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Abstract

The seasonal structure of quarterly UK and Japanese consumption and income is
examined by means of fractionally-based tests proposed by Robinson (1994). These
series were analysed from an autoregressive unit root viewpoint by Hylleberg, Engle,
Granger and Yoo (HEGY, 1990) and Hylleberg, Engle, Granger and Lee (HEGL,
1993). We find that seasonal fractional integration, with amplitudes possibly varying
across frequencies, is an alternative plausible way of modelling these series.
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1.  Introduction and summary
Many macroeconomic time series contain important seasonal
components. A simple model for a time series y, is a regression on dummy

variables S,,

s—1
y, = m, + Zm[S” + g, g ~iid, (1)
i=1
where s is the number of time periods in a year and the m, are unknown
coefficients. Stochastic processes have also been widely used in modelling
seasonality, for example, the stationary seasonal ARMA

@, (L')y, = O,(L)e, & ~ iid, )

where @ (L") and O (L") are polynomials in L" (the seasonal lag operator) of
orders p and q respectively, with the zeros of @ (L) outside the unit circle and
the zeros of © (L") outside or on the unit circle. As an alternative to (1) and (2),
it may be appropriate to allow for stochastic seasonal stationarity, as is implicit
in the practice of seasonal differencing (see eg. Box and Jenkins, 1970) whereby
the operator (1 — L) produces a stationary weakly dependent sequence. For
example, for quarterly data, p(L’) = (1 - L") can be factored as (1 - L)(1 + L)(1 +
L%, containing four zeros of modulus unity; one at zero frequency; one at two
cycles per year, corresponding to frequency m; and two complex pairs at one
cycle per year, corresponding to frequencies nt/2 and 3n/2 (of a cycle 2m).

A good deal of empirical work has followed this approach: Hylleberg,
Engle, Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal
unit roots in quarterly U.K. nondurable consumption and disposable income,
using a procedure that allows tests for unit roots at some seasonal frequencies
without maintaining their presence at all such frequencies. Beaulieu and Miron
(1993) extended the HEGY procedure to monthly data and examined twelve
macroeconomic series in monthly and quarterly data. By contrast with
previous studies, they concluded that evidence in favour of a seasonal unit
root was weak. These findings have been seriously questioned by Hylleberg,
Jorgesen and Sorensen (1993), who concluded that seasonality is in many cases

variable, not fixed. Hylleberg, Engle, Granger and Lee (1993) (henceforth



HEGL) performed the HEGY test on quarterly series of Japanese real
consumption and real disposable income, suggesting that income is integrated
of order 1 (I(1)) at 0 and at all seasonal frequencies, n/2, © and 3n/2, and
consumption is I(1) at frequencies 0 and n, while some difficulty was found in
separating unit roots at frequency m/2 (and 3m/2) from a deterministic
seasonal pattern. Osborn (1993) suggested that a nonstationary periodic AR(1)
or a periodically integrated I(1) processes could be more useful.

Seasonal unit roots can be viewed not only in an autoregressive
framework but also as a particular case of seasonal fractionally integrated
processes. Consider the process

=LYy = u, (3)
where d > 0 and u, is an I(0) series, which is defined here as a covariance
stationary process with spectral density bounded and bounded away from
zero at all frequencies. Clearly, y, has s roots of modulus unity, all with the
same integration order d. (3) can be extended to present different integration
orders for each seasonal frequency, whereas vy, is stationary if all orders are
smaller than %. We say that y, has seasonal long memory at a given frequency
if the integration order at that frequency is greater than zero.

Few empirical studies have been carried out in relation to seasonal
fractional models. The notion of fractional Gaussian noise with seasonality was
suggested by Jonas (1981) and extended in a Bayesian framework by Carlin,
Dempster and Jonas (1985) and Carlin and Dempster (1989). Porter-Hudak
(1990) applied a seasonal fractionally integrated model to quarterly U.S.
monetary aggregate with the conclusion that a fractional ARMA model could
be more appropriate than standard ARIMAs. Advantages of seasonal
fractionally differencing models for forecasting monthly data are illustrated in
Sutcliffe (1994), and another empirical application is found in Ray (1993).

In the following section we briefly describe some common tests for
seasonal integration, and compare them with Robinson’s (1994) tests for
nonstationary hypotheses which permit testing of seasonal fractional
integration of any stationary or nonstationary degree. Section 3 describes

models to be tested, using Robinson’s (1994) approach, to macroeconomic data



of United Kingdom (Section 4) and Japan (Section 5) analyzed in HEGY (1990)

and HEGL (1993) respectively. Section 6 contains some concluding remarks.

2.  Tests for seasonal integration
We first consider the Dickey, Hasza and Fuller (DHF) (1984) test of p, =
lin

1 -pL)y =g, g, ~ iid(0,0%).

The test is based on the auxiliary regression
1 - L)y = my,_, + &, (4)

the test statistic being the t-ratio corresponding to m in (4). Due to the
nonstandard asymptotic distributional properties of the t-ratios under the null
hypothesis, DHF (1984) provide simulated critical values for testing against the
alternative m < 0. In order to whiten the errors in (4), the auxiliary regression
may be augmented by lagged (1 — L")y, and with deterministic components,
but unfortunately this changes the distribution of the test statistic. A limitation
in DHF (1984) is that it jointly tests for roots at zero and seasonal frequencies,
and therefore does not allow for unit roots at some but not all seasonal
frequencies.

This defect is overcome by HEGY (1990) for the quarterly case. Their
test is based on the auxiliary regression

1-LY, = 7y, + Ty, + Ty, + Ty, + &, (5
where y, = (1+L+ L’+L’)y, removes the seasonal unit roots but leaves in the
zero frequency unit root, y, = -(1-L+ L*-L’)y, leaves the root at & and y,, = -(1-
LZ)yt leaves the roots at m/2 and 3w/2. The existence of unit roots at 0, «, /2
(and 3w/2) implies that &, = 0, w, = 0, and =, = , = 0 respectively. The t-ratio for
n, and m, is shown by HEGY to have the familiar Dickey-Fuller distribution
(see Fuller, 1976) under the null of ©, = 0 and &, = 0 respectively, while the t-
ratio for m,, conditional on =, = 0 has the distribution described by DHF (1984)
for s = 2. Also ajoint test of &, = w, = 0 is proposed based on the F-ratio, and the

critical values of the distribution tabulated. A crucial fact in these tests is that



the same limit distributions are obtained when it is not known a priori that
some of the ©'s are zero: if the n’s other than the one to be tested are truly
nonzero, then the process does not have unit roots at these frequencies and the
corresponding y’s are stationary. If however some of the other n’s are zero,
there are other unit roots in the regression, but the corresponding y’s are now
asymptotically uncorrelated and the null distribution of the test statistic will
not be affected by the inclusion of a variable with a zero coefficient which is
orthogonal to the included variables. An extension of this procedure to allow
joint HEGY-type tests for the presence of unit roots at zero and all seasonal
frequencies, and only for the seasonal frequencies, is given in Ghysels et al.
(1994). It is shown that the test statistics will have the same limiting
distribution as the sum of the corresponding squared t-ratios for m, (i = 1,2,3,4)
in the former, and & (i = 2,3,4) in the latter test.

All these procedures test for a unit root in the seasonal AR operator and
have stochastic nonstationarity as the null hypothesis. Canova and Hansen
(1995) seasonally extend the test of Kwiatkowski et al. (1992), and propose a
Lagrange multiplier test (the CH test) based on the residuals from a regression
extracting the seasonal and other deterministic components, for testing the null
of stationarity about a deterministic seasonal pattern. Hylleberg (1995)
compares small sample properties of HEGY and CH tests for seasonal unit
roots in quarterly series, concluding that both tests complement each other.
More recently, Tam and Reinsel (1997) propose a test for a unit root in the
seasonal MA operator, testing a deterministic seasonal null against a stochastic
nonstationary alternative. They consider the (integrated) SMA(1) model,

y, = M4, + u, t = 1-s,..,0, (6)

1 - Iy = (- al)u, t = 1,2, .., 7)

where |1, is a deterministic seasonal mean, so that y, - 1, = 0, and u, is initially,
a white noise process. Thus, a test of o0 = 1 in (7) can be interpreted as a test of
deterministic seasonality against the alternative o. < 1 of stochastic integrated

seasonality.



The tests described above consider the possibility of only a single form
of seasonal stochastic nonstationary, in particular, unit roots. We now describe
the tests of Robinson (1994), which can test any integer or fractional root of any
order on the unit circle in the complex plane.

We observe {(y, z), t =1, 2, ...n} where

Bz, + x, t=12.., (8)
p(L;O)x, = u,, t = 1,2,.., )
x, = 0, t <0, (10)

where B is a (kx1) vector of unknown parameters and z, is a (kx1) vector of

deterministic variables that might include an intercept, a time trend and/or
seasonal dummies; p(L; 0), a prescribed function of L and the unknown (px1)
parameter vector 0, will depend on the model tested; u, is an I(0) process with

parametric spectral density
0-2
S = —g), - < A < 7,
2

where the positive scalar 6° and the (qx1) vector T are unknown, but g is of
known form. In general we wish to test the null hypothesis

H:6 = 0 (11)

o

Under (11), the residuals are i, = p(L)y, — B'w,, t=1,2, ..., where

p(L) =p(L;0); B = [wa] iw,p(L)yt; w, = p(L)z,.

Unless g is completely known function (eg. g =1, as when u, is white noise) we
have to estimate the nuisance parameter vector 1, for example by

7 = argmin__, 0°(7), where T is a suitable subset of R* and

2
2T & 27 j
oX(1) = — ) g4I, I(4) = ‘ Zu ;A= L.
n j=1 ﬂ 7[7’1 =1 n
The test statistic, derived from the Lagrange multiplier (LM) principle, is
R = Lair'a = i (12)
o




where 7 = L1725 67 = 0@ 4= LY yA)g: D) I(4)
é n =

- %[iw(ﬂ,)w(ﬂj)'iw(ﬂj)é(ij)'x{i £(2,)6(2,) j XN J

w(d,) = Re(a%logp(e”f;o)]; éA;) = i10gg(/1/’7)

where the sum on * is over A such that -t <A < A ¢ (p,-A, p,+ 1), 1=1,2,

., s,suchthat p1=1,2, ..., s <o are the distinct poles of p(L). Note that R is
a function of the hypothesized differenced series which has short memory
under (11), and thus we must specify the frequencies and integration orders of
any seasonal roots.

Robinson (1994) established under regularity conditions that

R —, X as n—> oo,

and also the Pitman efficiency property of LM in standard problems. If p = 1,
an approximate one-sided 1000:% level test of (11) against alternatives

H: 6 > 0. (13)
rejects H if 7> z, where the probability that a standard normal variate
exceeds z, is o, and conversely, a test of (11) against alternatives

H: 60 < 0 (14)
rejects H if 7< -z, A test against the two-sided alternative 6 # 0, for any p,
rejects if R exceeds the upper critical value of the X, distribution.

We can compare Robinson’s (1994) tests with those in HEGY (1990).
Extending (5) to allow augmentations of the dependent variable to render the
errors white noise, and deterministic paths, the auxiliary regression in HEGY
(1990) is

o)1 — LYy, = my,, . + Ty, + Ty, + Ty, + 0, + €, (15)
where ¢(L) is a stationary lag polynomial and 7, is a deterministic process that

might include an intercept, a time trend and/or seasonal dummies. If we



cannot reject the null hypothesis 7, = 0 against the alternative ©, < 0 in (15), the
process will have a unit root at zero frequency whether or not other (seasonal)
roots are present in the model. In Robinson’s (1994) tests, taking (9) with
p(L:6) = (I — L)** (16)
with d = 1, (11) implies a single unit root at zero frequency. However, we

could have instead

p(L:0) = (1 — L*)™° (17)
or alternatively
p(L;0) = (1 — L+ L* = P)° (18)
or
p(L:0) = (1 — LH™. (19)

If again d = 1, under (11), x, displays unit roots at frequencies zero and w in
(17); zero and two complex ones corresponding to frequencies n/2 and 3n/2 in
(18), or all of them in (19). Using HEGY’s (1990) tests, the non-rejection of the
null &, = 0 in (15) will imply a unit root at frequency n independently of other
possible roots, and this can be consistent with (8) — (10) jointly with (17) or (19)
among other possibilities covered by Robinson’s (1994) tests. Furthermore,
testing sequentially, (or jointly as in Ghysels et al., 1994), the different null
hypotheses in (15), if we cannot reject that m, = 0 fori = 1, 2, 3 and 4, the overall
null hypothesized model in HEGY (1990) becomes
o(L)1 - LYy, = n, + &, t = 12,.., (20)

and we can compare it with the set-up in Robinson (1994), using (8) — (10) and
(19) with ¢(L)u,=¢, t=1,2, ..., which, with d = 1, under the null (11) becomes

oL)1 - LYy, = ¢L)p'(A - LYz, + ¢, t = 1,2,. (21)
Clearly, if we do not include explanatory variables in (8) and (15), (i.e, n, = z,=
0), (21) becomes (20), and including regressors, the difference between the two
models will be due purely to deterministic components. Robinson’s (1994) tests
also allow testing different integration orders for each of the seasonal
frequencies. Thus, instead of (19) we could consider for instance,

p(L;6) = (I — L)W + L)%= (1 + L2)5+% (22)



and test the null 6 = (8,, 6,, 0,)" = 0 for different values of d,, d, and d,. This
possibility is also ruled out in HEGY (1990) and the other tests presented
above, which just concentrate on the unit root situations.

We can also compare the tests of Robinson (1994) with those in Tam and
Reinsel (1997). They considered (6) and (7), where u, is now a stationary and
invertible ARMA process and tested

H : o =1 (23)
in (7) against the alternative oo < 1. The non-rejection of (23) in (6) and (7)
would imply that y, follows a deterministic seasonal pattern plus a stationary
stochastic process, while its rejection would be evidence of seasonal
integration. We can take fractional operators instead of the AR and MA ones in
(7):
1 -Lryy = (@0 - LY u, t = 1L2,.., (24)
with d > 0, and given the common factors appearing in both sides in (24),
calling § = v - d, the model can be rewritten as (6) with
1 - L)Yy = u t = 12,.., (25)
and we can test H 6 = 0 against the alternative d > 0. Thus, (7) and (25) are
identical under the null. The null and alternative versions of (25) are covered
by Robinson’s (1994) setting, with B’z, in (8) replaced by p, and s =4, d = 0 and
0 =39in (19).

The null %* limit distribution of Robinson’s (1994) tests is constant across
specifications of p(L; 6) and z, and thus does not require case by case
evaluation of a nonstandard distribution, unlike of the other tests described.
Ooms (1997) proposes Wald tests based on Robinson’s (1994) model in (8) —
(10), which have the same limit behaviour as LM tests of Robinson (1994), but
require efficient estimates of the fractional differencing parameters. He
suggests a modified periodogram regression estimation procedure of Hassler
(1994), whose distribution is evaluated under simulation. Also Hosoya (1997)
establishes limit theory for long memory processes with singularities not
restricted to zero frequency and proposes a set of quasi-log-likelihood ratio

statistics to be applied to raw time series. Robinson’s (1994) tests were applied



to non-seasonal data by Gil-Alafia and Robinson (1997), and given the vast
amount of empirical work based on AR structures, an empirical study of

fractional-based tests for seasonal data seems overdue.

3.  Empirical applications

The relationship between consumption and income is arguably one of
the most important in macroeconomics. The most influential and perhaps most
widely tested view of this relationship is the permanent income hypothesis
(see Hall, 1989). We concentrate on the univariate treatment of these two
variables, and apply different versions of Robinson’s (1994) tests to some
seasonally unadjusted, quarterly data for United Kingdom and Japan, using
the same dataset as in HEGY (1990) and HEGL (1993) respectively.

For both countries we follow the same procedure. We test (11) in a
version of (8),

v, = B+ Bt + BS, + B.S, + BS;, + x, t=12... (26)

with (9) and (10), where S,, S, and S, are seasonal dummies. We test in a

W
sequential way. Since the data are quarterly, we start by assuming that x, in
(26) has four roots and take p(L; 6) as in (19). Given that 0 is scalar, we test H,
(11) against the one-sided alternatives (13) and (14). In order to allow different
integration orders at different frequencies we also consider
p(L:O) = (I — L)W + L)%, (27)

and more generally, (22). Therefore, 6 = (6,, 6,)" under (27) and (0,, 6,, 6,)" under
(22) and we test here (11) against the two-sided alternative 6 # 0. Clearly, when
departures are actually of the specialized form (19), a test of (11) directed
against (19) will have greater power than ones directed against (27) or (22), but
the tests have power against a wider range of alternatives.

Following this sequential way of testing we next assume X, displays
only three roots: two of them complex, corresponding to frequencies n/2 and
3n/2, and one real that might be either at zero or at frequency m. Thus, we

perform the tests in case of (18) and

pL;0) = (1 + L+ L* + L)4°, (28)



and extending now the tests to allow different integration orders at the
complex and at the real roots, we also consider two-sided tests where
p(L:0) = (1 — L)y" o1 + L2)=* (29)
and
p(L:6) = (1 + L)W (1 + L)%+o. (30)
In a further group of tests, we assume that the hypothesized model
contains only two roots, one at zero frequency and the other at m. Again we
look first at one-sided tests against (17) and then at two-sided tests against
p(L:0) = (1 — L)W (1 + L), (31)
Finally we consider the possibility of a single root (or perhaps two
complex ones), and therefore look at (16) as well as

p(L;0) 1+ L)y, (32)

and finally,

p(L;0) (1 + L) (33)

The form of 4 for these various choices of p is derived in the appendix. It is
found that A, interestingly, does not vary with the null hypothesized
integration order d or integration orders d, clearly facilitating the
computations. In all these cases the tests will be performed for different model
specifications in (26). First, we assume that 3, = 0 a priori; next 3, = 0,i > 2,
(including an intercept); next B, = 0, i > 3, (a time trend); next B, = 0, (an
intercept and dummy variables); finally that all B, are unknown. In all cases we
consider a wide range of null hypothesized d (and d,'s when p > 1), from 0.50
through 2.25 with 0.25 increments, and white noise u, though in some cases
we extend to I(0) parametric autocorrelation in u,. Clearly, non-rejections of
(11) when d (and the d,'s) equal 1 imply unit roots, and non-rejections with d =

0 will suggest deterministic models of form advocated by Tam and Reinsel

(1997).

4. The UK. case
We analyze the quarterly United Kingdom dataset used in HEGY

(1990). c, is log consumption expenditure on non-durables and y, is log

10



personal disposable income, from 1955.1 through 1984.4. The conclusions of
HEGY (1990) were that c, could be I(1) at each of the frequencies 0, ©/2 (and
3n/2) and m; y, may contain only two roots, at zero and =; ¢, — y, can have four
unit roots if dummies are not introduced, but two unit roots of the same form
as in ¢, if they are.

Table 1 reports results for the one-sided statistic#, when p(L; 0) in (9) is
(19). First, in Table 1(i), we take u, as a white noise process, and observe that
for the two individual series (c, and y,), the null is never rejected when d = 0.75
and d = 1. Also, d = 1.25 is not rejected when we include as regresors an
intercept and dummies. For the differenced series (c, — y,), the values of d
where H, is not rejected are slightly smaller (d = 0.50 and d = 0.75), and the
null hypothesis is clearly rejected in all cases, in favour of less nonstationary
alternatives, suggesting that if the two individual series were in fact I(1), a
degree of fractional integration may exist for a given cointegrating vector (1, -
1), using a simplistic version of the “permanent income hypothesis theory” as
discussed by Davidson et al. (1978) for example. The fact that the unit root null
is never rejected for c, is consistent with HEGY (1990), but this hypothesis is
not rejected for y, while HEGY (1990) found evidence of only two unit roots (at
frequencies 0 and m) in this series. Various tests of this hypothesis will be
performed later in a further group of tests. Also, HEGY (1990) introduced
augmentations, including lagged values of the series. Thus, we also performed
the tests with AR u,. In Tables 1(ii) and (iii) we give results for AR(1) and AR(2)
u, respectively. Tests allowing higher order AR u, were also performed,
yielding similar results. The non-rejection values are now d = 0.50 and d = 0.75,
and in those cases where the former is rejected, this is always in favour of
stationary alternatives. The lower integration orders observed in these two
tables compared with Table 1(i) can in large part be due to the fact that the AR
estimates are Yule-Walker ones, entailing roots that cannot exceed one in
absolute value but can be arbitrarily close to it, so they pick up part of the

nonstationary component.
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Table 2 reports results of the two-sided tests R in (12) when 6 is a (2x1)
vector. p(L; 8) is now given by (27) and therefore we allow different integration
orders for the real and complex roots, letting d, and d, take each of the values
0.50 (0.25) 1.50. We concentrate on the cases of no regressors, of an intercept,
and of both, an intercept and a time trend, and present the results only for
those cases where we observe at least one non-rejection value for each (d,, d,)
combination across the series. If there are no regressors, H, is rejected in all
cases for the individual series, while for c, — y, we observe several non-
rejections when d, = 0.50, 0.75, 1.00 and 1.25 and d, = 0.50 and 0.75. Including
an intercept or a linear time trend, the results are similar in both cases, with
most of the non-rejections occurring when d, is smaller than d,, and also

observing smaller orders for c, -y, than for the individual series.

In Table 3 we extend these tests to allow different integration orders at
zero and w, and thus p(L; 0) is in (22). Again we only present the results for
those cases where we observe at least one non-rejection value. The results are
consistent with the previous ones: in fact, when there are no regressors, the
null is always rejected for c, and y, while for c, — y, there are some non-
rejections, with the lowest value achieved at d, =1 and d, = d, = 0.50. Including
a constant or a time trend, the results seem to emphasize the importance of the
root at zero frequency over the others, given its greater integration order.

Following this sequential way of testing we next assume x, can be
modelled with three roots, and thus remove from (19) the root at zero
frequency (in which case p(L; 0) adopts the forms (28) or (30)), or at = (i.e., p(L;
0) as in (18) or (29)). Though we do not present the results, they show that H, is
rejected in all series and across all cases, indicating the importance of these two
roots, as suggested by HEGY (1990).

In the next group of tables we suppose x, has only two roots, at zero and
. First we take p(L; 0) as in (17), so the same integration order is assumed at
both frequencies. This way of specifying the model is interesting in view of the
results in HEGY (1990), who suggested that only two unit roots at these

frequencies were present in y, and in some cases for c, -y, Results for white

12



noise u, are given in Table 4 and the non-rejection values occur when d = 0.75
and 1 for c,and y, and when d = 0.50 for c, -y, suggesting again the possibility
of a fractional cointegrating relationship at these two frequencies with
cointegrating vector (1, -1). The hypothesis of two unit roots is always rejected
for c, if we include regressors. These rejections are in line with HEGY (1990),
who indicated that complex unit roots should be included. For y, we observe
that d = 1 is not rejected in 3 of the 5 possible specifications in (26), which is
also consistent with HEGY (1990). If we allow integration orders to differ
between zero and © frequencies, (i.e., p(L; 6) as in (31)), the only non-rejection
values occur when d, = 0.75 and d, = 0.50 for y, with an intercept and with a

linear time trend.

Finally we assume x, has only two complex roots, at /2 and 3n/2, or a
single one either at w or zero. Thus p(L; 0) takes the form given in (33), (32) and
(16) respectively. As expected, H, is always rejected in the first two cases,
indicating the importance of the root at zero frequency to describe trending
behaviour. Table 5 gives results of 7 for white noise u, and p(L; 6) as in (16),
and we observe that if there are no regressors the I(1) null is not rejected for c,
and y, but is strongly rejected for ¢, — y,. There are few non-rejections in this
table and they correspond to values of d ranging between 0.50 and 1 for the
individual series. For c, -y, the only two non-rejection cases occur at d = 0.50 if
dummies are included, but for the remaining specifications this null is strongly
rejected in favour of stationary alternatives. The fact that the unit root is
rejected in this table for all series when some regressors are included in (26) is
consistent with HEGY (1990), who suggested the need of at least one seasonal
unit root.

Summarizing now the main results obtained in the U.K. case, we can
say that if x, in (26) is I(d) with four roots of the same order and u, is white
noise, the values of d where the null is not rejected range between 0.75 and 1
for the individual series and are slightly smaller for the difference c, -y, If u, is
AR, d ranges between 0.50 and 0.75 for the three series considered. Allowing

different integration orders at each frequency, we observe that the root at zero
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frequency seems more important than the seasonal ones, at the seasonal root at
T appears also more important than the two complex ones at ©/2 and 3r/2. If
we take x, as I(d) with two real roots, the model seems more appropriate for y,
than for c, or ¢, — y, which is in line with results in HEGY (1990). Finally,
modelling x, as fractionally integrated with a single root at zero frequency, the
range of d where H_ is not rejected goes from 0.50 to 1 for the individual series
but close to stationarity for c, -y, but using a single seasonal root at frequency
T or a pair of complex ones at frequencies ©t/2 and 31/2 seems inappropriate in

view of the great proportion of rejections.

5.  The Japanese case

We analyze here the log of total real consumption (c,), the log of real
disposable income (y,), and the difference between them (c, - y,) in Japan from
1961.1 to 1987.4 in 1980 prices. These series have been analyzed in HEGL
(1993) to test the presence of seasonal integration and cointegration. In this
work (and in an earlier version, HEGL, 1991), they apply the HEGY (1990) tests
to these data and their conclusions can be summarized as follows: for c, a unit
root is observed at all frequencies 0, ©/2, 3n/2 and = if there are no regresssors
in the model or if only a time trend is included; however, if dummies are also
included, only two unit roots are observed, one at zero frequency and one at
frequency =. For y, unit roots are not rejected at any frequency when there are
no regressors or when a time trend and/or dummies are introduced, but if
only an intercept is included the unit root at zero frequency is rejected. Finally,
for c, — y, unit root nulls are not rejected at any frequency, independently of
the regressors used.

Table 6 is analogous to Table 1, showing the one-sided test statistic 7
when p(L; 6) in (9) takes the form (19). Table 6 (i) reports results for white noise
u, and the first thing that we observe is that if 3, = 0 in (26), we cannot reject
(11) for d = 0.75 and d =1 in case of either c, or y, while for c, - y, these two
cases are also not rejected, along with d = 0.50. Including regressors, the unit

root hypothesis is rejected in both series in favour of more nonstationary
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alternatives, while the nulls d = 0.75 and d = 1 are never rejected for c, - y.
Thus, if p(L; 8) = 1 — L' and u, is white noise, the two individual series are
clearly nonstationary with d greater than 1 in most cases; however, their
difference seems less nonstationary, suggesting that some fractional
cointegration could exist between both series, with cointegrating vector (1, -1).
The fact that d = 1 is not rejected for ¢, and y, when there are no regressors, and
for ¢, - y, independently of the regressors used in (26), is consistent with the
results in HEGL (1993) though they allow AR structure in the differenced
series. Therefore in Tables 6 (ii) and (iii) we suppose that u, in (9) is an AR(q)
with g =1 or 2. The range of non-rejection values of d goes from 0.50 through 1
for ¢, and c, - y, and from 0.50 through 1.25 for y,. As we explained before for
the UK. case, this smaller degree in the integration order of the series
(compared with Table 6 (i)), could be in large part due to competition between
integration order and AR parameters in describing the nonstationary
component. If we concentrate on the AR(1), we see that the unit root is not
rejected for y, but is for ¢, when dummy variables are included in the model,

again in line with HEGL (1993).

So far we have assumed that the four roots in x, must have the same
integration order. In the following tables we allow integration orders to differ
between complex roots and real ones. Table 7 corresponds to two-sided tests
when p(L; 0) in (9) takes the form given in (27). When there are no regressors,
the null is rejected in all cases for both ¢, and y, while for c, - y, we observe
some non-rejections when d, = d, = 0.50, 0.75 and 1. These three possibilities
were not rejected in Table 6 (i) when we employed the one-sided tests.
Including an intercept or a time trend, we observe now some non-rejections for
¢, and y,. Starting with ¢, H, is not rejected when d, = 1.25 or 1.50 and d, = 0.50,
0.75 and 1, observing therefore a greater degree of integration at zero and n
frequencies than at n/2 and 3r/2. Similarly, for y, all non-rejections occur
when d, is slightly greater than d,, and for c, - y, the lowest statistics are

obtained at d, = d, = 0.75. The null hypothesis of a unit root at all frequencies is
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not rejected in this series, which is again consistent with Table 6 (i) and with

results of HEGL (1993).

In Table 8 we are slightly more general in the specification of p(L; 6) in
(9), and a different integration order is allowed at each frequency. Therefore,
p(L; 0) takes the form (22). Similarly to Table 7, when there are no regressors
the null is always rejected for the individual series, while for c, - y, there are
non-rejections at some alternatives, with d, greater than d, or d,. Including an
intercept or a time trend, the results emphasize the importance of the root at
zero frequency over the others for the three series.

Performing the tests under the assumption that p(L; ) is of forms (18)
or (28) - (30), we always rejected. Thus, following this sequential way of
performing the tests, we next assume that x, has only two roots, one at zero
frequency and the other at . First we take p(L; ) as in (17), so 6 consists of a
single parameter. Table 9 gives results for one-sided tests with white noise u,.
We observe that the results are quite variable across the different specifications
of (26), and while the orders of integration range between 0.50 and 1.25 for the
individual series, for the difference c, - y, the only non-rejections occur when d
= 0.50 with seasonal dummies. The results for the unit root case are consistent
with those in HEGL (1993). In fact, the unit root null is not rejected for ¢, when
dummies are included, but is nearly always rejected for y, and c, - y, due
perhaps to exclusion of unit roots at frequencies n/2 and 3m/2, as was
suggested by these authors. Extending the tests to allow different integration
orders at the same two frequencies, we observed just a single case where the

null was not rejected and it corresponded to c, with no regressors and d, = 1.25

and d, = 0.50.

Finally, we examine the case of x, containing a single root, and
concentrate on the case when this root is at zero frequency, i.e. (16). Table 10
shows results merely for white noise u,, and we observe that the unit root null
is not rejected for c, and y, when there are no regressors, but strongly rejected

for c, - y,. In fact, in the latter series the null is rejected in favour of stationary
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alternatives for the whole variety of specifications in (26), suggesting that at
this zero frequency, a certain degree of fractional cointegration might also
occur, with reference again to the permanent income hypothesis. Modelling x,
with a single root at frequency © (i.e. (32)) or as an I(d) process with two
complex roots corresponding to frequencies nt/2 and 3/2 (i.e., (33)), produced
rejections for all cases and across all series.

In conclusion we can summarize the main results obtained for the
Japanese case by saying that if x, is I(d) with four seasonal roots of the same
order d, and u, is white noise, the values of d where the null is not rejected are
at least one for c, and y, and less than or equal to one for c, -y, If u,is AR, d
ranges in most cases from 0.50 to 1 for the three series, and, allowing different
integration orders for the different frequencies, the most noticeable fact is the
relative importance of the root at zero frequency over the others. Taking x, as
I(d) with two roots, at zero and at frequency =, the null is not rejected for c,
when d ranges between 0.75 and 1.25 while for y, and c, - y, the non-rejection
cases correspond to d < 1. Finally, if we assume that x, has a single root at zero
frequency or at frequency m (or two complex ones corresponding to

frequencies m/2 and 3m/2), the unit root hypothesis will be rejected in

practically all cases in favour of less nonstationary alternatives.

6. Concluding remarks

Our approach, based on Robinson (1994), has the advantage over
standard autoregressive-based methods of allowing for fractional components,
different memory parameters across seasonal frequencies, and of standard null
limit distribution theory and Pitman efficiency against local alternatives. Our
Lagrange multiplier testing avoids estimation of parameters under the
alternative hypothesis, unlike Wald and likelihood-ratio type tests, while,
possessing the same null and local limit behaviour as such tests. In the
empirical work, we select a wide range of null hypotheses, with respect to
memory parameter, instead of estimating them, and the results may give some

impression of the local power performance of the tests.
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We have presented a variety of model specifications for quarterly
consumption and income data in Japan and U.K.. Given the variety of
possibilities covered by Robinson’s (1994) tests, one cannot expect to draw
unambiguous conclusions about the very best way of modelling these series. In
fact, using these tests, the null hypothesized model will permit different
deterministic paths; different lagged structures allowing roots at some or all
seasonal frequencies, each of them with a possibly different integration order;
and different ways of modelling the I(0) disturbances u,. Looking at the results
presented above as a whole, some common features are observed for all series
in both countries, however, and they can be summarized as follows:

First, modelling x, as a quarterly I(d) process, we observe that
integration orders are slightly smaller if u, is AR rather than white noise, due
perhaps to the AR component picking up part of the nonstationary
component. The results emphasize the importance of real roots over complex
ones, given the greater integration order observed for the former, and this is
even clearer when we allow different integration orders for each frequency.
Excluding one real root results in rejecting the null in practically all situations.
If p(L; 0) is given by (17), we observe several non-rejections, and separating the
roots at zero and at =, the results emphasize the importance of the root at zero.
Modelling the series, however, as a simple I(d) process with a single root does
not seem appropriate in most of the cases.

Another common feature observed across all the tables is the fact that
integration orders for the individual series seem to range between 0.50 (or 0.75)
and 1.25, independently of the lag function p(L; 6) used when modelling x, in
(9) and the inclusion or not of deterministic paths in (26), indicating clearly the
nonstationary nature of these series. In fact, though this was not shown in the
tables, the null was practically always rejected when d ranged between 0 and
0.50, and therefore we found conclusive evidence against deterministic
patterns of the form proposed by Tam and Reinsel (1997); however, c, — vy,
seems less integrated in practically all cases. Therefore, if we consider that the
series are well modelled by a given function p(L; 8), a certain degree of

fractional cointegration would exist between consumption and income for a
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given cointegrated vector (1, -1), using a very simplistic version of the
permanent income hypothesis.

We can finally compare these results with those obtained in HEGL
(1993) and HEGY (1990) for unit root situations. Results in HEGL (1993) for
Japanese data indicated the presence of unit roots at all frequencies for y, and c,
-y, and the same conclusions hold for c, if dummies are excluded, though only
two real unit roots would be present if these dummy variables are included.
Looking now at our tables, we observe that the unit root null is not rejected for
y, in any specification in (26) when p(L; 6) adopts the form (19) with AR u,
Similarly, for c, - y, we cannot reject the unit root null for the same p(L; 8) and
white noise u,. For c, the null of four unit roots is not rejected when there are
no dummies, but if these are included non-rejections will occur when p(L; 6)
takes the form (17). For the U.K. case, results in HEGY (1990) suggested that
four unit roots could be present for c, and for c, - y, if dummies are excluded,
and two real unit roots for y, and for c, -y, if they are included. Our results
again show a certain consistency with theirs, given that the unit root null is not

rejected for consumption if p(L; 6) is (19) with white noise u, and for income

this hypothesis is not rejected if p(L; 6) takes the form (17).

Appendix

In this appendix we analyze the matrix A in R in (12) when p(L; 6) in (9)

adopts the form in (22) and u, is white noise, so that
. 2

4 = ;zl/l(ﬂj)y/(ﬂg)va
J

where W(A) = (y,(A), W,(A), y;(A))" for [A| <, with

) ﬂ‘ = cosrAd
2sin— = -— ,
2 7

vi(2,) = Rellog(1—e")] = log

r=1

w,(4;) = Rellog(1 + €4)] = IOg(ZCOS%j _i(_l)r Cosr/l’
r=1

,

A = cos2ri

vy(4,) = Rellog(l + €2%)] = log|2cos/1| = —Z(—l)’ .
r=1 r
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Then A can be  approximated in  large  samples by

4

1 ”jy/(/i) w(Ayd A = (4,), where
T :

~ ~ o 2
4, = A4y = 4 = Z’”Z = % = 1.644,
r=1

213 = 231 = 223 = 232 = %Z(—l)"r2 = —0.411,
r=1
A, = 4y = Y(=D)r? = 0822
r=1

A in (12) approximates n times the expected value of the second derivative
matrix of the Gaussian log-likelihood with respect to the (px1) parameter
vector 0. (See, Robinson, 1994, page 1433). Thus, given the non-diagonality of
A, we rule out the possibility of testing, as in HEGY (1990), for the presence of

roots independently of the existence of other roots at any other frequencies in

the process.

For the remaining specifications of p(L; 8), 4 can be easily obtained
from the above expressions. Thus, if p(L; 0) is given by (19), y(A) = y,(A) + y,(A)
+y,(A) and 4 = 1.64; under (27), y(A) = [w,(V) + w,(A), w,(A)]” and the (2x2)
matrix 4 = [(1.64, -0.82)’; (-0.82, 1.64)']; under (18), w(A) = y,(\) + y,(A) and 4
= 2.46; under (28), y(A) = y,(A) + y,(A) and A = 2.46; under (29), y(A) = [w,(A),
v,M)] and 4 = [(1.64, -0.41)’; (-0.41, 1.64)']; under (30), w(A) = [w,(A), w,(M)]’
and 4 = [(1.64, -0.41)’; (-0.41, 1.64)']; under (17), y(A) = w,(\) + y,(A) and 4 =
1.64; under (31), y(A) = [w,(A), w,(\)]’ and 4 = [(1.64, -0.82)"; (-0.82, 1.64)'];
under (16), (32) or (33), w(A) = y,(A), w,(A) or y.(A) respectively, with 4 = 1.64in
each case.

Allowing AR(q) u,, g(A; 7) below (10) takes the form

q
_ ijA
1 E T, e
j=1

-2

7

and 4 will be given by the expression below (12), with the 1" element of

£(A) given by
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&) = 2(005[& - Zq:fj cos(/ —j)jg(ﬂ;f’).

A diskette containing the FORTRAN codes for the tests can be obtained from
the first author upon request and it is also available in Gil-Alafa (1997), pages

155-167 and on the JAE web site.
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TABLE 1

Fin (12) with p(L;0) = (1-L*)?*? for the U.K. data

1): With white noise u;

Series z./d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- 3.31 1.02’ -1.00° -2.43 -3.32 -3.88 -4.25 -4.51
I 5.09 1.31° -1.11 -2.00 -2.79 -3.42 -3.86 -4.18
Ct LT 2.65 0.41° -1.26° -2.33 -3.02 -3.46 -3.75 -3.99
LS 5.17 1.32° -1.09° -1.87° -2.62 -3.24 -3.70 -4.04
IT,S, 2.70 0.31° -1.25° -2.23 -2.87 -3.34 -3.72 -4.04
--- 3.29 1.01° -1.00° -2.42 -3.31 -3.87 -4.24 -4.50
I 5.16 1.25° -0.96’ -1.81° -2.61 -3.25 -3.72 -4.08
Y. LT 2.50 0.45° -1.06° -2.11 -2.84 -3.37 -3.76 -4.07
LS 5.16 1.21° -0.97° -1.76° -2.53 -3.16 -3.64 -4.00
IT,S, 2.41 0.39° 0.39° -2.06 -2.76 -3.28 -3.69 -4.02
--- -0.66’ -1.48’ -2.21 -2.84 -3.32 -3.69 -3.99 -4.24
I 1.09° -1.37° -2.39 -3.05 -3.53 -3.88 -4.15 -4.37
Ci- Vi LT -0.20° -1.44° -2.39 -3.06 -3.53 -3.86 -4.11 -4.32
LS 1.34° -1.19° -2.21 -2.89 -3.41 -3.79 -4.08 -4.32
IT,S, -0.01° -1.26° -2.21 -2.92 -3.43 -3.82 -4.11 -4.35
ii): With AR(1) u,
Series z./d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- -3.26 -3.62 -3.96 -4.27 -4.52 -4.72 -4.87 -4.98
I -0.84’ -0.78’ -2.10 -3.13 -3.76 -4.17 -4.44 -4.63
G LT 1.07° -0.82° -2.32 -3.25 -3.81 -4.16 -4.39 -4.55
LS -2.27 -2.65 -3.34 -3.75 -4.05 -4.29 -4.49 -4.65
I,T,S, -1.08’ -2.64 -3.38 -3.81 -4.10 -4.32 -4.50 -4.65
--- -3.26 -3.62 -3.96 -4.27 -4.52 -4.71 -4.86 -4.98
I -1.81° -1.77 -2.59 -3.32 -3.85 -4.23 -4.49 -4.69
Y. LT -0.24° -1.69° -2.69 -3.40 -3.90 -4.25 -4.50 -4.68
LS -2.43 -2.52 -3.01 -3.47 -3.87 -4.18 -4.43 -4.62
LT,S, -1.23° -2.32 -2.99 -3.51 -3.90 -4.21 -4.44 -4.63
--- -0.86’ -1.85° -2.60 -3.17 -3.59 -3.91 -4.17 -4.38
I -0.30° -1.79° -2.66 -3.25 -3.69 -4.01 -4.25 -4.45
Ci- Vi LT -0.62° -1.80° -2.66 -3.26 -3.69 -3.99 -4.22 -4.41
LS -0.29° -1.67° -2.52 -3.13 -3.58 -3.93 -4.20 -4.41
LT,S, -0.57° -1.69° -2.52 -3.14 -3.60 -3.94 -4.21 -4.43
iii): With AR(2) uq
Series z/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- -3.30 -3.62 -3.91 -4.21 -4.48 -4.69 -4.85 -4.98
I -1.117 | -1.10° -2.25 -3.18 -3.77 -4.16 -4.42 -4.61
Ct LT 0.45° -1.17° -2.47 -3.32 -3.85 -4.18 -4.39 -4.54
LS -2.35 -2.80 -3.49 -3.88 -4.15 -4.36 -4.54 -4.68
LT,S, -1.29° -2.81 -3.53 -3.93 -4.20 -4.39 -4.55 -4.68
--- -3.29 -3.61 -3.91 -4.21 -4.47 -4.68 -4.85 -4.98
I -2.13 -2.27 -2.89 -3.47 -3.92 -4.26 -4.51 -4.69
M LT -1.10° -2.19 -2.96 -3.54 -3.97 -4.29 -4.51 -4.69
LS -2.62 -2.81 -3.20 -3.59 -3.92 -4.20 -4.43 -4.61
I,T,S, -1.79° -2.64 -3.18 -3.61 -3.95 -4.23 -4.45 -4.62
--- -0.90° -2.02 -2.79 -3.31 -3.69 -3.97 -4.20 -4.40
I -0.68’ -1.99 -2.83 -3.39 -3.78 -4.07 -4.29 -4.47
Ci— Vi LT -0.71° -1.96 -2.82 -3.39 -3.78 -4.06 -4.27 -4.44
LS -0.69’ -1.90° -2.72 -3.29 -3.70 -4.02 -4.26 -4.46
I,T,S, -0.67’° -1.88’ -2.71 -3.29 -3.71 -4.03 -4.28 -4.47
‘. Non-rejection values for the null hypothesis (11) at 95% significance level; --: No intercept, no time

trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal
dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 2

Rin (12) with p(L;0) = (1—-L*)4*% (1+ L?)**% and white noise u, for the U.K. data
No intercept and no trend Intercept Intercept and a time trend

d, d; C Vi C- Vi Cy Vi C- Vi C Vi C- Vi
0.50 | 0.50 | 52.45 | 52.15 3.42° 79.34 | 83.17 11.36 | 33.55 | 40.66 3.65°
0.75 0.50 19.80 19.76 1.05° 12.96 18.85 0.86’ 7.51 14.80 | 0.86’
0.75 0.75 | 25.89 | 25.85 5.65° 23.48 | 26.73 4.90° 16.69 | 21.37 4.82°
1.00 | 0.50 8.31 8.29 2.03’ 0.86’ 543’ 2.76° 1.03° 5.61° 2.75’
1.00 | 0.75 11.56 11.57 | 4.20° 6.07 10.23 4.48’ 6.47 10.40 | 4.46’
1.25 0.50 8.60 8.55 4.99° 0.98’ 3.89° 5.88° 1.36° 4.47 591°
1.25 0.75 10.58 10.56 5.34° 4.14° 7.44 6.20 4.78’ 7.98 6.26
1.50 | 0.50 11.09 11.01 8.22 2.96’° 5.40° 8.93 3.22° 6.04 8.89
1.50 | 0.75 12.97 12.92 7.49 5.14° 8.19 8.41 5.57 8.93 8.37

‘: Non-rejection values for the null hypothesis (11) at 95% significance level.

TABLE 3
Rin (12) with p(L;0) = (1-L)“*% (1+ L)% *% (1+ L?)%*% and white noise u, for the U.K.
data

No intercept and no trend Intercept Intercept and a time trend

d, d> ds G i Ci- Vi G i Ci- Vi G i Ci- Ve
1.00 | 0.50 0.50 | 21.14 | 21.23 2.00° 2.11° 7.68’ 3.10° 2.15° 7.91 3.05°
1.00 1.00 0.50 | 34.51 3456 | 4.70° 11.11 | 2334 | 4.20° 11.61 | 2420 | 4.21°
1.50 1.00 0.50 15.57 15.54 | 6.04° 2.54° 6.03° 6.53’ 2.62’ 6.32° 6.50°
1.50 1.50 0.50 | 20.77 | 20.74 8.93 6.09° 12.07 9.28 6.03’ 12.23 9.24

‘: Non-rejection values for the null hypothesis (11) at 95% significance level.
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TABLE 4

Fin (12) with p(L;6) = (1 — L*)?*? and white noise u, for the U.K. data
Series z,/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 5.23 2.04 -0.47° -2.00 -2.87 -3.38 -3.72 -3.95
I 2.06 -4.26 -4.74 -4.86 -4.95 -5.01 -5.04 -5.06
Ct LT -3.21 -4.30 -4.71 -4.89 -4.98 -5.03 -5.06 -5.09
1S 7.14 0.17° -2.49 -3.40 -3.98 -4.33 -4.53 -4.66
LT,S 2.60 -0.66’ -2.50 -3.48 -4.03 -4.34 -4.54 -4.66
- 5.18 2.00 -0.51° -2.03 -2.89 -3.40 -3.74 -3.97
I 6.47 -0.69’ -2.81 -3.64 -4.16 -4.47 -4.65 -4.76
Yt LT 1.99 -1.05° -2.80 -3.72 -4.23 -4.49 -4.65 -4.76
1S 7.52 1.52° -1.16° -2.38 -3.23 -3.75 -4.07 -4.28
LT,S 4.09 0.96’ -1.18° -2.50 -3.29 -3.78 -4.08 -4.28
- -3.97 -4.47 -4.77 -4.93 -5.01 -5.05 -5.07 -5.08
I -3.11 -4.35 -4.70 -4.86 -4.94 -4.98 -5.01 -5.03
Ci- Yt LT -3.76 -4.40 -4.70 -4.86 -4.94 -4.99 -5.02 -5.04
1S -0.54° -3.03 -3.84 -4.27 -4.51 -4.66 -4.75 -4.82
ILT,S -1.64° -3.06 -3.85 -4.27 -4.51 -4.66 -4.75 -4.81

: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time
trend and no seasonal dummies; I: An intercept; [, T: An intercept and a time trend; I,S: An intercept and
seasonal dummies; [,S,T: An intercept, a time trend and seasonal dummies.

TABLE 5

Fin (12) with p(L;60) = (1 — L)?*? and white noise u, for the U.K. data

Series z/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
-- 9.89 3.91 -0.30° -2.55 -3.73 -4.43 -4.87 -5.18

I 1.57 -4.49 -4.76 -5.01 -5.23 -5.42 -5.59 -5.74

Ct LT -3.32 -4.31 -4.74 -5.02 -5.25 -5.44 -5.61 -5.76
LS 11.91 -0.90° -3.37 -4.28 -4.83 -5.18 -5.42 -5.61

LT,S 3.84 -1.13° -3.34 -4.34 -4.87 -5.21 -5.45 -5.64

-- 9.83 3.87 -0.31° -2.55 -3.73 -4.42 -4.86 -5.17

I 8.65 -3.00 -4.31 -4.95 -5.37 -5.65 -5.85 -6.00

Yt LT 1.13° -2.69 -4.27 -4.99 -5.41 -5.67 -5.87 -6.02

LS 11.76 -0.86° -3.49 -4.60 -5.24 -5.61 -5.85 -6.02
LT,S 4.76 -0.77 -3.44 -4.66 -5.28 -5.64 -5.87 -6.04
-- -3.66 -4.26 -4.63 -4.87 -5.06 -5.22 -5.38 -5.52

I -3.00 -4.20 -4.61 -4.87 -5.07 -5.24 -5.40 -5.54
Ci- Yt LT -3.50 -4.23 -4.61 -4.87 -5.07 -5.24 -5.39 -5.54
LS -1.09° -3.67 -4.42 -4.85 -5.13 -5.34 -5.51 -5.65

ILT,S -1.95’ -3.63 -4.42 -4.85 -5.13 -5.34 -5.50 -5.65
‘. Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time
trend and no seasonal dummies; I: An intercept; [, T: An intercept and a time trend; I,S: An intercept and
seasonal dummies; [,S,T: An intercept, a time trend and seasonal dummie
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TABLE 6
Fin (12) with p(L;0) = (1—L*)?*? for the Japanese data
1): With white noise u;
Series z./d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- 2.61 0.77 -1.02’ -2.36 -3.22 -3.76 -4.12 -4.37
I 4.36 2.64 3.05 1.36° -0.89’ -2.54 -3.50 -4.04
Ct I,T 9.12 7.28 3.83 0.008’ -2.72 -3.76 -4.01 -4.17
LS 4.41 2.80 4.39 2.95 0.34° -1.78’ -3.06 -3.76
IT,S, 10.02 8.34 5.14 1.04° -2.11 -3.51 -3.99 -4.24
--- 2.54 0.72° -1.05° -2.38 -3.23 -3.77 -4.13 -4.38
I 4.70 3.34 2.21 -0.08’ -2.10 -3.37 -4.06 -4.44
Vi LT 7.80 6.04 2.54 -0.91° -3.11 -3.76 -3.77 -3.86
LS 4.95 4.12 4.78 2.33 -0.57° -2.63 -3.72 -4.25
IT,S, 10.28 8.48 5.10 0.84° -2.30 -3.69 -4.19 -4.44
--- 1.53° -0.08’ -1.77 -2.93 -3.63 -4.05 -4.33 -4.52
I 2.41 0.46° -1.54° -2.84 -3.60 -4.05 -4.34 -4.54
Ci- Vi I,T 2.34 0.45° -1.54° -2.86 -3.58 -3.82 -3.89 -4.02
LS 3.42 0.35° -1.79° -3.06 -3.76 -4.15 -4.39 -4.55
IT,S, 3.31 0.34° -1.79° -3.06 -3.76 -4.15 -4.39 -4.55
ii): With AR(1) u,
Series z./d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- -3.13 -3.50 -3.83 -4.13 -4.38 -4.57 -4.71 -4.83
I -1.59° -0.67’ -0.51° -1.79° -2.78 -3.50 -3.99 -4.30
Ct I,T 2.57 1.01° -0.65’ -2.01 -3.19 -3.82 -4.09 -4.27
LS -2.87 -3.21 -3.31 -3.51 -3.73 -4.05 -4.35 -4.56
I,T,S, -1.05° -2.67 -3.30 -3.63 -4.12 -4.48 -4.64 -4.74
--- -3.01 -3.47 -3.82 -4.12 -4.37 -4.57 -4.71 -4.83
I -0.03’ 0.87 0.23° -1.38’ -2.67 -3.52 -4.03 -4.34
Y. I,T 3.09 2.07 0.24° -1.64° -3.09 -3.67 -3.80 -3.96
LS -2.51 -2.37 -1.71° -1.88’ -2.50 -3.34 -3.99 -4.36
LT,S, 0.29° -1.41° -1.61° -1.98 -3.08 -3.91 -4.28 -4.49
--- 0.87° -0.84° -2.29 -3.21 -3.77 -4.13 -4.37 -4.54
I 1.94° -0.01° -1.78’ -2.91 -3.59 -4.01 -4.28 -4.48
Ci- Vi LT 1.89° -0.02 -1.78’ -2.93 -3.58 -3.86 -4.00 -4.16
LS 1.34° -1.29° -2.66 -3.46 -3.95 -4.25 -4.44 -4.58
LT,S, 1.29° -1.29° -2.66 -3.46 -3.95 -4.25 -4.45 -4.58
iii): With AR(2) uq
Series z/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
--- -3.19 -3.53 -3.81 -4.09 -4.34 -4.54 -4.70 -4.82
I -1.53° -0.51° | -0.8%° -2.14 -2.96 -3.56 -4.01 -4.36
Ct LT 1.77° 0.16 -1.35° -2.37 -3.30 -3.88 -4.15 -4.34
LS -2.90 -3.26 -3.56 -3.82 -3.99 -4.24 -4.48 -4.66
LT,S, -1.23° -2.84 -3.60 -3.92 -4.29 -4.60 -4.74 -4.83
--- -3.08 -3.50 -3.80 -4.09 -4.34 -4.54 -4.70 -4.82
I -0.29° 0.75° 0.20° -1.31° -2.54 -3.41 -3.96 -4.30
Wi I,T 2.69 1.61° 0.04° -1.55 -3.04 -3.66 -3.77 -3.93
LS -2.54 -2.57 -2.53 -2.78 -3.05 -3.57 -4.07 -4.39
I,T,S, 0.11° -1.99 -2.59 -2.72 -3.33 -3.97 -4.31 -4.51
--- 0.80° -0.88’ -2.27 -3.18 -3.75 -4.11 -4.36 -4.53
I 1.85° 0.03’ -1.72 -2.89 -3.60 -4.02 -4.30 -4.49
Ci— Vi I,T 1.81° -0.01° -1.72 -2.91 -3.59 -3.85 -3.97 -4.12
LS 0.45° -1.67° -2.77 -3.47 -3.94 -4.24 -4.44 -4.58
I,T,S, 0.40° -1.68’ -2.77 -3.47 -3.94 -4.24 -4.44 -4.58
‘. Non-rejection values for the null hypothesis (11) at 95% significance level; --: No intercept, no time

trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal
dummies; I, T,S: Intercept, time trend and seasonal dummies.
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TABLE 7
Rin (12) with p(L;0) = (1—-L*)%*% (1+ L?)**% and white noise u, for the Japanese data
No intercept and no trend Intercept Intercept and a time trend
d, d; C Vi C- Vi Cy Vi C- Vi C Vi C- Vi
0.50 | 0.50 | 41.03 | 39.76 5.25° 64.79 | 63.91 6.83 167.85 | 107.69 | 6.49
0.75 0.50 17.12 16.72 0.42° 22.81 13.95 4.30° 77.49 | 29.81 4.23°
0.75 0.75 | 22.42 | 22.01 2.95’ 3446 | 30.38 0.50° | 117.38 | 68.97 0.52’
0.75 1.00 | 27.06 | 26.61 8.97 42.28 | 43.89 5.08° | 137.50 | 100.85 | 5.26’
1.00 | 0.50 7.76 7.64 3.58° 8.74 8.21 10.28 11.04 8.56 10.27
1.00 | 0.75 10.73 10.62 1.45° 22.43 5.76’ 2.66° 29.89 6.90 2.67°
1.00 1.00 13.33 13.22 | 4.71° 35.55 14.50 | 2.39° 48.00 18.11 241°
1.00 1.25 15.72 15.59 7.98 4591 | 26.86 | 4.86° 62.37 | 33.81 4.89°
1.25 0.50 8.07 7.98 8.32 1.82° 11.98 15.19 1.96° 14.05 15.31
1.25 0.75 9.93 9.91 4.61° 3.85° 2.95° 7.92 0.36° 5.22° 8.04
1.25 1.00 11.30 11.30 6.64 11.73 0.30° 6.31 5.01° 0.43° 6.41
1.25 1.25 12.40 12.40 9.30 20.03 4.29° 8.09 10.88 247 8.20
1.50 | 0.50 10.37 10.25 12.16 337 16.22 18.62 6.01 19.15 19.08
1.50 | 0.75 12.16 12.13 7.72 037 9.18 11.92 3.78° 14.25 12.22
1.50 1.00 13.30 13.31 8.85 2.37 3.32° 9.31 5.14° 7.65 9.29
1.50 1.25 13.99 14.02 11.58 6.04 3.81° 11.01 7.96 8.00 10.92
1.50 1.50 14.45 14.48 13.53 9.44 5.56° 13.00 9.94 9.71 12.92

‘: Non-rejection values for the null hypothesis (11) at 95% significance level.

TABLE 8
Rin (12) with p(L;0) = (1—-L)"*% (1+L)%“*% (14 L*)%*% and white noise u; for the Japanese
data

No intercept and no trend Intercept Intercept and a time trend

d d, d; Cy Vi C- Vi Cy Vi C- Wi Cy Vi C- Vi
1.00 | 0.50 | 0.50 18.90 | 18.50 | 2.03’ 9.87 3.73° 4.01° 10.73 3.66’° 4.01°
1.00 | 0.50 1.00 | 29.47 | 2891 2.04° 32.10 | 4.74 0.53° 3642 | 4.94° 0.54°
1.00 | 0.50 1.50 | 38.39 | 37.60 | 3.03’ 45.26 8.71 1.04° 50.98 8.85 1.04°
1.00 1.00 | 0.50 | 31.34 | 30.89 | 6.50° 2498 | 12.03 11.13 | 2827 | 12.33 11.12
1.50 | 0.50 | 0.50 10.33 10.11 2.94° 9.57 3.89° 3.94° 11.15 | 4.33° 3.99°
1.50 | 0.50 1.00 13.25 13.06 1.78° 31.88 | 3.95° 1.19° 35.86 | 4.40° 1.20°
1.50 | 0.50 1.50 14.41 14.16 | 2.00° 44.10 | 5.65° 1.34° 48.52 6.02° 1.35°
1.50 1.00 | 0.50 14.23 14.01 11.25 3.24° 1426 | 16.43 4.79° 16.22 16.73
1.50 1.00 1.00 19.69 | 19.56 7.84 3.62° 1.58° 717 3.57 3.72° 7.13°
1.50 1.00 1.50 | 23.28 | 23.11 11.94 | 11.54 | 5797 10.30 9.18 8.36 10.26
1.50 1.50 | 0.50 19.04 | 18.81 12.79 | 5.20° 16.52 | 18.79 | 6.49’ 19.23 19.22
1.50 1.50 1.00 | 27.05 | 26.95 12.38 14.48 | 6.84° 10.62 9.75 8.65 10.47

‘: Non-rejection values for the null hypothesis (11) at 95% significance level.
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TABLE 9

Fin (12) with p(L;60) = (1 — L*)?*? and white noise u, for the Japanese data
Series z,/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-- 4.42 1.78 -0.47° -1.901° -2.75 -3.25 -3.58 -3.80
I 2.75 -4.04 -4.61 -4.75 -4.84 -4.88 -4.91 -4.92
Ct LT -0.96’° -3.71 -4.58 -4.82 -4.89 -4.92 -4.94 -4.95
LS 6.87 3.85 1.94° -0.84° -2.80 -3.73 -4.14 -4.34

LT,S 12.14 7.99 2.04 -1.93 -3.49 -3.99 -4.21 -4.35
-- 4.13 1.55° -0.66° -2.06 -2.87 -3.35 -3.67 -3.89

I -1.23° -4.72 -4.83 -4.87 -4.90 -4.92 -4.93 -4.94

Yt LT -3.38 -4.51 -4.81 -4.89 -4.92 -4.94 -4.95 -4.96
LS 6.57 0.44 -2.84 -4.05 -4.55 -4.73 -4.79 -4.81

LT,S 7.78 1.25° -2.86 -4.28 -4.66 -4.72 -4.72 -4.74

-- -4.25 -4.63 -4.80 -4.87 -4.91 -4.93 -4.94 -4.95

I -4.55 -4.81 -4.87 -4.89 -4.91 -4.92 -4.92 -4.93

Ci- Vi LT -4.51 -4.79 -4.86 -4.89 -4.91 -4.92 -4.93 -4.94
LS -1.11 -3.40 -4.20 -4.50 -4.63 -4.69 -4.73 -4.76

IT,S -1.14° -3.39 -4.20 -4.50 -4.62 -4.66 -4.67 -4.69
: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time
trend and no seasonal dummies; I: An intercept; [, T: An intercept and a time trend; I,S: An intercept and
seasonal dummies; [,S,T: An intercept, a time trend and seasonal dummies.

TABLE 10

Fin (12) with p(L;60) = (1 — L)?*? and white noise u; for the Japanese data
Series 7,/ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
-- 8.47 3.43 -0.37° -2.49 -3.61 -4.27 -4.70 -4.99

I 3.17 -4.31 -4.61 -4.83 -5.02 -5.18 -5.33 -5.46
Ct LT -1.51° -3.93 -4.59 -4.85 -5.04 -5.19 -5.33 -5.46
LS 12.74 3.01 -2.47 -4.54 -5.37 -5.68 -5.83 -5.93

LT,S 16.98 5.30 -2.52 -4.86 -5.47 -5.69 -5.82 -5.91
-- 7.35 247 -1.07° -2.98 -3.98 -4.57 -4.95 -5.21

I -2.71 -4.98 -5.11 -5.27 -5.42 -5.55 -5.67 -5.78

Yt LT -4.03 -4.82 -5.10 -5.28 -5.43 -5.56 -5.68 -5.78
LS 11.76 -0.13° -3.38 -4.26 -4.62 -4.81 -4.96 -5.08

LT,S 10.31 031’ -3.42 -4.35 -4.64 -4.79 -4.90 -5.00

-- -4.74 -5.09 -5.31 -5.47 -5.60 -5.72 -5.82 -5.91

I -4.95 -5.16 -5.32 -5.47 -5.60 -5.71 -5.82 -5.91

Ci- Vi LT -4.89 -5.14 -5.32 -5.47 -5.60 -5.72 -5.83 -5.91
LS -2.88 -4.56 -5.10 -5.35 -5.51 -5.63 -5.74 -5.82

ILT,S -291 -4.56 -5.10 -5.35 -5.50 -5.60 -5.67 -5.73
‘. Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time
trend and no seasonal dummies; I: An intercept; [, T: An intercept and a time trend; I,S: An intercept and
seasonal dummies; [,S,T: An intercept, a time trend and seasonal dummie
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