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Abstract

We consider the long memory and leverage properties of a model for the conditional
variance V;? of an observable stationary sequence X;, where V;? is the square of an
inhomogeneous linear combination of X, s < t, with square summable weights b;.
This model, which we call linear ARCH (LARCH), specializes, when V;? depends only
on X;_1, to the asymmetric ARCH model of Engle (1990), and, when V;* depends only
on finitely many X, to a version of the quadratic ARCH model of Sentana (1995),
these authors having discussed leverage potential in such models. The model which
we consider was suggested by Robinson (1991), for use as a possibly long memory
conditionally heteroscedastic alternative to i.i.d. behaviour, and further studied by
Giraitis, Robinson and Surgailis (2000), who showed that integer powers XF 0> 2,
can have long memory autocorrelations. We establish conditions under which the cross-
autocovariance function between volatility and levels, hy = Cov(Vf, Xo), decays in the
manner of moving average weights of long memory processes on suitable choice of the
b;j. We also establish the leverage property that hy < 0 for 0 < ¢ < k, where the value
of k£ (which may be infinite) again depends on the b;. Conditions for finiteness of third
and higher moments of X, are also established.
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1 Introduction

Considerable activity has centred on modelling the dependence structure of asset returns.
Empirical evidence suggests that these may have little or no autocorrelation, but are far
from independent. One empirical observation, due to Black (1976), is the leverage effect, a
tendency for volatility to move in the opposite direction to returns, after a delay, as happens
when the conditional variance is negatively correlated with past returns. As a related find-
ing, nonlinear functions such as squares or absolute values can be notably autocorrelated.
So far as squares are concerned, this arises if the series has conditional heteroscedasticity, so
that not only can substantial autocorrelation at short lags be detected, but also such slow
decay as lag length increases that there is said to be long memory conditional heteroscedas-
ticity. In empirical studies this latter possibility was recognized as early as Whistler (1990),
who applied to exchange rate series tests for independence that are directed against the
alternative of long memory autocorrelation in squares.

Denote by Xy, t = 0,£1, ..., the observable series (of asset returns, for example), assumed
strictly stationary, such that E|Xo|?> < oo, and define the conditional variance

V2= Var(X;|Gi_1), t=0,%1,.., (1.1)

where G; denotes the o-field of events generated by X, s < t. To measure leverage, define
the function
hy = Cov (V?,Xo), t>1. (1.2)

Alternative measures may be used, with V;? replaced by other increasing functions of |V;|,
but (1.2) proves mathematically the most tractable. We shall say that X, has leverage of
order k (X; € £(k)), 1 <k < oo, if and only if

h; <0, 0<j<k. (1.3)

We shall also consider the long memory property

1
hy ~Ct37l C#0, 0<d< 3 (1.4)
as t — 0o, where “~” indicates that the ratio of left and right sides tends to 1 as t — oc.
From other experience with time series analysis, it is easy to understand that both the
leverage and long memory properties (1.3) and (1.4) can arise, because by nested conditional
expectations
h, = Cov (X7, Xo), t>1, (1.5)
if
E (Xt |gt_1) = 0, a.s. (16)
Thus hy is simply the cross-autocovariance function between the levels X; and squares X?.
Long memory in scalar and vector time series is familiar, as are negative autocovariances
and cross-autocovariances.

To provide some evidence of the possibility of leverage and long memory in financial
data, Figure 1 displays the sample cross-autocorrelation between levels and future squares
(solid line) and the sample autocorrelation of squares (dashed line), for 900 S&P500 daily
returns beginning in 1928. No interval estimates (such as ones based on a null hypothesis
of independent and identically distributed X;) are presented, but Figure 1 seems suggestive
of a leverage effect at low lags, with some tendency for negative values of the estimated
ht to persist (with oscillation), as (1.4) also predicts. Of course this behaviour could have
other sources, but a negative hy, at finitely or infinitely many ¢, the slow decay of (1.4), and
oscillation, are features which can be described by the 'TLARCH’ model class which will form



the focus of the current paper. Giraitis, Robinson and Surgailis (2000) demonstrated the
ability of LARCH to explain long memory decay (at rate t23=! for the same d as in (1.4))

in autocorrelations of squares, and again Figure 1 provides some evidence of this, though
there are clearly other effects to be explained also.
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FIGURE 1

In fact, some other models have previously demonstrated to have both long memory
conditional heteroscedasticity and leverage properties. Consider the model

Xo=Ga+>biGs) (L.7)
j=1
where
(¢ are i.i.d., F¢p =0, Var(y = 1, (1.8)

and a and the b;, t > 1, are non-stochastic with

D b < . (1.9)
t=1

The non-linear moving average (MA) model (1.7) has the immediate property
Cov(Xo,X:) =0, t>1, (1.10)

often believed true of asset returns, and was considered by Robinson and Zaffaroni (1997),
who showed that if

1
by ~ ctdL, 0<d<g, 0<c<oo, (1.11)
and also E(} < oo, then
Cov(XZ, X2 ~ (271 0<c <oo, a#0, (1.12)
Cov(X2,X2) ~ ('th72, 0<c <00, a=0, (1.13)



as t — oo. The property (1.11) is characteristic of MA weights in long memory models,
while the decay in (1.12) is consistent with the asymptotic autocovariance behaviour in such
models; in case (1.13), there is long memory only when 1 < d < 1. We can achieve (1.11)
by, for example, taking

I'(t+4d)
= e e E———— 1.14
by = core(d), 7¢(d) T 1) co > 0, (1.14)
so the r¢(d) are coefficients in the formal expansion
(1=2)""=14> r(d)z (1.15)
t=1

and the b, are proportional to weights in the fractional autoregressive integrated moving
average FARIMA (0,d,0) model of Adenstedt (1974) (see also Palma and Zevallos (2002) for
generalizations). On the other hand, considering for simplicity only the case E¢§ = 0, we
have (cf. Zaffaroni (1998))

ht = 2abt (1 + th+sb5), t Z 1.
s=1

Thus under the sufficient conditions Y ;2 b7 < 1, or that all b; have the same sign, X; € £(k)
if and only if
ab, <0, 1<t<k (1.16)

that is if all by, 1 < ¢t < k, have the same sign and this differs from a’s. It is possible to
achieve this effect by choosing the b; as weights in certain autoregressive integrated moving
average (ARMA) models. Moreover, for b, satisfying (1.11), for example (1.14), the long
memory property (1.4) of hy immediately follows. To estimate (1.7), with b; depending on a
finite dimensional vector of parameters, Robinson and Zaffaroni (1997) proposed a form of
Whittle estimation based on the X7, and Zaffaroni (1998) provides a central limit theorem
for such estimates. One may then infer long memory if a test of d = 0 is rejected against
positive alternatives, or infer leverage if a test of b; = 0, 1 < j < k, some £, is rejected
against negative alternatives. The model (1.7) might be extended by, for example, replacing
the second factor by some nonlinear function, cf. the stochastic volatility model of Taylor
(1986).

Nonlinear MA models face the criticism, however, of being difficult to use in forecasting,
being possibly non-invertible over a large portion of the parameter space, and having a
likelihood that is relatively intractable. An alternative popular class that meets the above
objections (albeit suffering other disadvantages) commences from functional forms for the
first two conditional moments, E (X;|G;_1), such as (1.6) (which implies (1.10)), and V;?
(1.1). Some popular choices of V;? are special cases of

oo
V2=a+Y bX7 (1.17)
j=1
where a > 0, b; > 0, and covariance stationarity of X; implies the identity
a:EX§(1—th). (1.18)
=1

The ARCH(p) model of Engle (1982) takes by = 0, ¢t > p, in (1.17), the GARCH(p, ¢) model
of Bollerslev (1986) entails exponentially decaying b;, while the general “ARCH(00)” form



(1.17) was considered by Robinson (1991) in connection with hypothesis testing. Robinson
(1991), Ding and Granger (1996), also considered the possibility of long memory in squares
resulting from (1.6), (1.17), as from taking b, = —r;(—d) (see (1.14)) so that from (1.15)

Vi=a+(1-(1-L)% X7, (1.19)

where L denotes the lag operator. In fact (1.18) then implies a = 0, whence (1.19) corre-
sponds to the FARIMA(0,d,0) model for X7,

(1-D)'X? = X} - V2, (1.20)

where the X? — V2 are (conditionally heteroscedastic, given EX§ < oo) martingale dif-
ferences. However (1.19) does not satisfy the sufficient conditions developed by Giraitis,
Kokoszka and Leipus (2000) for a covariance stationary solution X; of the equations

X, =GV, t=0,%+1,..., (1.21)

with V; given by the positive square root of (1.17) and (; satisfying (1.8); (1.21) satisfies
(1.6) and thus (1.10). On the other hand, Baillie, Bollerslev and Mikkelsen (1996) consider
a “FIGARCH” modification of (1.19) (allowing also for an ARMA factor) but with a > 0
(so (1.18) is not satisfied) whence a is added to the right side of (1.20) and X; does not have
finite variance for any d > 0.

Unlike (1.7), none of these ARCH-in-squares models is capable of explaining the lever-
age effect. Although some existing ARCH-type models, e.g. Glosten et al. (1993), Za-
koian (1994), Miiller et al. (1997), Schwert (1990), allow modelling of the leverage property,
there is limited experience in extending them to model long memory properties such as (1.4)
or (1.12). Another important class used for modelling asymmetry in financial data consists
of exponential ARCH (EGARCH) models (see Nelson (1991), Karanasos and Kim (2001),
He et al. (2002) for the properties of EGARCH process). Long memory stochastic volatility
models were explored by Harvey (1998), Breidt et al. (1998), Comte and Renault (1998).
Demos (2002) studied a model which nests both EGARCH and the stochastic volatility
specification. Some of the above models, together with the FIEGARCH model of Bollerslev
and Mikkelsen (1996) and FIAPARCH model of Tse (1998), have potential to explain both
leverage and long memory but their theoretical properties are not established. Rigorous
mathematical study of exponential models covering both the long memory and leverage
effects can be found in Surgailis and Viano (2003). Finally note, that the slowly decay-
ing component in the leverage function was advocated by Bouchaud et al. (2001), who
investigated quantitatively the leverage effect for individual stocks and stock indices, and
introduced the so-called "retarded volatility” model. Pagan (1996, p.30-31) also stressed
the persistence of the leverage effect for some stock data.

One ARCH-type model for which long memory capability has already been established
is the linear ARCH (LARCH) model suggested by Robinson (1991), which replaces (1.17)
by

o0
2
‘/tZ = (CL + ijXt—j) . (122)
j=1
Note that (1.22) is satisfied by both
V= ’a+thXt7j‘ (1.23)
j=1
and -
Vi=a+ ) biXi . (1.24)
j=1



In (1.23), but not (1.24), V; has the familiar interpretation of a standard deviation, but
(1.24) is mathematically the more tractable form, and unlike (1.17), requires no restrictions
on the b; to ensure nonnegativity of V2. Short memory versions of (1.22) are given by

p
“LARCH(p)”:  Vi=a+ Y biX;j, (1.25)

Jj=1

to correspond to the ARCH(p) structure of Engle (1982), and
q P
“GLARCH(p,q)”:  Vi—» BiVioj=d + > a;Xsj, (1.26)
j=1 j=1

to compare with the GARCH(p, q) structure of Bollerslev (1986), where a = a'/(1 —Z?Zl B;)
in (1.24). Indeed with p = 1, (1.25) first arose in Engle (1990), who considered a model for
V2 containing an additive constant, a term in X;_;, and a term in | X;_|%, for unknown 6,
and then estimated 6 from real data, noting the consequence of § = 2; see also Engle and
Ng (1993). On supplementing (1.24) by (1.21) and imposing (1.8), (1.9), we have a kind of
nonlinear AR dual of the nonlinear MA (1.7):

Xi ZCt(a+ijXt7j)- (1.27)

j=1

Of course, (1.27) satisfies the uncorrelatedness-in-levels assumption (1.10). So far as
leverage properties are concerned, Robinson (1991) noted that for (1.27) h; can be non-zero
even if (3 = 0, unlike in (1.17), while Engle (1990), Campbell and Hentschel (1992), Engle
and Ng (1993) and Sentana (1995) explicitly discussed leverage and other asymmetry in
models that overlap with (1.27); see also Barndorff-Nielsen and Shephards’ (2001) discussion
of leverage of a related continuous-time model. Sentana (1995) considered a number of issues
relating to a model in which V;? is a more general quadratic function of X;_1,..., X; than
in our LARCH(p), along with a form of GARCH extension which, however, differs from our
(1.26). The first of these latter types of model is given by

P P
VR = 0+Z1/)th_j +ZZ¢ijt—th—ka (1.28)

Jj=1 j=1k=1

where the parameters 6, 9;, ¢;; can vary freely and need not necessarily satisfy the con-
straints implicit in (1.25), so that (1.28) nests both the ARCH(p) model of Engle (1982) and
(1.25). Whereas non-negativity of V,2 given by (1.25) is automatic, Sentana derived condi-
tions for non-negativity in (1.28). Relative to (1.28), (1.27) has an advantage of parsimony,
but at the same time it suffers from less flexibility, which may be an important drawback
in modelling; for example in the LARCH(1), non-rejection of a test for by = 0 suggests lack
of both conditional heteroscedasticity and leverage, so we cannot examine both phenomena
individually or conveniently interpret parameters as contributing primarily to one or the
other. Sentana’s interest in (1.28) was strongly motivated by a desire to explain leverage
and other asymmetry, and he described conditions similar to some of ours (see Theorem 2.4
below) in case E¢3 = 0, but taking for granted stationarity and existence of moments of
X, aspects which we justify under primitive conditions on the (; and b;. Though Sentana
referred to interest in long memory, he did not discuss its achievement in his models. Sen-
tana also discussed the estimation and testing of his models, conditions for stationarity of
his GARCH extension of (1.28), and multivariate extensions of his models, also exploring
their ability to empirically explain leverage and other features of data.



Despite the appeal of Sentana’s (1995) extension (1.28) of LARCH(p) and partial exten-
sion of LARCH(c0), a serious practical study of such models conveniently commences by
focussing on LARCH(oc0) (1.27), which has an aesthetically simple form with its automatic
non-negativity of V;?, and significantly different mathematical structure from ARCH(oc)
(1.17). Indeed, Giraitis, Robinson and Surgailis (2000) already gave conditions under which,
for b; given by (1.11), integer powers X}, | > 2, of LARCH(co) X; have long memory au-
tocorrelation, for example (1.12) holds. In the present paper we establish conditions for
the alternative long memory property (1.4) in LARCH(c0), which (unlike (1.12)) is possible
without finiteness of X/s fourth moment, and conditions for leverage (1.3). We assume in
(1.27) that (1.8), (1.9) and also

a+0 (1.29)

hold; if @ = 0 the model has a trivial character, as seen in Theorem 2.1 below. Theorem 2.1
provides conditions for existence and uniqueness of a stationary solution of (1.27). For the
leverage and long memory properties, additional conditions are required on moments of (;
and on the b;; we also give primitive sufficient conditions for finiteness of third and higher
moments of X;. In case of the simple LARCH(1) and GLARCH(1,1) models, we compare
the leverage conditions we have obtained under a general LARCH(o0) model with ones that
directly exploit the special structure of these models, also obtaining explicit formulae for
h¢ in these cases. Note that Sentana (1995) observes that ”linear ARCH” is also used for
the model (1.17), so our "LARCH” terminology is not ideal; there is, however, a plethora of
existing ARCH acronyms and we have been unable to propose a simple alternative.

The following section presents conditions and results, while the proofs are developed in
Appendices. Section 3 includes some final comments.

2 Main Results

Implicit in our results for h; is the requirement that X; have at least finite third moment.
We begin by extending our conditions (1.8), (1.9) on (; and the b; in the LARCH model
of the previous section for finite third or fourth moments (as is relevant to the results of
Giraitis, Robinson and Surgailis (2000)), and then for finite even moments of any order;
in general finiteness of E |Xy|" entails finiteness of E'[(y|", so the latter case is relevant to
Gaussian (;, a possibility earlier stressed in estimation of (1.7) and (1.17).

Write || f], = (3272, I£[")"/" for p > 1 and a sequence {f;;t > 1}; for brevity write
IFIl = 1lf]l,; as indicated by (1.9), [[bll < co. Put pp = ECF, |ul, = ElGol*, k > 1; as
indicated by (1.8), u1 =0, ug = 1. Define Z = {0, £1, .. .}.

A preliminary result that is important to all that follows concerns the existence and
nature of a unique stationary solution of (1.27). Let F; be the oc—field of events generated
by (s, s <'t.

Definition 2.1: An F;—measurable sequence X;,t € Z is called a solution of (1.27) if
sup EX} < o0 (2.1)
¢
and (1.27) holds for each ¢t € Z. Note that (2.1) and ||b]] < oo imply that (1.24) converges
in L2

Theorem 2.1: (i) Let a # 0. Then a solution of (1.27) exists if and only if |b]| < 1, in
which case there is a unique covariance and strictly stationary solution for Vi given by the
Volterra series

Vt:a(l—i—z 3 bt,slbsl,SQ...bsk_l,skgsl...g‘sk). (2.2)

k=1sp<...<s1<t



(#9) Let a =0 and ||b|| < co. Then (1.27) admits a unique solution X; =0 a.s.

Theorem 2.1 extends Theorem 2.1 of Giraitis, Robinson and Surgailis (2000) by demon-
strating uniqueness in case a # 0, and by addressing also the case a = 0. All the results of
the paper are readily extendable to allow for a nonstochastic, non-zero conditional mean of
X¢, so that an additive constant is included in (1.27), leading to a constant, non-zero right
hand side in (1.6).

Our results for h; require higher moment conditions on (;, and stronger conditions on b;.

Assumption M3j: The third absolute moment |u|; < oo and
1/3
il 1bll + 36 [1b]] < 1, (2.3)

where 0 ~ 1.27 is the solution of 3% — 36 — 1 = 0.

Proposition 2.1: Under (1.8), (1.9), (1.27), (1.29) and assumption Ms,

E|Vo]* <00, E|Xqf® < 0.

In view of frequently-expressed scepticism concerning the finiteness of fourth moments of
much financial data, there is interest in Proposition 2.1, a finite third moment being a mini-
mal condition for analysis of h; (though statistical inference on h; is liable to entail finiteness
of at least the sixth moment of X;). There is a trade-off between moment conditions and
restrictions on the by, so we consider also:

Assumption My: The fourth moment py < oo and

4 3 2
pa [[0lly + 4 lpsl [[blls + 6 [1b]7 < 1. (24)

Proposition 2.2: Under (1.8), (1.9), (1.27), (1.29) and assumption My,

EV) <, EX{ <. (2.5)

Assumption Myy: For k > 3 the 2kth moment pop < 0o and

2k

§j<fjnwzmA<1. (2.6)

p=2

Proposition 2.3: Under (1.8), (1.9), (1.27), (1.29) and assumption May, k > 3,

EVZF < 00, EXZF < . (2.7)

Propositions 2.1 and 2.2 are proved in Appendix B; the proof of Proposition 2.3 is a
development of these and is omitted as this proposition is not important to the rest of the
paper. Assumption My is weaker than the condition 11 |M|411/2 6] < 1 for (2.5) obtained
in Giraitis, Robinson and Surgailis (2000) although it is not necessary. It should be noted
that the question of finiteness of the third and other odd absolute moments of the LARCH



model (and more general Volterra series) is more delicate than that of even moments; see

Appendix B. Assumption My is weaker than the condition (4% — 2k — 1) |,u|§£k Ib]]* < 1

for (2.7) obtained in Giraitis, Robinson and Surgailis (2000), indeed, as [|b[|, < [|b]| and
1617 iz < 1, 50 I iyl < (b1 b )22 < b1 elf* and therefore

2k 1ok 2k 1ok

2 1/k 1/k 2
Z( )|b||§|up|<bll uY Z( )=(4’“—2k—1)u2£ .
p:Q p p:2 p

When the distribution of ¢y is unknown, the bounds (2.3), (2.4) and (2.6) cannot be
used in practice. If, on the other hand, (; is known to be Gaussian they may be evaluated
using |pl; = (8/m)Y2, por = (2k —1)(2k —3)---1, k > 1, ux = 0, k odd. Indeed, using also
1], < [|bl], p > 2 we can get the simplified sufficient conditions

-1
[[]] < ((8/7r)1/6 + 36) ~ 2008 (2.8)

for M3 and
]| < v/0.1547 ~ .3933 (2.9)

for M. For example, the corresponding assumption to My of Giraitis, Robinson and Surgailis
(2000) gives [|b]| < .229. Note that in case of the LARCH(1), b, = [[b]], for all p > 2, so
(2.8) and (2.9) are precise versions of (2.3) and (2.4), respectively.

We now go on to study h; directly. We assume either M3 or My holds in all that follows,
implying in particular that ||b|| < 1. Then for |z] < 1 we may define

®(2) := i P2t = (1 - ibfﬁ) , (2.10)
t=0

t=1
so that
t—1
¢t = bt2 + Z Z bgkbik—l—sk e bgl—SQb%—SN (t Z 1)’ (,25() =1 (211)
k=10<sp<...<s1<t

Now, denoting

2 o0
o =VarX, = ——— (o= 0, (2.12)
1 — [|o] s
introduce
t
gi = 2a0> Z bsdr—s (t>1), go:=aus (a2 + 302 ||bH2) , (2.13)
s=1
t
Ttu = 2stbs+u¢t—s (t7u Z 1)3 Tto = ¢t (t Z 1)a (214)
s=1
Tou = 3ps Y biberu (u>1), oo = ps[b]s. (2.15)
s=1

Then introduce h}, t > 1, to be the unique square-summable solution of

o0
hy = 1 + Z Truly, t>1; (2.16)
u=1



such {h}} exists because
(o)

vz _ 2’
>t < 2L o, 2.17
(X =y (217

t,u=1

as will be shown in the proof of the following theorem.

Theorem 2.2: Let (1.8), (1.9), (1.27), (1.29) and either assumption Ms or My hold. Then

roo + > rouhl, # 1 (2.18)

u=1

is a necessary and sufficient condition for uniqueness of a solution {hy,t > 0} satisfying

> hl<oo (2.19)
u=0
of the linear equations
hi=gi+ Y rwhe, t>0. (2.20)
u=0

Condition (2.18) is automatically satisfied if pg3 = 0, because then (2.15) implies rq,, = 0,
u > 0. A more general condition, obtained in Lemma A.1 below, is

s 1617 + 3 1B]|* < 1. (2.21)
We now go on to establish the long memory property (1.4) for h;, discussed in Section 1.

Theorem 2.3: Under the assumptions of Theorem 2.1 and also (1.11), it follows that (1.4)
holds with C' = 20%c/a.

Sufficient conditions for the presence or absence of leverage are provided by:

Theorem 2.4: Let the assumptions of Theorem 2.2 hold and also

2(1-50l°)
ol (1 +3 1ol
Then for any fixed k such that 1 < k < oo:

(1) if aby <0, ab; <0, j =2,...,k, then Xy € U(k);
(43) if aby > 0, ab; >0, j =2,...,k, then h; >0, j=1,..., k.

(2.22)

Condition (2.22) implies that ||b]||ps| is bounded (by 2) and also that ||b]] < 1/5. Note
the similarity between the leverage conditions of Theorem 2.3 (i) for the LARCH(o0) model
and condition (1.16) for the nonlinear MA model (1.7) (where puz = 0 was assumed). Note
also that there is no loss of generality in taking a > 0, given that a # 0 has been assumed.
Such a restriction leads to some simplification of our results, and indeed would be necessary
to identify a and the b;. Of course choosing a > 0 rather than a < 0 determines the sign of
13, when this is non-zero.

Below we discuss in more detail conditions for leverage in LARCH(1) and GLARCH(1, 1),
where owing to the simple structure the function h; can be explicitly found, and (2.22) can
be relaxed.

LARCH(I) ‘/t =a+ ,BXt_l.

10



In this case, ||b|| = |8| and the necessary condition ||b]] < 1 for the existence of the
stationary solution (see Theorem 2.1) becomes |G| < 1. To obtain h;, note from (2.10)
¢ = 3% from (2.12) 0% = a?/(1 — $?), [b]s = 3%; from (2.13) go = a®usz(1 +26%)/(1 — 5?),
gt = 2a33%71/(1 — B?), t > 1; from (2.14), (2.15) 74, = 0, ¢t > 0, u > 1, and 790 = u33°,
ri0 = %, t > 1. Equation (2.20) in this case becomes

ho = go + u3B%ho, by = gi + B*'ho,

and has a unique solution hg = go/(1 — pu3B3), hi = g + % g0/ (1 — p3B?) provided |3| < 1
and p3/3% # 1 hold. More explicitly,

a®(26% +1)us a’B(2 + Bps)
(1=p2)(1 = Fus)’ (1=p2)(1 = Bus)’

By Theorem 2.1, under assumptions M3 and My (2.23) provides (1.2) for the LARCH(1)
model. (Note that in this case, either M3 or My imply (2.18) as well as the inequality
|3213] < 1.) The above-mentioned assumptions become

_ 3
M3 : ‘,U,|3 < (‘,Bl 1_ 39) s
My : Bus + 416 |ps| <1657,

respectively. From Theorem 2.2 and (2.23) we derive:

ho = hy = he =B%Vhy (t>2). (2.23)

Proposition 2.4: Let X; be LARCH(1), and assumptions Ms or My hold. Then X, € (1)
if and only if either
a <0 and PBus> -2, (2.24)

or
a >0 and PBups < -2 (2.25)

hold. Moreover, X; € £(c0) if and only if Xy € £(1) and 5 > 0.

Note that from Theorem 2.4 we have X; € £(1) under stronger assumptions, namely
under af < 0 by imposing M3 or My together with

(2 22) . |ﬂ3| < M
o ~1BI(L+36%)

In his extension of LARCH(1), such that p = 1 in (1.28) and ; varies freely with 6
and ¢11, Sentana (1995) obtained more heuristically, in case ug = 0, the condition ¥; < 0
for leverage, which corresponds to our condition (2.24). Sentana (1995) also examined the
compatibility of empirical data with this condition.

GLxA}{CH(l7 1) ‘/f - ﬂl‘/t—l = CL/ + OélXt_l.

As noted in Section 1, the above equation can be rewritten in the LARCH(oc0) form
(1.27) with by = afB 1, t > 1, a = 1,8 = 61, a=a'(1 — B1)7 !, and ||b]| < 1 is equivalent
to v = a? + 32 < 1. To find hy, note that from (2.10) ¢; = a?4'~1 ¢ > 1. From (2.12),
02 =a%(1 - B3%)/(1 —~) and [b]3 = a3/(1 — 33). From (2.13), (2.21),

3 o?
gO:a,ug(l—&-i%lv)7 (2.26)
_ 2aa(1 - 5?) _
e} (G G

From (2.14), (2.15),

Tty = 20[2/6“‘716717 tvu Z 17 Tto = a27t717 t Z 17

11



_ 3Bugadpr pza®

3
Tou = g u > 1; 00 =7 g5 (2.27)
Thus from (2.20) B
hi = g: + &*(2h + ho)y' ™!, t>1, (2.28)
a? -
ho = go + 1—7@#3(3}1 + ho), (2.29)
where h = Y";2, B'h;. Defining g = >_;2, B9+, we have
g= 2000 - 5°)
1 =71 =98)
From (2.28) we deduce
hegt 20 (2R + ho) (2.30)
Ty o '

Assumptions M3 and M4 become

(1-p%)1° 30]al
Msj : < (1 - )7
s < CORE
at o) 60
My : 4——r <l———
4 17ﬂ4u4+ -5 lus| < -3
1- 3% =308 - a’uy

respectively. Set A := . The proof of the following Proposition ap-

. , 1— By
pears in Appendix A.

Proposition 2.5: Let X; be GLARCH(1,1), and assumptions Ms or My hold. Then
he = g; + A7 (Qo +9(2+ [b]3u3))7t_1» t>1, (2.31)
where A > 0,2+ [blsus > 1. In particular, X; € €(1) if and only if
g1+ a® A7 (go + (2 + [blaps)) < 0. (2.32)
Moreover, X; € £(c0) if Xy € £(1) and ac < 0,5 > 0 hold. In particular, Xy € £(co) if

ae <0, apu3 <0, B>0. (2.33)

Theorem 2.4, on the other hand, implies X, € ¢(c0) for GLARCH(1,1) under the condi-
tions
aa <0, (>0,

assumptions M3 or My, and

2(1 _ 62)1/2(1 _ 50{2 _ ,62)

(222): sl s —— 0 ey

which are stronger than the conditions of Proposition 2.5. In particular, Proposition 2.5
shows that leverage in the GLARCH(1,1) model may take place even if |ug| is arbitrarily
large, as it may happen, for example when if ¢ > 0, ug < 0. On the other hand, for aus > 0
(e.g. if @ > 0, u3 > 0), (2.31) is more difficult to analyze directly. In such a case, Theorem
2.4 can be applied, providing |ug| satisfies (2.22).

12



Also of interest is LARCH(co) with b; given by the FARIMA(0,d,0) weights (1.14) with
0 < d < 1/2; we might call this a GLARCH(0,d,0) model, and write

Visa+(1-0)7X;=a+) bX, ;.
t=1
From Theorem 2.4, X; € ¢(c0) if a < 0 and (2.22) and either M3 or My hold; evaluation of
these conditions in the present case is complicated and is thus omitted. Of course we deduce
the long memory property (1.4) from Theorem 2.3.

3 Final remarks

The paper has derived, under primitive conditions, a number of properties of the LARCH(o0)
model (1.27). We have developed a result of Giraitis, Robinson and Surgailis (2000) on
conditions for existence and uniqueness of a solution of (1.27). We have provided conditions
for finiteness of integer moments that again improve upon those of Giraitis, Robinson and
Surgailis(2000). The paper is principally motivated by long memory and leverage properties.
We have shown that if the weights b; are chosen to decay like MA weights in linear long
memory sequences, then the cross-autocovariance between the squares X? and past levels
Xi—j,7 > 0, decays in the same slow fashion in our model as it does in such linear models.
Such a property may be available even if the fourth moment of X; is infinite, in which sense
it has an advantage over the long memory (of autocovariances of squares) property derived
by Giraitis, Robinson and Surgailis (2000). We have given conditions for leverage properties,
of various extents, and for lack of leverage. These latter conditions obtain for all members of
our LARCH(00) model, but we also directly analyzed two simple special cases of our model,
thereby achieving some improvement in the conditions.

The LARCH(00) model and its special cases are far from fully ready for practical use. We
have not discussed estimation of (1.27), either in case of a parametric model such as (1.25),
(1.26) or (1.14), or a nonparametric approach analogous to autoregressive spectral estima-
tion. (Quasi)-maximum likelihood estimation based on a working Gaussian (; assumption,
as used by Sentana (1995), seems computationally relatively tractable. By analogy with
results for ARCH and GARCH special cases of (1.17) (see Lee and Hansen (1994), Lums-
daine (1996)), it would be expected to be asymptotically normal and (if the Gaussianity
holds) efficient, without stringent assumptions on unconditional moments of X;, though
the asymptotic theory would likely be difficult. A less elegant asymptotic theory should
be available for Whittle estimates based on either X? or (making use of formulae in the
current paper) the bivariate series (X;, X?) as considered for (1.7) by Zaffaroni (1998) or
for short memory versions of (1.17) by Giraitis and Robinson (2001). More ad hoc methods
include generalized methods-of-moments estimation, for example comparing h; or its Fourier
transform (the cross spectrum of X; and X?) with sample estimates.

However, a more basic question concerns the direct practical usefulness of the LARCH
class. Though it provides equal scope for parsimony as the usual ARCH class (1.17), while
at the same time offering more potential for leverage, it is restrictive relative to Sentana’s
(1995) class, which can nest both ARCH and LARCH models. The inability of LARCH(c0)
to satisfactorily separate out parameters primarily describing conditional heteroscedasticity
on the one hand, and leverage on the other, was not so much a problem in the original
context of Robinson (1991), where it was used to provide Lagrange multiplier tests of i.i.d.
behaviour. However, when conditional heteroscedasticity and leverage are to be quantified,
a more flexible class like Sentana’s (1995) may seem preferable to practitioners. On the other
hand, the parsimony of the LARCH model makes it still of interest as a null hypothesis in
such a context, and we believe our detailed theoretical investigation of the LARCH model
is a necessary precursor to study of more general models.
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A Appendix. Proofs of Theorems and Proposition 2.5

PrROOF OF THEOREM 2.1 (i) We first show the necessity of ||b]| < 1. Let X; be a solution
of (1.27), and let o < ¢t. Then

Vi=a+ Z bt—uXu + Z bt—sCsVs- (Al)

u<to to<s<t

By iterating (A.1), one obtains first

Vi = a+2bt_uXu+a Z bt—s(s

u<to to<s<t
+ § § bt—slbsl—quXu + E bt—51b81—82<—81<sz‘/;2
u<lto to<si<t to<sa<s1<t

and eventually

Vi = a+ Z bt—uXu

u<to
t—to
+ 3 Y b by Co G (a—i— 3 bsk,uxu). (A.2)
k=1 to<sp<...<s1<t u<to

Noting that E[Vi|Fey—1] =a+ > b;_4X, and using the independence of (,,s > to and

Fio—1, one has

u<to

t—to 2
Var(VilFm) = > > 0 (a+ 3 bsk_uXu) .
k=1 to<sp<...<s1<t u<to
Therefore
t—to
EVar(VilF, ) = S S bR (a2 +Y bgk,uExg)
k=1 to<sp<...<s1<t u<to
t—to

> a®y > i, bR

k=1 to<sp<..<s1<t

For any k > 1, the last sum increases monotonically to ||b]|?* as tg — —oo. Therefore

lim inf EVar(Vi|Fi,-1) > a® Y _ [[b]**.
k=1

As EVar(V;|F;,—1) < EV? < oo, this proves the necessity of the condition [|b]| < 1 in the

case a # 0.

The sufficiency of this condition for the existence of the solution given by (2.2) was shown
in Giraitis, Robinson and Surgailis (2000). To show uniqueness, let X/, X}’ be solutions of
(1.21), (1.24), then X; = X — X/ is a solution of the homogeneous equation for V; in (1.24)
with a = 0, and therefore X; = X/ a.s. by part (i7).

(74). Let a = 0. Noting that (A.2) still holds, we obtain

t—to
Vi= Y buXut Y > > bimaybey—abs—uGer -G Xue (AL3)
u<to u<lto k=1 tp<sp<...<s1<t
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Let Fis) = 0{Cu : s < u < t}. The o—fields Fy, +—1) increase monotonically to F;_; as
to — —oo and therefore by a well-known property of conditional expectations,

EVi|Fitgi—1)] = EVi|Fioa]l = Vi as. (A4)
as tg — —oo. On the other hand, the independence of X, and F;, 4 for u < to implies
E[Xu|Fy,t—1] = EXy = 0 and we obtain from (A.3)

E[Vi|Flp,t—1] =0 as.,
for each ty < t. Thus by (A.4) we obtain V; = 0 and X; = 0 a.s., thereby proving part (ii).

[

PROOF OF THEOREM 2.2. For 1, given by (2.14) let

oo

(Rof)t = Zrtufua t>1 (A5)

u=1

be the linear operator in the Hilbert space L?(ZY), Z% := {1,2,...}. It is easily seen from
the proof of Lemma A.1 below that under Assumptions Mg or My, the operator R? is well-
defined on L?*(Z9). We first show that its Hilbert-Schmidt norm ||R°|| = {Z;Ou:l rfu}l/Q
satisfies (2.17). Put b; = 0 (¢ < 0). By the Minkowski inequality,

oS5 (S}

t,u=1 v=0

(el

IN

Z%{Zb B} = 2002 = 2B/ - D). (A6)

t,u=1

which is less than 1 because both M3 and My imply |[b]|? < 1/3. We first derive (2.20) in
the LARCH(N) case for N < co. From (1.21), (1.25), for t > 0,

2
_ E[(a—kz bHXS) XO} = EXo+2a Y b EXXo+ > bios bi- X, Xo, Xo.
s<t

s<t 51,82<t

Because EXg = 0 and EX,X; = 0%, s = t;= 0,8 # t; EX,, X5, Xo = 0 if either s; #
s9,max(sy, s2) > 0, or s1, 82 < 0, we deduce that

he =2a0%b + Y 07 s+ 200 Y byl + biho (A.7)
0<s<t u>0

and thence by iteration

he = 2a0%b+2a0® > B by + Y. b0k,
0<s1<t 0<s2<s1<t
+ 2> hubibipu +2Y ha Y bbb,
u>0 u>0 0<s1<t
+ ( Z bt s1 >h07
0<s1<t
which yields

ht = 2(10'2 Z ¢t_sb5+22hu Z ¢t—sbs+ubu+h0¢t

0<s<t u>0 0<s<t

00
= Ot + Z hurtu~
u=0
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For t =0,

3
ho = EX§=N3E(a+Zb,SXS)
s<0
= s (0 4 3002 hols 3 Y b )

S9<81<0

[e%S)
= 4o + Z TOuhu~
u=0

This proves the validity (2.20) in the LARCH(N), N < oo case.
Next we show that (2.20) has a unique solution h € L*(Z), Zy = {0,1,...}. First fix
an arbitrary value hy = ¢ and solve the equation

ht = ¢ + ROnS, (A.8)
for h¢ = (h§,t > 1), where g¢ = €¢° + ¢° and ¢° = (¢, t > 1) € L*(Z9), ¢° = (g1, t > 1) €
L*(ZY). By (2.17), (A.8) admits a unique solution

ht = (1—R%)"1g® = ¢n + 10",

where B’ := (1 — R%)7¢", B” := (1 — R%)~'¢° belong to the space L*(Z%) and do not
depend on &.
Next we solve the equation

oo
§ = go+rook+ Zﬁmhﬁ
u=1
oo oo
= go+7o0é +EY roulty+ D> roull
u=1 u=1

for ¢, yielding
¢ = 90 + 3 ari Touhy
1 =700 = 202y rouhs,’

by (2.18). Define h = (ht,t > 0) by

hO = 67 ht = Shé =+ hﬁ/‘/ (t Z 1)a

where b/ = (1 — R%)~1¢° " = (1 — R%)71g% and ¢ is given by (A.9). Then h € L*(Zy)
and satisfies (2.20).
Consider now the LARCH(o0) case. Put

PN 0, otherwise.

Write hy y = EXtZ’NXoyN, t > 0, where {X; n} is the solution to the LARCH equations
corresponding to {b; v}. According to Lemma B.3 below, for each t > 0,

Let us show that h; of (A.10) belongs to L?(Zy) and satisfies (2.20). Let ¢ v, 9.,
Ttu,n be defined as in (2.11), (2.13)—(2.15), with b; replaced by b; n, and let R be the

corresponding operator in L*(Z%) given by (A.5). By (A.6), we obtain supys, [[RY| <
1, |R® — R%| — 0, and the convergences ¢ — @, g% — ¢°, by := (1 — R})"1oQ —
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(1—-R%)"1¢" = 1, by :== (1= R%) g% — (1 — R%) g% = h” in L*(ZY) easily follow.
Moreover, as roo,n + Doey Tou, NP, v — Too + > rouhl, (N — 00), so condition (2.18)
implies roo,n + 22021 T0u, Nh;’ n 7 1 for all sufficiently large N, and therefore

o /
Go,N + D0y Tou, NPy, N

= 35 n
L —700,8 = D pey Tou, Ny, N

En

- &,

where ¢ is defined by (A.9). The above relations imply the convergence hy — h in L?(Z)
and the validity of (2.20). Thus sufficiency of (2.18) is established. To prove necessity, note
that if (2.18) is not satisfied then A = 1 is an eigenvalue of the operator (Rf); = >0 tufu,
corresponding to the eigenfunction ¥ = (¢r,t > 0),v9 = 1,¢; = h}(t > 1), and the solution
ht of (2.20) is not unique. This completes the proof of Theorem 2.2. U

PROOF OF THEOREM 2.3. In view of (2.20) and (1.11), it suffices to show

t o
20c
_ 2 - 2 - d—1
g = 200" bidi_s (2(10 Z@)bt 1 (A.11)
s=1 s=0
and -
ZTmhu = ot ast— oo. (A.12)
u=0

Here, (A.11) follows from (1.11) and the fact that ¢? = O(b?) = O(t?¢=2), as in Giraitis,
Robinson and Surgailis (2000, Lemma 4.1). It remains to show (A.12). Consider

o] 00 t 00
Ji = Z Teuhy = Z Teuhy + @tho = 22 bsPt—s Z bstwhu + @rho.

u=0 u=1 s=1 u=1

Since [|h| < oo,

| i | < {i bgﬂ}uz < {iu2d2}1/2 < Ks V2,
u=1 u=1 u=s
where K denotes a generic positive constant. As ¢, < K522, and 2d < 1, we obtain
FARS Ki It — s|2d—282d—(3/2) +O([t42) = O(tzd—(3/2)) = o(t% 1)
s=1
which proves (A.12) and the theorem. [

The proof of Theorem 2.4 is preceded by the following lemma.

Lemma A.1: Let (2.21) hold. Then (2.18) holds, and moreover

|al?|s]
|ho| < =. (A.13)
1= 3[b]I* = |us|l[ol®
PROOF. To show (2.18), it suffices to verify the bound
o0
b 3
ool + 3 lrouhly| < 1'“_3|3Hb||||2 (A.14)
u=1
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whose right side is less than 1 by (2.21). By (2.15), |roo| < |us|||bll3 < |us]|]|6]]3 and

D lrouhi] < 3lusl Y02 bsrultu] < 3lusl 61K, (A.15)
u=1

s=1 u=1

where 0 )
I b
—[RO — 1= 3b]]

[ (O e

due to (2.17) and [¢°] = {350, 6217 < (X0 dedu} P < 2 0 = (1) ~ 1 =

16]12/(1 — ||b]|?). Therefore,

IN

3ps 161
1= 3]p]>”

A

(oo}
roo + Z [rouh| < lus|[1B]° +
u=1

proving (A.14).
The inequality (A.13) follows from

9o + 220:1 Toulty,

h =
0 ]. — To0 — Zzozl Touh;7
(A.14), and the bound
l90] + i [rouhy| < aPlual (A.16)
A Sk 1| LI

which we verify below. By (2.13),

3 1+ 2||5||2
ol < ol a? + 307 ) = (XL 20D (A17)

and, similarly to (A.15),

[e.°]

D [rouhii] < 3lusl Bl 12"
u=1
Here,
- @ —[el)le°l
B[l =11 = R°)7H°ll < =,
1-3[b]?
where
S 2|a/*|/b]
I19°1 < 2lalo®[1bl] Y é = =555
; L lP)?
Consequently,
S 6lal®|usllb]*
rouhyy| < : (A.18)
uz_:l ST @ el = 3bl)
Clearly, (A.17) and (A.18) imply (A.16). L

PROOF OF THEOREM 2.4. Note that (2.22) implies (2.21) and therefore the validity of
(2.18) and Theorem 2.1.
Let us prove the statements (4), (i7) for k = 1. From (A.7) it follows that

hy = 2&0’2()1 + 2b; Z hub1+u + b%ho,

u=1
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where the last two terms do not exceed

o0

211 ] Y [hubigal + 3lho| < 200 [[B][[1R]] + [b1][[B]]]Aol-

u=1

Therefore sgn(hy) = sgn(ab;) provided the inequality
2lalo® > 2[[A°|[[|b]] + [1b] ol (A.19)
holds. From (A.7) it follows that
[B°1] < 2]ala®|[bll + 3[[R°[[[bII* + [16]1*[Aol,

or

2|alo?[[b]] + [[b]]*]hol
1 —3][o||*
But (A.13) and (A.20) imply (A.19) and hence sgn(h1) = sgn(aby), or the statements (i),

(#4) for k = 1. The general case k > 1 follows similarly by induction in k. Indeed, according
to (A.7),

[R0]] <

(A.20)

k—1 [e%S)
hi = 2a0%b, + Y b7 ha +2be Y biuha + biho.
s=1 u=1

To show (i), let hq,...,hx—1 < 0 by the inductive hypothesis. Then Zf;ll b?_.hs < 0 and
the inequality hy < 0 follows from

‘Qbk S biruha + bih()] < 2Jac?by], (A.21)
u=1

where the left hand side does not exceed 2|by|||b]|[|R°]] + b2|ho| < |bk|(2][B]|[A°]] + [|]||Rol)-
Then (A.21) follows from (A.19). The proof of (ii) is analogous. H

PROOF OF PROPOSITION 2.5. We first show (2.31). Set V' = 2h + ho. Adding 2h to both
sides of (2.29), - B B
ho + 2h = go + 2h + [b3us(V + h),

and hence -
V=g0+ h(2 + [b]3u3) + [bapsV-
Replacing h in the above equation by (2.30) yields
VA=go+3(2+ [blsps)-
We show that, under M3 or My,
A>0. (A.22)
Indeed, note that Mg or My imply 0 < v < 1,|8] < 1 and (A.22) follows from

. | us) 3028
1= + -
1-3  1-33

Here, |opus|/(1— 83) = |[blaps] < ||bll3|uls < ||b||3|ﬂ‘é/3 < 1, where the last two inequalities

hold under M3. Next, |3|/(1 — 33) < 1/(1 — 3?) implies

1—73%—3a%6—0aus >0, or < 1.

o?| ] o

T < o = bl < ol
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as ||b]| < 1. Therefore, under Ms, i < ||bls|u/3’> + 3][b]| < 1, while under My, i < [|b||3|u3] +

36> < 1. This proves (A.22) and (2.31). The inequality 2 + [b]3uz > 1 follows from
[blas| < [l13]1s] < 1 (see (2.3), (2.4)).

To prove the second part of the proposition, it suffices to show that (2.32) together with
aa < 0,8 > 01imply g; < 0,¢ > 1. Indeed, we have 0 < 7,3 < 1 and so g; < 0,t > 1 follows

from
(B-1)B' + a1
v=08
Let us check (A.23). Let v > 3, then a2y =1 —(1-8)3! > a?4' "1 —(1-0)By!"! = (v—8)y! !
and (A.23) follows. The verification of (A.23) in the case § >  is similar. The fact that
(2.33) implies (2.32) is immediate from (2.26). H
We remark that in the proof of Proposition 2.5 we directly verified that, in the GLARCH(1,1)
model, the leverage equation (2.20), or (2.28), (2.29), has a unique square-summable solu-

tion (2.31) under assumptions M3 or My alone. Thus assumptions M3 or My imply also
(2.18), as can be directly verified by using (2.27) and (2.16), (2.17).

> 0. (A.23)

B Appendix. Proofs of finiteness of moments

PRrROOF OF PROPOSITION 2.1. This is contained in the following three lemmas. We first in-
troduce some auxiliary notation. Consider integers t; € Z, k; > 0,4 = 1,2, 3 and a collection
fi,j S L2(Z3),] =1,...,k;,1=1,2,3. Let

U, = Z fz‘,l(ti *81)-~~fi,k7;(5k7:—1 *Skl)Csl "'Cskiv (B~1)

Sk <...<s1<t;

? < o0, (B.2)

ki
EUF = Y fAlti—s1) . (ko1 — sk) = [ I1£isl
j=1

Sk <...<s1<t;

so that the series (B.1) converges in mean square. Put I := {(¢,5) :4=1,2,3,7=1,...,k;}.
For each f € L*(ZY), put

D(f) = |uly 1115 + 36| fl2.

where 6 is defined as in Assumption M3.
Lemma B.1: For any collection {f; ;, (i,5) € 1},

ElWUUs| < T D(fiy)-
(i,5)el

PRrROOF. By Fatou inequality, it suffices to prove the lemma for f; ;(s) = 0Vs > N(IN < o),
in other words, for finite sums U; (B.1). Write the set I as the table

(1,1) (1,2)...(1,%k1)
=421 (2,2)...2k)
(371) (3a2)(37k3)

3 (

consisting of three rows I;,i = 1,2,3 (some of which may be empty) and having |I| =
k1 + ko + k3 elements; k; > 0,7 = 1,2,3. Then

3
T[v: =3 Fs ()¢5 (B.3)
St

i=1
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where (t) := (t1, t2, t3),

H Csi,ja Fs,((t H flj Sij—1— SU) (B.4)

(i,5)el (i,5)el

and where s; o := t; and the sum ) is taken over all integers s; j, (4, j) € I. As fi j(s) :=0
(s <0),s0 s, in (B.3), (B.4) satisty

Si,ki<~~~<8i,1<ti, @:]_7273

To proceed, we need some terminology. Any subset G C I, G # 0 such that |[GNI;| <1,j =
1,2,3 will be called an edge. Let I'; be the class of ordered partitions v = (G1,...,G,) of I
by edges. (Two partitions v = (Gy,...,G,) €',y = (GY,...,Gl,) € T'; are equal (y =)
if and only if r =" and G; = GY,...,G, = G...) Then the sum in (B.3) can be rewritten as

2P = 2 X PO s =5, (10) € Gpa = Lot}

~yel'r 5,<...<51

PP A(CIE

YELT

where Eg stands for the sum over all ordered integers 5, < ... < §; such that s; ; = 5, for
(1,j) € Ggog=1,...,7
Next, we split the sum Z’é into "diagonal” and ”off-diagonal” parts. To that end, for

any v € I'y, put
U ¢ 1= {J G

q:|Gq|:1 qi‘Gq‘>1
Then .
S _ s
ZS‘ FSI C ! ZSO ZSI C g
Where ZV stands for the sum over all ordered integers §,,¢ = 1,...,r with |G,| > 1, while
51 stands for the sum over all ordered integers §,,¢ = 1,...,r with |G,| = 1.

Write (51 = ¢510¢% | where (510 := i jyer G ¢on = H(ij)ep (s;;- Note that for
fixed Spo = {s;; : (i,4) € I°}, ¢51° is independent of ¢(51*. Consequently,

B P )¢ = Bl IE[Y F ()6
< BB s (@)en )

Now, as the sum Zgl is taken over ordered sets of disjoint integers,

E{Z; Fs, ((t))¢5n }2 = Z; |Fs, ()]

We finally obtain

3
B[l = E’ZFSI £))¢5
i=1
0 gl 2\ 1/2
< S LB LIF @) = @) (B5)
v€el:
Put pr := sup; pr((t)). Now Lemma B.1 follows from the following lemma. L
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Lemma B.2.
pr < DI, (B.6)

where DT = H(i,j)el D; ; and D; j := D(fi ;).

PROOF. In the case when I has one or two rows, (B.6) immediately follows from (B.2);
indeed, E|U1Us| < H?:l EY?2U? < i jyer 1figll < D Let ki, ...,ks > 1. We prove (B.6)
by induction in |I| = k1 + ka2 + k3. Let v = (Gy,...,G,) € I'1 be a partition of the table I.
Let Gy be the first edge from the right. It may contain 1, 2, or 3 elements. Let I’ = I\Gl,

so that v = (Ga,...,G,) € I's is a partition of the table I’. Let Z’Y, (respectively, Z ,)

denote the sum over all ordered integers s,,q = 2,...,7 such that |G | > 1 (respectlvely,
|G4l =1). Let pro((¢))(u = 1,2,3) be defined as in (B 5) where »__r, is replaced by the

sum over all v € I'y with |G1| = u. Let pr,, :== sup(y) pr..((t)), then p; < Zi:lpl,w
Consider first the case |G1| =2,G; = {(1,1),(2,1)}. Let (t') = (7,7,t3). Then

sy 0 B (Y0 |Fs,<<t>>\2)” :
< bupz ZS, E|¢%| bup<z

< S ( !
= \|f1,1||2||f2,1||25(31;>zgé E|¢70| ZS{

Put 1 :=I\{(1,1),(2,1),(3,1)}. By using the inductive assumption, we obtain

((t/))|2)1/2|f1,1(t1 —51)f21(t2 — 31|

@nP)” ®7)

pr2 < Con(

I f2102D3,1 + [ frall2ll fa1ll2D2a + || f2all2ll fo,1 12 D11)- (B.8)
NeXta let |G1| = 37 Gl = {(17 1)7 (23 1)7 (37 1)}3 (tl) = (T7 T, T)' Then
8! So v 2\ 1/2
supy Do B30 [P, (4)]7)
“// ’ ’Y' 2 1/2
< s Y B ulssup (D0 [Fs, (1))

(t) FR 0 o 1

x| f11(t1 — 81)fa1(t2 — §1) fa,1(ts — 1)

04 / ' 2\ 1/2
< |M|3||f1,1||3\|f2,1||3||f3,1||3s(;11)>25, E|CS°|(ZS, ()] ) -
’ 0 1
By using the inductive assumption, we obtain
pr3 < DM pls|l frallsll 2. llsl f51lls- (B.9)
Finally, let |G1| = 1,G1 = {(1,1)}. Assume also k1 > 2. Then
S0 EcI (S P ) < X0 B (S ) e
So § 105 s, ’ '

whete F4, (0) = Tl gper £ (sig—1 = sig) and f1; € L(2),(i,) € I' are defined by
fz/J = fi; if (4,7) € I',(4,7) # (1,2),

f12 :<Zf11 f12 ))1/2~
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Observe that

(B.11)
and, by Minkowski or Young inequalities,
1f12lls < (B.12)
From (B.11), (B.12) we obtain
D / _ 1/3 7 39 /
(fiz) = [ul3" " If12llz + 30| f12ll2
1/3
< Juls N fuall2llfrzlls + 300 fuallzll fr2ll2
< N frallz (uls [ £r.2lls + 300 frall2) = 1 f1all2D(f12).
Therefore, in the case |G1| =1, |I;| > 1,i = 1,2, 3,
pra < Dj( ’ ) (B.13)

By (B.8), (B.9), (B.13), the induction step [I| —1 — |I| in the case |I;| > 1,i = 1,2, 3 follows

from
I fill2ll f2ll2 D3 + [ fill2ll fall2 D2 + (| f2ll2ll fall2 D1 + |plall f1lls]l f2ll3 ] f3]]3

+f1ll2D2Ds + || f2|l2D1 D3 + || fs||l2D1 D2 < D1D2Ds, (B.14)
where we put fl = fi,laDi = Di,l = D(f%l) To prove (Bl4)7 put T; ‘= ||f1||2, Y; =
|N‘1/3||fi\|3. Then (B.14) can be rewritten as

F($17$27$3»y17y2ay3) Z07 (B15)
where
3
F(xy, 22, 3,y1,y2,¥3) = H (yi + 302:) — y1y2ys
1
- 3 zx; (Y + 30zk)
i#jF#k
1
3 > wilyy + 30x5) (yx + 30ay)
1#j#k

and the sum Z#j#k is taken over all i,j,k =1,2,3,i # j # k.
To prove (B.15), note that F(x1,22,73,0,0,0) = 90z17923(30> — 1 — 30) = 0 by the
definition of #. Next, with X; = 30z;,

1
F(x1,22,23,91,Y2,Y3) = F($1,$2,$37070,0)+§ Z iy (X — x1)
1#j#k
1
+ 5 Z yi(Xij*l’ijf:Eka—xjxk)
i#j#k

and (B.15) follows from the easily verified relations X; — z; > 0, X; Xy — z; Xi — 2 X; —
iz > 0.

It remains to prove the induction step |I| — 1 — |I| in the case when one of the rows
I;,i = 1,2,3 has only one element. Let, for example, |I;| = 1,|I2| > 1,|I3] > 1. Then (B.10)
becomes

S0 (S R (@) < alla 5, B (3|
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yielding again the bound (B.13). The remaining cases can be considered similarly. This
proves Lemma B.2. ]

Now we apply Lemma B.2 to estimate third moments of infinite Volterra series. Let
fijy € L*(ZY),i=1,2,3,j =1,2,... be an infinite collection of functions satisfying

f=sup||fijll2 <1.
2,7

Let

®; = Z Z finlti —s1) - fin(sk—1 — Sk)Csy -+ Csp = Z ‘I)z(‘k)v (B.16)

k=1sp<...<51<t; k=1

1 =1,2,3,t; € Z be (infinite) Volterra series, which converge in mean square by orthogonal-
ity:
co k
Eo? =Y [[Ifisls < P/ = %) < oo
k=1j=1
For given N < 00, let ®; y be defined analogously to ®; (B.16), where the f; ; are replaced
by truncated functions

(2]

(N oy [ fig(s), if1<s<N,
Ji (S)_{o, if 5> N.

Lemma B.3. Assume that

D :=supD(f; ;) <L (B.17)
4,J
Then - -
E|®1®,®3] < (D/(1 - D))? < oc. (B.18)
Furthermore,
E(I)lq)gq);g = th E(I)l,N(I)2,N©3,N~ (B].g)

PROOF. We have

oo

3 3
EfJIed< > EJJIe")I.
i=1

kiko,ks=1 i=1

According to Lemma B.1, the last expectation does not exceed D¥1T*2%ks thereby proving
(B.18).
Next, note that relation (B.19) follows from

Nllm E(I)LN(I)Q(pg = E(Dl(pgq)g, (B20)

where f; j,i=2,3,7 > 1 may depend on N and satisfy (B.17).
To prove (B.20), for an integer L put ®;  := Z£=1 @E,k]z,, (I);CN =D her4l @fklz, Then
H?Zl O, N = H?:l ®; y + Ry, where, by Lemma B.1,
k1 +ha+k D3
< Dhithaths < _
= Z = (1-D)?
k1>L,ka,k3>1

3
ElRy< Y EJ[le%
k1>L.k2,kz>1 =1
vanishes as L — oo uniformly in N. Consequently, |E(®; — @1 n)P2P3| < |E(P] —
@) ) ®2®3| +o(1) uniformly in N, so that (B.20) follows from limy_.oc E(®7] — @ ) P2®3
=0 for each L < oo. In turn, the last relation follows from

lim E(@{" — ")) 5 = 0. (B.21)

N —o00
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for each 1 < k < co. The difference in (B.21) can be written as @gk) 1k1)V = Z Uiy, i
where the sum Z' is taken over all i1, ..., taking values 0,1 and such that ¢; +...+i; > 1,

Ui 7= D gt = 1) gl (sre1 — 5oy - G
sp<...<s1<t1
0 N k
and where g = fl’j ,gj( ) = = fi; — f1(,j)- Then |E(‘I’g - ‘I’( ))‘I’ ¢’3| < Z Zkz,kg, 1
EU;,, .., zk(I)gh)fI)gkd)L where, by Lemma B.1, the last expectation does not exceed szl
D(gj(”))l_)kﬁk?’. Now, relation (B.21) follows from D(gj(-i)) < D(f1;) < D (i = 0,1) and
D(g §1)) — 0 (N — o). This proves Lemma B.3. U

PROOF OF PROPOSITION 2.2. It suffices to show EV! < co. We shall assume a = 1 without

loss of generality. Let
N-1

UN:1+ Z Uk,Na
k=1

where

U n = > bos bsy—sy - by y—sCoy - - Cop-

—N<s5p<...<51<0

Then Uy — Vo in L?(Q) as N — oo and therefore by Fatou lemma,

EVy < sup EUy,.
N>1

Hence the proposition follows if for all N > 1
EUyN < K. (B.22)

The inequality (B.22) follows from the following statement: there exist constants K; <
00,0 < D < 1 independent of N > 1 and such that for any integers k1,...,k4 >0

4
|E]]Ukn| < EK1D!®4, (B.23)

=1

where (k)4 = (k1,...,ka),[(k)a] = k1 + ... + k4, and Unp := 1. Indeed, if (B.23) is true,
then

K
EU; < Z|EHUk N <K ) DMl = Ao pu =<
(k;)4 =1 (k})4 )
To prove (B.23), write

EHU;%,N Z( )) b bSUE[CSY L ¢S,

where the sum ZE?)‘; is taken over all collections (S)4 = (St,...,54),9; C {—-N+1,..., -1} =
Tn C Z consisting of sets of ordered indexes S; = {Sk,,Ski_1s---»S1}s Sk < ... < 81,
it =1,...,4, and where, for each such subset S = {sg,...,s1} C T,

b  i=b_ g be sy bsy —srs %=y Cops

=(":=1. Put
(k)4
D(k), = Z |bS1 bS4| ‘E[<S1 "~CS4]|'
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Obviously, it suffices to show (B.23) with the left hand side of (B.23) replaced by p(y),. We
use induction in |(k)4| = k1 + ... + ka. Let first kq,..., ks > 1. Put s, = s;4,,4=1,...,4
then E[¢%...¢%] =0ifs;,i=1,...,4 are all different. Hence

(k/)4 U ’ / ’
Pk)y = Z ot Z(S/) 651 .. 6% | [E[¢SY ... ¢54) Z H |bsiyk;_§|,

2<|A|<4 s Q€A

)

where the sum 22<|A‘<4 is taken over all subsets A C {1,...,4},2 < |A] < 4, and, for any
such subset A, k; :=k; — 1 if i € A and k] := k; otherwise. By Hélder’s inequality,

SO TT b, ol <7 bl = [0l

s €A s

Then we obtain for p(), the following recursive relation

Pleys < 12llDl13 D oy, + uslBI3 D oy, + pallbl Y b
|A]=2 |A]=3 | A[=4

where the last sum consists of a single term, of course.
By using the inductive assumption for pgy,, [(k")4] < [(k)a| — 1, we obtain

Py, < KD Gzl |30 + | |50 + 1D ). (B.24)

The constant D in (B.24) can be chosen arbitrarily close to 1, in particular, in view of (2.4),
we can choose D < 1 such that

62 [1bl3D7% + 4lus|[B]3D % + pa bl 3D < L. (B.25)

Hence (B.24) implies p), < K, D!l thereby proving the induction step |(k)4| — 1 —
|(K)al.

Assume now that ky = 0,k1,k2,k3 > 1. Then in a similar way we obtain instead of

(B.24) the relation

Py, < KiD' 4 (3uz |bIED 2 + s DI 3D ),

which again proves the induction step |(k)s] — 1 — |(k)4| by (B.25). The case ks = kq
0,k > 1,ko > 1 follows easily. The above argument also proves the bound (B.23) fo
0<ki,..., ks <1, by verifying that px), < K1 < oco.

=
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