~” means that the ratio of left- and right-hand sides tends to 1, and I'(+)
is the Gamma function.

| o o
(3.3) 617 — iy

There is no loss of generality in the scale restrictions implicit in (3.1)
and (3.2). It is possible to extend the definition, and subsequent results of
the article, to cover a < 0, but we have focused on @ > 0 here due to space
limitations and because this covers the cases of greatest practical interest.
When 0 < o < 1, (3.2), (3.3) define {d)ia)} as quasi-monotonically convergent
to zero and of pure bounded variation in the sense of Yong [(1974), pages 2, 4].
In particular, (3.2) and (3.3) are satisfied by ¢>§“) = t*1/T'(a), but only (3.2)
by ¢\ = 11T (a) + t5-11 (¢ even), for « — 1 < B < a (though it would be
possible to show that the results of following sections hold also for the latter
type of sequence).

For our purposes the class ®(«) is motivated principally by the sequence

) — A where

(a) L(t+ )
34 A = ———— t>0,
(3-4) LT T(a)I(t+ 1) -
with the conventions I'(0) = oo, I'(0)/I'(0) = 1, given by the formal expansion
(3.5) A=Y AL

£=0

where L is the lag operator and A = 1 — L is the difference operator. Using
Stirling’s formula, we have {Aﬁ“)} € ®(a), for all a > 0. For integer «, A® is
familiar from Box and Jenkins’ (1971) “ARIMA” modelling of nonstationary
series. In particular,

(3.6) AV =1, ¢>o0,

is used to generate “unit root” series in their framework. The somewhat special
nature of (3.4) relative to (3.2) and (3.3), even when « is fixed at 1, is notable in
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view of the vast econometric literature focussing on (3.6). In fact, some of our
work involving « = 1 (see Theorem 4.3) requires some strengthening of (3.3)
[see (4.15) and (4.18)], but still greater generality than (3.6) is afforded. When
a is nonintegral, A“ is the fractional difference operator arising in modelling
of “FARIMA” series. A cosinusoidal modification of Definition 3.1 would enable
study of stationary or nonstationary cyclic or seasonal behavior.

Practical interest in ®(«) will further be strengthened by means of the fol-

lowing lemma. In the sequel we write ¢, in place of d)EQ), dropping the super-
script; the dependence on « will be indicated by the statement {¢,} € ®(«).

LEMMA 3.1. Let {¢,} € P(a), {¢,} € ®(B), a, B > 0. Then

t
def

(3.7 Xe = D bt € Dla+t B).

Jj=0

The next lemma [see also Kokoszka and Taqqu (1996), Lemma 3.1], describ-
ing properties of the complex partial sum,

Sw(ha) =3 ¢, {¢,} € (a),
t=u

for A real, will be of considerable use in the sequel. Throughout the article,
C denotes a generic positive constant.

LEMMA 3.2. Let {¢,} € P(a). Then for 0 <u < v, 0 < |A| <,

(3.8) S,,(A, 0) = 1(u = 0),
et o1
3.9  [S,(\a)l < Cmin<v“, % W) 0O<ac<1,
Ua—l
(3.10) [S(A, @)| < Cmin(v“, W) a>1.

Also, for 0 <a <1,as A — 0T,

(3.11) S)’te{SOOo()\,a)}wcos%A‘“, Sm{SOoo()\,oz)}~sin%)\‘“.

Short range dependent processes are given as follows.

DEFINITION 3.2. I is the class of zero-mean scalar covariance stationary
sequences {7, ¢ = 0, £1, ...} having spectral density f,,(A) [cf. (2.7)] that is
positive and continuous at A = 0.

The zero-mean restriction is costless in our discussion of F ¢c¢(l, m) when
[ = 1. Robinson and Marinucci (2000) study the averaged periodogram in case
of additive time trends, though they obtain only upper bounds rather than
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our precise limits in Sections 4 and 5, and under stronger conditions on the
stochastic component. We generate long-range dependent processes as follows.

DEFINITION 3.3. For @ > 0, I(«) is the class of processes {¢,,t =0, +1,...}
such that for {n,} € I and {¢,} € P(a),

(3.12) gt = Z d)t—s{nsl(s = 1)}

§=—00

LEMMA 3.3. Let {{,} € I(a) and let

t
(3.13) gt = Z lrbtfs{gsl(s = 1)}7

§=—00

where {¢,} € D(B). Then {¢,} € I(a + B).

We can thus view processes in I(«) as having possibly been passed through
a succession of ®-filters, whether by nature or the statistician, including the
difference filter given in (3.4), (3.5).

Notice that Definition 3.3 implies ¢, = 0, ¢ < 0, as a consequence of {,
being (74, ..., n,)-measurable, which is itself motivated by the fact that, for
{¢,} € P(a), the untruncated process

t
(3.14) P = Z qbt—sﬂs

§=—00

is not well defined in the mean square sense when a > % However, for a < %,
p, is, unlike ¢;, covariance stationary, for example when a = 0, we have ¢, =
1n,1(¢ > 1). We have preferred to give a single definition for all « > 0; for
a < %, {, is “asymptotically covariance stationary” in a sense indicated in
the following lemma [see also Parzen (1963), Dahlhaus (1997)] which also
describes second order properties in the “purely” nonstationary case a > %

Define

00 t—1
(3.15) d(V) = ) e, bi(X) = 3 pee.
s=0

s=0

LEMMA 3.4. Let {¢,} € P(a), {n,} € L.

(1) Let 0 < a < % Then {p,} is covariance stationary with spectral density
fop(V) = |6V f (), satisfying

(3.16) fop(A) ~ frn(0A>*  as A — 0.
The “time varying spectral density” of {;, f Z) (A) = [d,(A)|?f,,(A) satisfies

(3.17) lim [fg?()\)/fpp()\)} ~1

A (M) 1—0+
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and in addition we have, uniformly in j > 0,
(3.18) Cov({,, {1y ;) — Cov(py, pj) = Ot~ 1/2).
(ii) Let « = . Then for all j >0, as t — oo,

P
Cov({;, §t+j)

3.19
( ) logt

— 2f,,(0),
where the convergence is uniform in j = o(logt).
(iii) Let a > % Then for all j > 0,as t — oo,

27 f 1,(0)

1-2a L/ L D
(3.20) £ Cov(ss Loy j) — I(2)2(2a — 1)’

where the convergence in uniform in j = o(t2*!) for % <a<1, j=o(t/logt)
for a =1, and j = o(t) for a > 1.

Note that (3.17) holds despite [ (Z{) (A) having no pole at A = 0 for finite ¢ even
when « > 0, unlike f,,(A). By comparison (3.18) is a weak result, but a time
domain version of (3.17) would require stronger conditions, in effect on f, (1)
for all A, an approximation for Cov(p;, p;; ;) as j — oo can be influenced by
a pole in f,,(A) for some A # 0, for example. Lemma 3.4 foreshadows the
main results of the paper in its reliance on only mild, local-to-zero, conditions

on f,.(A).

4, The mean of the averaged periodogram. We consider the statistic
F (1, m) in (2.2), where {{;} € ®(a), {§;} € P(B) and

(4.1) 0<a<p, B =3

Thus only ¢, can be asymptotically stationary. Strictly speaking, the case
where both are asymptotically stationary in our sense has not been covered
in the literature, but in view of Lemma 3.4 it is predictable that the results
will be too similar to the stationary cases covered by Robinson (1994a, b),
Lobato (1997) to be worth reporting. Of course when «a > %, our results for
(4.1) include the case where ¢, = £,, the same nonstationary process. There is
no loss of generality in the requirement o < .

We introduce the following definition.

DEFINITION 4.1. I, is the class of jointly covariance stationary bivariate
processes {m;, 0;,t = 0,%1,...} such that {n,} € I, {6,} € I and f,,(}A) is
continuous at A = 0.

With ¢, generated by (3.12) we take

t
(4.2) gt = Z l»[lt—s{esl(s = 1)}’

$=—00

where {,} € O(B).
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DEFINITION 4.2. I(w, B) is the class of bivariate processes {{;, &, =
0, £1, ...} such that (3.12) and (4.2) hold with {n,, 8,} € I,.

Depending on the values of « and B, E{F}g(O, m)} may or may not dif-

fer negligibly from E{ﬁ :¢(1,m)}, and so in view of (2.3) we first estimate
E(Z§) and, more generally, the covariance structure of discrete Fourier trans-
forms w,(A ), we(A) at fixed j, &, to extend results of Kiinsch (1986), Hurvich
and Beltrao (1993), Hurvich and Ray (1995), Robinson (1995a). Denote by the
superscripts R and I the real and imaginary part, respectively.

LEMMA 4.1. Let {(,, &} € I(e, B). Then for (A, B) = (R, R), (R, I), (I, R),
(1, I),

1
43 lim n PE{f ()0 = £,0) [ UMz @)Uz ) de,

where UjA(z; a) and UJ-B (z; @) are, respectively, the real and imaginary parts of

1-z
(4.4) U(Z, (1) — M ya—le277ij(y+2) dy + 1((1 — 0)627Tijz.
J ') Jo
Thus,
i —a— 7z 27 ,4(0)
1-a—B _ n
- A ) = DB+ D@t B D)

For finite m, Lemma 4.1 can be applied to calculate the limit E’{f (L, m)}.

Under (2.5) or (2.6) the behavior of E{ﬁgg(l, m)} varies significantly across
the following five mutually exhaustive subsets of (4.1):

(4.6) a>0, B =3, a+B <1,
4.7) a >0, ,82%, a+B=1,
(4.8) a=0, B=1,
(4.9) a=0, B>1,
(4.10) a>0, B> 1, a+pB>1.

In (4.6) and (4.7) £, is asymptotically stationary and B is small enough that
the combined memory a+ B of {, and ¢, is less than one in (4.6), while in (4.7) it
equals one but the familiar 7(0)/1(1) case (4.8) of the econometric literature is
excluded. In (4.9) and (4.10) it exceeds one. In (4.10), 8 > % is actually implied
by @ + B8 > 1, in view of (4.1).

Consider first case (4.6). Define

Y(A) =3 e,
t=0

which [like ¢(A)] is infinite at A = 0 but is well defined for A # 0, mod(27),
from Lemma 3.2.
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THEOREM 4.1. Let {{;, &,} € I(a, B) under (4.6). Then for [ =0, 1,

(4.11) lim E{Fo(1A)} = [ $((=1)f yo(A)d,

where the right side is finite, and under (2.6),

(4.12) lim AL E{F (1, m)) = 2fn9(0)‘mfg+/25.

Neither (4.11) nor (4.12) is affected by mean correction. Most interestingly,
the results are identical to those which may be obtained if both ¢, and &,
are stationary or asymptotically stationary, so «, 8 < %, which automatically
implies @ + B < 1; thus sufficiently small memory in ¢, can compensate for
the nonstationarity in ¢,, though for given o + B (4.6) has the potential for a
larger a — B and consequently smaller cos(a — B)7/2 factor in (4.12) than when
0<a,B< % The latter factor is positive, and so the limit (4.12) shares the
sign of f,,(0) (which is real-valued by the continuity assumption and oddness

of the quadrature spectrum).
THEOREM 4.2. Let {{;, &,} € I(a, B) under (4.7). Then for [ =0, 1,

: 1 = g . .
(4.13) lim @E{Fé«g(l, A)} =2f,4(0)sinam = 2f,,(0) sin B,

and under (2.5),

(4.14)  lim %E{ﬁg(z, m)} = 2f,4(0) sin am = 2f,,(0) sin B,

The degeneration condition (2.6) now leaves little difference between the
expectations of the broad- and narrow-band statistics, in fact for m ~ n¢,
0 < a < 1, they have the same convergence rates. Note that just as Theorem 4.1
covered the case B = %, the border of the nonstationary region, so Theorem 4.2
coversa = 3 = %

Though Theorem 4.2 does not cover (4.8), putting « = 0 or 8 = 1 annihilates
the limits (4.13) and (4.14), suggesting a faster rate of convergence under (4.8).
This is indeed the outcome, implying that the 1(0, 1) case (4.8), which looms
large in the econometric literature within an autoregressive framework, is
also rather special within the fractional domain. These results do require a
strengthening of the condition on {{;, £,}. Define the function

1 = .
hng()\) = 2— Z (w*|J‘ — wmﬂ)cos ]/\, Ae H,

T
Jj=—00

where

;= Z ylsign(j)’ ’)/j:COV(’Y](),Bj), j:O,:I:l,...,
=|J1

with the convention that sign(0) is negative.
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THEOREM 4.3. Let {{,;, &} € 1(0, 1), so (4.8) holds.

() If also h,y(A) is integrable on Il and

(4.15) i)l‘//j_‘l/frﬂ < 00,
iz
then
(4.16) lim E{F (0, )} = idfﬂ—j’
iz
(4.17) lim E{F(1,7)} = L(wo — 0) + i(lpj ~1)y_;.
iz

(i) If also h,y(A) is continuous at A = 0, (2.6) holds and

oo

(4.18) Yol —1] < oo,
Jj=0
then
(4.19) lim E{F (0, m)} = af,4(0),

n—oo

420)  lim ZE{F (1, m)} = 2mh,5(0) + 47 ,5(0) i(%. ~1).

n—oom

J=0

It is sufficient for the conditions on A, (A) that > |jy;| < oo, which is

implied if f,,(A) is differentiable with derivative satisfying a Lipschitz con-

dition of degree greater than % [see Zygmund (1977), page 240] but a global
smoothness condition is not implied, though by the Riemann—Lebesgue lemma
w_j— @jj+1 — 0 as | j| — oo. Note that if y; = —vy; (as is true if n, = 0, , for

example), we have h,,(A) = f,4(A), so the additional conditions are vacuous.

The mean-corrected narrow-band statistic ¥ c¢(1, m) [but not F :¢(0, m)] has
expectation of smaller order than that of either full band statistic. Sensitivity
is found, except in (4.19), to the precise values of the sequence {i,}, rather
than simply their asymptotic value (in this case, 1). In the usual case ¢, = 1,
stressed in the econometric literature, (4.16), (4.17) are already known though
seemingly only under more global frequency domain conditions. Condition
(4.15) is only slightly stronger than (3.3) since we have @ = 1 in Definition
3.1, while (4.18) is stronger than (4.15), by the triangle inequality. Note that
(4.19) can be interpreted as a limit of (4.12) with [ = 1, on putting « = 0 and
then letting B8 tend to 1.
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THEOREM 4.4. Let {{;, &} € 1(0, B), B > 1, so (4.9) holds.

(1) If also |w_1| < o0,

(4.21) lim n' PE{F.(0,7)} =0,
_ 27 f 19(0
(4.22) lim ' PE(F((1,7)} = _$.
(ii)
(4.23) lim E{F(0, )} = 3 v,7_
j=0

if the right side is finite.

Part (i) of the theorem shows that E{n"1Y", {,£,} is of smaller order than
E({&), while the former is shown in part (ii) to be finite as long as the y_ ;j decay
fast enough, as is the case for any 8 > 1if {{,, &,} is an “ARMA” process. Mean-
correction now affects the order of magnitude of the expectation of full-band
statistics. The present case (4.9) is somewhat anomalous, the discontinuity
at o = 0 in Definition 3.1 taking effect, and by way of contrast with Theorems
4.1-4.3 it can be inferred that the ﬁ(l , m) can actually have larger expectation
for m < 7; we have been unable to obtain an attractive result in this case.

The other way to achieve e + 8 > 1 is to allow « > 0, and now the choice of
m makes no difference.

THEOREM 4.5. Let {{,, ,} € I(a, B) under (4.10). Then under (2.5),
_ 27Tf1;0(0)
T()l(B) (e + B)(a+ B —1)

w3 e E (R m) = A O

4.24)  lim n**PE[F,.(0,m)}

where
ap(a+B-1)—a(a—-1)-B(B-1)
af(a+B—1)(a+B)a+p+1)

A(a’ B) =

b

and thus
(4.26) lim n'~*PE{F,(m+1,7)} = 0.

n—oo

The distinctive feature of Theorem 4.5 is that E{ﬁ :¢(1, )} is dominated by
an arbitrarily slowly increasing number of low frequency components. As in
some of our earlier results, the rate of convergence is improved if 7, and 6,
are fully incoherent at zero frequency, not necessarily at all frequencies. Note
that only (2.5) is imposed, so that we also cover the case where m increases
as fast as n.
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5. The variance of the averaged periodogram. Unlike in the case of

the mean, we can give a single theorem to describe the variance of F ce(l, m)
when

(5.1) 0<ac<p, ,8>%,

though different proofs are needed over different portions of this region. Thus

we now omit the borderline case « = 0,8 = %, which seems too special to

include in view of the particular treatment it requires.
We need to extend some earlier definitions.

DEFINITION 5.1. I5 is the class of jointly fourth-order stationary bivariate
processes {n,, 0,,t = 0,+1,...}, such that {%,, 6,} € I, and the cumulant
spectral density £, 4,0(A, 1, ®) given by

Cum{ns, 0, My, 00} = / / / f"’l9n9(/\’ “w, w)ei(t—s)x\-&-i(u—s)u-&-i(v—s):» drdudw
IIJIT /11

is continuous at A = u = o = 0 and satisfies

(5.2) sup fH|fn9,]0()\,,u, w)|2d) < co.

w, well

DEFINITION 5.2. 1, is the class of jointly fourth-order stationary bivariate
processes {7, 0,,¢t = 0, %1, ...} such that {n,, 0,} € I3 and f,,(A), fye(A) are
square integrable.

DEFINITION 5.3. For j = 3,4, [ ;(a, B) is the class of bivariate processes
{¢» &t =0, %1, ...} such that (3.12) and (4.2) hold for {n,, 6,} € I ;.

We introduce, for a, 8, v, 5 > 0,

2m Y oac1 B-1
; = —— « dz, 0 1-—x,
P, yia ) = g [ 2 e+ Tdz 05y s1ox
1 1-x
P(a, B, v, 8)=2f0 fo p(x, y;a, B)p(x, y;v, 6)dy dx,

a0 B) = g o - 9= 0P dy,

F'a)I'(B +

1
Qa.B.7.8) = [ a(x:a, Ba(x:y, 8)dx,
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and for g > 1,
(2m)?

POPBO=0 POOEP = 1apapep—1)

)2
Q0.B. £.0) = oo,
_ (277-)2 1 ,x 3
Q(0,0,8,B) = W/O /0 (x—y)P" (1 - y)P dydx.
Also, define
)2
R(a’ B, 7, 6) = (2 )

Ta+DI(B+1)(a+B+DI(y+ DI+ 1)(y+6+1)
S(a> B7 Y 6) = P(O[, :8> v 6) - 2Q(0£, ﬁ> Y, 8) + R(Oé, B> Y 6)

THEOREM 5.1. Let {{;, &} € Is(a,B) for @ > 3, B > & and {{,, &} €
I(a,B) for 0 <a < %, B> % Then under (2.6),

lim n21-~#) Var{F,,(0, m)} = £2,(0)P(a, B, B, @)

+ fnn(o)fGG(O)P(a’ @, B’ B)’
lim n20-%P Var{F (1, m)} = £2,(0)S(«, B, B, @)

+ fnn(o)f%(o)s(a> «, B> B)a
(5.5) r}l—>nolo p2(1-a=p) Var{ff’\{g(m +1,7)} =0.

As (5.3)—(5.5) indicate, throughout the region (5.1) Var{ﬁgg(l, m)} is asymp-
totically dominated by the contribution from an arbitrarily slowly increas-
ing number of low frequencies. The variance is generally increased when
f40(0) # 0, though this does not affect the rate of convergence, or divergence.
The square integrability requirement on f,, and f,, (and thence on £, ;) when
a < % seems unavoidable and is, for example, essential for sample autocovari-
ances of stationary sequences to be n'/2-consistent [see Hannan (1976)]. The
fourth cumulant requirement seems mild by the standards of such conditions
in the literature; (5.2) is milder than boundedness of £, 4, but stronger than
square integrability. We suspect that it could be further relaxed, but the proof
would further lengthen the paper and our current condition is automatically
satisfied when 7,, 6, are Gaussian. In any case the absence from the limiting
variances (5.3) and (5.4) of any fourth cumulant contribution is fortunate, and
also distinctive from the stationary situation.

6. Cointegration application. We define observable sequences {y;,, z;,
t=0,1,...} such that (1.1) holds, or equivalently

(6.1) y: = +vé,, z, =&,
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where v is unknown and {¢;, &} € I(a, B) under (4.1) with
(6.2) a< B.

From (6.1), ¥, and z, have a common, nonstationary, component &,, while y,
has an additional component ¢, that can be nonstationary or asymptotically
stationary. It is readily possible to apply the results of the preceding sections
to a model with additional components in y, and z,, with smaller memory
parameters, and to a model with vector observables of arbitrary dimension,
but we keep the setting as simple as possible to conserve on notation. We
deduce (1.1) from (6.1) and as discussed in Section 1 consider estimating » by

b =F,(1,7)/F,(#), 1=01,
and also by
5=F, (,m)/F(,m), 1=01 m<a,

so that 7; is the LSE with ({ = 1) or without ({ = 0) intercept, and under (2.6)
7y is the NBLSE, likewise mean-corrected or not. When (2.5) holds with m ~ cn,
0 < ¢ < 1, then 7; is based on a nondegenerate band of frequencies, fol-
lowing the idea of Hannan (1963). Phillips (1991) considered a spectral form
of estimate in cointegration with « = 0 or 8 = 1, though his proofs con-
cerned weighted autocovariance estimates rather than averaged periodogram
ones, and in a nonstationary environment these are not necessarily close
asymptotically.

Our main interest is in comparison of 7;, 7; across [, m in terms of bias and
convergence rates but we can also attempt to characterize limit distributions.

It follows from Theorems 4.5 and 5.1 that nl‘zﬁﬁ&(l, 7i) and, when e+ > 1,

ni-a-BF ¢¢(1, i), have mean and variance which both have finite but nonzero
limits, motivating, though not implying, the following assumption which is
unprimitive but eases the exposition.

ASSUMPTION 6.1. For l =0, 1, there exist random variables ®;(), ¥;(«, B)
such that ®;(B) # 0 almost surely and

(6.3) nIBF (1 7) > O 8), B> 1,

(6.4) n'BF (1) > V(@ B),  a+p>1.

We can deduce (6.3) and (6.4) from the continuous mapping theorem if there
exist jointly dependent processes U(r; ), V(r; 8),0 < r < 1, such that
(6.5) {nl/Z_“g“[n,], nl/z—ﬁg[n,]} = {U(r;a), V(r;B)} asn—o0, 0<r<1,
where “=” denotes a suitable notion of weak convergence [see Billingsley
(1968), pages 30, 111-123]. Then ®y(B) = fol V(r;B)2dr, ®,(B) = ®y(B) —

{Jo V(r; BYdr}?, Wo(a, B)= [y U(r;)V (r; B)dr, Wy(a, B)— [y U(r;) V(r; B)dr.
Sufficient conditions for (6.5) given by Marinucci and Robinson (2000) [which
develops earlier work of Akonom and Gourieroux (1987), Silveira (1991)],



NARROW-BAND ANALYSIS OF PROCESSES 963

are that ¢,, ¢, are given by A (a),A,(B), while (n,,0,) = X7 L Aje._j,
the A; being 2x2 matrices such that 377,311 |ALlI? < oo where ||
is Euclidean norm, the ¢, being independent and identically distributed with
zero mean and finite gth moment for ¢ > max(2, 2/(2a—1), 2/(28—1)), while

%~ A; and the covariance matrix of &, have full rank. These conditions
are implied by Gaussian “FARIMA” (¢, &,), such that (n,, 0,) is a station-
ary and invertible “ARMA” sequence ,while on the other hand implying that
{¢;, €} € 14(a, B). Then for o, B > % we have (6.5) with U, V being “Type II

fractional Brownian motion” [see Marinucci and Robinson (1999)],

66)  (U(ra) Vip) = [ {(r= s dBi(s). (r = 5)* L dBy(s)),

where B(r) = {B;(r), By(r)} is 2x1 Brownian motion with EB(r) = 0 and
Fan(0)  £1(0)

f40(0) foo(o)i| '

When a < %, V is given as in (6.6) under a simplified version of the conditions.
We cannot so characterize ¥;(a, ) when a4+ 8 > 1but 0 < a < % since on the
one hand the continuous mapping theorem does not apply, while on the other
{, cannot be approximated by a semimartingale. The latter property holds
when a =0, B =1 [case (4.8)] where, when ¢, =1,

B{B(r)B() ] =2Wm1n<r1,r2)[

1
o (0, 1)=/0 By(1)dBy(r)+wg,  W1(0,1) =¥y(0,1)=B1(1)By(1)—=7f4(0),

w, representing the limiting expectation of F ¢¢(0, ) from (4.16), and %(wo —
1) = wo — 7f 1p(0) that of F (1, 1), from (4.17).

PROPOSITION 6.1. Let {{,;, &} € 14(e, B) under (4.6) and let (6.1), (6.2) and
(6.3) of Assumption 6.1 hold. Then as n — oo,

S @B f (A) dA
@,(B) ’

n?P (B —v) = [=0,1,

and under (2.6),

2(2m)1-n (0 = /D)

@,(B) ’

nﬁ_am“+3_1(ﬁl —v) >y

PrOOF. Write
d; = F (1, 7t), by = F (L, 7), @) = F (1, m), by = Fe(l, m).
Thus 7, — v = d;/b,, 5, — v = a,;/b;. Now b, = b, — {b, — b, — E(b; — b;)} —
E(b; — b;). The term in braces is 0,(n?*~!) from (5.5) of Theorem 5.1, while
from (4.24) and (4.25) of Theorem 4.5, E(b, — b;) = o(n?f~1). Thus from
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Assumption 6.1 we have n'~28b,, n1-28}, — , ®,(B). Next, from Theorem 5.1,

&l = Edl + Op(najLBil) and dl = Edl + Op(najLBil), so that )\(;71+B_1dl =
AL _lEdl + 0 p(m‘”B*l). The proof is then routinely completed by means
of Theorem 4.1. O

PROPOSITION 6.2. Let {{;, &,} € 14(a, B) under (4.7) and let (6.1), (6.2) and
(6.3) of Assumption 6.1 hold. Then as n — oo,

n2b-1 d 2f,4(0)sin B
— ] L DA N— =0,1
ogn YT e TN
and under (2.5),
n?f-1 d 2f,4(0)sin B
D, — - — [l = 0, 1.
logm(vZ V) D,(B)

PrROOF. From Theorem 5.1, 4; — Ed;, @, — Ea, are O (1), so that 4,/logn,
a;/logm — , 2f,4(0) sin B7 by Theorem 4.2, and the remaining proof follows
from that of Proposition 6.1. O

PROPOSITION 6.3. Let {{;, &,} € 14(0, 1) and let (6.1), Assumption 6.1 and
the additional assumptions of Theorem 4.3 hold. Then as n — oo,

4 ¥,(0,1)

n(Vl_V)—) W, l=0, 1,

and under (2.6),

a ¥,(0,1)— %(wo - 1) — Z;‘O:o(d/j - 1)7_j

6.7 n@—v)> D , 1=0,1.

Proor. We have a; —; ¥;(0, 1) by Assumption 6.1. Write a¢; = {¢;— Eq;}—
{a; —a; — E(q; — a;)} + Ea,;. For [ = 1, the last two terms are respectively
0,(1) by Theorem 5.1, and O(m/n) by (4.20) of Theorem 4.3, whereas by
Assumption 6.1 and (4.17) of Theorem 4.3, @¢; — Ea, converges in distribution
to the numerator on the right of (6.7). For [ = 0, the only difference is that
Eay — wf,,(0) from (4.19), and since Ed, — Z‘fzo ¥ jy_; we get the same
correction term in the numerator as when / = 1. The proof is again completed
by that of Proposition 6.1. O

PROPOSITION 6.4. Let {{;, &} € 14(0,B), for B > 1, and let (6.1) and
Assumption 6.1 hold. Then as n — oo, for [ =0, 1,

nB( —v) > %.

The proof is routine.
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PROPOSITION 6.5. Let {{;, &} € L4(a, B), for a > 0, a+ B > 1, and let (6.1),
(6.2) and Assumption 6.1 hold. Then as n — oo, for 1 =0, 1,

B—ars d \I,l(aﬂ B)
(6.8) nP~*(0; —v) —> “0,08)
and under (2.5),
(6.9) nP(, — ) 2 0,
and thus ¥y(a, B)
B—ar~ d I\,
(6.10) nP~*(v; —v) —> 0,08)

PROOF. The proof of (6.8) is routine, and (6.10) will follow from (6.8) and
(6.9). To prove (6.9), write ¥, — v, = (@; — d;)/b; + a,(b;* — b;*). Now G, —d4; =
0,(n***~1) and @, = O,(n®*#~1) by Theorem 4.5, while b; 1—b; ! = (b,5,)"'(b,~
b;) = 0,(n'~2f) by the proof of Proposition 6.1 and Assumption 6.1. O

Proposition 6.4 has convergence rate compatible with those of Propositions
6.3 and 6.5, but only deals with the full-band statistics 7;, in view of a remark
following Theorem 4.4. Proposition 6.5 shows that when a > 0 and the com-
bined memory « + B of the observables and cointegrating error exceeds that
of the usual case @« = 0, 8 = 1, 7; has the same convergence rate and limit
distribution as 7;, so that nothing asymptotically is lost by neglecting high
frequencies, even all those outside a band around zero that decays arbitrarily
slower than n~!. In Propositions 6.1-6.3, #, is found to have the capacity to
beat 7; when it is less affected by the “bias” due to correlation between ¢, and
&, in (6.1). In Proposition 6.3, when o = 0, B8 = 1, rates of convergence are
identical but 7; eliminates the “second-order bias” [see Phillips (1991)] namely
the expectation of ¥,(0, 1); more particularly, the “second order bias” of 7, is
only O(m/n?), which is of smaller order than 1/n under (2.6). Monte Carlo
simulations [see Robinson and Marinucci (1997)] demonstrate the consequent
superiority of #; in smallish samples. (Note that 7, does not share this desir-
able property of 7;.) In Proposition 6.2, « > 0, 8 < 1 but again e« + 8 =1, and
here the comparison depends on m. If m increases at the same rate as n, as
permitted by (2.5), so log m ~ log n, then 7, and #; have the same convergence
rate and limit distribution. On the other hand if (2.6) holds there are essen-
tially two possibilities of interest. If m ~ cn?, for ¢ > 0,0 < d < 1, then 7,
has the same convergence rate as 7; but it is numerically shrunk towards v.
If log m = o(log n), for example if m = loglog n, then 7; converges faster than
»;. This latter phenomenon is more dramatically evident in Proposition 6.1,
where, with a + 8 < 1, 7;’s bias-reducing qualities really come to the fore; the
more slowly m increases the better.

A different definition of nonstationary fractional processes (which would
lead to different limit distributional forms for our estimates) entails integer
differences having stationary long memory, or negative memory with invert-
ibility. Chan and Terrin (1995) [see also Sowell (1990)] nest this kind of
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behavior in a vector autoregression (AR) and study the LSE of the AR coeffi-
cients, while Marinucci (2000) studies estimates similar to those in our paper,
replacing averaged periodograms by weighted sums of sample autocovari-
ances. Jeganathan (1999, 2001) also employs this definition of fractional non-
stationarity, considering cointegration in a first order AR model driven by a
simple parametric fractional stationary process, considering also the possibil-
ity that the AR coefficient is less than one in absolute value. He establishes
asymptotic properties of maximum likelihood estimates based on a general but
known distributional form for the innovations, the estimates of the cointegrat-
ing coefficient » having a mixed normal asymptotic distribution, leading to a
standard, x2, null limit distribution for Wald statistics for testing hypotheses
on v, analogous to results of Phillips (1991) in case a = 0, 8 = 1 is known. The
convergence rates of his estimates of v correspond in our setting to nf=* for
B—a > 3,(n/logn)!? for B—a = } and n'/2 for 0 < B—a < 3. We believe such
rates are optimal over our broader («, B) space, and »; and 7; achieve them
when a+8 > 1land B—a > 1, or when o = 0, 8 = 1 (see Propositions 6.3-6.5)
but not otherwise (see Propositions 6.1 and 6.2). In fact, as Theorem 4.1 hints,
the nf~“ rate, for any «, 8 such that 0 < @ < B8, may be achievable by the
NBLSE with m fixed as n — oo, for example 7; with m = 1; when o+ 8 < 1
such that («, B) # (0, 1) this estimate converges faster than our estimates
which assume m — oo, essentially because even less bias is incurred. How-
ever, such an estimate is likely to be unstable with an unusually dispersed
limit distribution, for example in case m = 1 and random walk Gaussian z,,
its denominator is proportional to a X% variate. Alternatively, the limitation
of convergence rates in Propositions 6.1 and 6.2 due to coherence between ¢,
and z, raises the possibility of achieving the optimal rates by a form of bias-
correction. However this would require estimating the constant numerators in
the limit distributions, which in turn would necessitate computing estimates
of a, B and of other nuisance parameters/functions, while theoretical justifi-
cation would require further assumptions and considerable extra proof. This
kind of effort seems better directed to achieving and justifying estimates of v
which not only achieve optimal rates but also the desirable mixed normal limit
distributional behavior for parametric or semiparametric forms of our vector
nonstationary processes. Such estimates require sufficiently good preliminary
estimates of v, for which our present estimates suffice, but we also believe
these are of interest in themselves, the LSE for its computational simplicity
and familiarity, and the NBLSE for its bias-reducing property and illustration
of the dominating importance of low frequencies in cointegration analysis.

7. Proofs for Section 3.

ProOF OF LEMMA 3.1. The proof when @ = 0 and/or 8 = 0 is trivial so
assume « > 0, 8 > 0. By integral approximation we have

getBl 1 ) b1y patB—1
X Ty b X T v
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to verify (3.2). For 0 < r < ¢t we may write

t—r—1

Xt = Xt+1 = Z ¢s(¢t—s - wt-k—l—s) - ¢r+llpt—r + Z (d)t—s - ¢t+1—s)l//s‘

s=0 s=0

Taking r = [t/2], all three terms are easily seen to be O(t**#~2) = O(|x,|/t),
to verify (3.3). O

PrOOF OF LEMMA 3.2. The proof of (3.8) is trivial so consider (3.9) and
(3.10) with « > 0. Drop the argument « from S, (A, ) and omit the triv-
ially easy case v = u + 1. Obviously |S,,(A)| < Cv”. For « € (0, 1) write, for
u<s<uv,

s—1 v—1 t v
Suv(A) = Z (btelt/\ + Z(¢t - ¢t+1) Z ezr)\ + d)v Z elt)\
t=u t=s r=s

t=s
by summation-by-parts. Thus because

t

Z eir)\ < C(t — S‘)

o 2 T

Al <,

[see, e.g., Zygmund (1977), page 51], (3.2) and (3.3) imply that |S,,(A)| <
C(s* + s*71/|A]). For ¢ € (0, ) we may choose s = [c¢/|A|] when c¢/v < |A| <
¢/(u+ 1), which gives the bound C/|A|* for such A. On the other hand we also
have

v—1 t v
(7.2) Suv()\) = Z(d)t - ¢t+1) Z et + é, Z et

t=u s=u t=u
to deduce |S,,(A)| < C(u+1)*"1/|A| for 0 < a < 1 from (3.2), (3.3), (7.1). Since
v¥ < C/|A|* for 0 < |A| < c/vand (u+1)*"1/|A| < C/|A|* for c/(u+1) < |A| <7
the bound C/|A|* holds for all A € (0, 7] when 0 < a < 1, to complete the
proof of (3.9). For a > 1, (7.2) gives instead |S,,(A)| < Cv* !/|A| to complete
the proof of (3.10). Finally (3.11) follows directly from Theorem III-11 of Yong
(1974) and a reflection formula for the Gamma function. O

PrOOF OF LEMMA 3.3. We have ¢, =0,¢ <0, and for ¢ > 1,
t S t
gt = Z d/t—s Z d)s—rnr = Z Xt—sMs>
s=1 r=1 s=1

where y, is given in (3.7). O

PROOF OF LEMMA 3.4. (i) The first statement is standard while (3.16) fol-

lows from the stated formula for f,,, (3.11) and {n,} € I. For a > 0 write
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d,(N) = X2, pe’**. From (3.10) we have |¢,(A)| < C|A|™® and |p,(A)| <
Ct*1/|A|, so

AWM = [ (V] < [d(M)di(=A) + (= 1), (V)] + [, ()2
< C(ta_ll)\|_a_1 + t2a—2/\—2)
< CIAP2((E|AD* T + (¢|A]* D),

whence (3.17) follows by reference to (3.16). To prove (3.18), note that, for
J =0,

(1.3) CoV(&n o) = [ @Mt (=) (Ve N,

so its deviation from Cov(p,, p ;) is bounded by

(7.4) fn{lqﬁ(/\)cﬁtﬂ(—/\)l 101N by j (=M} f (D) dA.
Fix 8 > 0. Because {n,} € I we can choose ¢ > 0 such that

Also, we have

1 : isA
(7.6) 5o /H g bye

Thus by the Schwarz inequality the contribution to (7.4) from the integral
over (—eg, ¢) is bounded by

2 v
A= 3 gt

[e9) 0 1/2
2(f (0 + 6}{2 62> qsf} )

s=0 s=t

as t — oo, while the contribution from [—7, —¢] U [e, 7] is bounded by

C a— a—
27 FWda= 0@,

using (3.9).
(i) and (iii). The difference between (7.3) and 27 f,,(0) 41§ ¢2 is
(1.7 Fun(0) [ {61 (=) — [ (M)}
78) [ 1100 = (O} 8,0, (-1 dA
(7.9) [ F ) = F ()N brs (- 1) d,

where, here and subsequently,

// - /m<s’ / - /wzs'
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Now (7.7) is zero for j = 0, and for j > 1 it is bounded by

t—1 t—1 Jj-1
Cc Z ¢s(¢s+j - d)s) = C Z |¢s| Z |¢s+r+1 - ¢s+r|
s=0 s=0 r=0

t—1 J-1
f C Z |d)s| Z |¢s+r|/(s + 7”),
s=0 r=0

using (3.3). The last expression is, uniformly, O(j Y s*3) = O(j) for 1 <
a <1, 0(jlogt) for a =1, and O(j Y} s* 2(s+ j)* 1) = O(jt?*72) for a > 1.
Because (7.8) is O(6 Zgﬂ ¢?), which is uniformly O(8logt) for a = % and
O(8t%1) for a > %, while (7.9) is, from (3.9), O((¢ + j)** %) = O(t**~2) uni-
formly, the proof may then be routinely completed, noting that -/_, ¢? ~
(log¢)/m for a = § and Yt ¢2 ~ 21 /T?(a)(2a — 1) for « > 4. O

8. Proofs for Section 4.

PrOOF OF LEMMA 4.1. Though (4.3) is of independent interest it is not in
this generality of much importance to the sequel, while a full proof would
require introduction of notation which would not find subsequent use. We
thus give the proof only of (4.5), which is equivalent to (4.3) with A = B = R,
j = k = 0, the full proof of (4.3) being only notationally more complex. We
first provide some basic derivations which will be useful also in subsequent
proofs. In view of (2.1), (3.12), (3.13), (3.15), (4.2), we can write

1 . 1 A
we(A) = @mn)i Y bnn(Mne™, we(V) = @mn)i2 Y U1 (M),
t t
where ¢,(A) = Y/20 ¢ e}, From (2.7)
1
8.1) EI () = 5— [ Xk wf(w)dp.

where for brevity we write f(n) = fs(r), and x,(A, n) = ¢, (A, =), (=4, p),
in which, for example,

bu(A, ) =Y e (—p)

(8.2) . ,
=Y bpinW W =376, TND (A + ),
t ¢

the final equality following by summation-by-parts with
t
Dt(/\) — Z ezs)\’
s=1

the Dirichlet kernel, and all three representations in (8.2) finding use in the
sequel. From (7.1),
a+1 B+1

83) oA = —F— (AW = 7— 77—, 0=[A+pul=m7.
9200 ] = T e o)l = g 0=t
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Fix 6 > 0, then choose ¢ € (0, 77) such that
(8.4) sup [f (M) — f(0)] < 8.

[A|<e

We deduce from (8.1) that
B(EH) = 2T B10) = — [ (0w () s
which can be written, for ¢ € (0, 7), as
85 LD [ 0 mdut 5 [ 0 mfwdat o [ 60 )i dp
writing f(u) = f(w) — £(0). Since
(8.6) /H D,(A\)D,(—A) dA = 27 min(s, t),
the first component of (8.5) is, from (8.2),

27rf (0) 27Tf(0)

Zz¢n slpn tmln(s t)_ quﬁrzlps

t r=0 s=0
For a = 0, a > 0 this is, respectively,
27-rf(0) 27 f(0)nP~1 (1 B-1 7. 27 f(0)npt
Zlﬁns W/ x(1—x)"""dx w,
27 f(0)n*F-1 = = 51
@@ /0 [O y dy/O A1 dzdx(1+ o(1))

N 27 f(0)neth-t
FMNa+DI(B+1)(a+B+1)

as n — oo. The second term in (8.5) is bounded by
C8
Z | sl ID() {12 [¥nil ID()| 1A
(8.7) '

O S 10ud i max [ D) dp = Conb,
s t - =

using (8.6). Because 6 is arbitrary the second term of (8.5) can be neglected.
The final term of (8.5) is bounded by [cf. (8.7)]

a+pB-2

e Z e Sl [ 1710l e = O [Var(n)Var(6)} + |£(0)]

— O(na+ﬁ72). O
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PROOF OF THEOREM 4.1. Abbreviate F ce to F. We first prove (4.12), where
for any ¢ > 0 we can choose n such that 2A,, < ¢. Take I = 1. From (8.1),

E{ﬁ(l, m)} is the real part of
8.8) i / XuOh W) s+ Z [ XaAjs ) (1) s

From (8.3), the second term is bounded in modulus by

(8.9) Cmn* P2 /H IF (M) dA = O(mnotF=2) = o(<ﬁ)a+31>.

m

The difference between the first term of (8.8) and
2 i

(8.10) SFO) Y [ xa(hy w)dpe
n i

is bounded by

Cs 1/2
(811 = Zf Xn(Ajs )l dp < =5 Z{ZI¢ (A LA )IZ} ,

Jj=141

using the Schwarz inequality and, for example, from (8.2),
(8.12) [ 162 (h —w dia = 27 3 [, (V)P
t

From (3.9), the factor in braces in (8.11) is O(n?|A;|72(«*P)), so that (8.11) is
bounded by

m a+p-1
(8.13) Con+F-1y j-ab < ca(%) :
j=1

and can thus be neglected because 6 is arbitrary.
The difference between (8.10) and

(8.14) 2f(0) Z[ Xn(A ;> 1) dpe

is O(n***~2m) = o((n/m)**P~1) using (8.3) again, so it remains to estimate
the real part of (8.14), which is 47 f(0) times

(815)—22xt()~ )——Z¢>(A DP(=A;)

Jj=11

(8.16) —% Z{¢(A]~)Zth(—)\j)+Z<f3t()\j)¢(—)\1)}
‘:1 t t

(8.17) ZZqﬁ (A)P(—A)),

Jlt
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where x,(A) = ¢,(M)¢,(—A) and §,(A) = X2, ¢ e'**. For a = 0, (8.17) is zero.
For o > 0, applying (3.9), we bound (8.17) by

ﬁZ( XTI Y tHB)f 5 A

=1\ t=1 t=[1/2);]

Likewise, for o > 0, (8.16) is bounded by

m

C e m
E Z ()\;a—l Ztﬁ—l 4 )\]B 1 Zta—l> < Cna+[3—1 Z(j—a—l 4 j—B—l)
J t

=1 t j=1

A2

whereas for a = 0, (8.16) is bounded by Cn "2 Y7, A1 ¥, tF71 < Cnf~tlogm =
o((n/m)P~1). Finally, the right side of (8.15) has, from (3.11), real part
1 < am B B

. am o _a—B
cos7cos7+s1n7sm7>jz_l)\j (1+0(1))

n
(8.18)

N cos(a — B)% o 1-a-p
27(l—a—-B) ™
as n — oo, to complete the proof of (4.12) with [ = 1. The proof for [ = 0

follows from (2.3) and Lemma 4.1, due to o + 8 < 1.
To prove (4.11) with / = 0, we can deduce from (8.1) that

(8.19) E[FO.0)} =3 5 [ x(wf(w)dn,
which differs from (4.11) by

(520 RO SACAED SXATCAI LR
(8.21) o [ X i) ()

From (3.9) and (8.4), we can bound (8.21) by
/ C 1
—a—f _ a+B—2 1-a—B =)
C [ Il dus g S Il < o(s 4 5 ) = o0,
with the same bound resulting for (8.20). Finiteness of (4.11) follows similarly,

by bounding it by C(£'~*# 4+ £72). Thus (4.11) is proved with [ = 0, and thence
with [ = 1 by Lemma 4.1. O
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PROOF OF THEOREM 4.2. Given (4.13) and (4.14) for [ = 0, they hold also
for I = 1 due to Lemma 4.1 and « + B = 1, so we can ignore /. The proof
of (4.14) closely follows that of (4.12). In place of (8.9) we have the bound
O(m/n) = o(log m), while the right side of (8.13) is O(élogm) = o(log m).
The argument for replacing (8.14) by (8.10) holds, as does that for neglecting
(8.15)—(8.17), while (8.18) is (sinaw/27)log m(1 4 o(1)). To prove (4.13), we
can write (8.19) as

820 23|10 [ xtwdnt [ xw i du+ [ i de).

The contribution from the first term in the braces is

27f(0) 2 27£(0) no .
(8.23) " zt:g)d’sd’s ~ m<l+§s 1) ~ 2sinawf(0)logn.

That from the remaining terms can be bounded, respectively, by

PE S e TS Gl d

“1<|plze
Cs e
SW;H'%/,,I“ dp < 8C(1+1logn),

and by (C/2) [, |f ()| dp < C, using (3.9). O

PrOOF OF THEOREM 4.3. First note that (4.17) and (4.19) follow from
Lemma 4.1 and (4.16) and (4.18), respectively, since (4.5) is 7f(0). To prove
(4.16) note first that w, = Z(}:_oo Yj» @1 = ».5217; are both finite, because
27wf(0) = wy + @1 and [; A(A) dA = wy — w; both are, writing h = A, ,. Direct
calculation gives

- n—1 .
E{F(0,7)} = ¥ (1 = %)g/ij_j
(8.24) =

oo

00 1 n—1

=2 XYY 2 Y
j=0 j=n j=0

By summation-by-parts, the second term is bounded by

o0

% | J |
(8.25) Y |4 — ¥l ’Z %zi <> —v¥ial(le_l+lo_;1)—>0
j=n l=n j=n
as n — oo, whereas the final term is bounded by

n—1

S (= a1 1o 1] + (
j=0

1 ~1
(826) = n
n n

)wn_ﬂ o]

which tends to 0 for similar reasons. Thus (4.16) is proved.
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It is convenient to first prove (4.20) when ¢, = 1, and then estimate the
“error.” Write @; = ) ,-; v;, whence

E{I (M)} = % Z;(a}t_s — el

mn

(8.27) L 1 ; . 5
=5 ; (1 - E)((DI +a_)e ™+ ﬁ

because

(8.28) D,(A;)=n, J =0, mod(n),

(8.29) =0, otherwise.

For [ < 0 we have w; = w;, whereas for [/ > 0 we have ©; = wy+ w; — w; 1,
so (8.27) has real part

]_ n-l l (OF)
% - 1—; ((1)0+(I)1+(1),l—a)l+1)COSl/\j+%
(8.30)
1 n—1 |l|
= EE 1—; (a)fm _wll‘+1)coslAj,
in view of (8.29) and
n—1 n
Zlcosl)\j:—g, l1<j<n-1

=0

Now (8.30) is the Cesaro sum, to n — 1 terms, of the Fourier series of A(A;)/2.
Equivalently,

n = 1 n N
(8.31) E{EF(L m)} _n_mjzﬂfnwn()\ A)PR(A) dA.

Fix & > 0. There exists £ > 0 such that |A(A) — h(0)] < 6 for 0 < |A| < e. Let n
be large enough that 2A,, < ¢. The difference between the right-hand side of
(8.31) and 27A(0) is bounded by

1{6 max f |D, (A — )\j)|2 dA+ sup |Dn()\)|2</ |h(A)|dA + 27T|h(0)|>}
n 1<j<m (e/2)<|A|<m I
which is O(8+4n"1) using (8.6). Because § is arbitrary, the proof of (4.20) when
¢, = 1 is complete.

The difference between E{ﬁ(l, m)} and the same thing with ¢, = 1, is,
from (8.2), the real part of

2 m
(8.32) > ]Zzl /H R, (A, w)f () dp,
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where

Rn()‘9 /'L) = Dn(A - /J“) Z(d/n—t - 1)eit/\Dt(/J“ - A)

Using (8.6), we may write (8.32) as

(8.33) 4”}5 2(0) St~ 1) Y e
t j=1
(8.34) +— / R (AJ,u)ﬂmdw Z / R,(\j, w)f () .

To consider (8.33), we have

m .
- 1) Z elt}\j
Jj=1

m & m
<23 1= o %)

t=r

as r — 0o0. On the other hand the contribution from ¢ > n — r to (8.33) is
1 r—1 m ) 1 r—1 m )
RO ED AR TS s R D ot
2o j=1 LCa— j=1

We can bound the second term by Crm/n? = o(m/n), taking r = o(n), whereas,
using the inequality | cos x — 1| < x2, the first term has real part differing from

r—1 00
(8.35) YW1 = W~ DA +o(1)
t=0 t=0

by something bounded by

r—1 3200
QZIIJJt—lIZ(tA)z Zld/t—1|—o< )

since we can at the same time choose r = o(n/m). Since (8.35) delivers the
correction term in (4.20), it remains to show that the contribution from (8.34)
is o(m/n). Using (8.6) and the Schwarz inequality, its first term is bounded

by
2 1/2
d,LL}

1/2
S S (s — D)W s — 1) min(Gs, t)}

s

Cé o
=S w1k =o( %)

s 4
It NLNOVEnTy L DD, (- )
j=1

cs
= n3/2 Z{
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whereas, with ¢ > 21, its second term is bounded by

Cm X m
S X[ el an 17Ol =o( %)
to complete the proof of (4.20). O

PROOF OF THEOREM 4.4. From (8.24)—(8.26),

. ~ C n—1 o B
iE{F(Oa n)H = - > Vi 1|w—j—1| = o(n#™)
j=1
by the Toeplitz lemma, to prove (4.21) and then, by Lemma 4.1, (4.22). To

prove (4.23), consider (8.24) again: the second term on the right is clearly o(1)
while the last one can be written n~! Z’;;% Zfij iy — Y,y — 0. O

PRrROOF OF THEOREM 4.5. To prove (4.24) with m = 7 we use (8.19) and
(8.22). The left side of (8.23) is

27F(0) ' arp2 5 27 f(0)no+h-1
nT'(a)I'(B) ?23 (1+0o(1) F(@Il'(B)(a+ B)(a+pB—-1)

By the Schwarz inequality, the contribution from the second term in braces in
(8.22) is bounded by

1/2
(8.36) ConP32 Z{ /H b, (A)[2 dA} ,

t

since [;; |[¢;(V)|2dA =27 YL, 42 < Cn?f~1, because B > L. For a > 1, (8.36)
is thus clearly O(8n**#~1), while the same bound holds for a < } because the
integral in (8.36) is bounded by

n’1 T
C 2 / dr+C / AEdy < Cn¥l,
0 n-

using (3.9). Finally, the contribution from the final term in braces in (8.22) is
bounded by

C 7
;/ 21w (WKIf ()] + £ (0)[} dpe,
£t
which is O(n**#~1) for @ > 1 and O(nf~1) for a < 1, on applying (3.10). Thus

(4.24) is proved for m = 71, whence (4.25) follows by incorporating Lemma 4.1.
Now with m < 72, we show that the contribution from the second term on the

right of (2.8) is negligible. We can bound E{ﬁ(m +1,7)} by

C / C 1"
(8.37) ;?’// |Xn()\j7ﬁ’«)||f(ﬂ«)|dl-b+ﬁ%:/// IXn(Aj> ()] dpe,
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where Z’J’- denotes Z’}:m +1- Applying the Schwarz inequality and (8.4), (8.12),
the first term is bounded by

C s v
839 ST soprsmope]
;e t
On applying (3.9) and (3.10) we find that (8.38) is O(n®*F~1y%, %) =
O(n“**"'m=1) when a > 1 and O(n*™F-1y% o minBl) = o(n*tF-1x

m~min(@etb-1) when o < 1, so both are o(n®*#~1) from (2.5). Finally the
second term of (8.37) is bounded by

C 7 n n 1/2
839 [ 100 wP T P 1w e
j=1 j=1
From (8.2), (8.28) and (8.29) we have, for example,
(8.40) S a (A =P = n Y 19w
j=1 t

Thus the term in braces in (8.39) is n2 Y, |, ()2 X, |¥,(w)|?, so from (8.9)
and (3.10) we deduce that (8.39) is O(n**#~2) when « > 1 and O(nf~!) when
a<l O

9. Proofs for Section 5.

PrOOF OF THEOREM 5.1. We first consider ﬁ(O, 1), which has variance
1 ’ : d d () _(0)
(91) ﬁ Z Z Z d)sfq Z (rl"sfr Z ‘;btfu Z lptiv{')’rfu'yqu + Yu—qYv-r + quuv}7
s ¢t 1 1 1 1

0
where yy') = Cov(ng, n;), yg ) = Cov(6y, 0;), Kgryy = Cum{n,, 0,,m,, 0,}. The
contribution of the first term in braces to (9.1) can be written

1 1
ﬁ Z Z Qg Qys = ﬁ Z Z(bst +Cg + dst)(bts + Gy + dts)5
s t s

where

ao = [ Xa(F W Xali) = bW (-m)e I,
02 ot = f(o)/nX“(“)d“’ Cst = / / f(m)xse(m) dp,

do = [ Fs)xap) dp.
We shall show that

1 1
(93) ﬁ Z ZaStats = ﬁ Z Z bstbts + 0(1) ~ P(a’ [37 B’ a)n2(l¥+ﬁ—1)'
s t s
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For a > 0, the last relation follows from Definition 3.1, integral approximation
and

f Xst(M) du =2m Z/ ¢j‘/’j+t—sa
I J(s.t)

s—1

—max(0, s—t)» Whereas for a =0,

where > ;) =

1 4 2
2 2 2 bty = n_T;f 02> s sty = O(n™!) = o(n*F).
s t s ¢t

To prove the first relation in (9.3), we first consider the case a > % and note
that by elementary inequalities it suffices to show that

D [byl? = O™ ),
s
9.4) LY el = o(n®+9),
Y2 ldgl? = o(n?tP).
s ¢
By the Schwarz inequality especially and
Xs:; |bst|2 < anir;:‘b?‘i;:‘p% < Cn2(a+B)’

and clearly Y, 3", |c,|? has the same bound times 82, where § is arbitrary, to
prove the first two components of (9.4). The last component of (9.4) follows
from the bound [due to (3.9), (3.10)],

|Xst(/-"“)| < Cnmax(a—l, 0)+max(B8—1,0) |M|—min(a, 1)—min(B, 1),

for 0 < |u| < 7, since then Y, 3", |d|? is O(n?) for a, B < 1, O(n?#) for a < 1,
B > 1, and O(n?*+F=1) for a, B > 1, to complete the proof of (9.4) in case
a> 1.

Now consider the case a < %, which is more delicate. Writing

G, (A, p, 0) = Z d’t()‘)dft(ﬂ)eitm,
t
we have

Z Z CstCis

s t

< 5 /H /H Gy (s — A, A — )2 dpdA

(9.5) 242 ! !
<478 > > Y Db ) YW s
st j(s,t) J(s,t)
9.6) = C¥ (” + s - tlal) LY w5 = 08P
st 0 0
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for 0 < a < 1, while for « = 0 we easily get the bound O(;2n?f). Next, recall

that ¢,(A) = ¢(A) — ¢,()), and correspondingly introduce
Gu(A, s @) = (1) L Pr(w)e™ = G (A, p, @).
t

Thus Zs Zt dstdts is

/// ///{(l)(ﬂ)wn(_ﬂ, /\) — én(/-'b, R - M)}
o (BN 1) = G = 12 = N () F ) A

< ¢ [ [t ) + 180 s = ) i F P

/! 2 n ]
= C/ {Z (M) + (Z Id_n()\)l) > w§}|f(A)|2 dx
t t 0
< C(nzﬁ—l + n2(a+B)—1) — O(nz(a+3))

for « > 0. It is then straightforward to show, by similar means, that the
remaining components of n =2y ¥ ,(aga, — byb,;) are negligible when 0 <
a < % This concludes the proof of (9.3).

The contribution from the second term in braces can be handled in almost
the same way; the only notable difference is that it is nonnegligible when
a = 0, but this is easily seen.

We write the contribution to (9.1) from the final, fourth-cumulant, term as

1
(9.7) W/H/H/HHn(/\,,u, o)A, g, 0)drdp do,
where
Hn(l*’“! A, w) = Gn(A tut+o,—A—p— w)Gn(_Ms —w, u+ (1)).
To extend the approach used previously, we can write (9.7) as the sum of terms

£(0,0,0)
(9.8) T/H/H/HH”(“’ A w)dAdpdw

(9.9) +foH/HHn()\,p,, ), p, @) — £(0,0,0)} dA dp dow.

It is readily verified that (9.8) is §72£(0, 0, 0)/n? times something bounded by

9.100 > Z,(bjlpjd)jth—sl/jjthfs <y lb 5l > [ etV jre—sl-
Jj=0 s t

st j(st)

For a+ B < 1, the sum over s, ¢ is O(n), uniformly in j, so that (9.10) is O(n)
also. For @ + B = 1, the sum over s, ¢ is O(nlogn) and (9.10) is O(n(log n)?).
For a+ B > 1, (9.10) is clearly O(n2(+A)~1) Tt follows that (9.8) is o(n2(«+A~1),
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Now consider (9.9). For any § > 0, we can choose & such that

(9.11) sup I[f (A, p, @) — £(0,0,0)] < 8.

IAl<e. [ul<e, |A|<e

Then with [ having the same meaning as before

(9.12) / / / H,(A, p, w){f(A, w, ®) — £(0,0,0)} dAdpde

is bounded by

B)
p{/nfnfann(erw,—A, —u—o)drdpdo
(9.13)

></H/H/H|Gn(—,u,—w,,u+a))|2d/\d,udw}1/2.

Both triple integrals are easily shown to be 27 times (9.5)/62, which is
O(n2?«+P)) [see (9.6)]. By arbitrariness of § it follows that (9.13) is o(n2(@+£-1),
so that (9.12) can be neglected. The difference between (9.9) and (9.12) is
bounded by

3
©19 X [[[ 1H.X o)l IFh 1. 0) = £(0,0.0)| dAdpdo,
j=1 i

where Uy = {Me <A <7}t xVy, Vi={wpell} x{w owell},Uy =
MAell} xVy, Vy={ue=<|u <7 x{w o ell},Us ={AX A€
I} x Vg, Vg={uw pell} x {w: ¢ <|w| < 7}. Then (9.14) is bounded by

1/2
(9.15) {sup /H|f(/\,,u, ®)|2dA + 2720, 0, 0)}

w, well

1 3
<o 2{ [ 1Gah 1+ 0 =A== ) dor i
(9.16) J=1 /

12
2
<[], 16ut =0+ @) o du} .

Since (9.15) is finite it suffices to show that each of the summands in (9.16)
is o(n?@*+P)), This is achieved by using the fact, already established, that one
of the factors in braces in each summand in (9.14) is O(n?“*#)), and showing
that the other is o(n2*A)). The latter factors are the first one for j = 1, and
the second one for j = 2, 3. The proofs are too similar to those concerning
G, previously to warrant inclusion; we would only note that for the U; we
effectively only integrate over one of w, u as before and that |A| > ¢ on U;,
while || > e on V,y and || > e on V.

By elementary inequalities and (2.8), (5.3) for m < 7 will follow from the
above proof and (5.5), so we prove the latter. Var{ﬁ(m + 1, 72)} is bounded by
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the real part of

ZN Z ! Z Z Z Z d’n—q+1(/\j)din—r+1(_/\j)d)n—s-&-l(_/\k)
J k q

r s t

i(g— _i(s— [
X lﬂn—t+1()\k)el(q r)AJ il t))\k{'}’t—q'}’r—s + ygz)q'yg—)r + qust}'

The contribution from the first term in braces may be written as (47%n*)~!
times

(9.18) [ ] Ve ) f(w) dAdp.
where

Vn()" /-'L) = Z// Z//(ﬁn()\j’ _/\)lrl’n(_)\p M)qsn(_/\k’ _M)(I’n(Ak! A)
j k

J

We subdivide the integral (9.18) into components [* [*, [* [”, [* [" and [" ['.
First

| [ [ Va wFOF@ da dMl
(9.19)

2
= C/H/;-I ‘ %2//¢"(Aj’ =N, (=), n)| drdp.

The double integral is evaluated as

(9.20) 42y ¥
s t

Ifa+ B > 1 and a > 0, this is bounded by

2

Z //d)S(Aj)l)[It(_Aj)ei(t_s))‘j
J

2
C Z 82 max(a—1,0) Z t2 max(p—1, 0)n2 min(a, 1)+2min(B, 1) <Z ”_].7 min(a, 1)—min(g, 1))
s t Jj

< Cn2(a+ﬁ+1)m—min(a+,6‘—1,a,1) — 0(n2(a+/3+1))
as desired. For a = 0, 8 > 1 (9.20) is, from (8.28), (8.29),
Amn Y Y [0 I = Cr2ED Y7 772 = p(ptiid)
J 4 J

For o + B < 1 we write (9.20) as
2
22X {b(A)) - d_)s(/\j)}l/’t(_)‘j)ei(t_s)/\j
(921) ¢ t'J '
=" A NB(—AR) D (—A (M) PTAI D (A, — A )
ik :

(9.22) — 3B D (A D (M) T N b (— Ay, et e
Jj k t s



982 P. M. ROBINSON AND D. MARINUCCI

(9.23) =YY (AR D lﬁt(—/\j)(Pt()\k)eit(AfAk) > qgs(/\j)eis()\kﬂj)
Jj k t s

(9.24) + 33N b(A ) (—Ap)e TS (= A ) (Ag e ),
ik s :

Because of (8.28) and (8.29), (9.21) is bounded by n2(1*+f) times

CZ//J-—Q(OH—B) < Cm1—2(a+B) — 0(1)’
J

since B > 1. On the other hand, (9.22) and (9.23) are bounded by n2(+e+f)
times
CZ”jia*zB*l + CZ//jfafﬁ Z kflfﬁ
J J k> j
< Cm—a—ZB + CZ//j—oz—ZB < le—a—ZB — 0(1)’

J

and (9.24) is bounded by n?*™+D times O((X} j~'7#)%) = o(1). Thus (9.19)
is o(n¥«*#+1)). The component [” [” requires careful treatment. It is bounded
by

025 [ ’ / ’

< [ 1600 NP A [ (A )1 )] i
j=1 k=1

2
[F(Of (W) dArdp

Z//d)n(/\j’ _)‘)d/n(_/\j! /-L)
J

(9.26) § ,
< Cn2/ Zlcbs()\)lzlf(/\)ld/\/ S (w)PIf () dp

from (8.40). Clearly (9.26) is O(n™ax(2.2)+max(26.2)) 'wwhich is o(n2(*+F+1)) unless
a+ B <1or a =0. The latter possibilities imply a < %, when we write (9.25)
as

021 [ ’ / ’
1

When a = 0 the contribution from ¢,(A) is zero, while for 0 < a < 5 and
% < B < 1it is bounded by

2
[F(Of ()| dA dp.

38 PR ITOVEE XV ] APV

o M| . _ |2 n
cl ] 2| RGN X (A mPIF)F ()] d
k=1

j:1| S

<cn* [ [ T16,(0P T w1 F0)f ()] dAdp

< Cn2a+3 — O(nZ(a+B+1))
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using (8.28), (8.29), (8.40), (3.9). For @ = 0, 8 > 1 we bound (9.25) by

2

| | 1/2
(9.28) C{/H/HiZ”Dn(Aj—/\)lpn(—)\j,M)i d)\d,u,}
J

/n n 1/2
929)  x{[ XD ;= DEFOPAN [ X (A wPIF (P disf
j=1 j=1

Now
(9.30) / D, (A; = A)Dy(A — A)dA = 27Dy (A — Ay),
11

which is 27rn for j = k and 0 otherwise, so (9.28) is bounded by

2

1/2 1/
C{”Z”Z th()\)lz} < {Cn<2 ”Aﬂ) ZtW”} = o(nP*1).
J t j ¢
On the other hand because (8.40) is O(n??) for |u| > ¢ and, for all A,
©.31) 3 1D,(A; = M = 2,
j=1

it follows that (9.29) is O(nf*1). Thus (9.25) is o(n2F*D) for a = 0,8 > 1. It
remains to consider a« = 0, 8 < 1. From (6.2) we write

(932) l//n(_/\j’ ,LL) = l//(_/'L)Dn(/J“ - Aj) - Z eit(ﬂil\j)lﬁt(_ru')
t

for |u| > &. Now, using (9.30), (9.31),

e[l | 3D, = VD 4

2

[F(Vf (W) drdp

Y(=p) 2" Du(Xj = M) D = Aj)

2
a| I du

<cn? [ |F (WP dp.

We bound the contribution to (9.25) from the second term on the right of (9.32)
by

(9.33) { / ’ / ’

(9.34) < { f ’ / ’ ' Y "Dy (A; = A) Y A (— )
J t

2 1/2
dA d,u,}

YDA = A) 3o e BN (— )
j ¢

2 1/2
If(/\)f(u)lz} .
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Now (9.34) is bounded by

“ ” A _ |2 1/2
C{/f 2D, (A = NP X | e g (—p)| I F(NF ()P dA d/J,}
J=1 j=11 ¢ |
/" 1/2
2 C(n3 / Z|ll_f(—ﬂ)|2|f(ﬂ)|2d/u>

1/2
< C<n3 ) t2(31)> < CnfH,
t

from (8.28), (8.29), (9.30), (9.31) and (3.9). To deal with (9.33) we employ (9.32)
and (8.2) to write

DB (=) = (=)D = Aj) = D P pea (= A )e ),
t t

The contribution to (9.33) from the first term on the right is bounded by

I

from (9.30), while the contribution from the second term is bounded by

2 1/2
dAdM} = 0(n3/?%)

3 Do(A; = DD, (- 4,)
J

1/2

1/2
C{”Z”Z|¢n—t+1(/\j)|2} < Cn1+B(Z"j2B) = o(nP*1).
Jj ot j

It follows that for « = 0, 8 < 1, (9.25) is O(n?) +(0(n®?)+o(nf*1))0(nf*1) =
o(n?#+1)). Thus we can neglect the component [” [” of (9.18), as we can also
["[" and [” [’ by straightforwardly combining proofs given so far.

Next the contribution of k. to (9.17) is

1

st [ [ L 00 =2 == 0y,
(9.35) J
X {Z//qsn(_)\k7 M)‘vbn()\k7 a))}f()\, My (l))d)\ d[.L dow.
J

The contribution of [ [* [ is bounded by

wlhhd

2
drdpdo

Z//qsn(/\j’ —A— r— w)‘!’n(_)‘ﬁ )‘)
J

xzwAAI

Both factors in braces are bounded by the right side of (9.19), noting that in
the first factor we may substitute for A+ up+ w and use periodicity of period 27.

(9.36)
2 1/2
du dw} .

Z //(l)n(_Ak’ :u“)lrlln(/\k’ M’)
J
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Thus (9.36) = o(n%(@*#-1), We omit the proof for the remainder of (9.35) as it
is so similar to earlier proofs. This completes the proof for F(0, m).
For F(1, m) we note that

Var{F(1,m)} = Var{F(0, m)} — 2 Cov{F(0, m), {&} + Var({§).
The proof proceeds by showing that
lim nZ(l’“*B)Cov{ﬁ(O, m), &} = %G(O)Q(a, B, B, @)

+ fnn(O)fOB(O)Q(a7 a, Ba :8)7
lim n21-2=F) Var(f§) = %H(O)R(a, B, B, @)

+ [ (0)f 4(0) R(, @, B, B).

These proofs follow very closely the previous pattern, where we established
them first for m = 72 and then showed that the effect of taking m < 72 makes
no difference, the details being so similar as not to be worth reporting. O
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