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DENIS SARGAN: SOME PERSPECTIVES

P.M. Robinson®
London School of Economics

October 24, 2002

Abstract

We attempt to present Denis Sargan’s work in some kind of histor-
ical perspective, in two ways. First, we discuss some previous mem-
bers of the Tooke Chair of Economic Science and Statistics, which was
founded in 1859 and which Sargan held. Second, we discuss one of his
articles “Asymptotic Theory and Large Models™ in relation to modern
preoccupations with semiparametric econometrics.

"Research supported by a Leverhulme Trust Personal Research Professorship and ESRC
Grant R000239252. | thank Peter Phillips for helpful comments and Javier Hualde for
obtaining material employed in Section 2. Section 2 is based partly on my Doctor Honoris
Causa investiture address at Carlos Il Madrid University, in October 2000.



1 INTRODUCTION

Unlike other contributors to this special issue, I was not a research student
or colleague of Denis Sargan’s, and little of my own research has been very
close to his. I am not quali..ed, therefore, to ocer a detailed appraisal of his
contributions, or a fund of personal anecdotes. However, I am very much
aware not only of the striking originality of his research, but also of his role,
along with T.W. Anderson, E.J. Hannan, and others, in creating from the
1950’s and 1960’s, today’s rigorous discipline of econometric theory. | would
like to try to place his work in some sort of historical context, but 1 am not
a historian of econometrics and so I will try to do so in a rather “individual”
way.

From 1982 until his retirement in 1984, Denis Sargan held the Tooke
Chair of Economic Science and Statistics at the London School of Economics
(LSE). This Chair dates from 1859 - by way of comparison, the ..rst univer-
sity department of statistics, at University College London, was founded in
1911, while the Econometric Society was founded in 1930. | hope that a brief
survey, in Section 2, of the previous incumbents of the Tooke Chair, may give
a (very casual) picture of how the interface between statistics and economet-
rics developed prior to Sargan, whose own treatment of econometric problems
was in the highest traditions of mathematical statistics. Such a review seems
especially apt in that one of the previous incumbents of the Chair was F.Y.
Edgeworth, who gave his name to Edgeworth expansions, one of Sargan’s
major contributions to econometrics being his development of higher-order
asymptotic theory. Nowadays, the boundary between the sort of theoretical
and empirical research pursued by econometricians on the one hand, and
many statisticians on the other, has become very blurred. The infuence has
not been all in one direction, from statistics to econometrics. In particular,
“identi..ability” is a general issue with statistical models, but it was studied
early on in the context of linear simultaneous equations systems in econo-
metrics, and Sargan’s own contributions (e.g., Sargan, 1983) to this subject
were of particular depth. Also, increasingly many statisticians have become
interested in problems arising in economics or ..nance. On the other hand, in
recent years econometricians have drawn on an ever wider range of statistical
models and techniques. A particular topic which has attracted great econo-
metric attention, at both the theoretical and empirical levels, and has largely
developed since Sargan’s retirement, is semiparametric inference, involving
smoothed nonparametric estimation. (Indeed it has been much studied at the
LSE since the mid-1980’s.) The interest in semiparametric methods retects
the incomplete information typically available in econometric model building,



as well as increasing availability of large data sets, and improved computing
power. Sargan’s own work was predominantly of a “parametric” character,
but one of his papers “Asymptotic theory and large models” (Sargan, 1975),
can be related to subsequent research on semiparametric estimation, and |
will discuss this paper in section 3, providing also some, minor, development
of it. Section 4 contains some brief ..nal comments.

2 THE TOOKE CHAIR

Denis Sargan was the ninth Tooke Professor of Economic Science and Sta-
tistics. The Tooke Chair was founded in 1859 at Kings College London, by
public subscription and in memory of Thomas Tooke, who had died the pre-
vious year. Born in Cronstadt, Russia, the son of a chaplain of a British
factory there, Tooke established himself ..rst as a merchant, and as an early
supporter of the free trade movement, then founding, with Ricardo, Malthus,
James Mill and others, the Political Economy Club. As an economist, he de-
voted himself to systematically collecting and analyzing statistical and his-
torical information concerning price changes from 1793 onwards, concluding
that the fuctuations over the following 45 years were due to circumstances
arecting the supply of commodities rather than to changes in the system of
currency, the popular view then being that the suspension of convertibility
from 1793, and its resumption in 1819, led to a depreciation, and then an
increase, in the value of currency. Tooke’s investigations also led him to op-
pose the quantity theory of money. The data he collected were subsequently
used by other researchers, including Jevons.

Both the ..rst, and the third, holders of the Tooke Chair, at Kings Col-
lege, had been ordained as Church of England clergymen, and were pioneers
of economic history. James Thorold Rogers held the Chair from 1859 to
1890. He espoused controversial political opinions, and was briefy a Mem-
ber of Parliament, but also conducted minute historical and statistical in-
vestigations leading to many publications, the best known being a history
of agriculture and prices from 1759 to 1793. William Cunningham held the
Chair from 1891 to 1897 and wrote the ..rst textbook on economic history,
which went to seven editions; Cunningham’s ecorts had much to do with the
establishment of economic history as a separate discipline.

Neither Rogers nor Cunningham were theoretically inclined, and in fact
held strongly critical attitudes to economic theorizing, but their tenures of
the Tooke Chair were separated by that of Francis Ysidro Edgeworth, be-
tween 1890 and 1891, who made contributions of lasting value to both math-



ematical economics and statistics. Born of an Irish landowning father and
Spanish refugee mother, Edgeworth had no early formal training in advanced
mathematics, and started working in the moral sciences, but he went on to
father the mathematical approach to economic theory. Edgeworth wrote ex-
tensively on such topics as taxation, monopoly and duopoly, international
trade, and index numbers. He was a pioneer in using the indicerence curve,
and his invention of the core was not appreciated by the economics profession
for many years. At the same time, he omered numerous important statistical
insights. One, which we take for granted today, is the representation of the
multivariate normal distribution in terms of pairwise correlation coe¢cients.
Edgeworth’s work on correlation greatly infuenced Karl Pearson. He derived
the t-distribution as the posterior distribution for the sample mean. Some
of his papers contain some element of a proof of asymptotic e&ciency of
maximum likelihood estimates, prior to Fisher. To many statisticians and
economists he is most associated with the “Edgeworth expansion”, however.
Recognizing that much real data are not normally distributed, he introduced
a series expansion which, as a rival to the Pearson family, is able to fexibly de-
scribe skewness, kurtosis and other phenomena. The “Edgeworth expansion”
we refer to nowadays is employed to improve on the central limit theorem in
approximating sampling distributions, and has led to re..nements in statis-
tical inference in many areas of statistics and econometrics; more recently,
strong theoretical support for the bootstrap has been provided by its ability
to achieve an Edgeworth correction. Edgeworth was the ..rst editor of the
Economic Journal, serving in that role for twenty-one years.

Edgeworth was the epitome of the absent-minded professor, and an in-
coherent lecturer. The political economist and historian William Albert
Samuel Hewins, Tooke Professor between 1897 and 1904, was more success-
ful as a lecturer, in his early career speaking to working class audiences in the
north of England on trade unionism and factory legislation. Hewins became
the ..rst director (that is, chief executive) of the LSE. He was succeeded as
Tooke Professor by Charles Stewart Loch, later knighted, and then in 1908
by Edmund John Urwick; both Loch and Urwick wrote on social questions.

In 1919 the Tooke Chair was transferred from Kings College to the LSE.
By then, both were colleges of London Uniwersity, and the aim was to avoid
owerlapping by concentrating economic study in one of the two colleges -
Kings College has focussed on the sciences and humanities, LSE on social
science. However, the Tooke Chair was then in abeyance between 1920 and
1931, until it was taken up by Friedrich August von Hayek, arriving from
Vienna. Hayek’s scholarly output spreads over six decades and beyond eco-
nomics. He is widely known for his infuence on the monetarist properties
later pursued by western governments, for his critique of Keynesianism, and
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his integration of price theory, capital theory and monetary theory, providing
a base for reinterpreting 19th and 20th century economic history and promot-
ing institutional reform. Hayek was awarded the Nobel Prize in Economics
in 1974.

Hayek left the LSE in 1950, for Chicago, and the Tooke Chair was then
vacant until 1958, when it was ..lled by the promotion of Albert William
Housego (“Bill’”) Phillips. Phillips had a background in electrical engineer-
ing, which provided him with a distinctive perspective on economic prob-
lems. He pioneered the application of optimal control theory to economics,
and even built a hydraulic perspex model of a dynamic Keynesian-type econ-
omy, the “Phillips machine”. Phillips’ single most widely-known contribution
is the “Phillips curwe”, relating wage infation and unemployment. Phillips’
research on continuous time dynamic models may also be mentioned, particu-
larly infuencing work of fellow-New Zealanders at the LSE and the University
of Essex.

Phillips left the LSE in 1967 and the Tooke Chair was vacant until, in
1982, it was transferred to Denis Sargan, then Professor of Econometrics.
None of the previous incumbents of the Tooke Chaire comes close to ..tting
the modern description of an econometrician (though one could imagine a
synthesis of Edgeworth’s ideas leading to an earlier development of econo-
metrics). But in many of his contributions - his early work in economic
theory (Sargan, 1955), his infuential study of wages and prices in the UK
(Sargan, 1964), his deep theoretical development of Edgeworth expansions
(Sargan, 1976), and even his brief interest in continuous time models (Sar-
gan, 1974), Denis Sargan echoed concerns and achievements of a number of
his predecessors.

The preparation of this section has relied very heavily on the references
Blaug (1986), Blyth (1987), Dahrendorf (1995), Davis and Weaver (1927),
Garrison and Kirzner (1987), Lee (1897, 1899), Mai (1975), Morgan (1990),
Newman (1987), Pavetti (1987), Stigler (1987), Weaver (1937), Wickham
Legg (1949), and Who was Who 1929-1940 and 1941-1950.

3 SEMIPARAMETRIC ESTIMATION

So much of Sargan’s work, on instrumental variables, simultaneous equations,
speci..cation testing, and Edgeworth expansions, can be seen as fundamental
to, and infuential in, the development of econometrics. “Asymptotic Theory
and Large Models” (Sargan, 1975) can be seen as something of a one-o@ con-
tribution, which turns out to contain ideas related to a more modern econo-



metric preoccupation, semiparametric estimation; | referred to Sargan (1975)
in my review article on semiparametric econometrics (Robinson, 1988), but
did not discuss it in any depth there. The paper is not included among
the two volumes of selections of Sargan’s papers (Sargan, 1988) and has in-
deed rather escaped attention, perhaps because interest in large econometric
models was already on the wane by the time the paper was published, in
an issue of International Economic Review devoted to the proceedings of a
symposium in econometric model performance. Though connected to some
of Sargan’s other work, including instrumental variables estimation of lin-
ear simultaneous equations systems (see Sargan, 1958), the main innovation
in Sargan (1975) is the allowance for an increase, with sample size, of the
number of variables, and equations, in the model, and the justi..cation of
parametric convergence rates with respect to the part being estimated, and
asymptotic ecciency, relative to an underlying model involving in..nitely
many variables and equations. It thus deserves to be associated with the
statistical and econometric literature on “adaptive” estimation in the con-
text of a semiparametric model: the ..nite-dimensional parameter vector is
estimated asymptotically as e€ciently (in either the Cramer-Rao or Gauss
Markov senses) as if the in..nite-dimensional nuisance function were of ..-
nite dimension. Hannan (1963) seems to have obtained the ..rst results of
this kind, showing adaptivity with respect to disturbance autocorrelation
of unknown, nonparametric form, in time series regression models; Hannan
followed this up with work on related semiparametric models, including dis-
tributed lag and linear simultaneous equations models. (Sargan’s own work
on frequency domain semiparametric estimation - Espasa and Sargan (1977)
- and his early paper on the periodogram - Sargan (1953) - also warrant men-
tion here.) The model in Sargan (1975) is perhaps not really semiparametric
in the sense that, even though he was concerned with estimation of only a
..nite subset of equations, whose number remains constant as sample size
increases, all equations in his underlying in..nite system are assumed to be
identi..ed, each involving variables whose number also remains ..xed as sam-
ple size increases. | will point out later that the same statistical achievement
is possible without this kind of “full-information” requirement, presenting
a version of the problem more in keeping with the modern semiparametric
literature. First, however, | would like to describe in more detail the basic
setup and accomplishments of Sargan (1975).

De.nearrays fys:; s;t . 19, fzsy; s;t . 1g, fus; s;t . 1g, fbet; s;t _ 10,
fc; s;t . 1g; and consider the model

223 )
fbijyjt + CijZjtg = Uit; Lt L 3.1)
j=1



In (3.1), i indexes structural equations and t indexes observations (I will
mostly try to follow Sargan’s notation, though he employed instead an in...nite-
dimensional matrix presentation here). e will refer to the y;; as “endoge-
nous” variables and the z;; as “exogenous” variables. The uj; are unobserv-
able disturbances, satisfying at least

E(ui) = 0; (3-2)
E(Uitth) = !ij (3.3)
E(uisuj) = 0; s&t; (3.4)

forall i, j, s, t, and the z;; are nonstochastic and uniformly bounded. The
i-th equation in (3.1) is well-de..ned, for all t, by the requirements that for
somep<1,g<d,

bij & 0O for at most p values of j; (3.5)
cij & O for at most g values of j, (3.6)

and is normalized by the requirement

bii =1: (37)
It is supposed that (3.5)-(3.7) hold for all i _ 1. Further, Sargan assumed
that for all i
bij = 0; j>i+P; forsomeP >0 (3.8)
cj = 0; j>aqi (3.9)
i i< 1 (3.10)
jij&i
and
max jcijj < A: (3.11)
]

The b;j, cj; are otherwise unknown. Condition (3.8) is a kind of near-
recursivity requirement, and along with (3.10), which is clearly very strong,
and (3.11), ensures the existence of a stable solution of (3.1), while, given
(3.6), condition (3.9) is always satis..ed by a suitable re-ordering.

The simultaneous equations system (3.1) involves in..nitely-many equa-
tions and in..nitely-many endogenous variables y;;, j . 1, and exogenous
variables zjt, j . 1, observed at time points t. In practice we have obser-
vations at t = 1;:::; T, for T ..nite, and construct a working model of n(T)
equations iny;¢, 1 - j - n(T) and zj;, 1 - j - m(T), namely

§=) s )
bijYjt + Gjzjt=Ui; 1-i-nT); 1-t-T; (3.12)
L i

j:



withm(T)+n(T) <T. Indiscussing asymptotic statistical theory for estima-
tion of the unknown parameters explaining the bjj; cij in (3.12), traditionally
(see e.g. Johnston, 1984) m(T) and n(T) are .xedasT ¥ 1,som(T) =m,
n(T) = n, say. In (3.12), however, m(T) and n(T) are regarded as increas-
ing slowly with T, so that (3.12) “tends to” (3.1), to refect an attitude
often adopted by practical modellers, that the more data we have, the more
unknown parameters one can hope to estimate with reasonable precision.
Even with the restrictions (3.5) and (3.6), when n(T) ¥ 1 the number of
unrestricted, unknown bjj; cij in (3.12) also tends to in..nity, so that (3.12)
has something of a nonparametric, in..nite-dimensional character. However,
Sargan (1975) was concerned with estimating only the ..rst N equations of
(3.12), where N stays .xedas T ¥ 1, so that a ..nite number of no more
than N(p+q j 1) unknowns are being estimated. The situation is then more
like that in various semiparametric models, where it is desired to estimate a
- ite-dimensional vector as well as possible, or at least with convergence rate
T2, in the presence of an unknown nuisance function. In fact, Sargan (1975)
was not concerned with developing new estimates to deal with this situation,
but rather with justifying established ones, developed for the traditional case
of m(T); n(T) ..xed, in the context of the “increasing” model (3.12) nested in
the in..nite-dimensional system (3.1). Speci..cally, he showed that estimates
which are known to achieve a certain asymptotic e¢ciency bound with re-
spect to (3.12) with m(T); n(T) ..xed, achieve the same bound with respect
to (3.1).

To signi..cantly simplify the presentation | will take N = 1 throughout;
since N is in any case ..xed, there is no essential loss of generality, the only
substantive diaerence arising in the case N > 1 being that an estimate of
the covariance matrix of (uy¢; ::3; uy) is involved in order to achieve e¢ciency
when those u;j; are contemporaneously correlated; in the asymptotic theory
Sargan developed, and that which | will later develop, this is handled rela-
tively straightforwardly, given the other techniques employed to address the
problem, and the allowance for this kind of extension to the theory I will
subsequently give is likewise straightforward. We write the ..rst equation of
(3.1) or (3.12) as .

Yiet  Dbyyje + CjZje = Ui (3.13)
Jj=2 =1
for p1 - p, g1 - g, where bio; :::; bip,; Ca1; 1l C1g, @re unknown and we have
employed a convenient ordering of the yj¢; zj:. Write

Vi = Oinnyit)s YYo= (i ye) (3.14)
z; = (zjl;:::;ij)O; le(zl;:::;qu): (3.15)



The estimates considered by Sargan are all of instrumental variables type.
ForaT £ (p1 i 1) matrix W we consider the instrumental variables estimate

ERYYL) 07 =il’ >
Wy, W'z, Wiy, (3.16)

v =y Ziz, Zly:
of a = (baz; 13 bapy; C11; 1255 Cage)', @SSUMING the inverse exists. (Our notation
here diners somewhat from Sargan’s.)
An eCcient choice of W involves the reduced form for y = (Yat; i Yp,t)'
Sargan deduced that o
E(vd) = %zjg (3.17)
i=1
where the %; are (p; i 1) £1 vectors, the %; indeed converging exponentially
to zeroas j ¥ A under the abowve conditions (due especially to (3.10)), so
that (3.17) is bounded. Introduce the T £ (p1 i 1) matrix

P
Y=zl (3.18)
j=1

Then take W =Y in (3.16), and thus consider the estimate

" = i l " 5
— Ylo Yq Ylozl ' Yloyl )
Aine = zZiY, 7§z, Zly; (3.19)

where “INF” stands for “infeasible”, both because the %; are unknown and
because the zj; are observable only for j - n(T) (see (3.12)). Sargan argued
that W = Y is an eCcient choice of instruments, in the sense that under
suitable additional conditions the limiting variance matrix of Té(a,\, ia)
exceeds that of T2 (&~ i a) by a non-negative de..nite matrix; for this and
his other results he assumed that the limits

P
lim l ZjtZjy = My;j (320)
t=

exist for all i and j, and the m(T) £ m(T) matrix (mjj) has eigenvalues that
are uniformly bounded away from zero and in..nity as T ¥ 1 (implying
m(T) T 1).

Sargan then considered feasible e€cient estimates, taking W = ¥, where

ngs)
V= 1 Zih) = ZW%; (3.21)
J:



writing . ¢ . ¢
&y . : .. :
11— %1, ---,%m(T) X Z = 21,5 Zm(T) (3.22)
for (p1 i 1) £1 vector estimates %; of the %;. We then have the feasible
estimate . -
s 1 5
Vi, 9z, y1 :

AT Ziv, 27,z (329)

For #, Sargan used preliminary instrumental variables estimates computed
from all equations of (3.12). Given estimates B and € of the n(m) £n(T)
and n(T) £ m(T) matrices (bj;) and (cij), take

=0 s, (3.24)

where ®# = jBilC, I, is the r £ r identity matrix and 0 is here a (p; i
1) £ (M(T) § p1 + 1) matrix of zeros. In Sargan (1975) B and € are formed
from preliminary single-equation instrumental variables estimates, as indi-
cated by Brundy and Jorgensen (1971). These authors argued that using the
least squares estimate Y{Z(Z'Z)i? in place of ’:\ in (3.24) is computationally
unattractive when m(T) is large, due to the need to invert Z'Z; with p;j un-
excluded yj: and g; unexcluded zj; in the j-th equation, p; - p, q% - (, single
equation instrumental variables estimation of the j-th equation involves in-
version of only a (pj i 1+ gj)-dimensional square matrix, and Brundy and
Jorgensen (1971) preferred the prospect of n(T) such inversions over least
squares. Imposing some unprimitive conditions on B and € (though indi-
cating circumstances under which they would be met), Sargan showed that
area i &ine = 0p(T i%), so that Té(ap EA i @) has the same limit distribution
as T%(a.NF i ), and is thus asymptotically as e¢cient.

Fom a technical stand-point, Sargan (1975) solved highly challenging
problems by both deriving the reduced form (3.17) and justifying its esti-
mation by the preliminary structural form estimates of B and C. However,
computing power has developed considerably over the past thirty years, so
that least squares estimation of the reduced form in the presence of a very
large number of exogenous variables seems a less daunting prospect nowa-
days than it did to Brundy and Jorgenson (1971). Thus, the two-stage least
squares estimate of a,

_ Yz(Zz)itz, Yz, * il Yz(2'2)itzly, *

BsLs = 70V, 207, 2%y, ;. (B.2»)
seems worth considering. This is (3.16) with W =Y/Z(Z°Z)i!. &5 has a
further, minor, advantage over 8rga in that the ..rst factor on the right of
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(3.25) is proportional to a consistent estimate of the limiting covariance ma-
trix of the estimate, whereas the ..rst factor on the right of (3.23), with Sar-
gan’s choice of ¥, is not symmetric so will not be satisfactory for covariance
matrix estimation. The main distinction from Sargan’s work is theoretical,
however. Though exploitation of overidentifying restrictions on all structural
equations of (3.12) may produce desirable ..nite-sample statistical properties,
as well as avoiding inversion of a very large matrix, there is a cost: some mis-
speci..cation of the restrictions could lead to inconsistent estimation of the
reduced form, and thence at least to a large-sample e€ciency loss in the
estimates of the ..rst equation. In fact, the large-sample e¢ciency achieve-
ment of Sargan is possible without identifying other structural equations,
as two-stage least squares allows in the traditional ..xed-m(T) context. We
demonstrate this by a representation of the problem that is more in keeping
with the modern semiparametric literature than Sargan’s. A further, minor,
observation is that Sargan did not actually present a central limit theorem
for his &rea, Whereas we will do so, requiring some additional conditions,
though in other respects our conditions are weaker.
We assume (3.13) with

2]
Ve = YijZjr + Vi, (3.26)
j=1
with P
J2 Kk < 4, (3.27)
i=1

where uy; and the (p; j 1) £ 1 unobservable vector v, of reduced form distur-
bances are such that the (us; Vi) are independent and identically distributed
with zero mean and ..nite fourth moment. Like Sargan (1975), we assume
the zj, J . 1, t . 1, are nonstochastic and uniformly bounded, and also
impose the condition in the sentence surrounding (3.20). Denoting by e; the
(p1 i 1) £1 vector whose j-th element is 1 and whose other elements are zero,
by 0 the g1 £ 1 vector of zeros, and %; = (%;€})’, 1 - j - a1, %; = (45; 0,
J > q;, we assume that

(%1; %o, :22) has full row rank; (3.28)
this is just an identi..ability condition. Then with also
m(T)it +m(T)%=T 1 0; asT ¥ 1; (3.29)
we have that
T2@neia) ¥4 N i0;3/42—i1¢; (3.30)
T? (Bssia) ¥aq N i0;3/42—i1¢; (3.31)
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where

P P
3742 =V (ull); - = L 1%ijk%?(, (332)
J: =

and %2— il can be estimated consistently by %22 il; where

1
= ?yg)ﬁ i &) s Bsis (3.33)
A _ 1 YiZ@ZZ)izY, Yz C.

= 3 20, 2y (3.34)

The proof is described in the Appendix.

It follows that &,s; s has the same asymptotic eC®ciency as the infeasi-
ble optimal estimate &Nk, and inference can be carried out in the manner
presented in elementary textbooks (e.g. Johnston, 1984) for two-stage least
squares with a .xed number of explanatory variables. Note that condition
(3.27) is much milder than the exponential decay of the %; derived by Sargan
(1975) from his set-up. The prescription (3.26) is rather appealing because it
may be felt that whereas we may be prepared to identify a single structural
equation of interest, the included endogenous variables y;j; are acected by a
potentially unlimited number of exogenous variables zjt, only some of which
we observe. Moreover, the zj; coylgl be nonlinear functions of a possibly ..nite
number of observables, so that szq) Yijz;; constitutes a series approxima-
tion to a nonlinear E(y) in (3.17), and ;“:fl” %jzj¢ a corresponding series
estimate, %; being the j-th column of Y Z(Z'Z) 1. Our set-up can then be
compared with Newey’s (1990), who considered semiparametric estimation
using nearest neighbour (instead of our series) nonparametric estimation, and
assumed stochastic exogenous variables, unlike our nonstochastic ones. In-
deed, Andrews (1991) and Newey (1994) have provided extensive theoretical
treatments of the use of series estimation in semiparametric problems, in a
wide context, thought they did not explicitly consider the present problem,
and their regularity conditions were motivated by more general and elaborate
situations; a closer paper to ours is Koenker and Machado (1999), who con-
sidered, under dicerent kinds of conditions, generalized method of moments
estimation with an increasing number of moment conditions. Our discussion
here aims to draw parallels between Sargan (1975) paper and later econo-
metric developments, rather than ocer something distinctively novel relative
to the current literature. Extended versions of the problem discussed here
might involve the structural equation or equations of interest being semi-
parametric or nonparametric, or the number of equations of interest being
thought of as increasing slowly with T.
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4 FINAL COMMENTS

The London School of Economics was a sympathetic environment for research
in quantitative economics and statistics before Sargan’s arrival, and in a
more global sense these areas were already quite developed. However, Denis
Sargan deserves to be regarded as a founder of high-level econometric theory
at the LSE, and in the UK, as well as, alongside a few others, internationally.
Econometrics has developed considerably since, and interests have changed,
but nevertheless much of Sargan’s work was ahead of its time and remains
relevant and inspiring today.
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5 APPENDIX

We describe the main details of the proof of (3.31); the proofs of consistency
of #2 and £ for %2 and — use similar techniques but are easier, while the
proof of (3.30) involves straightforward use of standard central limit theorem
for independent non-identically distributed variables, noting the conditions
on the zj: and (uy; Vi); it is perhaps only necessary here to observe that — is
non-singular owing to the condition on the mjx and (3.28).

Given (3.30), we immediately deduce (3.31) on proving

S

AINE i QrgLs = Op T iz . (Al)
We may write the left side of (A.1) as
i i i ¢ i
Df'd; i Df'dy = D' i D' dy+DJ*(dy i dy);

where
D — _1 YloYl Ylozl b, q :_1 Yloul :
! T zyy, ziz, 171 Zu
D, — 1 Y'zZ'z)itzV, Yz * 4 = 1 Y/z(Z'2)iZ}u, 7,
2T T Zivy Ziz, © T T Zju '

with u; = (u11; 25 usr)". Since D ¥, — is entailed in the proof of (3.30),
it succes to show that D; § D, ¥, 0 and d; j d; = op(T i'%). We give
the proof only for the latter, the proof of the former being easier due to the
slower convergence that su¢ces.

Now
Yiup = 1Z%; +cy;
Yiz(Z2)i1Zu; = 1Z'u; 4+, + g
where
)
€ = i ZjUig

j=mm+1 " t=1
P il P

C, = viz{(Z2°Z)* ZeU1t;
1

t= t=1
P P T o
C3 = Y% o zjx(Z°Z)° ZUyy;
j=m(m)+1 t=1 t=1
i ¢
writing = Izlt; S5 Zm(T )t " It thus remains to show that
Ci = op(T'%); 1=1;2;3 (A.2)
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First, c1 has mean zero and variance matrix

, P P P )
Y4 Yii  ZjtZxtYae
j=m(T)+1k=m(T)+1 t=1
whose largest eigenvalue is
A 1,1
4]
oQ@rt kijk A=0o(T), asT ¥ 1;
j=m(T)+1

where kAk denotes the square root of the largest eigenvalue of A’A. This
proves (A.2) for i = 1.
Next, ¢, has mean
P 0r=0 il [ 0 il->0 ¢
E(viunin) #%((Z'2)''zx = EMun)tr (Z2)'"Z2°Z
t=1

O(M(T)) = o(T 2);

and variance matrix

PO L2y
E fviuy i Evaungfviug i Eviung z1(2'2) %
t=1
© 0 2 0 TP PO, 2
+ E(vivy)E(ui;) + E(viun)E(viu11) - 2(Z2°Z2)" 2
t=1s=
u . 01.[ s6&t
= 0 maxkak’°(2'2)"° +0(m(T))
TR )l
= 0 @+m(T) = o(T);
so (A.2) is proved for 1 = 2.
Finally, cz has mean zero and variance matrix
, P 2> P 11 P 0
Yy Wy Zj2(Z°Z)1 B Zyt Vi (A.3)
j=m(T)+1k=m(T)+1 t=1 t=1
Now o ° % Y%y 3 -
oI:D o 2 FD 2 2 1
o  ZjtZto zjy  kzk =0 Tm(T)z ;
t=1 t=1 t=1
so (A.3) is
A ' O A 1,1
P ) =
O Tm(T)( kijk)? =0@T jtkigk A=oT);
J=m(T)+1 j=m(T)+1

to prove (A.3) fori = 3.
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