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Abstract

We consider the long memory and leverage properties of a model for the conditional
variance V 2

t of an observable stationary sequence Xt, where V 2
t is the square of an

inhomogeneous linear combination of Xs, s < t, with square summable weights bj .
This model, which we call linear ARCH (LARCH), specializes, when V 2

t depends only
on Xt−1, to the asymmetric ARCH model of Engle (1990), and, when V 2

t depends only
on finitely many Xs, to a version of the quadratic ARCH model of Sentana (1995),
these authors having discussed leverage potential in such models. The model which
we consider was suggested by Robinson (1991), for use as a possibly long memory
conditionally heteroscedastic alternative to i.i.d. behaviour, and further studied by
Giraitis, Robinson and Surgailis (2000), who showed that integer powers X`

t , ` ≥ 2,
can have long memory autocorrelations. We establish conditions under which the cross-
autocovariance function between volatility and levels, ht = Cov(V 2

t , X0), decays in the
manner of moving average weights of long memory processes on suitable choice of the
bj . We also establish the leverage property that ht < 0 for 0 < t ≤ k, where the value
of k (which may be infinite) again depends on the bj . Conditions for finiteness of third
and higher moments of Xt are also established.
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1 Introduction

Considerable activity has centred on modelling the dependence structure of asset returns.
Empirical evidence suggests that these may have little or no autocorrelation, but are far
from independent. One empirical observation, due to Black (1976), is the leverage effect, a
tendency for volatility to move in the opposite direction to returns, after a delay, as happens
when the conditional variance is negatively correlated with past returns. As a related find-
ing, nonlinear functions such as squares or absolute values can be notably autocorrelated.
So far as squares are concerned, this arises if the series has conditional heteroscedasticity, so
that not only can substantial autocorrelation at short lags be detected, but also such slow
decay as lag length increases that there is said to be long memory conditional heteroscedas-
ticity. In empirical studies this latter possibility was recognized as early as Whistler (1990),
who applied to exchange rate series tests for independence that are directed against the
alternative of long memory autocorrelation in squares.

Denote by Xt, t = 0,±1, ..., the observable series (of asset returns, for example), assumed
strictly stationary, such that E|X0|3 < ∞, and define the conditional variance

V 2
t = Var (Xt |Gt−1 ) , t = 0,±1, ..., (1.1)

where Gt denotes the σ-field of events generated by Xs, s ≤ t. To measure leverage, define
the function

ht = Cov
(
V 2

t , X0

)
, t ≥ 1. (1.2)

Alternative measures may be used, with V 2
t replaced by other increasing functions of |Vt|,

but (1.2) proves mathematically the most tractable. We shall say that Xt has leverage of
order k (Xt ∈ `(k)), 1 ≤ k < ∞, if and only if

hj < 0, 0 < j ≤ k. (1.3)

We shall also consider the long memory property

ht ∼ Ctd−1, C 6= 0, 0 < d <
1
2
, (1.4)

as t → ∞, where “∼” indicates that the ratio of left and right sides tends to 1 as t → ∞.
From other experience with time series analysis, it is easy to understand that both the
leverage and long memory properties (1.3) and (1.4) can arise, because by nested conditional
expectations

ht = Cov
(
X2

t , X0

)
, t ≥ 1, (1.5)

if
E (Xt |Gt−1 ) = 0, a.s. (1.6)

Thus ht is simply the cross-autocovariance function between the levels Xt and squares X2
t .

Long memory in scalar and vector time series is familiar, as are negative autocovariances
and cross-autocovariances.

To provide some evidence of the possibility of leverage and long memory in financial
data, Figure 1 displays the sample cross-autocorrelation between levels and future squares
(solid line) and the sample autocorrelation of squares (dashed line), for 900 S&P500 daily
returns beginning in 1928. No interval estimates (such as ones based on a null hypothesis
of independent and identically distributed Xt) are presented, but Figure 1 seems suggestive
of a leverage effect at low lags, with some tendency for negative values of the estimated
ht to persist (with oscillation), as (1.4) also predicts. Of course this behaviour could have
other sources, but a negative ht, at finitely or infinitely many t, the slow decay of (1.4), and
oscillation, are features which can be described by the ’LARCH’ model class which will form
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the focus of the current paper. Giraitis, Robinson and Surgailis (2000) demonstrated the
ability of LARCH to explain long memory decay (at rate t2d−1 for the same d as in (1.4))
in autocorrelations of squares, and again Figure 1 provides some evidence of this, though
there are clearly other effects to be explained also.
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Figure 1

In fact, some other models have previously demonstrated to have both long memory
conditional heteroscedasticity and leverage properties. Consider the model

Xt = ζt

(
a +

∞∑

j=1

bjζt−j

)
, (1.7)

where
ζt are i.i.d., Eζ0 = 0, Varζ0 = 1, (1.8)

and a and the bt, t ≥ 1, are non-stochastic with

∞∑
t=1

b2
t < ∞. (1.9)

The non-linear moving average (MA) model (1.7) has the immediate property

Cov(X0, Xt) = 0, t ≥ 1, (1.10)

often believed true of asset returns, and was considered by Robinson and Zaffaroni (1997),
who showed that if

bt ∼ ctd−1, 0 < d <
1
2
, 0 < c < ∞, (1.11)

and also Eζ4
0 < ∞, then

Cov(X2
0 , X2

t ) ∼ c′t2d−1, 0 < c′ < ∞, a 6= 0, (1.12)
Cov(X2

0 , X2
t ) ∼ c′′t4d−2, 0 < c′′ < ∞, a = 0, (1.13)
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as t → ∞. The property (1.11) is characteristic of MA weights in long memory models,
while the decay in (1.12) is consistent with the asymptotic autocovariance behaviour in such
models; in case (1.13), there is long memory only when 1

4 < d < 1
2 . We can achieve (1.11)

by, for example, taking

bt = c0rt(d), rt(d) =
Γ(t + d)

Γ(d)Γ(t + 1)
, c0 > 0, (1.14)

so the rt(d) are coefficients in the formal expansion

(1− z)−d = 1 +
∞∑

t=1

rt(d)zt (1.15)

and the bt are proportional to weights in the fractional autoregressive integrated moving
average FARIMA(0,d,0) model of Adenstedt (1974) (see also Palma and Zevallos (2002) for
generalizations). On the other hand, considering for simplicity only the case Eζ3

0 = 0, we
have (cf. Zaffaroni (1998))

ht = 2abt

(
1 +

∞∑
s=1

bt+sbs

)
, t ≥ 1.

Thus under the sufficient conditions
∑∞

t=1 b2
t < 1, or that all bt have the same sign, Xt ∈ `(k)

if and only if
abt < 0, 1 ≤ t ≤ k, (1.16)

that is if all bt, 1 ≤ t ≤ k, have the same sign and this differs from a’s. It is possible to
achieve this effect by choosing the bt as weights in certain autoregressive integrated moving
average (ARMA) models. Moreover, for bt satisfying (1.11), for example (1.14), the long
memory property (1.4) of ht immediately follows. To estimate (1.7), with bj depending on a
finite dimensional vector of parameters, Robinson and Zaffaroni (1997) proposed a form of
Whittle estimation based on the X2

t , and Zaffaroni (1998) provides a central limit theorem
for such estimates. One may then infer long memory if a test of d = 0 is rejected against
positive alternatives, or infer leverage if a test of bj = 0, 1 ≤ j ≤ k, some k, is rejected
against negative alternatives. The model (1.7) might be extended by, for example, replacing
the second factor by some nonlinear function, cf. the stochastic volatility model of Taylor
(1986).

Nonlinear MA models face the criticism, however, of being difficult to use in forecasting,
being possibly non-invertible over a large portion of the parameter space, and having a
likelihood that is relatively intractable. An alternative popular class that meets the above
objections (albeit suffering other disadvantages) commences from functional forms for the
first two conditional moments, E (Xt |Gt−1 ), such as (1.6) (which implies (1.10)), and V 2

t

(1.1). Some popular choices of V 2
t are special cases of

V 2
t = a +

∞∑

j=1

bjX
2
t−j , (1.17)

where a ≥ 0, bj ≥ 0, and covariance stationarity of Xt implies the identity

a = EX2
0

(
1−

∞∑
t=1

bt

)
. (1.18)

The ARCH(p) model of Engle (1982) takes bt = 0, t > p, in (1.17), the GARCH(p, q) model
of Bollerslev (1986) entails exponentially decaying bt, while the general “ARCH(∞)” form
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(1.17) was considered by Robinson (1991) in connection with hypothesis testing. Robinson
(1991), Ding and Granger (1996), also considered the possibility of long memory in squares
resulting from (1.6), (1.17), as from taking bt = −rt(−d) (see (1.14)) so that from (1.15)

V 2
t = a +

(
1− (1− L)d

)
X2

t , (1.19)

where L denotes the lag operator. In fact (1.18) then implies a = 0, whence (1.19) corre-
sponds to the FARIMA(0,d,0) model for X2

t ,

(1− L)dX2
t = X2

t − V 2
t , (1.20)

where the X2
t − V 2

t are (conditionally heteroscedastic, given EX4
0 < ∞) martingale dif-

ferences. However (1.19) does not satisfy the sufficient conditions developed by Giraitis,
Kokoszka and Leipus (2000) for a covariance stationary solution Xt of the equations

Xt = ζtVt, t = 0,±1, . . . , (1.21)

with Vt given by the positive square root of (1.17) and ζt satisfying (1.8); (1.21) satisfies
(1.6) and thus (1.10). On the other hand, Baillie, Bollerslev and Mikkelsen (1996) consider
a “FIGARCH” modification of (1.19) (allowing also for an ARMA factor) but with a > 0
(so (1.18) is not satisfied) whence a is added to the right side of (1.20) and Xt does not have
finite variance for any d > 0.

Unlike (1.7), none of these ARCH-in-squares models is capable of explaining the lever-
age effect. Although some existing ARCH-type models, e.g. Glosten et al. (1993), Za-
koian (1994), Müller et al. (1997), Schwert (1990), allow modelling of the leverage property,
there is limited experience in extending them to model long memory properties such as (1.4)
or (1.12). Another important class used for modelling asymmetry in financial data consists
of exponential ARCH (EGARCH) models (see Nelson (1991), Karanasos and Kim (2001),
He et al. (2002) for the properties of EGARCH process). Long memory stochastic volatility
models were explored by Harvey (1998), Breidt et al. (1998), Comte and Renault (1998).
Demos (2002) studied a model which nests both EGARCH and the stochastic volatility
specification. Some of the above models, together with the FIEGARCH model of Bollerslev
and Mikkelsen (1996) and FIAPARCH model of Tse (1998), have potential to explain both
leverage and long memory but their theoretical properties are not established. Rigorous
mathematical study of exponential models covering both the long memory and leverage
effects can be found in Surgailis and Viano (2003). Finally note, that the slowly decay-
ing component in the leverage function was advocated by Bouchaud et al. (2001), who
investigated quantitatively the leverage effect for individual stocks and stock indices, and
introduced the so-called ”retarded volatility” model. Pagan (1996, p.30–31) also stressed
the persistence of the leverage effect for some stock data.

One ARCH-type model for which long memory capability has already been established
is the linear ARCH (LARCH) model suggested by Robinson (1991), which replaces (1.17)
by

V 2
t =

(
a +

∞∑

j=1

bjXt−j

)2

. (1.22)

Note that (1.22) is satisfied by both

Vt =
∣∣∣a +

∞∑

j=1

btXt−j

∣∣∣ (1.23)

and

Vt = a +
∞∑

j=1

btXt−j . (1.24)
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In (1.23), but not (1.24), Vt has the familiar interpretation of a standard deviation, but
(1.24) is mathematically the more tractable form, and unlike (1.17), requires no restrictions
on the bj to ensure nonnegativity of V 2

t . Short memory versions of (1.22) are given by

“LARCH(p)”: Vt = a +
p∑

j=1

bjXt−j , (1.25)

to correspond to the ARCH(p) structure of Engle (1982), and

“GLARCH(p, q)”: Vt −
q∑

j=1

βjVt−j = a′ +
p∑

j=1

αjXt−j , (1.26)

to compare with the GARCH(p, q) structure of Bollerslev (1986), where a = a′/(1−∑q
j=1 βj)

in (1.24). Indeed with p = 1, (1.25) first arose in Engle (1990), who considered a model for
V 2

t containing an additive constant, a term in Xt−1, and a term in |Xt−1|θ, for unknown θ,
and then estimated θ from real data, noting the consequence of θ = 2; see also Engle and
Ng (1993). On supplementing (1.24) by (1.21) and imposing (1.8), (1.9), we have a kind of
nonlinear AR dual of the nonlinear MA (1.7):

Xt = ζt(a +
∞∑

j=1

bjXt−j). (1.27)

Of course, (1.27) satisfies the uncorrelatedness-in-levels assumption (1.10). So far as
leverage properties are concerned, Robinson (1991) noted that for (1.27) ht can be non-zero
even if Eζ3

0 = 0, unlike in (1.17), while Engle (1990), Campbell and Hentschel (1992), Engle
and Ng (1993) and Sentana (1995) explicitly discussed leverage and other asymmetry in
models that overlap with (1.27); see also Barndorff-Nielsen and Shephards’ (2001) discussion
of leverage of a related continuous-time model. Sentana (1995) considered a number of issues
relating to a model in which V 2

t is a more general quadratic function of Xt−1, . . . , X1 than
in our LARCH(p), along with a form of GARCH extension which, however, differs from our
(1.26). The first of these latter types of model is given by

V 2
t = θ +

p∑

j=1

ψjXt−j +
p∑

j=1

p∑

k=1

φjkXt−jXt−k, (1.28)

where the parameters θ, ψj , φjk can vary freely and need not necessarily satisfy the con-
straints implicit in (1.25), so that (1.28) nests both the ARCH(p) model of Engle (1982) and
(1.25). Whereas non-negativity of V 2

t given by (1.25) is automatic, Sentana derived condi-
tions for non-negativity in (1.28). Relative to (1.28), (1.27) has an advantage of parsimony,
but at the same time it suffers from less flexibility, which may be an important drawback
in modelling; for example in the LARCH(1), non-rejection of a test for b1 = 0 suggests lack
of both conditional heteroscedasticity and leverage, so we cannot examine both phenomena
individually or conveniently interpret parameters as contributing primarily to one or the
other. Sentana’s interest in (1.28) was strongly motivated by a desire to explain leverage
and other asymmetry, and he described conditions similar to some of ours (see Theorem 2.4
below) in case Eζ3

0 = 0, but taking for granted stationarity and existence of moments of
Xt, aspects which we justify under primitive conditions on the ζt and bt. Though Sentana
referred to interest in long memory, he did not discuss its achievement in his models. Sen-
tana also discussed the estimation and testing of his models, conditions for stationarity of
his GARCH extension of (1.28), and multivariate extensions of his models, also exploring
their ability to empirically explain leverage and other features of data.
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Despite the appeal of Sentana’s (1995) extension (1.28) of LARCH(p) and partial exten-
sion of LARCH(∞), a serious practical study of such models conveniently commences by
focussing on LARCH(∞) (1.27), which has an aesthetically simple form with its automatic
non-negativity of V 2

t , and significantly different mathematical structure from ARCH(∞)
(1.17). Indeed, Giraitis, Robinson and Surgailis (2000) already gave conditions under which,
for bt given by (1.11), integer powers X l

t , l ≥ 2, of LARCH(∞) Xt have long memory au-
tocorrelation, for example (1.12) holds. In the present paper we establish conditions for
the alternative long memory property (1.4) in LARCH(∞), which (unlike (1.12)) is possible
without finiteness of X ′

ts fourth moment, and conditions for leverage (1.3). We assume in
(1.27) that (1.8), (1.9) and also

a 6= 0 (1.29)

hold; if a = 0 the model has a trivial character, as seen in Theorem 2.1 below. Theorem 2.1
provides conditions for existence and uniqueness of a stationary solution of (1.27). For the
leverage and long memory properties, additional conditions are required on moments of ζt

and on the bt; we also give primitive sufficient conditions for finiteness of third and higher
moments of Xt. In case of the simple LARCH(1) and GLARCH(1,1) models, we compare
the leverage conditions we have obtained under a general LARCH(∞) model with ones that
directly exploit the special structure of these models, also obtaining explicit formulae for
ht in these cases. Note that Sentana (1995) observes that ”linear ARCH” is also used for
the model (1.17), so our ”LARCH” terminology is not ideal; there is, however, a plethora of
existing ARCH acronyms and we have been unable to propose a simple alternative.

The following section presents conditions and results, while the proofs are developed in
Appendices. Section 3 includes some final comments.

2 Main Results

Implicit in our results for ht is the requirement that Xt have at least finite third moment.
We begin by extending our conditions (1.8), (1.9) on ζt and the bj in the LARCH model
of the previous section for finite third or fourth moments (as is relevant to the results of
Giraitis, Robinson and Surgailis (2000)), and then for finite even moments of any order;
in general finiteness of E |X0|r entails finiteness of E |ζ0|r, so the latter case is relevant to
Gaussian ζt, a possibility earlier stressed in estimation of (1.7) and (1.17).

Write ‖f‖p = (
∑∞

t=1 |ft|p)1/p for p > 1 and a sequence {ft; t ≥ 1}; for brevity write
‖f‖ = ‖f‖2; as indicated by (1.9), ‖b‖ < ∞. Put µk = Eζk

0 , |µ|k = E|ζ0|k, k ≥ 1; as
indicated by (1.8), µ1 = 0, µ2 = 1. Define Z = {0,±1, . . .}.

A preliminary result that is important to all that follows concerns the existence and
nature of a unique stationary solution of (1.27). Let Ft be the σ−field of events generated
by ζs, s ≤ t.

Definition 2.1: An Ft−measurable sequence Xt, t ∈ Z is called a solution of (1.27) if

sup
t

EX2
t < ∞ (2.1)

and (1.27) holds for each t ∈ Z. Note that (2.1) and ‖b‖ < ∞ imply that (1.24) converges

in L2.

Theorem 2.1: (i) Let a 6= 0. Then a solution of (1.27) exists if and only if ‖b‖ < 1, in
which case there is a unique covariance and strictly stationary solution for Vt given by the
Volterra series

Vt = a
(
1 +

∞∑

k=1

∑
sk<...<s1<t

bt−s1bs1−s2 . . . bsk−1−sk
ζs1 . . . ζsk

)
. (2.2)
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(ii) Let a = 0 and ‖b‖ < ∞. Then (1.27) admits a unique solution Xt = 0 a.s.

Theorem 2.1 extends Theorem 2.1 of Giraitis, Robinson and Surgailis (2000) by demon-
strating uniqueness in case a 6= 0, and by addressing also the case a = 0. All the results of
the paper are readily extendable to allow for a nonstochastic, non-zero conditional mean of
Xt, so that an additive constant is included in (1.27), leading to a constant, non-zero right
hand side in (1.6).

Our results for ht require higher moment conditions on ζt, and stronger conditions on bt.

Assumption M3: The third absolute moment |µ|3 < ∞ and

|µ|1/3
3 ‖b‖3 + 3θ ‖b‖ < 1, (2.3)

where θ ≈ 1.27 is the solution of 3θ2 − 3θ − 1 = 0.

Proposition 2.1: Under (1.8), (1.9), (1.27), (1.29) and assumption M3,

E |V0|3 < ∞, E |X0|3 < ∞.

In view of frequently-expressed scepticism concerning the finiteness of fourth moments of
much financial data, there is interest in Proposition 2.1, a finite third moment being a mini-
mal condition for analysis of ht (though statistical inference on ht is liable to entail finiteness
of at least the sixth moment of Xt). There is a trade-off between moment conditions and
restrictions on the bt, so we consider also:

Assumption M4: The fourth moment µ4 < ∞ and

µ4 ‖b‖44 + 4 |µ3| ‖b‖33 + 6 ‖b‖2 < 1. (2.4)

Proposition 2.2: Under (1.8), (1.9), (1.27), (1.29) and assumption M4,

EV 4
0 < ∞, EX4

0 < ∞. (2.5)

Assumption M2k: For k ≥ 3 the 2kth moment µ2k < ∞ and

2k∑
p=2

(
2k

p

)
‖b‖p

p |µp| < 1. (2.6)

Proposition 2.3: Under (1.8), (1.9), (1.27), (1.29) and assumption M2k, k ≥ 3,

EV 2k
0 < ∞, EX2k

0 < ∞. (2.7)

Propositions 2.1 and 2.2 are proved in Appendix B; the proof of Proposition 2.3 is a
development of these and is omitted as this proposition is not important to the rest of the
paper. Assumption M4 is weaker than the condition 11 |µ|1/2

4 ‖b‖2 < 1 for (2.5) obtained
in Giraitis, Robinson and Surgailis (2000) although it is not necessary. It should be noted
that the question of finiteness of the third and other odd absolute moments of the LARCH
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model (and more general Volterra series) is more delicate than that of even moments; see
Appendix B. Assumption M2k is weaker than the condition

(
4k − 2k − 1

) |µ|1/k
2k ‖b‖2 < 1

for (2.7) obtained in Giraitis, Robinson and Surgailis (2000), indeed, as ‖b‖p ≤ ‖b‖ and

‖b‖2 µ2k ≤ 1, so ‖b‖p
p |µp| ≤ (‖b‖2 µ

1/k
2k )p/2 ≤ ‖b‖2 µ

1/k
2k and therefore

2k∑
p=2

(
2k

p

)
‖b‖p

p |µp| ≤ ‖b‖2 µ
1/k
2k

2k∑
p=2

(
2k

p

)
=

(
4k − 2k − 1

)
µ

1/k
2k ‖b‖2 .

When the distribution of ζ0 is unknown, the bounds (2.3), (2.4) and (2.6) cannot be
used in practice. If, on the other hand, ζt is known to be Gaussian they may be evaluated
using |µ|3 = (8/π)1/2, µ2k = (2k − 1)(2k − 3) · · · 1, k ≥ 1, µk = 0, k odd. Indeed, using also
‖b‖p ≤ ‖b‖, p ≥ 2 we can get the simplified sufficient conditions

‖b‖ ≤
(
(8/π)1/6 + 3θ

)−1

≈ .2008 (2.8)

for M3 and
‖b‖ <

√
0.1547 ≈ .3933 (2.9)

for M4. For example, the corresponding assumption to M4 of Giraitis, Robinson and Surgailis
(2000) gives ‖b‖ ≤ .229. Note that in case of the LARCH(1), ‖b‖p = ‖b‖, for all p ≥ 2, so
(2.8) and (2.9) are precise versions of (2.3) and (2.4), respectively.

We now go on to study ht directly. We assume either M3 or M4 holds in all that follows,
implying in particular that ‖b‖ < 1. Then for |z| ≤ 1 we may define

Φ(z) :=
∞∑

t=0

φtz
t =

(
1−

∞∑
t=1

b2
t z

t

)−1

, (2.10)

so that

φt := b2
t +

t−1∑

k=1

∑
0<sk<...<s1<t

b2
sk

b2
sk−1−sk

· · · b2
s1−s2

b2
t−s1

, (t ≥ 1), φ0 = 1. (2.11)

Now, denoting

σ2 = VarXt =
a2

1− ‖b‖2 , [b]3 =
∞∑

j=1

b3
j , (2.12)

introduce

gt := 2aσ2
t∑

s=1

bsφt−s (t ≥ 1), g0 := aµ3

(
a2 + 3σ2 ‖b‖2

)
, (2.13)

rtu := 2
t∑

s=1

bsbs+uφt−s (t, u ≥ 1), rt0 := φt (t ≥ 1), (2.14)

r0u := 3µ3

∞∑
s=1

b2
sbs+u (u ≥ 1), r00 := µ3[b]3. (2.15)

Then introduce h′t, t ≥ 1, to be the unique square-summable solution of

h′t = φt +
∞∑

u=1

rtuh′u, t ≥ 1; (2.16)
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such {h′t} exists because
( ∞∑

t,u=1

r2
tu

)1/2

≤ 2 ‖b‖2
1− ‖b‖2 < 1, (2.17)

as will be shown in the proof of the following theorem.

Theorem 2.2: Let (1.8), (1.9), (1.27), (1.29) and either assumption M3 or M4 hold. Then

r00 +
∞∑

u=1

r0uh′u 6= 1 (2.18)

is a necessary and sufficient condition for uniqueness of a solution {ht, t ≥ 0} satisfying

∞∑
u=0

h2
u < ∞ (2.19)

of the linear equations

ht = gt +
∞∑

u=0

rtuhu, t ≥ 0. (2.20)

Condition (2.18) is automatically satisfied if µ3 = 0, because then (2.15) implies r0u = 0,
u ≥ 0. A more general condition, obtained in Lemma A.1 below, is

|µ3| ‖b‖3 + 3 ‖b‖2 < 1. (2.21)

We now go on to establish the long memory property (1.4) for ht, discussed in Section 1.

Theorem 2.3: Under the assumptions of Theorem 2.1 and also (1.11), it follows that (1.4)
holds with C = 2σ4c/a.

Sufficient conditions for the presence or absence of leverage are provided by:

Theorem 2.4: Let the assumptions of Theorem 2.2 hold and also

|µ3| ≤
2
(
1− 5 ‖b‖2

)

‖b‖
(
1 + 3 ‖b‖2

) . (2.22)

Then for any fixed k such that 1 ≤ k ≤ ∞:
(i) if ab1 < 0, abj ≤ 0, j = 2, ..., k, then Xt ∈ `(k);
(ii) if ab1 > 0, abj ≥ 0, j = 2, ..., k, then hj > 0, j = 1, ..., k.

Condition (2.22) implies that ‖b‖|µ3| is bounded (by 2) and also that ‖b‖ ≤ 1/5. Note
the similarity between the leverage conditions of Theorem 2.3 (i) for the LARCH(∞) model
and condition (1.16) for the nonlinear MA model (1.7) (where µ3 = 0 was assumed). Note
also that there is no loss of generality in taking a > 0, given that a 6= 0 has been assumed.
Such a restriction leads to some simplification of our results, and indeed would be necessary
to identify a and the bj . Of course choosing a > 0 rather than a < 0 determines the sign of
µ3, when this is non-zero.

Below we discuss in more detail conditions for leverage in LARCH(1) and GLARCH(1, 1),
where owing to the simple structure the function ht can be explicitly found, and (2.22) can
be relaxed.

LARCH(1): Vt = a + βXt−1.

10



In this case, ‖b‖ = |β| and the necessary condition ‖b‖ < 1 for the existence of the
stationary solution (see Theorem 2.1) becomes |β| < 1. To obtain ht, note from (2.10)
φt = β2t; from (2.12) σ2 = a2/(1− β2), [b]3 = β3; from (2.13) g0 = a3µ3(1 + 2β2)/(1− β2),
gt = 2a3β2t−1/(1 − β2), t ≥ 1; from (2.14), (2.15) rtu = 0, t ≥ 0, u ≥ 1, and r00 = µ3β

3,
rt0 = β2t, t ≥ 1. Equation (2.20) in this case becomes

h0 = g0 + µ3β
3h0, ht = gt + β2th0,

and has a unique solution h0 = g0/(1− µ3β
3), ht = gt + β2tg0/(1− µ3β

3) provided |β| < 1
and µ3β

3 6= 1 hold. More explicitly,

h0 =
a3(2β2 + 1)µ3

(1− β2)(1− β3µ3)
, h1 =

a3β(2 + βµ3)
(1− β2)(1− β3µ3)

, ht = β2(t−1)h1 (t ≥ 2). (2.23)

By Theorem 2.1, under assumptions M3 and M4 (2.23) provides (1.2) for the LARCH(1)
model. (Note that in this case, either M3 or M4 imply (2.18) as well as the inequality
|β3µ3| < 1.) The above-mentioned assumptions become

M3 : |µ|3 <
(|β|−1 − 3θ

)3
,

M4 : β4µ4 + 4|β|3|µ3| ≤ 1− 6β2,

respectively. From Theorem 2.2 and (2.23) we derive:

Proposition 2.4: Let Xt be LARCH(1), and assumptions M3 or M4 hold. Then Xt ∈ `(1)
if and only if either

aβ < 0 and βµ3 > −2, (2.24)

or
aβ > 0 and βµ3 < −2 (2.25)

hold. Moreover, Xt ∈ `(∞) if and only if Xt ∈ `(1) and β > 0.

Note that from Theorem 2.4 we have Xt ∈ `(1) under stronger assumptions, namely
under aβ < 0 by imposing M3 or M4 together with

(2.22) : |µ3| ≤ 2(1− 5β2)
|β|(1 + 3β2)

.

In his extension of LARCH(1), such that p = 1 in (1.28) and ψ1 varies freely with θ
and φ11, Sentana (1995) obtained more heuristically, in case µ3 = 0, the condition ψ1 < 0
for leverage, which corresponds to our condition (2.24). Sentana (1995) also examined the
compatibility of empirical data with this condition.

GLARCH(1, 1): Vt − β1Vt−1 = a′ + α1Xt−1.

As noted in Section 1, the above equation can be rewritten in the LARCH(∞) form
(1.27) with bt = αβt−1, t ≥ 1, α = α1, β = β1, a = a′(1 − β1)−1, and ‖b‖ < 1 is equivalent
to γ = α2 + β2 < 1. To find ht, note that from (2.10) φt = α2γt−1, t ≥ 1. From (2.12),
σ2 = a2(1− β2)/(1− γ) and [b]3 = α3/(1− β3). From (2.13), (2.21),

g0 = a3µ3

(
1 + 3

α2

1− γ

)
, (2.26)

gt =
2a3α(1− β2)
(γ − β)(1− γ)

{
(β − 1)βt + α2γt−1

}
, t ≥ 1.

From (2.14), (2.15),

rtu = 2α2βuγt−1, t, u ≥ 1; rt0 = α2γt−1, t ≥ 1;

11



r0u =
3µ3α

3βu

1− β3
, u ≥ 1; r00 =

µ3α
3

1− β3
. (2.27)

Thus from (2.20)
ht = gt + α2(2h̄ + h0)γt−1, t ≥ 1, (2.28)

h0 = g0 +
α3

1− β3
µ3(3h̄ + h0), (2.29)

where h̄ =
∑∞

t=1 βtht. Defining ḡ =
∑∞

t=1 βtgt, we have

ḡ =
2a3αβ(1− β3)
(1− γ)(1− γβ)

.

From (2.28) we deduce

h̄ = ḡ +
α2β

1− βγ
(2h̄ + h0). (2.30)

Assumptions M3 and M4 become

M3 : |µ|3 <
(1− β3)1/3

|α|
(
1− 3θ|α|

(1− β2)1/2

)
,

M4 :
α4

1− β4
µ4 + 4

|α|3
1− β3

|µ3| ≤ 1− 6α2

1− β2
,

respectively. Set A :=
1− β3 − 3α2β − α3µ3

1− βγ
. The proof of the following Proposition ap-

pears in Appendix A.

Proposition 2.5: Let Xt be GLARCH(1, 1), and assumptions M3 or M4 hold. Then

ht = gt + α2A−1
(
g0 + ḡ(2 + [b]3µ3)

)
γt−1, t ≥ 1, (2.31)

where A > 0, 2 + [b]3µ3 > 1. In particular, Xt ∈ `(1) if and only if

g1 + α2A−1(g0 + ḡ(2 + [b]3µ3)) < 0. (2.32)

Moreover, Xt ∈ `(∞) if Xt ∈ `(1) and aα < 0, β > 0 hold. In particular, Xt ∈ `(∞) if

aα < 0, aµ3 ≤ 0, β > 0. (2.33)

Theorem 2.4, on the other hand, implies Xt ∈ `(∞) for GLARCH(1,1) under the condi-
tions

aα < 0, β > 0,

assumptions M3 or M4, and

(2.22) : |µ3| ≤ 2(1− β2)1/2(1− 5α2 − β2)
|α|(1 + 3α2 − β2)

,

which are stronger than the conditions of Proposition 2.5. In particular, Proposition 2.5
shows that leverage in the GLARCH(1, 1) model may take place even if |µ3| is arbitrarily
large, as it may happen, for example when if a > 0, µ3 ≤ 0. On the other hand, for aµ3 > 0
(e.g. if a > 0, µ3 > 0), (2.31) is more difficult to analyze directly. In such a case, Theorem
2.4 can be applied, providing |µ3| satisfies (2.22).
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Also of interest is LARCH(∞) with bj given by the FARIMA(0,d,0) weights (1.14) with
0 < d < 1/2; we might call this a GLARCH(0,d,0) model, and write

Vt = a + (1− L)−dXt ≡ a +
∞∑

t=1

bjXt−j .

From Theorem 2.4, Xt ∈ `(∞) if a < 0 and (2.22) and either M3 or M4 hold; evaluation of
these conditions in the present case is complicated and is thus omitted. Of course we deduce
the long memory property (1.4) from Theorem 2.3.

3 Final remarks

The paper has derived, under primitive conditions, a number of properties of the LARCH(∞)
model (1.27). We have developed a result of Giraitis, Robinson and Surgailis (2000) on
conditions for existence and uniqueness of a solution of (1.27). We have provided conditions
for finiteness of integer moments that again improve upon those of Giraitis, Robinson and
Surgailis(2000). The paper is principally motivated by long memory and leverage properties.
We have shown that if the weights bj are chosen to decay like MA weights in linear long
memory sequences, then the cross-autocovariance between the squares X2

t and past levels
Xt−j , j > 0, decays in the same slow fashion in our model as it does in such linear models.
Such a property may be available even if the fourth moment of Xt is infinite, in which sense
it has an advantage over the long memory (of autocovariances of squares) property derived
by Giraitis, Robinson and Surgailis (2000). We have given conditions for leverage properties,
of various extents, and for lack of leverage. These latter conditions obtain for all members of
our LARCH(∞) model, but we also directly analyzed two simple special cases of our model,
thereby achieving some improvement in the conditions.

The LARCH(∞) model and its special cases are far from fully ready for practical use. We
have not discussed estimation of (1.27), either in case of a parametric model such as (1.25),
(1.26) or (1.14), or a nonparametric approach analogous to autoregressive spectral estima-
tion. (Quasi)-maximum likelihood estimation based on a working Gaussian ζt assumption,
as used by Sentana (1995), seems computationally relatively tractable. By analogy with
results for ARCH and GARCH special cases of (1.17) (see Lee and Hansen (1994), Lums-
daine (1996)), it would be expected to be asymptotically normal and (if the Gaussianity
holds) efficient, without stringent assumptions on unconditional moments of Xt, though
the asymptotic theory would likely be difficult. A less elegant asymptotic theory should
be available for Whittle estimates based on either X2

t or (making use of formulae in the
current paper) the bivariate series (Xt, X

2
t ) as considered for (1.7) by Zaffaroni (1998) or

for short memory versions of (1.17) by Giraitis and Robinson (2001). More ad hoc methods
include generalized methods-of-moments estimation, for example comparing ht or its Fourier
transform (the cross spectrum of Xt and X2

t ) with sample estimates.
However, a more basic question concerns the direct practical usefulness of the LARCH

class. Though it provides equal scope for parsimony as the usual ARCH class (1.17), while
at the same time offering more potential for leverage, it is restrictive relative to Sentana’s
(1995) class, which can nest both ARCH and LARCH models. The inability of LARCH(∞)
to satisfactorily separate out parameters primarily describing conditional heteroscedasticity
on the one hand, and leverage on the other, was not so much a problem in the original
context of Robinson (1991), where it was used to provide Lagrange multiplier tests of i.i.d.
behaviour. However, when conditional heteroscedasticity and leverage are to be quantified,
a more flexible class like Sentana’s (1995) may seem preferable to practitioners. On the other
hand, the parsimony of the LARCH model makes it still of interest as a null hypothesis in
such a context, and we believe our detailed theoretical investigation of the LARCH model
is a necessary precursor to study of more general models.
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A Appendix. Proofs of Theorems and Proposition 2.5

Proof of Theorem 2.1 (i) We first show the necessity of ‖b‖ < 1. Let Xt be a solution
of (1.27), and let t0 < t. Then

Vt = a +
∑
u<t0

bt−uXu +
∑

t0≤s<t

bt−sζsVs. (A.1)

By iterating (A.1), one obtains first

Vt = a +
∑
u<t0

bt−uXu + a
∑

t0≤s<t

bt−sζs

+
∑
u<t0

∑

t0≤s1<t

bt−s1bs1−uζs1Xu +
∑

t0≤s2<s1<t

bt−s1bs1−s2ζs1ζs2Vs2

and eventually

Vt = a +
∑
u<t0

bt−uXu

+
t−t0∑

k=1

∑

t0≤sk<...<s1<t

bt−s1 . . . bsk−1−sk
ζs1 . . . ζsk

(
a +

∑
u<t0

bsk−uXu

)
. (A.2)

Noting that E[Vt|Ft0−1] = a +
∑

u<t0
bt−uXu and using the independence of ζs, s ≥ t0 and

Ft0−1, one has

Var(Vt|Ft0−1) =
t−t0∑

k=1

∑

t0≤sk<...<s1<t

b2
t−s1

. . . b2
sk−1−sk

(
a +

∑
u<t0

bsk−uXu

)2

.

Therefore

EVar(Vt|Ft0−1) =
t−t0∑

k=1

∑

t0≤sk<...<s1<t

b2
t−s1

. . . b2
sk−1−sk

(
a2 +

∑
u<t0

b2
sk−uEX2

u

)

≥ a2
t−t0∑

k=1

∑

t0≤sk<...<s1<t

b2
t−s1

. . . b2
sk−1−sk

.

For any k ≥ 1, the last sum increases monotonically to ‖b‖2k as t0 → −∞. Therefore

lim inf
t0→−∞

EVar(Vt|Ft0−1) ≥ a2
∞∑

k=1

‖b‖2k.

As EVar(Vt|Ft0−1) ≤ EV 2
t < ∞, this proves the necessity of the condition ‖b‖ < 1 in the

case a 6= 0.
The sufficiency of this condition for the existence of the solution given by (2.2) was shown

in Giraitis, Robinson and Surgailis (2000). To show uniqueness, let X ′
t, X

′′
t be solutions of

(1.21), (1.24), then X̃t = X ′
t−X ′′

t is a solution of the homogeneous equation for Vt in (1.24)
with a = 0, and therefore X ′

t = X ′′
t a.s. by part (ii).

(ii). Let a = 0. Noting that (A.2) still holds, we obtain

Vt =
∑
u<t0

bt−uXu +
∑
u<t0

t−t0∑

k=1

∑

t0≤sk<...<s1<t

bt−s1 . . . bsk−1−sk
bsk−uζs1 . . . ζsk

Xu. (A.3)
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Let F[s,t] = σ{ζu : s ≤ u ≤ t}. The σ−fields F[t0,t−1] increase monotonically to Ft−1 as
t0 → −∞ and therefore by a well-known property of conditional expectations,

E[Vt|F[t0,t−1]] → E[Vt|Ft−1] = Vt a.s. (A.4)

as t0 → −∞. On the other hand, the independence of Xu and F[t0,t] for u < t0 implies
E[Xu|F[t0,t−1]] = EXu = 0 and we obtain from (A.3)

E[Vt|F[t0,t−1]] = 0 a.s.,

for each t0 < t. Thus by (A.4) we obtain Vt = 0 and Xt = 0 a.s., thereby proving part (ii).

Proof of Theorem 2.2. For rtu given by (2.14) let

(R0f)t :=
∞∑

u=1

rtufu, t ≥ 1 (A.5)

be the linear operator in the Hilbert space L2(Z0
+), Z0

+ := {1, 2, . . .}. It is easily seen from
the proof of Lemma A.1 below that under Assumptions M3 or M4, the operator R0 is well-
defined on L2(Z0

+). We first show that its Hilbert-Schmidt norm ‖R0‖ =
{∑∞

t,u=1 r2
tu

}1/2

satisfies (2.17). Put bt = 0 (t < 0). By the Minkowski inequality,

‖R0‖ = 2
{ ∞∑

t,u=1

( ∞∑
v=0

φvbt−vbt−v+u

)2}1/2

≤
∞∑

v=0

φv

{ ∞∑
t,u=1

b2
t−vb2

t−v+u

}1/2

= 2Φ(1)‖b‖2 = 2‖b‖2/(1− ‖b‖2), (A.6)

which is less than 1 because both M3 and M4 imply ||b||2 < 1/3. We first derive (2.20) in
the LARCH(N) case for N < ∞. From (1.21), (1.25), for t > 0,

ht = E
[(

a+
∑
s<t

bt−sXs

)2

X0

]
= a2EX0+2a

∑
s<t

bt−sEXsX0+
∑

s1,s2<t

bt−s1bt−s2EXs1Xs2X0.

Because EX0 = 0 and EXsXt = σ2, s = t; = 0, s 6= t; EXs1Xs2X0 = 0 if either s1 6=
s2,max(s1, s2) > 0, or s1, s2 < 0, we deduce that

ht = 2aσ2bt +
∑

0<s<t

b2
t−shs + 2bt

∑
u>0

bt+uhu + b2
t h0 (A.7)

and thence by iteration

ht = 2aσ2bt + 2aσ2
∑

0<s1<t

b2
t−s1

bs1 +
∑

0<s2<s1<t

b2
t−s1

b2
s1−s2

hs2

+ 2
∑
u>0

hubtbt+u + 2
∑
u>0

hu

∑
0<s1<t

b2
t−s1

bs1bs1+u

+
(
b2
t +

∑
0<s1<t

b2
t−s1

b2
s1

)
h0,

which yields

ht = 2aσ2
∑

0<s≤t

φt−sbs + 2
∑
u>0

hu

∑

0<s≤t

φt−sbs+ubu + h0φt

= gt +
∞∑

u=0

hurtu.
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For t = 0,

h0 = EX3
0 = µ3E

(
a +

∑
s<0

b−sXs

)3

= µ3

(
a3 + 3aσ2‖b‖2 + h0[b]3 + 3

∑
s2<s1<0

b2
−s2

b−s1hs2−s2

)

= g0 +
∞∑

u=0

r0uhu.

This proves the validity (2.20) in the LARCH(N), N < ∞ case.
Next we show that (2.20) has a unique solution h ∈ L2(Z+), Z+ = {0, 1, . . .}. First fix

an arbitrary value h0 ≡ ξ and solve the equation

hξ = gξ + R0hξ, (A.8)

for hξ = (hξ
t , t ≥ 1), where gξ = ξφ0 + g0 and φ0 = (φt, t ≥ 1) ∈ L2(Z0

+), g0 = (gt, t ≥ 1) ∈
L2(Z0

+). By (2.17), (A.8) admits a unique solution

hξ = (1−R0)−1gξ =: ξh′ + h′′,

where h′ := (1 − R0)−1φ0, h′′ := (1 − R0)−1g0 belong to the space L2(Z0
+) and do not

depend on ξ.
Next we solve the equation

ξ = g0 + r00ξ +
∞∑

u=1

r0uhξ

= g0 + r00ξ + ξ

∞∑
u=1

r0uh′u +
∞∑

u=1

r0uh′′u

for ξ, yielding

ξ =
g0 +

∑∞
u=1 r0uh′′u

1− r00 −
∑∞

u=1 r0uh′u
, (A.9)

by (2.18). Define h = (ht, t ≥ 0) by

h0 = ξ, ht = ξh′t + h′′t (t ≥ 1),

where h′ = (1 − R0)−1φ0, h′′ = (1 − R0)−1g0, and ξ is given by (A.9). Then h ∈ L2(Z+)
and satisfies (2.20).

Consider now the LARCH(∞) case. Put

bj,N :=
{

bj , if 1 ≤ j ≤ N ,
0, otherwise.

Write ht,N := EX2
t,NX0,N , t ≥ 0, where {Xt,N} is the solution to the LARCH equations

corresponding to {bj,N}. According to Lemma B.3 below, for each t ≥ 0,

ht = lim
N→∞

ht,N . (A.10)

Let us show that ht of (A.10) belongs to L2(Z+) and satisfies (2.20). Let φt,N , gt,N ,
rtu,N be defined as in (2.11), (2.13)–(2.15), with bj replaced by bj,N , and let R0

N be the
corresponding operator in L2(Z0

+) given by (A.5). By (A.6), we obtain supN≥1 ‖R0
N‖ <

1, ‖R0 − R0
N‖ → 0, and the convergences φ0

N → φ, g0
N → g0, h′N := (1 − R0

N )−1φ0
N →
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(1 − R0)−1φ0 = h′, h′′N := (1 − R0
N )−1g0

N → (1 − R0)−1g0 = h′′ in L2(Z0
+) easily follow.

Moreover, as r00,N +
∑∞

u=1 r0u,Nh′u,N → r00 +
∑∞

u=1 r0uh′u (N → ∞), so condition (2.18)
implies r00,N +

∑∞
u=1 r0u,Nh′u,N 6= 1 for all sufficiently large N , and therefore

ξN :=
g0,N +

∑∞
u=1 r0u,Nh′u,N

1− r00,N −∑∞
u=1 r0u,Nh′u,N

→ ξ,

where ξ is defined by (A.9). The above relations imply the convergence hN → h in L2(Z+)
and the validity of (2.20). Thus sufficiency of (2.18) is established. To prove necessity, note
that if (2.18) is not satisfied then λ = 1 is an eigenvalue of the operator (Rf)t =

∑∞
u=0 rtufu,

corresponding to the eigenfunction ψ = (ψt, t ≥ 0), ψ0 = 1, ψt = h′t(t ≥ 1), and the solution
ht of (2.20) is not unique. This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. In view of (2.20) and (1.11), it suffices to show

gt = 2aσ2
t∑

s=1

bsφt−s ∼
(
2aσ2

∞∑
s=0

φs

)
bt ∼ 2σ4c

a
td−1 (A.11)

and ∞∑
u=0

rtuhu = o(td−1) as t →∞. (A.12)

Here, (A.11) follows from (1.11) and the fact that φ2
t = O(b2

t ) = O(t2d−2), as in Giraitis,
Robinson and Surgailis (2000, Lemma 4.1). It remains to show (A.12). Consider

Jt :=
∞∑

u=0

rtuhu =
∞∑

u=1

rtuhu + φth0 = 2
t∑

s=1

bsφt−s

∞∑
u=1

bs+uhu + φth0.

Since ‖h‖ < ∞,

|
∞∑

u=1

bs+uhu| ≤
{ ∞∑

u=1

b2
s+u

}1/2

‖h‖ ≤ K

{ ∞∑
u=s

u2d−2

}1/2

≤ Ks−1/2+d,

where K denotes a generic positive constant. As φs ≤ Ks2d−2, and 2d < 1, we obtain

|Jt| ≤ K

t∑
s=1

|t− s|2d−2s2d−(3/2) + O(|t|2d−2) = O(t2d−(3/2)) = o(td−1)

which proves (A.12) and the theorem.

The proof of Theorem 2.4 is preceded by the following lemma.

Lemma A.1: Let (2.21) hold. Then (2.18) holds, and moreover

|h0| ≤ |a|3|µ3|
1− 3‖b‖2 − |µ3|‖b‖3 . (A.13)

Proof. To show (2.18), it suffices to verify the bound

|r00|+
∞∑

u=1

|r0uh′u| ≤
|µ3|‖b‖3
1− 3‖b‖2 , (A.14)
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whose right side is less than 1 by (2.21). By (2.15), |r00| ≤ |µ3|‖b‖33 ≤ |µ3‖‖b‖32 and

∞∑
u=1

|r0uh′u| ≤ 3|µ3|
∞∑

s=1

b2
s

∞∑
u=1

|bs+uh′u| ≤ 3|µ3|‖b‖3‖h′‖, (A.15)

where

‖h′‖ = ‖(1−R0)−1φ0‖ ≤ ‖φ0‖
1− ‖R0‖ ≤

‖b‖2
1− 3‖b‖2 ,

due to (2.17) and ‖φ0‖ =
{∑∞

u=1 φ2
u

}1/2 ≤ {∑∞
t,u=1 φtφu

}1/2 ≤ ∑∞
t=1 φt = Φ(1) − 1 =

‖b‖2/(1− ‖b‖2). Therefore,

|r00|+
∞∑

u=1

|r0uh′u| ≤ |µ3|‖b‖3 +
3|µ3|‖b‖5
1− 3‖b‖2 ,

proving (A.14).
The inequality (A.13) follows from

h0 =
g0 +

∑∞
u=1 r0uh′′u

1− r00 −
∑∞

u=1 r0uh′u
,

(A.14), and the bound

|g0|+
∞∑

u=1

|r0uh′′u| ≤
|a|3|µ3|

1− 3‖b‖2 , (A.16)

which we verify below. By (2.13),

|g0| ≤ |a||µ3|(a2 + 3σ2‖b‖2) =
|a|3|µ3|(1 + 2‖b‖2)

1− ‖b‖2 , (A.17)

and, similarly to (A.15),
∞∑

u=1

|r0uh′′u| ≤ 3|µ3|‖b‖3‖h′′‖.

Here,

‖h′′‖ = ‖(1−R0)−1g0‖ ≤ (1− ‖b‖2)‖g0‖
1− 3‖b‖2 ,

where

‖g0‖ ≤ 2|a|σ2‖b‖
∞∑

t=0

φt =
2|a|3‖b‖

(1− ‖b‖2)2 .

Consequently,
∞∑

u=1

|r0uh′′u| ≤
6|a|3|µ3|‖b‖4

(1− ‖b‖2)(1− 3‖b‖2) . (A.18)

Clearly, (A.17) and (A.18) imply (A.16).

Proof of Theorem 2.4. Note that (2.22) implies (2.21) and therefore the validity of
(2.18) and Theorem 2.1.

Let us prove the statements (i), (ii) for k = 1. From (A.7) it follows that

h1 = 2aσ2b1 + 2b1

∞∑
u=1

hub1+u + b2
1h0,
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where the last two terms do not exceed

2|b1|
∞∑

u=1

|hub1+u|+ b2
1|h0| ≤ 2|b1|‖b‖‖h0‖+ |b1|‖b‖|h0|.

Therefore sgn(h1) = sgn(ab1) provided the inequality

2|a|σ2 > 2‖h0‖‖b‖+ ‖b‖|h0| (A.19)

holds. From (A.7) it follows that

‖h0‖ ≤ 2|a|σ2‖b‖+ 3‖h0‖‖b‖2 + ‖b‖2|h0|,

or

‖h0‖ ≤ 2|a|σ2‖b‖+ ‖b‖2|h0|
1− 3‖b‖2 . (A.20)

But (A.13) and (A.20) imply (A.19) and hence sgn(h1) = sgn(ab1), or the statements (i),
(ii) for k = 1. The general case k ≥ 1 follows similarly by induction in k. Indeed, according
to (A.7),

hk = 2aσ2bk +
k−1∑
s=1

b2
t−shs + 2bk

∞∑
u=1

bk+uhu + b2
kh0.

To show (i), let h1, . . . , hk−1 < 0 by the inductive hypothesis. Then
∑k−1

s=1 b2
t−shs < 0 and

the inequality hk < 0 follows from

∣∣∣2bk

∞∑
u=1

bk+uhu + b2
kh0

∣∣∣ ≤ 2|aσ2bk|, (A.21)

where the left hand side does not exceed 2|bk|‖b‖‖h0‖ + b2
k|h0| ≤ |bk|(2‖b‖‖h0‖ + ‖b‖|h0|).

Then (A.21) follows from (A.19). The proof of (ii) is analogous.

Proof of Proposition 2.5. We first show (2.31). Set V = 2h̄ + h0. Adding 2h̄ to both
sides of (2.29),

h0 + 2h̄ = g0 + 2h̄ + [b]3µ3(V + h̄),

and hence
V = g0 + h̄

(
2 + [b]3µ3

)
+ [b]3µ3V.

Replacing h̄ in the above equation by (2.30) yields

V A = g0 + ḡ(2 + [b]3µ3).

We show that, under M3 or M4,
A > 0. (A.22)

Indeed, note that M3 or M4 imply 0 < γ < 1, |β| < 1 and (A.22) follows from

1− β3 − 3α2β − α3µ3 > 0, or i :=
|α3µ3|
1− β3

+
3α2β

1− β3
< 1.

Here, |α3µ3|/(1− β3) = |[b]3µ3| ≤ ‖b‖33|µ|3 < ‖b‖3|µ|1/3
3 < 1, where the last two inequalities

hold under M3. Next, |β|/(1− β3) ≤ 1/(1− β2) implies

α2|β|
1− β3

≤ α2

1− β2
= ‖b‖2 ≤ ‖b‖,

19



as ‖b‖ < 1. Therefore, under M3, i ≤ ‖b‖3|µ|1/3
3 + 3‖b‖ < 1, while under M4, i ≤ ‖b‖33|µ3|+

3‖b‖2 < 1. This proves (A.22) and (2.31). The inequality 2 + [b]3µ3 > 1 follows from
|[b]3µ3| ≤ ‖b‖33|µ3| < 1 (see (2.3), (2.4)).

To prove the second part of the proposition, it suffices to show that (2.32) together with
aα < 0, β > 0 imply gt < 0, t ≥ 1. Indeed, we have 0 < γ, β < 1 and so gt < 0, t ≥ 1 follows
from

(β − 1)βt + α2γt−1

γ − β
> 0. (A.23)

Let us check (A.23). Let γ > β, then α2γt−1−(1−β)βt ≥ α2γt−1−(1−β)βγt−1 = (γ−β)γt−1

and (A.23) follows. The verification of (A.23) in the case β > γ is similar. The fact that
(2.33) implies (2.32) is immediate from (2.26).

We remark that in the proof of Proposition 2.5 we directly verified that, in the GLARCH(1,1)
model, the leverage equation (2.20), or (2.28), (2.29), has a unique square-summable solu-
tion (2.31) under assumptions M3 or M4 alone. Thus assumptions M3 or M4 imply also
(2.18), as can be directly verified by using (2.27) and (2.16), (2.17).

B Appendix. Proofs of finiteness of moments

Proof of Proposition 2.1. This is contained in the following three lemmas. We first in-
troduce some auxiliary notation. Consider integers ti ∈ Z, ki ≥ 0, i = 1, 2, 3 and a collection
fi,j ∈ L2(Z0

+), j = 1, . . . , ki, i = 1, 2, 3. Let

Ui :=
∑

ski
<...<s1<ti

fi,1(ti − s1) . . . fi,ki(ski−1 − ski)ζs1 . . . ζski
, (B.1)

if ki ≥ 1; Ui := 1 if ki = 0. Then

EU2
i =

∑
ski

<...<s1<ti

f2
i,1(ti − s1) . . . f2

i,ki
(ski−1 − ski) =

ki∏

j=1

‖fi,j‖2 < ∞, (B.2)

so that the series (B.1) converges in mean square. Put I := {(i, j) : i = 1, 2, 3, j = 1, . . . , ki}.
For each f ∈ L2(Z0

+), put
D(f) := |µ|1/3

3 ‖f‖3 + 3θ‖f‖2,
where θ is defined as in Assumption M3.

Lemma B.1: For any collection {fi,j , (i, j) ∈ I},

E|U1U2U3| ≤
∏

(i,j)∈I

D(fi,j).

Proof. By Fatou inequality, it suffices to prove the lemma for fi,j(s) = 0 ∀s > N(∃N < ∞),
in other words, for finite sums Ui (B.1). Write the set I as the table

I =





(1, 1) (1, 2) . . . (1, k1)
(2, 1) (2, 2) . . . (2, k2)
(3, 1) (3, 2) . . . (3, k3)





consisting of three rows Ii, i = 1, 2, 3 (some of which may be empty) and having |I| =
k1 + k2 + k3 elements; ki ≥ 0, i = 1, 2, 3. Then

3∏

i=1

Ui =
∑

SI

FSI
((t))ζSI , (B.3)
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where (t) := (t1, t2, t3),

ζSI :=
∏

(i,j)∈I

ζsi,j , FSI ((t)) :=
∏

(i,j)∈I

fi,j(si,j−1 − si,j), (B.4)

and where si,0 := ti and the sum
∑

SI
is taken over all integers si,j , (i, j) ∈ I. As fi,j(s) := 0

(s ≤ 0), so si,j in (B.3), (B.4) satisfy

si,ki
< . . . < si,1 < ti, i = 1, 2, 3.

To proceed, we need some terminology. Any subset G ⊂ I, G 6= ∅ such that |G∩ Ij | ≤ 1, j =
1, 2, 3 will be called an edge. Let ΓI be the class of ordered partitions γ = (G1, . . . , Gr) of I
by edges. (Two partitions γ = (G1, . . . , Gr) ∈ ΓI , γ

′ = (G′1, . . . , G
′
r′) ∈ ΓI are equal (γ = γ′)

if and only if r = r′ and G1 = G′1, . . . , Gr = G′r.) Then the sum in (B.3) can be rewritten as
∑

SI

FSI
((t))ζSI =

∑

γ∈ΓI

∑

s̃r<...<s̃1

FSI
((t))ζSI 1{si,j = s̃q, (i, j) ∈ Gq, q = 1, . . . , r}

≡
∑

γ∈ΓI

∑γ

S̃
FSI

((t))ζSI ,

where
∑γ

S̃
stands for the sum over all ordered integers s̃r < . . . < s̃1 such that si,j = s̃q for

(i, j) ∈ Gq, q = 1, . . . , r.
Next, we split the sum

∑γ

S̃
into ”diagonal” and ”off-diagonal” parts. To that end, for

any γ ∈ ΓI , put
I0 :=

⋃

q:|Gq|=1

Gq, I1 :=
⋃

q:|Gq|>1

Gq.

Then ∑γ

S̃
FSI ((t))ζ

SI =
∑γ

S̃0

∑γ

S̃1
FSI ((t))ζ

SI ,

where
∑γ

S̃0 stands for the sum over all ordered integers s̃q, q = 1, . . . , r with |Gq| > 1, while∑γ

S̃1 stands for the sum over all ordered integers s̃q, q = 1, . . . , r with |Gq| = 1.
Write ζSI = ζSI0 ζSI1 , where ζSI0 :=

∏
(i,j)∈I0 ζsi,j , ζSI1 :=

∏
(i,j)∈I1 ζsi,j . Note that for

fixed SI0 = {si,j : (i, j) ∈ I0}, ζSI0 is independent of ζSI1 . Consequently,

E
∣∣∣
∑γ

S̃1
FSI ((t))ζ

SI

∣∣∣ = E|ζSI0 |E
∣∣∣
∑γ

S̃1
FSI ((t))ζ

SI1

∣∣∣

≤ E|ζSI0 |E1/2
{∑γ

S̃1
FSI

((t))ζSI1

}2

.

Now, as the sum
∑γ

S̃1
is taken over ordered sets of disjoint integers,

E
{∑γ

S̃1
FSI

((t))ζSI1

}2

=
∑γ

S̃1

∣∣FSI
((t))

∣∣2.

We finally obtain

E|
3∏

i=1

Ui| = E
∣∣∣
∑

SI

FSI ((t))ζ
SI

∣∣∣

≤
∑

γ∈ΓI

∑γ

S̃0
E|ζS0 |

(∑γ

S̃1

∣∣FSI
((t))

∣∣2
)1/2

=: pI((t)). (B.5)

Put pI := sup(t) pI((t)). Now Lemma B.1 follows from the following lemma.
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Lemma B.2.
pI ≤ DI , (B.6)

where DI :=
∏

(i,j)∈I Di,j and Di,j := D(fi,j).

Proof. In the case when I has one or two rows, (B.6) immediately follows from (B.2);
indeed, E|U1U2| ≤

∏2
i=1 E1/2U2

i ≤
∏

(i,j)∈I ‖fi,j‖ ≤ DI . Let k1, . . . , k3 ≥ 1. We prove (B.6)
by induction in |I| = k1 + k2 + k3. Let γ = (G1, . . . , Gr) ∈ ΓI be a partition of the table I.
Let G1 be the first edge from the right. It may contain 1, 2, or 3 elements. Let I ′ = I\G1,
so that γ′ = (G2, . . . , Gr) ∈ ΓI′ is a partition of the table I ′. Let

∑γ′

S̃′0
(respectively,

∑γ′

S̃′1
)

denote the sum over all ordered integers s̃q, q = 2, . . . , r such that |Gq| > 1 (respectively,
|Gq| = 1). Let pI,u((t))(u = 1, 2, 3) be defined as in (B.5), where

∑
γ∈ΓI

is replaced by the
sum over all γ ∈ ΓI with |G1| = u. Let pI,u := sup(t) pI,u((t)), then pI ≤

∑3
u=1 pI,u.

Consider first the case |G1| = 2, G1 = {(1, 1), (2, 1)}. Let (t′) = (τ, τ, t3). Then

sup(t)

∑γ

S̃0
E|ζS0 |

(∑γ

S̃1

∣∣FSI
((t))

∣∣2
)1/2

≤ sup
(t)

∑

s̃1

∑γ′

S̃′0
E|ζS′0 | sup

τ

(∑γ′

S̃′1

∣∣FSI′ ((t
′))

∣∣2
)1/2

|f1,1(t1 − s̃1)f2,1(t2 − s̃1)|

≤ ‖f1,1‖2‖f2,1‖2 sup
(t′)

∑γ′

S̃′0
E|ζS′0 |

(∑γ′

S̃′1

∣∣FSI′ ((t
′))

∣∣2
)1/2

. (B.7)

Put Î := I\{(1, 1), (2, 1), (3, 1)}. By using the inductive assumption, we obtain

pI,2 ≤ C0D
Î
(‖f1,1‖2‖f2,1‖2D3,1 + ‖f1,1‖2‖f3,1‖2D2,1 + ‖f2,1‖2‖f3,1‖2D1,1

)
. (B.8)

Next, let |G1| = 3, G1 = {(1, 1), (2, 1), (3, 1)}, (t′) = (τ, τ, τ). Then

sup(t)

∑γ

S̃0
E|ζS0 |

(∑γ

S̃1

∣∣FSI ((t))
∣∣2

)1/2

≤ sup
(t)

∑

s̃1

∑γ′

S̃′0
E|ζS′0 ||µ|3 sup

τ

(∑γ′

S̃′1

∣∣FSI′ ((t
′))

∣∣2
)1/2

×|f1,1(t1 − s̃1)f2,1(t2 − s̃1)f3,1(t3 − s̃1)|
≤ |µ|3‖f1,1‖3‖f2,1‖3‖f3,1‖3 sup

(t′)

∑γ′

S̃′0
E|ζS′0 |

(∑γ′

S̃′1

∣∣FSI′ ((t
′))

∣∣2
)1/2

.

By using the inductive assumption, we obtain

pI,3 ≤ DÎ |µ|3‖f1,1‖3‖f2,1‖3‖f3,1‖3. (B.9)

Finally, let |G1| = 1, G1 = {(1, 1)}. Assume also k1 ≥ 2. Then

∑γ

S̃0
E|ζS0 |

(∑γ

S̃1

∣∣FSI ((t))
∣∣2

)1/2

≤
∑γ′

S̃′0
E|ζS′0 |

(∑γ′

S̃′1

∣∣F ′SI′
((t))

∣∣2
)1/2

, (B.10)

where F ′SI′
((t)) =

∏
(i,j)∈I′ f

′
i,j(si,j−1 − si,j) and f ′i,j ∈ L2(Z), (i, j) ∈ I ′ are defined by

f ′i,j := fi,j if (i, j) ∈ I ′, (i, j) 6= (1, 2),

f ′1,2(u) :=
(∑

v

f2
1,1(v)f2

1,2(u− v)
)1/2

.
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Observe that
‖f ′1,2‖2 = ‖f1,1‖2‖f1,2‖2 (B.11)

and, by Minkowski or Young inequalities,

‖f ′1,2‖3 ≤ ‖f1,1‖2‖f1,2‖3. (B.12)

From (B.11), (B.12) we obtain

D(f ′1,2) = |µ|1/3
3 ‖f ′1,2‖3 + 3θ‖f ′1,2‖2

≤ |µ|1/3
3 ‖f1,1‖2‖f1,2‖3 + 3θ‖f1,1‖2‖f1,2‖2

≤ ‖f1,1‖2
(|µ|1/3

3 ‖f1,2‖3 + 3θ‖f1,2‖2
)

= ‖f1,1‖2D(f1,2).

Therefore, in the case |G1| = 1, |Ii| > 1, i = 1, 2, 3,

pI,1 ≤ DÎ
(
‖f1,1‖2D2,1D3,1 + ‖f2,1‖2D1,1D3,1 + ‖f3,1‖2D1,1D2,1

)
. (B.13)

By (B.8), (B.9), (B.13), the induction step |I|−1 → |I| in the case |Ii| > 1, i = 1, 2, 3 follows
from

‖f1‖2‖f2‖2D3 + ‖f1‖2‖f3‖2D2 + ‖f2‖2‖f3‖2D1 + |µ|3‖f1‖3‖f2‖3‖f3‖3
+‖f1‖2D2D3 + ‖f2‖2D1D3 + ‖f3‖2D1D2 ≤ D1D2D3, (B.14)

where we put fi ≡ fi,1, Di ≡ Di,1 = D(fi,1). To prove (B.14), put xi := ‖fi‖2, yi :=
|µ|1/3

3 ‖fi‖3. Then (B.14) can be rewritten as

F (x1, x2, x3, y1, y2, y3) ≥ 0, (B.15)

where

F (x1, x2, x3, y1, y2, y3) :=
3∏

i=1

(yi + 3θxi)− y1y2y3

− 1
2

∑

i 6=j 6=k

xixj(yk + 3θxk)

− 1
2

∑

i 6=j 6=k

xi(yj + 3θxj)(yk + 3θxk)

and the sum
∑

i 6=j 6=k is taken over all i, j, k = 1, 2, 3, i 6= j 6= k.
To prove (B.15), note that F (x1, x2, x3, 0, 0, 0) = 9θx1x2x3(3θ2 − 1 − 3θ) = 0 by the

definition of θ. Next, with Xi = 3θxi,

F (x1, x2, x3, y1, y2, y3) = F (x1, x2, x3, 0, 0, 0) +
1
2

∑

i 6=j 6=k

yiyj(Xk − xk)

+
1
2

∑

i 6=j 6=k

yi(XjXk − xjXk − xkXj − xjxk)

and (B.15) follows from the easily verified relations Xi − xi ≥ 0, XjXk − xjXk − xkXj −
xjxk ≥ 0.

It remains to prove the induction step |I| − 1 → |I| in the case when one of the rows
Ii, i = 1, 2, 3 has only one element. Let, for example, |I1| = 1, |I2| > 1, |I3| > 1. Then (B.10)
becomes

∑γ

S̃0
E|ζS0 |

(∑γ

S̃1

∣∣FSI
((t))

∣∣2
)1/2

≤ ‖f1,1‖2
∑γ′

S̃′0
E|ζS′0 |

(∑γ′

S̃′1

∣∣FSI′ ((t))
∣∣2

)1/2

,
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yielding again the bound (B.13). The remaining cases can be considered similarly. This
proves Lemma B.2.

Now we apply Lemma B.2 to estimate third moments of infinite Volterra series. Let
fi,j ∈ L2(Z0

+), i = 1, 2, 3, j = 1, 2, . . . be an infinite collection of functions satisfying

f̄ := sup
i,j
‖fi,j‖2 < 1.

Let

Φi :=
∞∑

k=1

∑
sk<...<s1<ti

fi,1(ti − s1) . . . fi,k(sk−1 − sk)ζs1 . . . ζsk
≡

∞∑

k=1

Φ(k)
i , (B.16)

i = 1, 2, 3, ti ∈ Z be (infinite) Volterra series, which converge in mean square by orthogonal-
ity:

EΦ2
i =

∞∑

k=1

k∏

j=1

‖fi,j‖22 ≤ f̄2/(1− f̄2) < ∞.

For given N < ∞, let Φi,N be defined analogously to Φi (B.16), where the fi,j are replaced
by truncated functions

f
(N)
i,j (s) =

{
fi,j(s), if 1 ≤ s ≤ N ,
0, if s > N .

Lemma B.3. Assume that
D̄ := sup

i,j
D(fi,j) < 1. (B.17)

Then
E

∣∣Φ1Φ2Φ3

∣∣ ≤ (D̄/(1− D̄))3 < ∞. (B.18)

Furthermore,
EΦ1Φ2Φ3 = lim

N→∞
EΦ1,NΦ2,NΦ3,N . (B.19)

Proof. We have

E

3∏

i=1

|Φi| ≤
∞∑

k1,k2,k3=1

E

3∏

i=1

|Φ(ki)
i |.

According to Lemma B.1, the last expectation does not exceed D̄k1+k2+k3 , thereby proving
(B.18).

Next, note that relation (B.19) follows from

lim
N→∞

EΦ1,NΦ2Φ3 = EΦ1Φ2Φ3, (B.20)

where fi,j , i = 2, 3, j ≥ 1 may depend on N and satisfy (B.17).
To prove (B.20), for an integer L put Φ−i,N :=

∑L
k=1 Φ(k)

i,N , Φ+
i,N :=

∑∞
k=L+1 Φ(k)

i,N . Then∏3
i=1 Φi,N =

∏3
i=1 Φ−i,N + RN , where, by Lemma B.1,

E|RN | ≤
∑

k1>L,k2,k3≥1

E

3∏

i=1

|Φ(ki)
i,N | ≤

∑

k1>L,k2,k3≥1

D̄k1+k2+k3 ≤ D̄L+3

(1− D̄)3

vanishes as L → ∞ uniformly in N . Consequently, |E(Φ1 − Φ1,N )Φ2Φ3| ≤ |E(Φ−1 −
Φ−1,N )Φ2Φ3|+ o(1) uniformly in N , so that (B.20) follows from limN→∞E(Φ−1 −Φ−1,N )Φ2Φ3

= 0 for each L < ∞. In turn, the last relation follows from

lim
N→∞

E(Φ(k)
1 − Φ(k)

1,N )Φ2Φ3 = 0. (B.21)
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for each 1 ≤ k < ∞. The difference in (B.21) can be written as Φ(k)
1 − Φ(k)

1,N =
∑′

Ui1,...,ik
,

where the sum
∑′ is taken over all i1, . . . , ik taking values 0,1 and such that i1 + . . .+ik ≥ 1,

Ui1,...,ik
:=

∑
sk<...<s1<t1

g
(i1)
1 (t1 − s1) . . . g

(ik)
k (sk−1 − sk)ζs1 . . . ζsk

and where g
(1)
j := f

(N)
1,j , g

(0)
j := f1,j − f

(N)
1,j . Then |E(Φ(k)

1 − Φ(k)
1,N )Φ2Φ3| ≤

∑′∑∞
k2,k3=1

E|Ui1,...,ik
Φ(k2)

2 Φ(k3)
3 |, where, by Lemma B.1, the last expectation does not exceed

∏k
j=1

D(g(ij)
j )D̄k2+k3 . Now, relation (B.21) follows from D(g(i)

j ) ≤ D(f1,j) ≤ D̄ (i = 0, 1) and

D(g(1)
j ) → 0 (N →∞). This proves Lemma B.3.

Proof of Proposition 2.2. It suffices to show EV 4
0 < ∞. We shall assume a = 1 without

loss of generality. Let

UN = 1 +
N−1∑

k=1

Uk,N ,

where
Uk,N :=

∑

−N<sk<...<s1<0

b−s1bs1−s2 . . . bsk−1−sk
ζs1 . . . ζsk

.

Then UN → V0 in L2(Ω) as N →∞ and therefore by Fatou lemma,

EV 4
0 ≤ sup

N≥1
EU4

N .

Hence the proposition follows if for all N ≥ 1

EU4
N ≤ K. (B.22)

The inequality (B.22) follows from the following statement: there exist constants K1 <
∞, 0 < D < 1 independent of N ≥ 1 and such that for any integers k1, . . . , k4 ≥ 0

∣∣E
4∏

i=1

Uki,N

∣∣ ≤ K1D
|(k)4|, (B.23)

where (k)4 = (k1, . . . , k4), |(k)4| = k1 + . . . + k4, and UN,0 := 1. Indeed, if (B.23) is true,
then

EU4
0 ≤

∑

(k)4

∣∣E
4∏

i=1

Uki,N

∣∣ ≤ K1

∑

(k)4

D|(k)4| =
K1

(1−D)4
≤ C < ∞.

To prove (B.23), write

E

4∏

i=1

Uki,N =
∑(k)4

(S)4
bS1 . . . bS4E[ζS1 . . . ζS4 ],

where the sum
∑(k)4

(S)4
is taken over all collections (S)4 = (S1, . . . , S4), Si ⊂ {−N+1, . . . ,−1} =:

TN ⊂ Z consisting of sets of ordered indexes Si = {sk1 , ski−1 , . . . , s1}, sk1 < . . . < s1,
i = 1, . . . , 4, and where, for each such subset S = {sk, . . . , s1} ⊂ TN ,

bS := b−s1bs1−s2 . . . bsk−1−sk
, ζS := ζs1 . . . ζsk

,

b∅ = ζ∅ := 1. Put

p(k)4 :=
∑(k)4

(S)4
|bS1 . . . bS4 | |E[ζS1 . . . ζS4 ]|.
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Obviously, it suffices to show (B.23) with the left hand side of (B.23) replaced by p(k)4 . We
use induction in |(k)4| = k1 + . . . + k4. Let first k1, . . . , k4 ≥ 1. Put si = si,ki

, i = 1, . . . , 4
then E[ζS1 . . . ζS4 ] = 0 if si, i = 1, . . . , 4 are all different. Hence

p(k)4 =
∑

2≤|A|≤4

|µ|A||
∑(k′)4

(S′)
|bS′1 . . . bS′4 | |E[ζS′1 . . . ζS′4 ]|

∑
s

∏

i∈A

|bsi,k′
i
−s|,

where the sum
∑

2≤|A|≤4 is taken over all subsets A ⊂ {1, . . . , 4}, 2 ≤ |A| ≤ 4, and, for any
such subset A, k′i := ki − 1 if i ∈ A and k′i := ki otherwise. By Hölder’s inequality,

∑
s

∏

i∈A

|bsi,k′
i
−s| ≤

∑
s

|bs||A| ≡ ‖b‖|A||A|.

Then we obtain for p(k)4 the following recursive relation

p(k)4 ≤ µ2‖b‖22
∑

|A|=2

p(k′)4 + |µ3|‖b‖33
∑

|A|=3

p(k′)4 + µ4‖b‖44
∑

|A|=4

p(k′)4 ,

where the last sum consists of a single term, of course.
By using the inductive assumption for p(k′)4 , |(k′)4| ≤ |(k)4| − 1, we obtain

p(k)4 ≤ K1D
|(k)4|(6µ2‖b‖22D−2 + 4|µ3|‖b‖33D−3 + µ4‖b‖44D−4

)
. (B.24)

The constant D in (B.24) can be chosen arbitrarily close to 1, in particular, in view of (2.4),
we can choose D < 1 such that

6µ2‖b‖22D−2 + 4|µ3|‖b‖33D−3 + µ4‖b‖44D−4 ≤ 1. (B.25)

Hence (B.24) implies p(k)4 ≤ K1D
|(k)4|, thereby proving the induction step |(k)4| − 1 →

|(k)4|.
Assume now that k4 = 0, k1, k2, k3 ≥ 1. Then in a similar way we obtain instead of

(B.24) the relation

p(k)4 ≤ K1D
|(k)4|(3µ2‖b‖22D−2 + |µ3|‖b‖33D−3

)
,

which again proves the induction step |(k)4| − 1 → |(k)4| by (B.25). The case k3 = k4 =
0, k1 ≥ 1, k2 ≥ 1 follows easily. The above argument also proves the bound (B.23) for
0 ≤ k1, . . . , k4 ≤ 1, by verifying that p(k)4 ≤ K1 < ∞.
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