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Abstract

This paper sets out a general algorithm for calculating true cost-of-living indices or true producer
price indices when demand is not homothetic, i.e. when not all expenditure elasticities are equal to
one. In principle, economic theory tells us how we should calculate a true cost-of-living index or
Konus price index: first estimate the consumer’s expenditure function (cost function) econometrically
and then calculate the Konis price index directly from that. Unfortunately this is impossible in
practice since real life consumer (producer) price indices contain hundreds of components, which
means that there are many more parameters than observations. Index number theory has solved this
problem, at least when demand is homothetic (all income elasticities equal to one). Superlative index
numbers are second order approximations to any acceptable expenditure (cost) function. These index
numbers require data only on prices and quantities over the time period or cross section under study.
Unfortunately, there is overwhelming evidence that consumer demand is not homothetic (Engel’s
Law). The purpose of the present paper is to set out a general algorithm for the nonhomothetic case.
The solution is to construct a chain index number using compensated, not actual, expenditure shares
as weights. The compensated shares are the actual shares, adjusted for changes in real income. These
adjustments are made via an econometric model, where only the responses of demand to income
changes need to be estimated, not the responses to price changes. This makes the algorithm perfectly
feasible in practice. The new algorithm can be applied (a) in time series, e.g. measuring changes over
time in the cost of living; (b) in cross section, e.g. measuring differences in the cost of living and
hence the standard of living across countries; and (c) to cost functions, which enables better measures
of technical progress to be developed.
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1. Introduction

This paper sets out an algorithm for measuring the true cost of living in the important case
where demand is non-homothetic. The algorithm can be applied both to time series and to
cross sections, eg cross-country studies of living standards. Essentially the same algorithm
can be applied to the parallel problem of measuring the price of producers’ inputs, which in
turn is a step on the road to measuring technical progress. The algorithm is practical since it
requires no more data than is needed to calculate conventional index numbers. And in
principle it can be implemented at the same level of product detail at which conventional
index numbers are constructed by national statistical agencies.

Economic theory tells us how to measure the true cost of living: estimate the expenditure
function econometrically and then calculate the Koniis price index. The Koniis price index for
period ¢ relative to some other period r is defined as the ratio of the (minimum) cost of
achieving a given utility level at the prices of period ¢ to the cost of achieving the same utility
level at the prices of period r (Koniis, 1939). If we know the expenditure function then we
can calculate the Koniis price index, for any chosen utility level. Similarly, economic theory
tells us how to measure the true index of the cost of a producer’s inputs: estimate the
producer’s cost function and calculate the analogue of the Koniis price index. If we know the
cost function then we also know the degree of economies of scale, the size of any input biases
in economies of scale, the growth rate of technical progress, and the size of any input biases
in technical progress.

Though much work has been done on estimating systems of consumer demand or
producers’ cost functions, the results of these studies are not typically employed by other
economists in empirical work. For example, when macro economists study inflation
empirically, they do not usually employ their micro colleagues’ estimates of expenditure
functions. Rather they use consumer price indices constructed by national statistical agencies.
The reason is clear. The economic approach cannot be applied at a level useful for other

empirical economists because of data limitations.

1.1 The data problem

The economic approach cannot be employed because the number of parameters to be

estimated is large and the number of observations is comparatively small. In other words the



problem is a purely practical one which might in theory be solved just by waiting long
enough (possibly for hundreds of years). This causes a dilemma for the empirical economist
who is unwilling to wait. Either the economic approach must be abandoned and index
numbers employed instead. Or the data must be aggregated and the economic approach
applied at a higher level. The first way, I shall argue later, is perfectly all right if demand (for
consumer goods or producer inputs) is homothetic. But if it is not, then index numbers will
not measure what they are supposed to measure. The second approach is more relevant to
testing economic theory rather than to using it. In practice, empirical economists tend to use
the index numbers (for output, inputs and prices) supplied to them by statistical agencies,
without asking too many questions about the assumptions on which they are based.'

The data problem can be illustrated by taking the Quadratic Almost Ideal Demand System
(QAIDS) for N products of Banks, Blundell and Lewbel (1997) as an example. In the

expenditure function of this system there are (N —1)(N +2) independent parameters
relating to the consumer’s response to prices and 2(N —1) independent parameters relating to

the consumer’s response to income, for a total (excluding a scale parameter) of

7 (N =1)(N +6) independent parameters. The QAIDS is a system of N -1 independent

equations for the expenditure shares. Roughly speaking, each of these equations contains on

average 1 (N +2) independent coefficients relating to prices and two coefficients relating to

income. To have any chance of estimating these coefficients econometrically we must have
more observations than coefficients; ie if we have T aggregate time series observations, then
we require 7 >4 (N +6).

This is where the empirical study of demand and the practice of index number
construction part company. National statistical agencies construct their indices of the cost of
living from hundreds of components. For example, the U.S. Bureau of Labor Statistics
constructs its Consumer Price Index from 305 “entry-level items” (U.S. Bureau of Labor
Statistics, 2007). The U.K.’s Consumer Prices Index and Retail Prices Index have some 650
“items” (Office for National Statistics, 1998 and 2006). To estimate the parameters of the

QAIDS for 650 products would require over three centuries of annual data, a requirement that

' See for example the remarks of Tobin (1987) on the contributions of Irving Fisher to

index number theory: “These index number issues do not seem as important to present-day
economists as they did to Fisher. Knowing that they are intrinsically unsolvable, we finesse
them and use uncritically the indexes that government statisticians provide”. Of course, I do
not agree that these “index number issues” are “intrinsically unsolvable”, otherwise I would
not have written this paper.



is not and is never likely to be met. So when econometricians use time series data to test the
theory of demand, they are forced to aggregate the products into a small number of groups;
eg Christensen et al. (1975) tested the theory of demand using three product groups over
1929-72. But additional, strong assumptions are needed to justify this aggregation and these
assumptions cannot be tested directly (Deaton and Muellbauer, 1980b, chapter 5). So the
“prices” and “quantities” which are the basic data for testing the theory of demand in this
kind of study are themselves index numbers.” But then the theoretical justification for these
index numbers is unclear. Cross section studies of household demand fare better since in any
given year it may be reasonable to assume prices are the same for all households (except for
regional effects). With typically several thousand observations in any cross section, lack of
observations is not a problem. But then only the effects of income (and of household
composition) on demand can be measured, as in eg Blow, Leicester and Oldfield (2004).

The upshot is that all the empirical work that economists have done on household demand
has had no effect on the measurements actually made by national statistical agencies
(although the underlying theory may have been influential). Similar remarks apply to the

measurement of other indices such as the producer price index.

1.2 Non-homotheticity

Actually, none of this matters much provided that demand (for inputs or consumer goods) is
homothetic. If this condition holds and if we are prepared to accept that economic theory is
true,3 then we have no need to estimate cost or expenditure functions. We can instead use the
superlative index numbers of Diewert (1976). As discussed more fully in section 2, these
provide second order approximations to any acceptable utility or cost function.

Unfortunately, an overwhelming body of empirical evidence establishes that consumer
demand is not homothetic. The most obvious manifestation of this is Engel’s Law: the
proportion of total household expenditure devoted to food falls as expenditure rises. Since its

original publication in 1857, Engel’s Law has been repeatedly confirmed. Houthakker (1957)

2 Cross section studies also often employ highly aggregated data: five product groups in the

case of Banks et al. (1997), eight in the case of Blundell ef al. (2007), both studies of British
household budgets, and 11 in the case of Neary (2004), a cross-country study of PPPs. The
panel study on Canadian households of Lewbel and Pendakur (2009) employed nine groups.

Throughout this paper I adopt the economic approach to index numbers; see Diewert
(1981) and (2008) for surveys of this and of the alternative axiomatic and stochastic
approaches, also Balk (1995) on the axiomatic approach.
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showed that the Law held in some 40 household surveys from about 30 countries.” Engel’s
Law also holds in the much more econometrically sophisticated study of Banks et al. (1997)
on UK household budgets. The prevalence of non-homotheticity is also confirmed by the
more disaggregated studies of Blow er al. (2004), also on U.K. household budgets, which
considered 18 product groups, and Oulton (2008) who considered 70 product groups.’

If demand is not homothetic, then superlative index numbers are not guaranteed to be
good approximations to Koniis price indices, even locally. In fact the true price index may lie
outside the Paasche-Laspeyres spread. And the true price index is no longer unique but
depends on the reference level chosen for utility (or, for the producer price index, on the
reference output level). The fact that the Koniis price index generally varies with the
reference utility level is sometimes taken as puzzlingly paradoxical. But it can be given a
simple intuitive justification. Consider a household with a very low standard of living
spending 60% of its budget on food (as was the case with the working class households
studied by Engel in 1857). Suppose the price of food rises by 20%, with other prices constant.
Then money income will probably have to rise by close to (0.60 x 20% =) 12%, to leave
utility unchanged, since there are limited possibilities for substituting clothing and shelter for
food. Compare this household to a modern day British one, spending 15% of its budget on
food prepared and served at home (Blow et al., 2004). Now the maximum rise in income
required to hold utility constant is only (0.15 x 20 = ) 3% and probably a good bit less as
substitution opportunities are greater.

This leaves the welfare interpretation of conventional consumer price indices and their
cross-country cousins, the Purchasing Power Parities (PPPs) constructed by the OECD and

the World Bank, somewhat up in the air. If the true price index depends on the reference level

* Engel’s (1857) results for expenditure by households of various income levels in Saxony

are described more accessibly in Marshall (1920), chapter IV. In each of the surveys that he
collected Houthakker (1957) estimated the elasticity of expenditure on food and three other
groups (clothing, housing and miscellaneous) with respect to total expenditure and to
household size. For each product group, he regressed the log of expenditure on that group on
the log of total expenditure and the log of family size. He used weighted least squares on
grouped data; individual data was not available to him. The results for food were clear-cut:
demand was inelastic with respect to expenditure in every survey. The results for clothing
and miscellaneous were equally clear-cut: demand was expenditure-elastic. The result for
housing was more mixed.

> An exception to this consensus is Dowrick and Quiggin (1997). They studied the 1980
and 1990 PPPs for 17 OECD countries, using 38 components of GDP, and argued that the
data could be rationalised by a homothetic utility function. But their anomalous finding may
be due partly to the fact that the per capita incomes of these countries were fairly similar and
partly to the low power of their nonparametric test (Neary, 2004).
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of utility, how are we to interpret real world price indices? The answer in the time series
context is that a chained, superlative index is likely to be approximately equal to a true price
index with reference utility level at the midpoint of the sample period (Diewert, 1976 and
1981; Feenstra and Reinsdorff, 2000; Balk 2004).6 For a cross-country comparison, the
viewpoint will be that of a “middle” country. While there is nothing wrong with this
viewpoint, there is no special reason why the midpoint should be so privileged. There is also
the disadvantage that when the sample period is extended (or the number of countries in the
comparison increased), the viewpoint changes.

A parallel issue arises on the production side and takes the form of input biases in
economies of scale: if output is doubled, holding prices and technology constant, does that
leave all cost shares unchanged? The possibility that this is not the case has certainly been
entertained as a matter of theory, though I am not aware of any substantial body of empirical
work devoted to this issue. But such a situation may be quite common. Consider a firm which
has fixed and variable costs, where the fixed costs are white collar workers and the variable
costs are blue collar workers. Then an expansion of output will lower the share of white
collar workers in total costs. In this case the cost function is non-homothetic and also non-
homogeneous in output. So it would certainly seem desirable to take non-homotheticity into

account when trying to measure TFP.
1.3 The algorithm
The proposed algorithm can be summarised as follows. The growth rate of a Koniis consumer

price index resembles that of a Divisia index (or the latter’s empirical counterpart, a chain

index) in that it is an expenditure-share-weighted average of the growth rates of the

®  Suppose a utility function exists which rationalises the data but may be non-homothetic.

Diewert (1981) showed that there exists a utility level which is intermediate between the
levels at the endpoints of the interval under study such that a Koniis price index over this
interval, with utility fixed at the intermediate level, is bounded below by the Paasche and
above by the Laspeyres. Balk (2004) showed that when the growth of prices is piecewise log
linear a chained Fisher price index approximates a Koniis price index over an interval when
the reference utility level is fixed at that of some intermediate point in the interval. More
precise results are available for specific functional forms. Diewert (1976) showed that a
Tornqvist price index is exact for a nonhomothetic translog cost function when the reference
utility level is the geometric mean of the utility levels at the endpoints; see also Diewert
(2009) for extensions. For the AIDS, Feenstra and Reinsdorf (2000) showed that, if prices are
growing at constant rates, the Divisia index between two time periods equals the Koniis price
index when the reference utility level is a weighted average of utility levels along the path.
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component prices. But for the Koniis index the shares are not the actual, observed ones, but
rather what I call the compensated shares: the shares that would be observed if prices were
the actual, observed ones but utility were held constant at some given reference level. I derive
a relationship between the compensated and the actual shares: the compensated shares are
equal to the actual ones, adjusted for the difference in real income (utility) between the actual
situation and the reference level. The adjustment requires us to know, for each product, the
consumer’s response to real income changes but not the response to price changes. This is
why the algorithm can be implemented at a very disaggregated level, since the number of
parameters needed to describe the consumer’s response to income changes is quite small: in
the case of the QAIDS only two parameters for each product need to be known. These
income response parameters can be estimated econometrically, provided we do not try at the
same time to estimate the responses to individual price changes. This can be done by
estimating a flexible demand system such as the QAIDS but with the price variables replaced
by a much smaller number of principal components. In this way the data limitation problem
can be overcome.

It is important to note that the algorithm proposed here is not designed as a test of
whether the theory of consumer (or producer) demand is true. Rather it seeks to use demand
theory to construct better measures of living standards and productivity. In fact, the algorithm
assumes that demand theory is true and hence that the consumer’s or producer’s responses

can be approximated by a flexible system like the QAIDS.

1.4 Plan of the paper

I start in section 2 by reviewing the theory of superlative index numbers. I argue that these
solve the problem of estimating a true price index in the homothetic case. In section 3 I go on
to consider the non-homothetic case and present a general algorithm for estimating a true
(Koniis) price index for a representative consumer. The algorithm requires just the same data
(and no more) as would be required to estimate a conventional index number. This algorithm
is illustrated more specifically for the QAIDS. I argue that it can be applied both to time
series and to cross section (eg cross country studies). In section 4 the analysis is extended by
dropping the assumption of a representative consumer. I show how the QAIDS can be
adapted to allow for inequality in the distribution of income. It turns out that this just requires
adding two additional variables, both statistics of the income distribution, to the share

equations of the QAIDS. The algorithm derived for the simpler case of a representative

8



consumer can then be applied much as before. This section also discusses including
household characteristics as additional determinants of demand. Section 5 shows how the
general method applies, after some adaptation, to the estimation of a true input price index for
producers, in the case where economies of scale may exist and may be input-biased. A true
input price index is a step on the road to estimating the growth rate of technical progress,
which may also be input-biased. The algorithm enables input biases in economies of scale

and in technical progress to be estimated simultaneously. Finally, section 6 concludes.

2. Price indices: the homothetic case

In this section I argue that superlative index numbers have solved the problem of measuring
the true cost of living for a single, representative consumer in the case where demand is
homothetic.

Let the consumer’s expenditure function be

x=E(p,u)
This shows the minimum expenditure x needed to reach utility level u when p =(p, p,...py)

is the Nx1 price vector faced by the consumer; x = Zl_ p.q; where the g, are the quantities

purchased. Expenditure at time ¢ is therefore a function of prices at time ¢ and the utility level.
Suppose that, hypothetically, utility were held at its level at time » while the consumer faced

the prices of time t. Let x(¢,b) denote the minimum expenditure at the prices of time ¢
required to achieve the utility level of time b. Then

x(1,0) = E(p(1), u(b)) ey
For brevity write the right hand side as

E(t,b) = E(p(1),u(b))
where the first argument of E(z,b) is the time period for prices and the second is the time
period for utility. The Koniis price index at time ¢, with time b as the base period for utility, is
defined as the ratio of the minimum expenditure required with the prices of time ¢ to attain
the utility level of time b, to the minimum expenditure required to attain this same utility

level, when the consumer faces the prices of time b’

7 It is convenient if the reference period for the Koniis price index (the period when the

index equals 1) is the same as the base period. But nothing important would be changed if we
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PX(1,b) = E(1,b)/ E(b,b) 2)
(Clearly, P*(b,b)=1). In general, the Koniis price index depends on both the prices and the
specified utility level. However as is well known, the index is independent of the utility level
and depends only on the prices if and only if demand is homothetic, ie if all income
elasticities are equal to one (Koniis, 1939; Samuelson and Swamy, 1974; Deaton and
Muellbauer, chapter 7, 1980b).

I wish to argue that the problem of estimating true cost-of-living indices and indices of
the standard of living, together with their counterparts on the production side, has been solved
in the case where demand is homothetic, at least within the limit of what is empirically
possible. The solution was in fact provided by Diewert’s development of superlative index
numbers, index numbers which are exact for some flexible functional form (Diewert, 1976).
A flexible functional form is one which provides a second order approximation to any
expenditure function (or utility function) or to any cost function (or production function)
which is acceptable to economic theory.8 Note that these are local not global properties; a
good approximation at the point in question does not guarantee a good approximation at some
other point.

The flexible functional forms which Diewert (1976) studied were what he called

quadratic means of order s, given by:

A(p:s) = [zf > b, p" p;/ZT/S by =b,, Vi# j,5>0 3)
where A(p;s) is assumed concave and positive. For concreteness, in this section I interpret
equation (3) as referring to the consumer’s problem of choosing amongst N products subject
to a budget constraint but it could equally well refer to the producer’s problem of allocating a
given expenditure amongst N inputs. Under this interpretation, A(p;s) is the cost per unit of
utility and equation (3) is part of an expenditure function of the following form:

x(t,b) = A(p(1); s)u(b) “)

chose the reference year to be year r and defined the Koniis price index with base period b
and reference period r as P*(t,b,r)= E(t,b)/ E(r,b)= [E(t,b)! E(b,b)]/[E(r,b)! E(b,b)] =
PX(t,b)/ PX(r,b).

® A second order approximation is one for which the approximating function and the
function approximated have the same value at a particular point, the first derivatives of the

two functions are equal at that same point, and the second derivatives are also equal at that
point.
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where x = Zl_ p,q; 1s total expenditure, g, is the quantity purchased of the ith product, and

x(t,b) is the minimum expenditure required to reach the utility level prevailing at time b

when the consumer faces the prices of time 7. Note that equation (4) implies that demand is
homothetic: all expenditure elasticities are equal to one.’
The Koniis price index for period ¢ relative to period b corresponding to this expenditure

function is then
P (t,b) = x(1,b) | x(b,b) = A(p(t);5) | A(p(b); )
which is independent of the utility level. If the consumer maximises utility subject to the

budget constraint x(z,t) = zi p.(t)gq.(t), then Diewert showed that the Koniis price index for

period ¢ relative to period » which corresponds to (3) is given by:

ZN ( p. (t) JM p: (b)g; (b) |
= p, (b) " b, (b)q, (b)

s/2 (5)
5 (pi(b)] [ p, (g, (1) J

p®) (X7 p (g, )

P;(t’b) =

Note that base period (period b) expenditure shares appear in the numerator and current
period (period ) ones in the denominator.

The importance of this result is that the formula for the price index requires knowledge
only of prices and quantities (or equivalently, prices and budget shares). It does not require

knowledge of any of the parameters of A(p;s). The latter are very numerous and there may

be insufficient observations available to estimate them econometrically. But Diewert’s result
tells us that we don’t need to.

The quadratic mean of order s also includes the translog as a special case when s = 0; the
Tornqvist is the corresponding superlative index. This can be seen by taking the limit as
s — 0 and applying de I’Hopital’s Rule. In the case where s=2 the corresponding
superlative index is the Fisher (Diewert, 1976). The Fisher and the Tornqvist are the forms
most commonly used in empirical economics. The Fisher index is widely used by national

statistical agencies, including those of the U.S.

®  This follows from Shephard’s Lemma which implies that the budget shares are given by

dlnx/dIn p,. These shares are independent of the level of utility and hence of expenditure

when the expenditure function has the form of equation (4). So a doubling of expenditure
with all prices held constant doubles the quantity purchased of every product.
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As stated above, the quadratic mean of order s is only guaranteed to be a good
approximation locally. As we move farther away from the point on which the approximation
is based, it may cease to be a good one. The solution now is chaining. This means that we
continue to believe that a quadratic mean of order s, with s assumed known, describes the
data well, but the actual parameters can change over time. Eg, at time ¢ the particular form
given by (3) may apply, but at some other time r a related but different form may be a better

approximation to consumer behaviour:
Aps)=| > Sy i pt S =, Vi js>0 6
p:s)= i=1 j=1 iPi P » U =0y, VIF ], S )
where each b; may differ from the corresponding b,. So in measuring the change in the

Koniis price index between time ¢ and 7+1 equation (3) may apply, while from time r to time
r+1 equation (6) may be better. Underlying preferences may be unchanged (the true utility
function is unchanged), it’s just that at some periods equation (3) may be a good
approximation while at other periods equation (6) may be better. We don’t need to know
whether this is the case or not, because both sets of parameters are captured by the superlative
index of equation (5). Hence chaining increases the flexibility of flexible functional forms by
allowing parameters to change over time and this is consistent with preferences remaining
unchanged. 10

Hill (2006) has recently cast doubt on the optimistic conclusion that superlative indices
solve the index number problem in the homothetic case. He argues that we have no good
reason for picking one value of s over another and the value of the price index may be
sensitive to the choice of s. He proves that as s is increased the value of the index approaches
the geometric mean of the smallest and largest price relatives. Hence the index can be
sensitive to outliers. He demonstrates this point using actual time series data for the US and
cross country data for 43 countries and finds wide variations depending on the value of s. The
spread between the largest and smallest values of a given index (for different values of s)
often lies outside the Paasche-Laspeyres spread. However, there is not much variation in the
indices as s increases from 0 (translog) to 2 (Fisher).

The optimistic conclusion can however be defended:

1. All Hill’s comparisons are bilateral. He does not employ chain indices. But as argued

above, chaining should substantially reduce the empirical uncertainty: the smaller the

0" Diewert (1976) was well aware of this point: see his footnote 16.
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change between adjacent years (or between countries), the closer will be the values of
all superlative indices, ie they become increasingly insensitive to the choice of s.

2. If we adopt the economic approach (to which Hill is not necessarily committed), then
the use of superlative indices requires that demand is homothetic. However unrealistic
this is as a description of demand, it is the maintained hypothesis. But then theory
implies that the true index must lie between the Paasche and the Laspeyres (Koniis,
1939, Deaton and Muellbauer, 1980b, chapter 7). So to be consistent with the
maintained hypothesis, we should reject any value for the order s which produces a
result outside the Paasche-Laspeyres spread. This again reduces the empirical
uncertainty about the value of s."'

Unfortunately, the assumption of homotheticity is a very dubious one for demand. As
argued earlier, there is overwhelming evidence from household surveys that income
elasticities are not all equal to one. Economists have been somewhat readier to accept the

assumption of constant returns to scale in the case of producers, but even so this assumption

should ideally be tested. The next section therefore turns to the non-homothetic case.

3. Estimating a true cost-of-living index over time: the non-homothetic case

3.1 The Taylor series approach

In this section I consider the problem of how to estimate a true cost-of-living index over time
when there are insufficient time series observations available to estimate the consumer’s
expenditure function.'? This might be called the “large N, small 77 problem: there are a large
number of products but only a small number of time periods. This is the typical situation
faced by national statistics agencies when for example estimating the consumer price index.
Throughout this section I assume a single, representative consumer. In the next section this

assumption will be relaxed.

""" For Hill's the time series data, the maximum (absolute) Paasche-Laspeyres spread was 5%

and the average one was 1.2%. For the cross-section data, the spread was much larger:
173.5% and 33.7% respectively. (I subtract 1 from his figures since he gives the ratio of
Paasche to Laspeyres).

The argument of this section is a generalisation of the one set out in Oulton (2008).
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Let the share of product i in total expenditure at time ¢, if utility were fixed at the level of

the base period b, be s,(¢,b) ; ie the share is a function of the prices prevailing at t and the

utility level at b. Applying Shephard’s Lemma to the expenditure function, equation (1),

Al E(t,b) |
(b= =1 N 7
(b =S (7)

These can be called the hypothetical or compensated shares, the shares that would be
observed if utility were held constant at some reference level (here, the level prevailing in
period b), while prices followed their observed path. The actual, observed shares in period ¢

are

s(m)—M i=1,...N
o olnp.(1)

Note that the compensated shares in the base period b, s,(b,b), are the same as the actual

shares in that period.
By totally differentiating the Koniis price index of equation (2) with respect to time, we

obtain

dn PX(t,b) i=n dIn E(t,b) d1n p.(1) i=N dln p.(1)
— i — ) t,b —_rirZ 8
dt z”:l dln p,(1) dt z”:l 5:(.6) dt ®

So the level of the Koniis price index in some period 7, relative to its level in the base period

b, is:

X B T i=N dIn pi(t)
In PX(T,b)= | {ZM si(t,b)(Tﬂdt ©)

We see that the Koniis price index resembles a Divisia index but with the difference that the
Koniis employs the compensated, not the actual, shares as weights (Balk, 2005; Oulton,
2008)."

In order to calculate the Koniis price index in practice, we seek a way of at least
approximating the compensated shares, which cannot of course be directly observed (except

for the s,(b,b) which are both the actual and the compensated share in period b). We can do

this by expressing the actual shares s.(z,¢) in terms of a Taylor series expansion of the

B Since it is a line integral, the Divisia index is in general path-dependent unless demand is

homothetic, as its inventor Divisia (1925-26) was well aware; see Hulten (1973) for detailed
discussion and Apostol (1957), chapter 10, for the underlying mathematics. But the Koniis
price index is not path-dependent since by definition utility is being held constant along the
path (Oulton, 2008).
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compensated shares s,(¢,b) around the point Inx =1n E(¢,b), ie holding prices constant at

their levels at time ¢ and varying real expenditure (utility):

_ _05,() . _
s.(t,t) =s.(t,b) + (aln E(-,-)J [In E(t,t) —In E(¢,b)]

p=p (),
x=E(t,b)
2
1(&} 0 E(t.0) - In E(tb)Y 10)
2‘ aln E(,) p=p(1),
x=E(t,b)
3
+l(as—()3j [nE(,t)—InE@®,b)] +...
3\ dInE(-,") pop().

Note that InE(t,1)— E(t,b) =In[E(t,t)/ E(¢,b] is the log of the ratio of the expenditure
needed to achieve the utility level of period # to the expenditure needed to achieve the level of
period b, both evaluated at the prices of period ¢. In fact

E(t,1) _{ E(t,1) ][E(b,b)} _ x(t,0)/ x(b,b)

= = = ar)
E(t,b) | E(b,b) || E(1,b) P (t,b)

where x(v,v) is actual money expenditure at time v and we have used the definition of the
Koniis price index in equation (2).

Now substitute (11) into (10) and solve for the compensated shares s,(t,b) :

5;(t,b)=s,(t,t)—n, (t b)ln{x(t’t)/x(b’b)}—niz(t’b) {ln{x(t’t)/x(b’b)}}z

PX(1,b) 2! PX(1,b)
_a(t.b) {h{x(r,zz /x(b,b)}}* L 12
3! P (1,b)

i=L..,N; te[0,T]
where to simplify the notation we have put

9s, ()

My (t,b) = (W

J , k=12,..;i=1,....N (13)
p=p(1),
x=E(t,b

Equation (12) might not appear to take us very much further. But in fact it is the basis for

a practical method of estimating the Koniis price index. The partial derivative 7, (¢,b) is the

semi-elasticity of the budget share of the ith product with respect to expenditure (real income),

with prices held constant; it is evaluated at base year utility and at the prices of time t.
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Suppose that this (and the higher order derivatives 7, (t,b), 17,,(¢,b) , etc, that are required for
a good approximation) were somehow known or could be estimated (see the next section on
ways to do this). Then we could estimate the Koniis price index using equation (8) and (12).
This is because these equations constitute a set of equations for P¥(¢,b), in which the
compensated shares and the Koniis price index are the only unknowns; the actual shares
s.(t,t), the money expenditures x(z,#) and x(b,b), and (by assumption) the semi-elasticities
are all known.

The procedure to solve these equations is straightforward in principle. First, we need to
take discrete approximations. Equations (12) must be understood to hold in discrete not
continuous time, ie for 1 =0,1,...,7 . We must also decide how many terms in the Taylor
series are required. If the utility function is quadratic in expenditure, then only the first two
terms of the Taylor series are needed: see the next section. Equation (8) must be replaced by a
discrete approximation, eg a chained Tornqvist ( P ) or chained Fisher formula ( P").

Let us define the following chained, compensated index numbers. Each index number is
for time ¢ relative to time ¢ —1, with utility held constant at the level of period b.

Compensated Tornqvist:

1nPT(r,t—1,b):zf"v(sf(”b)”"(t_l’b)jln p.(1) (14)
= 2 Pi(f_l)
Compensated Laspeyres:

Pt —15) =3 s (1~ 1,5) P 15

( )= s )pi(t—l) (15)
Compensated Paasche: 14
-1
i= (t-1)
P”(t,t—l,b)=[ ‘Nsi(t,b)p’—} (16)
2 p;(1)

Compensated Fisher:

P (t,t—1,b)=[P"(t,t=1,b)- P"(t,t —1,b)]"* (17)

Each of these index numbers is defined in the same way as its empirical counterpart, except
that compensated, not actual, shares are used. The natural choices for discrete approximations
to the continuous Koniis price index are either the compensated Toérnqvist, equation (14), or

the compensated Fisher, equation (17).

4" The formula for the Paasche is not the usual one but is mathematically equivalent to the
usual one.
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Since utility is being held constant at its level in period b, the true index is bounded by the
compensated Laspeyres and the compensated Paasche:

P"(t,t —=1,b) = P*(t,b)/ P*(t —1,b) > P" (t,t - 1,b) (18)
This follows from the well-known Koniis (1939) inequalities (the proof is in the Annex). The
Paasche-Laspeyres spread, calculated using the compensated shares, can be used as a check
on the accuracy of whatever index number formula is adopted.15

Equations (12) now constitute a system of (N —1)(T +1) independent equations since the
N shares sum to one in each period.'® Together with (8), this system can be solved iteratively:

1. Start with an initial guess at P*(¢,b): this could be derived as a chained Térnqvist or

chained Fisher index which uses actual not compensated shares.

2. Substitute this estimate of P*(¢,b) into (12) to get estimates of the compensated shares

for each of N —1 products and for each of T +1 time periods; the share of the Nth product

can be derived as a residual.

3. Use these estimates of the compensated shares to obtain a new estimate of P*(t,b)
from either of the two discrete approximations to (8), the Térnqvist (equation (14)) or the
Fisher (equation (17)).17

4. Check whether the estimate of P* (¢,b) has converged. If not, return to step 2.

So given knowledge of the 77, up to the required order, we can estimate the Koniis price

index. Estimating the 77, may still seem a difficult task but notice that only the response of

demand to changes in real income needs to be known, not the response to price changes. This
is a very significant reduction in the complexity of the task empirically. To make further
progress we turn now to consider systems of demand which are consistent with economic

theory and also seem capable of fitting the data reasonably well.

5 0f all superlative index numbers, only the Fisher is guaranteed to lie within the
Laspeyres-Paasche spread (Hill, 2006).

The actual shares of course sum to one and since they derive from the expenditure
function so do the compensated shares: see equation (7).
7 Tn step 3 of the algorithm it is assumed that the observations are arranged in the natural
time order. See below for a refinement.
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3.2 Demand systems

The PIGLOG demand system, introduced by Muellbauer (1976) (see also Deaton and
Muellbauer (1980a and 1980b, chapter 3)) has found wide application empirically; an
example of the PIGLOG is the AIDS system. The PIGLOG expenditure function is:
Inx=InA(p)+ B(p)Inu (19)
Here A(p)>0 and B(p) >0 (non-satiation). Also, A(p) is assumed homogeneous of degree
1 and B(p) homogeneous of degree O in prices. From Shephard’s Lemma, the share

equations for this system are:

L _dmA®) 9B®
dlnp, dlnp,

or, using (19)

o dln A(p) N dln B(p)
" 9lnp, dln p,

1

In[x/ A(p)] (20)

(The homothetic case is where dln B(p)/dln p, =0, Vi). The AIDS system specifies that

B(p)= H pf‘ , Z B, =0, in which case the coefficient on In[x/A(p)] in the share equations
k k

is /., a constant independent of prices.

However, a linear relationship between the share and the log of deflated expenditure as in
(20) does not fare well empirically (Banks et al., 1997; Blow et al., 2004; Oulton, 2008) and
it is found necessary to add a squared term in the log of deflated expenditure. Lewbel (1991)
defined the rank of a demand system to be the dimensions of the space spanned by its Engel
curves. Exactly aggregable demand systems are those which are linear in functions of x.
Gorman (1981) proved that the maximum possible rank of any exactly aggregable demand
system is 3. The empirical evidence on Engel curves indicates that observed demands are at
least rank 3. Theorem 1 of Banks er al. (1997) states that all exactly aggregable, rank 3,
demand systems which just add a differentiable function of deflated expenditure to equation

(20) are derived from a utility function of the form

In x—In A(p) B )
Inu=|———=| +4
nu {{ B(p) } (P)}

__ Inlx/A@)]
B(p)+Inlx/ A(P)IA(P)

2y
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where A(p) is a differentiable, homogeneous function of degree zero in prices p. The

corresponding expenditure function is:

Inx =In A(p) B (22)

1-A(p)Inu
(This reduces to the PIGLOG system (19) when A(p)=0).

Applying Shephard’s Lemma, the budget shares in this demand system are:

,_OnA@)  Inu_ BE), I LB(p)lnu Taﬂ(p)

" 9dlnp, 1-A()Inudlnp, B(p)|1-A()nu| o p,
Hence from (22)
2
, Ol A®)  Inlx/ Ap] 9B®)  [Inlx/ ADI IA(p) 03
dln p, B(p) Odlnp, B(p) dln p,

In equation (12) above we found a Taylor series expansion for the compensated shares which

involved the semi-elasticity of the shares with respect to real income, ds,/dIn E, and higher

order derivatives, d°s,/d1n E*, etc. Now from (23) we get that

os, :alnB(p)+ 2 JdA(p)

1

dlnx dlnp, B(p)Jdlnp,

In[x/ A(p)]

(24)
s, _ 2 9Ap)

1

dlnx]*  B(p)dlnp,

and higher order derivatives are zero.

These derivatives have to be evaluated when x = E(¢,b). The simplest way to do this is to
adopt the normalisation that In[x(b,b)/ A(p(b)] =0. From (22)

B(p(®))Inu(d)

In x(b,b) =In A(p(b)) + 1-A(p®) Inu(d)

(25)

Now choose monetary and quantity units so that x(b,b) = A(p(b). This is always possible
since A(p) depends only on prices while x = Zi p.q; depends on both prices and quantities.
For example, suppose that x is initially double A(p) at time b. Then increase all quantity

units by 100% and increase all prices correspondingly by 100%."® This doubles A(p) while

leaving x unchanged. Then under this normalisation (25) implies that

18 Equality between A(p(b)) and x(b,b) can be achieved by an appropriate change in the

monetary unit. Suppose that, after normalising prices to one in the reference year, A(p(d))is
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Inu(b)=0
It then follows also from (22) that

B(p(®))Inu(b)

In .X'(l',b) =In Ab (p(t)) + 1_2(p(t)) In M(b)

=In A, (p(?)) (26)

From now on, we write A, (p) rather than just A(p), to mark the fact that prices are now

scaled by factors specific to period b. In general, this normalisation changes matrix A (see

below for the change in the QAIDS case).
This last finding suggests that we can interpret A, (p) as the Koniis price index with base

period b. More formally, using the definition of the Koniis price index, equation (2), and

equation (26), for the generalised PIGLOG we find that:

In P¥(¢,b) =In E(t,b) —In E(b,b) =In A, (p(t) — In A, (p(b)) 27)
ie PX(t,b)= A, (p(1))/ A (p(b)) . In other words, with this normalisation the Koniis price
index is measured by the homothetic part of the expenditure function A (p) , so
[x(2,0)/ x(b,b)]/[A,(p(1))/ A,(p(b))] measures real income relative to its level in period b.

We can now use these results to evaluate the derivatives in (24) at the point

x=E@,b),p=p@):

nil(t,b):{i} _ dln B(p(1)) N 2 0A(p()) ln{ x(t,b) }
dlnx | dlnp,(t)  B(p(?) dlnp,() | A, (p(1))
_ 9In B(p(1))
~ olnp,(1)
using (26) and
Uiz(f,b)=[ s, 2} - 2 JAp®)
d[ln x] b B(p(?)) oln p,(t)

Substituting these results into (12) we obtain

now a multiple H, >0 of x(b,b). Then define a new monetary unit as H, times the old one.
This leaves the normalised prices, and so also A(p(b)) , unchanged but multiplies the value of
expenditure by H, . See the Annex for more detail.
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5.(6,b) = 5,(1,1) — dIn B(p(1)) ln[x(t’t)/x(b’b)}

dln p,(t) P (1,b)

R EM(p(t)){ln{x(t,t)/x(b,b)}}z
B(p(1)) dIn p,(1) P*(1,b)

and this Taylor series expansion is not an approximation but exact for the generalised
PIGLOG.
To illustrate how much this simplifies the task of estimating the Koniis price index, I turn

now to a specific example, the Quadratic Almost Ideal Demand System (QAIDS)."
3.3 The AIDS and QAIDS cases

The QAIDS is an example of a generalised PIGLOG system. Banks et al. (1997) specify that
Bp)=[]pr?. X.B.=0 (28)
k k

as in the simpler AIDS and
Ap)=Y Anp, D A4 =0 (29)
k k

Under this specification,

dlnB(p) _
dln p, =4

9AP) _ 5
dlnp,

The share equations are then®

" Lewbel and Pendakur (2009) have recently proposed a new demand system, the Exact

Affine Stone Index (EASI) system. This has all the advantages of the generalised PIGLOG
(and of the QAIDS) while allowing Engel curves to be still more flexible, eg polynomials of
cubic or higher order. In principle the method developed here could be applied to the EASI
system as well. However, I have not been able to develop tractable expressions for the
derivatives of the share equations with respect to log expenditure (the 77, ). From the point of
view of the present paper, the EASI system suffers from the disadvantage that exact
aggregation does not hold. This does not matter when the system is fitted to individual data
but does when fitted to aggregate data: see section 4 for discussion of aggregation over
consumers who may differ in income and in other ways.

20 The coefficient on In[x/ A(p)] in (30) is independent of prices while that on In[x/ A(p)]’

is not. Banks et al. (1997) show in their Corollary 2 that the two coefficients cannot both be
independent of prices if the system is rank 3.
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alnA(p) X X 2
S oy, O L(p)} H” b {IH[A(pJ} (30)

At this point we do not need to specify a functional form for A(p) but it is worth noting that

the AIDS form
InA(p)=a,+Y aInp,+1/2)D. > y,Inpnp, > a=1>7=>7=0 31)
i i i i J

would lead to share equations of the form:

X X
=0+ ¥y Inp, /)’h{A(pJ HM /,,k {IHL(I)J} (32)

In equation (12) above we found a Taylor series expansion for the compensated shares

which involved the semi-elasticity of the shares with respect to real income, ds,/dIn E, and

higher order derivatives, sti /91n E?*, etc. Now using (30), we get that

ds, _ B+ 24, ln{ x }
—Fi k=N
dln x 1 LA®

9’s, 24
o[ln x]* HkN A

(33)

and higher order derivatives are zero.
We can now use these results to evaluate the derivatives in (33) at the point

x=E(t,b), p=p(t) after applying the normalisation of equation (26):

os.

t,b =4
7711( ) [alnx}p p((t) ﬂl

24,

1

az
n,(t,b)= [ } e
’ oin T e [T PE®

Substituting these results into (12) we obtain

si(z,b)=si(z,t)—/)’,,1n[x(f”>/x(b’b)}_H 4 {m["(””/x(b’b)}} ,

PK(tvb) = Np;(ﬁk PK(t’b)

34)
i=12,..,N; 1=0,1..T-1
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and this Taylor series expansion is not an approximation but exact for the generalised
PIGLOG with the specification of (28) and (29).
Therefore in order to implement the procedure outlined above for estimating the Koniis

price index, we need to estimate only the N S parameters and the N A parameters; in both

cases only N —1 of these are independent because these coefficients each sum to zero across

the products. That is, 2(N —1) parameters in total need to be estimated or just two per share

equation. These parameters determine the consumer’s response to changes in real income.
We do not need to estimate the much more numerous parameters which determine the
response to price changes. This is a huge reduction in the difficulty of the task.

There are now two ways to proceed. Either we can use estimates of the £ and /4

parameters that have been derived independently or we can seek to estimate them from the
price and quantity data that are employed to calculate conventional index numbers. The
response to income changes can be estimated from cross section data since prices can often
be assumed to be the same for all households (see eg Blow et al. (2004)). But cross section
estimates may not be available or, if they are, the product classification may be different. So
there is interest in seeing whether these parameters can be estimated from using just the

aggregate price and quantity data. [ show how this can be done in the next subsection.

3.4 The estimation procedure

Even if we need only the income response parameters, how can we estimate these while
avoiding estimating all the other parameters of the system at the same time? After all, if we
just estimate the share equations with the price variables omitted then our estimates of the
income response will undoubtedly be biased, since relative prices and real incomes are likely
to be correlated over time and (and across countries). The answer is to collapse the N —1
relative prices in the system into a smaller number of variables using principal components.21
We can collapse the relative price data into (say) M principal components, where M < N —1
is to be chosen empirically.

To implement this idea, start by applying the normalisation of equation (26). This implies

that x(b,b) = A (p(b)), so, making use of (27), the share equations (30) can be written as:

1 See Johnson and Wichern (2002) for a textbook exposition of principal components.
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o) = 2MARW) g [ XD/ x(b.D) }r i 1n[ x(t,0)/ x(b,b) }
d1n p,() 4,00 4,000 | T s | LA®O) 4,(p®)

_0ln4,(p®) ,Bln_x(t,t)/x(b,b) A 1| X0/ x(b.b) ’
dlnp,(r) | P @tb) 1 b PX(t,b)

k=1

These equations can be written in a form suitable for econometric estimation as:

stD=a’+> " 8,PC,(1)+ Bz(t,b)+ A y(1,b)+&1),

k=1"ik (35)
i=1.,N; t=0,.,T

where @ is the base-year-dependent constant term (). @ =1); PC,(¢) is the kth principal
component of the N —1 relative prices; the 8, are coefficients subject to the cross-equation
restrictions Zlﬂik =0, Vk; &, is the error term; and we have put z(z,b) =In[x(¢,1)/ PX(t,b)]
as before and also y(t,b) =[z(t,b)]’ / Hk p.*(t). The presence of the principal components

in equation (35) means that the estimates of the coefficients on z and y need not be biased as
they would be if prices were simply omitted.*
We have now reduced the problem to estimating a system of N —1 independent

equations, each of which contains only M +3 coefficients — the 8, (M in number),
a., B and A .> The success of this strategy will depend on whether the variation in relative

prices can be captured by a fairly small number of principal components — small that is in
relation to the number of time series observations, T +1. This is obviously an empirical
matter. At one extreme, if there is little or no correlation between the prices over time (or
space), then the use of principal components yields no benefit. At the other extreme, suppose
that the demand system is specified in terms of the logs of prices (as in the AIDS and
QAIDS) and that all relative prices are just loglinear time trends, though the growth rate

varies between prices. The evolution of relative prices can be written as:

2 The empirical flexibility of equation (35) could be increased by adding cubic and higher
order terms in z(¢,b) . (The coefficients on these additional terms must be constrained to sum
to zero across products). The implied expenditure function could not now be written down in
closed form but the share equations extended in this way could be regarded as polynomial
approximations to the exact ones. However, in the presence of cubic and higher order terms
the property of exact aggregation would no longer hold, making it hard to interpret the results
in terms of individual welfare. See the next section for more on aggregation.

» This is not quite true since all the S appear in each equation via the denominator of y.

We can handle this by an iterative procedure: see below.
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In[p,(®)/ pO]=pt, j=2,..N
where the u; are the growth rates and the first product is taken as the numeraire. Then in the

share equations (32) the price effects are
N N N
Sy p, 0=y, nlp, (0 pO) =t Xy, | =61 say.
(Here we have used the fact that Zj%y =0). In this case the effect of relative prices is

captured entirely by a time trend, with a different coefficient in each share equation (subject

to the cross-equation restriction that Zi 0, =0). So just one principal component captures the

whole variation in relative prices (ie in this case M =1). This is an extreme case and in
practice we must expect that more than one principal component will be required to capture
the variation in relative prices.**

The specification of the principal components depends on the demand system chosen. If

we chose the AIDS (and QAIDS) form for A(p), then it would be natural to estimate the
principal components in terms of log relative prices, eg In(p;/ p,), j=2,...,N, taking the

first product as the numeraire. Alternatively, we might use the normalised quadratic of
Diewert and Wales (1988), in which case the principal components would be estimated in
terms of relative prices (not in logs).

In estimating equation (35) econometrically, it is straightforward to impose the adding-up
and homogeneity restrictions on the coefficients; homogeneity is imposed by using relative
prices and adding-up is imposed by cross-section restrictions on the coefficients (these
restrictions are automatically imposed by OLS though the latter is not necessarily the best
method). But there is one loss from using principal components: we can no longer impose the
symmetry restrictions.”

Equation (35) is nonlinear in the parameters of interest, since to measure both z and y

correctly it is necessary to know the Koniis price index, the object of the whole exercise; in

" In Oulton (2008) I applied the method to 70 products covering the whole of the U.K.’s
Retail Prices Index over 1974-2004. I found that six principal components were sufficient to
capture 97.8% of the variation in the 69 log relative prices.

» For example, suppose that N =3 and that the special case of all relative prices changing
at constant rates applies. Then, dropping the third equation, taking the first product as the
numeraire, and imposing all the constraints, the relationship between the J, and the 7, 1s as

follows: O, = ¥, bty — (W), + Vs )My » Oy = Yorldy — (¥, + 7o) . These relationships imply no
further restrictions on J, and 6,. So we cannot test whether %,, = 7,, .
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addition, to measure y we also need to know all the £ and /4 . The solution is an iterative

process, similar to the one described in the previous section. Here the unknown parameters,

the B and A, are estimated jointly with the compensated shares and the Koniis price index.

The system consists of equations (34), (35) and the equation for the Koniis price index, either
equation (14) if we use a compensated Tornqvist to approximate the Koniis or equation (17)
if we use a compensated Fisher. The iterative process for some particular choice of the base

period is as follows:

1. Obtain initial estimates of the Koniis price index P*(z,b) and of the £ and A
coefficients. An initial estimate of P*(¢,b) can be obtained from equation (14) or
equation (17) by using actual instead of compensated shares (ie replace s,(z,b) by
s,(t,t) in the formulas). And for an initial estimate of the B and 4 , set
B =4=0,Vi.

2. Derive estimates of z(t)=In[x(¢)/ P*(¢,b)] and of y(t)=[z(t,b)]2/Hkpk‘ , using
the latest estimates of P*(¢,b) and of the B.. Using these new estimates of z and y,
estimate equation (35) econometrically, to obtain new estimates of the £ and A .

3. Using the new estimates of the  and A, estimate the compensated shares from
equation (34). Then use the compensated shares to derive a new estimate of the Koniis
price index P*(¢,b) from equation (14) or equation (17).

4. If the estimate of the Koniis price index has changed by less than a preset
convergence condition, stop. If not, go back to step 2.

Finally, the estimates of the 5 and A produced by the algorithm above can be plugged into

the simpler algorithm of section 3.1 to generate Koniis price indices for any other base year.
3.6 Comparisons across space

The analysis carries over unchanged to the problem of estimating a cost of living index and

hence the standard of living across countries at a point in time.*® The solution for the Koniis

% See Hill (1997) for a survey of methods of making international comparisons. Caves et al.
(1982) have applied chained superlative index numbers to cross-country comparisons. Hill
(2004) also estimates a chain superlative index but employs the minimum-spanning tree
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price index given by equations (12) and (9) can be applied directly in the cross-country
context. Initially we must imagine a continuum of countries indexed by ¢ just as in section 3
we imagined a continuum of time periods. Then we consider discrete approximations, eg as
before equation (9) can be approximated by either (14) or (17).

One problem which is often said to arise in the cross-country but not the intertemporal
context is that, unlike time, countries have no natural order. In the present case this objection
does not apply. Here the natural order for countries is the ranking by real income (or real
expenditure) per capita. Adopting this order minimises the gap between country ¢ and country
t—1and so should improve the discrete approximation. It is true that the rank order is not
known for certain in advance, since the whole point of the exercise is to estimate the true
standard of living. This suggests a refinement to the algorithm: at each step, re-order the
countries (time periods) so as to put them in rank order of real expenditure per capita (where
“real” means deflated by the algorithm’s latest estimate of the Koniis price index).
Alternatively, the ordering of countries could be determined by the minimum-spanning-tree
method suggested by and implemented on cross-country data by of Hill (1999). Then the
links in the chain would be selected so as to minimise the (compensated) Paasche-Laspeyres

spread.”’

4. Extensions to the basic analysis

The preceding section 3 offered a solution to the problem of estimating a true cost-of-living
index over time for a single representative consumer. In this section, I consider two
extensions to the analysis. First, I consider the effect of relaxing the assumption of a single
representative consumer. I now assume that the aggregate data is generated by heterogeneous
consumers who differ in income. If the degree of inequality were constant the preceding
analysis could stand unchanged. This may or may not be a reasonable approximation in a
time series context over a few decades. But in a cross-country context the assumption is

certainly problematic: countries differ widely in the extent of inequality (Anand and Segal,

approach to find the best links in the chain. Neary (2004) employed the World Bank’s 1980
PPPs for 60 countries and 11 commodity groups to estimate a QAIDS; he then derived a
measure of real GDP per capita for the 60 countries. The World Bank’s current methodology
for deriving PPPs at the aggregate level is set out in World Bank (2008).
¥ Hill (2004) uses a different criterion, namely minimising a dissimilarity index suggested
by Diewert (2002), but this seems less appropriate in the present context.
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2008). So we need to extend our framework to encompass this. Second, I consider

aggregation over different types of household.

4.1 Aggregation over rich and poor consumers

Let the population be composed of G groups. The groups are assumed to be of equal size (eg
percentiles, deciles or quintiles), with the first group being the poorest and the Gth group the

richest. The fraction of households in each group is then 1/G. Let x, be mean expenditure

per household in the gth group. Within a group, each household’s expenditure is the same,

namely the group mean. The share of product i in the expenditure of the gth group, s, ,is then

where ¢,, is the quantity per capita of the ith product purchased by each member of the gth

group. The share of the ith product in aggregate expenditure is therefore

g=G

_ b4 _ g=1 piqig _ g=G ipiqig _ ¢=G

%= x Gx T Lig=l {Gx x | Zg:l WeSig (36)
g

where w, is the share of the gth group in aggregate expenditure:

W, =%, >, =1 37)
We assume that preferences have the Ernest Hemingway property: the rich are different
from the poor but only because the rich have more money.?® So the parameters of the
expenditure function are the same for all households. All consumers are assumed to face the
same prices. So from (30) and adopting the QAIDS formulation, the share of the ith product

in expenditure by the gth group is:

2
= X A X
S, =+ /.N%.lnp.+,3iln[ £ }+ ~i {ln{ g }}
8 21:1 ij j A(p) H,;i\,pkﬂk A(p)

where A(p) takes the AIDS form of equation (31). Using (36), the aggregate share equations

are weighted averages of the underlying equations for each group:

% The well-known dialogue runs as follows. Fitzgerald: “The rich are different from us,

Ernest”. Hemingway: “Yes, Scott, they have more money than we do”.
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s,.:Z‘G WS, =@+ I+ Y “w,Inx, - In A(p)
(38)

4 [Zg  w(Inx,)? —2111A(p)z w, Inx_ +[In A(p)] }

I

The difference between this and our previous equation (30) is that instead of the log of
aggregate expenditure per capita, Inx :ln[ZZG x, / G}, appearing on the right hand side,
we now have the share-weighted average of log expenditure per capita in each group,
ZZG w,Inx, ; and instead of (Inx)’, we now have Z;G w,(Inx,)* . The relationship

between z:la w, In X, and In x is, from (37),

8=G g=G g=G
Zg:l w, Inx, _Zg=1 W, ln(ngx)—Z:g:1 w,Inw, +InG +Inx

The first term on the right hand side, Zgwg Inw, , is the negative of entropy (ignoring an

unimportant scale constant); it was suggested as a measure of inequality by Theil (1967),

chapter 4. Substituting this into (38), we find after some manipulation (see the Annex) that

s, =|e, +,BlnG]+z ¥;Inp,

—Bl+—C— A [/-2IInG+(InG)’ | (39)

Hklpk

2A(nG~-1) { X } A { { X }}2
+| B+ — In +t— In
Hk B pfk A(p) H pfk A(p)

where we have set [ = —ZZ: w,Inw, and J = ij w,(Inw,)*. In the case of a perfectly

equal distribution (when w, =1/G ), note that / =InG and J =(In G)*, so that (39) then
reduces back down to the original QAIDS formulation, equation (32). The constant term in
(39) is now @, + B InG which continues to sum to one across products. Compared to (32),

there are two additional variables in (39), entropy (/) and a related statistic (J), though no
additional parameters. These additional variables may help to explain changes in shares, to
the extent that inequality varies either over time or across countries. Note too that in the

simpler AIDS case (ie when all the 4, are zero), equation (39) simplifies to
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ol G 1]

which contains just one additional variable (I).29
The upshot is that the QAIDS can be parsimoniously extended to capture the effect of
income inequality. The additional empirical requirement is fairly modest: we need to know

the shares of different groups in aggregate expenditure, at a reasonable level of detail.
4.2 Aggregation over different household types

Suppose there are a set of H characteristics that influence demand, in addition to income and
prices. These could include household characteristics such as number of children, average age,
and educational level, and also environmental characteristics such as climate. Now the share

equations of the QAIDS for the gth income group could be written as:

2
i X A X ne
s,.g:a,.+2;_iv%jlnpj+,8iln{ g }-HH@ 5 {ln{ g }} +Z,,:1H‘9ihth (41)
D
k=1

A(p) A(p)

where K, is the level of the /th characteristic in the gth group; I assume that each household
in the gth group has the same level of each of the K|, as all the other households in that

group (this entails no loss of generality if there is only one household in each group). The 6,

m

coefficients must satisfy the adding-up restrictions:
i=H
Z,‘:l 6in:05 Vl=1,2,...,H

(At some cost to parsimony, the model could be extended by interacting the characteristic
variables with income). Again, underlying preferences are assumed to be the same but
people’s situations differ for various reasons, in the spirit of Stigler and Becker (1977): at the
same incomes and prices, people in cold climates buy more winter clothes. We can aggregate
equation (41) over the income groups to obtain the same result as (39), but with an additional

term:

h=H
+Zh:l eih Kh

g=G
where K, :ngl w, K

i - Now K, is a weighted average of the level of the ith characteristic

in a particular country (time period). The only difficulty from an empirical point of view is

* The role of Theil’s inequality measure, entropy (/), was discussed in Deaton and
Muellbauer (1980b) chapter 6, section 6.2. They derived a result equivalent to (40).
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that it is an income-weighted, not a population-weighted, average. So for example if the rich
have fewer children than the poor, then using the mean number of children per household as a

measure would be a misspecification when estimating share equations from aggregate data.

5. Cost functions: estimating input-biased scale economies and technical

progress

In this section I look at the parallel problem of estimating an input price index and technical
progress when the cost function is not homothetic. Now both economies of scale and
technical progress may be input-biased. I assume that the typical firm is a price taker in input
markets and wishes to minimise costs. We can write the cost function in general as:

x=C(p,Y,1) (42)
Here output (Y) plays the role of utility in the expenditure function. While formally this
makes no difference, there is a big difference empirically since output is objectively and
directly measurable (at least in principle) while utility is only indirectly measurable. The
presence of time (f) as an indicator of technical progress in the cost function also has no
counterpart in the theory of demand.*

By analogy with equation (22), we can use a generalised PIGLOG formulation:

B(p)InY

Inx=InCp,Y,t) =lnA(p)+————
(P.Y.) =A@+

+ B, InY +u(p)t+ut (43)

where Y is output, x = Zi p.q; is total expenditure on the inputs g, , and as before B(p) >0is
homogeneous of degree one in prices and A(p) >0 is homogeneous of degree zero in prices.
There are two new elements here. First, the parameter /3, measures overall economies of

scale. When there are no input biases, ie B(p)=1 and A(p)=0, then S, =0 implies

% The parallel between cost and expenditure functions would be complete if individuals

were able to learn over time how to make better use of goods and services in order to
generate more utility. In some cases there is very suggestive evidence of a social learning
process. The death toll before the Second World War on the roads in Great Britain peaked in
1938 when 6,648 people were killed, of whom 3,046 were pedestrians. By 2006 the annual
death toll had fallen to 3,172, of whom 673 were pedestrians, and the death rate per capita
had dropped to a third of the earlier level, even though the number of vehicles per capita
increased to more than 8 times its 1938 level. (Source: Annual Abstract, various issues). Of
course, many things changed over this period but one of them was surely that the habit of
looking both ways before stepping into the road became more deeply engrained.
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constant returns to scale and 3, <0 implies increasing returns. In this case the cost function
is homothetic but not necessarily homogeneous of degree one in output. Second, the last two
terms on the right hand side of (43) measure technical progress. Neutral technical progress is
measured by the parameter g, (4, <0 implies that technical progress is positive); input-
biased technical progress is measured by the function u(p) 2! By analogy with A(p), u(p)
could be specified as

@) =" inp, 3" 4 =0 (44)

Under this specification, and with B(p) and A(p) defined as earlier for the QAIDS (see

(28) and (29)), the share equations are now given by:32

2
_0lnC _ 81nA(p)+lBi B(p)InY N A | B(p)lnY ot
dlnp, Jdlnp, I-A(p)InY | B@)|1-A(p)InY

The parameters S and A now measure input bias in scale economies. If they are all zero

(45)

S;

there is no bias and the degree of returns to scale is measured just by [, . The parameter
measures the bias in technical progress against input i: & <0 would imply that technical

progress is biased in favour of input i.

If our goal is to estimate the degree of economies of scale and the rate of technical
progress, the parameters of interest in the cost function can be estimated by a simpler method
than in the case of the expenditure function. We can just replace the price variables in (45) by

principal components and then estimate the 3, 4 and g, while imposing the appropriate
cross-equation restrictions. Next, the degree of scale economies and the rate of neutral
technical progress can be estimated by differentiating (43) totally with respect to time, using
(44), applying Shephard’s Lemma, and rearranging:

dInx(z,t) i-N dln p,(t) i=N
2 Sf(”f)(Tj‘Zi_l H; I p; (1)

_ B(p(t)) 2 (dln)/(z)j:wr ’By(dlnY(t)j
[1- A(p@)InY ()] dt dt

A cheap generalisation would be to add terms in (InY)* and ¢* to the right hand side of
equation (43).

2 These are cost shares, not revenue shares. In the presence of economies of scale there
may be monopoly power, so profit is above the competitive level. I assume that the
competitive rate of return to capital is known so that it is possible to calculate competitive
rental prices for capital inputs (see Oulton (2007) for alternative ways of doing this).

32

(46)
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Everything on the left hand side is now measurable and the only unknowns are the

coefficients 4 and S, on the right hand side. So (46) can be considered as a regression

equation and used to estimate these remaining unknowns. ™

The compensated shares, holding output constant at its level in period b, are

o1y = AARO) | o[ BROINY®) | A [ BEO)INY®) 2+W
T dlmpey  T1=A@)InY (k)| B®)|1-AP@)InY®H)]
47)
_9dInA(p()) +,Ul~
dIn p,(1)

setting InY (b) =0. So the relationship between the actual and the compensated shares is

B@)nY () } A { B(p@)nY (1) } )

1= () InY (1) | B(p®)| 1-A(p@)InY ()

and the compensated shares can be used to construct a Koniis index of input prices.

5,(t,b) = s[(r,t)—ﬁi{

The analysis of inequality in the preceding sub-section can also be applied to the cost
functions of firms, if the size distribution varies over time or across countries. Entropy (/) and
the related statistic J would now appear in the share equations (45), just as they do in (39).

Finally, an interesting question is whether anything useful can be concluded when output
is not in fact measurable. In many private services, the inputs may be measured fairly easily
but we don’t know how to measure real output very well. This suggests that we might follow
the same strategy as in the case of consumer demand. In that case, we eliminated unmeasured
utility from the right hand side of the share equations by substituting from the expenditure
function. The shares thus became functions of deflated expenditure (see equations (30)).
Could the same strategy work for cost functions? Unfortunately not. If we rearrange the cost
function (43) we obtain:

By _ [L

1-A(p)InY A(p)

If we substitute this expression into the share equations (45) we are still left with the problem

}— [B, InY + u(p)t + 1]

of estimating the unknown coefficients g and S, and we still need a measure of real output.

3 Actually, overall technical progress is not separately identifiable from biased technical

progress. Any non-zero estimate for 4 can be absorbed into the g by relaxing the constraint

that ) 4, =0.
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The root of the problem is that real output is necessarily cardinal while utility is only ordinal.

And for utility there is no counterpart to technical progress.3 4

5. Conclusions

An algorithm which generates Koniis price indices when demand is not homothetic has now
been presented. We have shown that it can be applied in both time series and cross-section. It
is not dependent on the assumption of a representative consumer but can be extended to the
case where income levels differ between consumers. The same algorithm can be applied to
the parallel problem of estimating a true index of a producer’s input prices. The algorithm
involves some econometric estimation but uses exactly the same data, neither more nor less,
as are required for conventional index numbers, namely prices and quantities.

It is now time to consider some limitations of the analysis and some unanswered
questions. If we are trying to measure the standard of living, then our maintained hypothesis
must be that tastes are identical. Otherwise the relative living standards of (say) Bangladeshi
peasants and American investment bankers must be regarded as simply incommensurable.
But the assumption of identical tastes might be considered overly strong. Is an intermediate
position possible, in which tastes are identical at some comparatively high level, but might
differ at a lower one? For example, the taste for hot, non-alcoholic beverages might be
universal even though (at identical incomes and prices) some people prefer tea and others
prefer coffee.

A related and unanswered question in the theory of demand and production is, at what
level of aggregation is the analysis supposed to apply? It is hard to believe that there exists a
stable structure of preferences (common to all time periods and all countries) at a very
detailed level, such as individual brands of breakfast cereal. Equally, it is not obvious that
“food” is the right level either, since food items range from necessities (bread) to luxuries
(caviar). In practice, the level of aggregation is often chosen on pragmatic grounds, to obtain

sufficient observations to estimate the parameters of interest.

* In special cases the problem is solvable. Mellander (1992) shows that we can deduce real
output in the case where input demand is homothetic, there are decreasing returns to scale,
and the mark-up of price over marginal cost is constant. Then the ratio of the value of output
(assumed observable) to the value of total cost is an indicator of the degree of returns to scale.
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Finally, the index numbers developed here are only “true” if the underlying theory is
correct and also applicable to the problem at hand. The economic theory applied in this paper
has been static. It is likely that agents’ choices include an intertemporal element: in deciding
whether or not to purchase a line of cocaine, the consumer may consider the future
consequences as well as current income and relative prices. Habit may be important even in
the absence of addiction as the macro literature has emphasised. If so, index numbers should

reflect an intertemporal element too.
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ANNEX

A.1 The Koniis price index lies between the compensated Laspeyres and the
compensated Paasche indices

This proposition follows from the well known inequalities for the Laspeyres and Paasche
derived by Koniis (1939); see also Deaton and Muellbauer (1980), chapter 7. By definition of

the expenditure function, we have:
> p(g,(t =1 = E[p(r),u(t ~1)]

Denoting the Laspeyres price index for year ¢ with base year t —1 by P"(t,t—1), it follows

that

> 204D Elp@).u-1)]

P (1t —1)= 5= >
D pt=Dg -1 EPC-1u-1]

since Zi p.(t=1)q,(t—1)=E[p(t —1),u(t—1)] . By definition of the expenditure function
again,

> p(t =g () 2 Elp(r = D,u(n)]
whence

:i\’ Di (t)ql‘(t) < Elp®),u(?)]
Z:V p(t=1)q, (1)  Elp(t—1),u()]

PP(t,t-1)=

where P”(t,t—1) is the Paasche price index for year ¢ with base year t—1. Now in the
present case utility is being held constant at the level of period b, ie u(t —1) =u(t) = u(b), so
we have

P (t,t—=1)> PX(t,b)| P*(t —1,b) > P"(t,t — 1) (Al)

Elp@),u(b)]
Elp(b).u(b)]

the fact that this proposition holds when utility is held constant at the level of period b, in the

where PX(t,b) = s the Koniis price index with base year b. In recognition of

text we refer to these Laspeyres and Paasche indices as compensated ones and write them as
P"(t,t—1,b) and P”(t,t—1,b) respectively.
Since the compensated Fisher index is the geometric mean of the compensated Laspeyres

and the compensated Paasche, like the Koniis it must always lie between the Laspeyres and

the Paasche:
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P (t,t=1)= P"(t,b)/ P" (t —1,b) > P"(t,t —1) (A2)

A.2 Aggregating over unequal incomes in the QAIDS

As given in equation (38), repeated here for convenience, the share of product i in aggregate

expenditure is a weighted average of the shares of the various income groups:

=G i=N =G
s, =ZZ:1 w,s, =@, +Z§:1 7;Inp, +,3izzzl w, Inx, — 5, In A(p)
(A3)
—t > W, (nx,) =2 AP w, Inx, +[In A(p)
=— ot Ve nx,) n A(p) oo W Inx, +[In A(p
Hk:l P
From (37),
ZZG w,Inx, = Zij w, In(w,Gx) = ZZG w,Inw, +InG +Inx

Also, from (37) again,

> w,(nx,)” =3 w, (Inw, +In(Gx))’
=ZZ;ng [(lnwg)2+2(lnG+lr1x)ln w, +(1nG+1nx)2]
:Zg:GW (Inw )2+21nGZg:Gw Inw +21nng:Gw Inw
g=1 8 g g=1 & g g=l & g
(A4)
+[NG)’ +2InGInx+(Inx)* |3 w,

= 3w, (nw, ¥ +2G Y w, Inw, +2Inx] 3w, Inw, +1nG |

+(nG)* +(In x)*

Therefore, plugging these results into (A3):
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sizzz:lws —0(+Z Y, Inp, +,BZ wlnxg—,Bl.lnA(p)

: [ZHG w,(Inx, )* =2In A(p)zgj w, Inx, +[In A(p)]2j|

k=1 Px

:[0{1.+,BilnG]+,BiZ§ w, Inw +Z 7, Inp, +,Bln{A( J

A

+—
[T »t

[ (Inx)> =2In A(p) In(x) +[In A(p)T* |

+ %[ZZ:TW (lnw) +21nGz w, Inw, +21nxz w, Inw,
Hk:l Py
+(InG)> +2InxInG—2In A(p)[Z‘Zj w, Inw,_ +In Gﬂ

Therefore

s, =[e +,Bl.lnG]+Zj:v 7;Inp,

—Bl+——— A [J 211nG+(1nG)]

Hklpk

(e bl
I1. »? A | [T p2 U LA®

k=1

where we have set [ = _ZZ:; w,Inw,_ and J = Z:;G w,(Inw,)* . This is equation (39) of

the main text.

A.3 The effects on the PIGLOG expenditure function of normalising

deflated expenditure to equal one in the base year

I consider here in more detail the effect on the PIGLOG expenditure function

Inx=1InA(p)+ B(p)Inu of adopting the normalisation x, (b,b) = A(p(b)) . The subscript b is
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intended to indicate that this normalisation is different for every possible choice of base year.
In the main text this subscript is omitted to simplify the notation.

First note a general point about the choice of quantity units for the products. Suppose that
initially the quantity unit for sugar is the kilo and the price per kilo of sugar is $1. Then the
quantity unit is changed to 2 kilos. Now the price per 2 kilos is $2. But the quantity purchased
of 2 kilo units is half that of 1 kilo units. So total expenditure on sugar is unchanged. (NB: we
are considering here changes that an analyst might make; the quantity unit for sugar in a real
shop is not being changed — it might be 1 kilo, 2 kilos or something else). Setting all prices
equal to one in a reference year amounts to changing the quantity unit for each product. Eg if
the quantity unit for the ith product was originally one kilo it is now the number of kilos
which could have been purchased for p’(r) monetary units in the reference year r, where the
prime denotes the original units; after normalising all prices to equal one in the reference
year, the price of the ith product in the new quantity units is p,(t) = p/(t)/ p;(r) . This
normalisation leaves the value of total expenditure unchanged: changes in the prices are

accompanied by offsetting changes in the quantities:

x(t,0)=2 p(g, )= [p/®)/ p/(NI[p/(Ng )= [p/()g/(®)]

Following this prior normalisation of prices, suppose that In A(p(b)) =h, +Inx(b,b) .
Then define a new monetary unit such that

Inx, (b,b) = h, +In x(b,b) =1n A(p(b))
That is, putting H, =exp(h,),

x,(b.b)=Y H,pq, =Y [H,p/(b)!H,p/(r]lH,p/(r)g,b)]

=Y [p/(b)/ p/(NIH, p/(r)g,(b)]
(This would be like changing the monetary unit from dollars to cents). Then in the new
monetary unit we also have
Inx, (¢,b) =h, +Inx(t,b) (AS)
If prices have already been normalised, then changing the monetary unit leaves the p, and
therefore the value of B(p) unaffected (in the case of the AIDS the S are semi-elasticities of

the shares with respect to changes in x and so are unaffected by any changes in the monetary

unit). The expenditure function at time b can now be written as:

In x, (b,b) = In A(p(b)) + B(p(b)) Inu, (b) (A.6)
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whence in the new units

Inu,(b)=0 (A7)
Here a subscript b has been added to utility to indicate that changing the monetary unit
involves changing the utility unit as well: in fact, u,(t)=u(t)/u(b) : see below. The
expenditure function at time ¢ with the utility level of time b is now:

Inx, (z,b)=In A, (p(¢))+ B(p(¢))Inu, (b)
whence, using (A.7),

Inx, (¢,b) =In A, (p(t)) (A.8)
Note that [ have added a subscript b to the A(p(¢)) function since the normalisation generally
changes this. This is the case even though the value of the function is by definition the same
at time b as before the normalisation, ie A, (p(b)) = A(p(D)) : see below.

Now consider the effect of the normalisation on A(p). With the original monetary unit,
we have:

Inx(¢,b) =In A(p(¢))+ B(p(?)) Inu(b) (A.9)

In the new units, noting that 4, = B(p(b)Inu(b),

In x,(¢,b) = x(t,b) —h, =In A(p()) + B(p(t)) Inu(t) — h,
=In A(p(1)) +[B(p(2)) - B(p(b)) | Inu(b) + B(p(1)) [In u(t) —Inu(b)] (A.10)

=In A, (p())+B(P(@)) Inu, (t)

That is,

In A, (p()) = In A(p(1)) +[ B(p(1)) = B(p(b)) | In u(b) (A.11)
and

Inu, (1) =Inu(t)—Inu(d) (A.12)

Finally, note that from (A.11) A, (p(b)) = A(p(b)), as asserted above.
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