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Abstract

A key operational problem for those charged with the security of vulnerable facilities
(such as airports or art galleries) is the scheduling and deployment of patrols. Motivated by
the problem of optimizing randomized, and thus unpredictable, patrols, we present a class of
patrolling games on graphs. The facility can be thought of as a graph @ of interconnected
nodes (e.g. rooms, terminals) and the Attacker can choose to attack any node of @ within
a given time T. He requires m consecutive periods there, uninterrupted by the Patroller, to
commit his nefarious act (and win). The Patroller can follow any path on the graph. Thus
the patrolling game is a win-lose game, where the Value is the probability that the Patroller
successfully intercepts an attack, given best play on both sides. We determine analytically
optimal (minimax) patrolling strategies for various classes of graphs, and discuss how our
results could support decisions about hardening facilities or changing the topology of the
terrain to be patrolled.

Subject classifications: Games, noncooperative; Military, search/ surveillance; Deci-
sion Analysis, risk

Area of review: Military and Homeland Security

*Department of Mathematics, London School of Economics and Political Science, London.
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1 Introduction

A key operational problem for those charged with the security of vulnerable facilities is the

scheduling and deployment of patrols. This problem is encountered by, for example:

e security guards patrolling a museum or art gallery

e antiterrorist officers patrolling an airport or shopping mall

e police forces patrolling a city containing a number of potential targets for theft such as

jewelry stores

e soldiers patrolling an occupied city or territory

e air marshals patrolling an airline network

e inspectors patrolling a container yard or cargo warehouse

Such problems have been studied in diverse literatures. For example, a well-known problem
in computational geometry deals with the position of security guards in art galleries (Urrutia,
2000) and a classical Operations Research literature exists on the scheduling of police patrols
(see e.g. Larson (1972) and references therein). The importance of randomized patrols has
been recognized in law enforcement for some time, but not the nature of the randomization
(e.g. Sherman and Eck (2002, p. 297)). Much of the optimization literature on this subject
(e.g. Chelst, 1978) concentrates on the important problem of how to deploy randomized patrols
to maximize the probability of intercepting a crime in progress, when the crime frequency of
different locations is taken as given (often a realistic assumption, at least in the short term).
Such models however are not game theoretic and do not capture the idea of a patrolling schedule
as a strategy selected in the face of an intelligent and malign adversary, for example an art thief or
terrorist, which is a distinctive feature of the class of models we study in this paper. Although

there do exist differential game formulations of the relationship between police and criminal



(Isaacs, 1999, Feichtinger, 1983) these tend to focus on a dynamic (and often strategic) process
of mutual adjustment rather than confronting the problem confronted by the scheduler who sits
down to determine the path which the patrol will take.

Game theoretic analyses have recently featured prominently in OR studies of homeland
security and counterterrorism (e.g. Brown et al, 2006, Bier and Azaiez, 2009, Lindelauf et
al., 2009). An attractive and unique feature of game theoretic formulations in the context of
patrolling is that they provide insight into how a Patroller should randomize her patrols. There
is a clear common-sense rationale for randomization: a predictable Patroller is an ineffective one.
Yet a naive "maximum entropy" heuristic (Fox et al, 2005) may be not fare much better: faced
with n targets it may not make sense to spend 1/n of the available patrolling time with each of
them. This dilemma has attracted considerable attention recently amongst practitioners and
the research community has responded to this challenge: in particular, the work of Paruchuri
and colleagues (2007) provides a number of heuristic models which illustrate how equilibrium
randomized strategies can be approximated when the problem is formulated as a Stackelberg
(leader-follower) game, and such models have found use in real security situations (Gordon,
2007; Newsweek, 2007).

Our work on this problem is inspired by the theory of search games, on which an extensive
mathematical literature developed over the last few decades. This theory captures situations
in which a Searcher aims minimize the time taken to find a stationary or mobile Hider who
does not want to be found (Alpern and Gal, 2003). There are also related literatures on
Inspection games (Avenhaus, von Stengel and Zamir, 2002), in which an Inspector who seeks
to catch an Inspectee red-handed, and Infiltration games (Auger, 1991; Garnaev, Garnaeva
Goutal, 1996; Garnaev, 2000 and Alpern, 1992) in which a Guard seeks to prevent an Infiltrator
from penetrating some sensitive facility.  Similar attack/ defence games have been studied
in military operations research (Washburn, 2003), dating as far back as Morse and Kimball

(1950). Many such games are of independent mathematical interest and have been studied in



a purely mathematical settings (e.g. Baston, Bostock and Ferguson, 1989). Various results are
available for how the Searcher/ Inspector/ Guard/ Defender should proceed, depending on the
assumptions about the structure of the mathematical space which she inhabits. A particularly
productive line of research in the search game literature has been to explore the case where the
search space can be thought of as a graph, as we do here.

In this paper we formulate a game which we call the Patrolling Game. Unlike the work of
Paruchuri and colleagues, our problem is a zero-sum game, and provides for a defender who is
mobile, being able to travel between locations in the course of his shift (a "Patroller"). Unlike
search games, our "Attacker" (the equivalent of the search game "Hider") may commence his
attack at any time and has to be detected within a given time-window in order to forestall the
performance of some misdeed. Our game is win-lose - a game of type rather than degree in the
terminology of Isaacs (1999). Our problem is sufficiently idealized that it is possible to obtain
insightful analytic results, but sufficiently realistic that it is recognizable as a practical problem
faced by practitioners in various domains.

In this paper we present some analytic results for this game, and demonstrate that it yields
patrolling (and attacking) strategies which are natural and intuitive. Moreover, we show how
the game can be used to guide decisions about investment in hardening vulnerable sites or in
adding additional passageways to enable the Patroller to shorten the time required to go between
different sites that might be attacked. We are in this paper unable to present general analytic
results for all games of this type, and it seems unlikely that such solutions exist. Indeed, even
computing optimal strategies may be quite challenging, because of the combinatorial explosion
in the Patroller’s strategy space; in a companion paper (Alpern, Morton and Papadaki in prepa-
ration a), we present some algorithms for efficiently computing the value of this game for more
complex (and realistic) examples.

This paper is organized as follows. We present in Section 2 a rigorous formulation of

patrolling games, together with some elementary observations on properties of the Value. As



the number of pure strategies for the players can be very large, we give in Section 3 three
methods for reducing the number that we have to consider: symmetrization, dominance and
decomposition. Section 4 discusses certain classes of strategies that the players can use on any
graph, and which are optimal on certain classes of graphs. Section 5 solves patrolling games
on certain classes of graphs: Hamiltonian, bipartite and line graphs. Section 6 considers how
the game can be used to guide decisions in investment about hardening nodes or adding edges.

Section 7 presents extensions of the model and concludes.

2 The Patrolling Game

In this section we give a formal description of the Patrolling Game G = G (Q, T, m), where Q is
the graph whose nodes are under attack, T is the total number of time units the game is played
over, and m (< T') is the number of (consecutive) periods required to successfully carry out an
attack on a node. Roughly speaking, the Attacker picks a node i to attack and chooses some
time interval I = {7,774+ 1,...,7+m — 1} of length m in which to attack it. The Patroller
follows a walk w () on @, that is, he chooses nodes w (0),...,w (T"— 1) with consecutive nodes
the same or adjacent in Q. The Patroller wins if his walk is at the node ¢ in some period ¢ in
which it is being attacked, that is, if w (¢) = ¢ for some ¢ € I. Otherwise the Attacker wins. We
also demonstrate some simple monotonicity results and some bounds on the value, which will

be useful later on.

2.1 Formulation

More formally, the Patrolling Game G = G (Q, T, m) is a win-lose (and hence zero-sum) game
between a maximizing Patroller (female) and a minimizing Attacker (male). It comes in two
forms, the one-off game G° = G°(Q,T,m) and the periodic game GP = GP (Q,T,m). The
one-off game is played out over a given time interval 7 = {0,1,2,...,7 — 1} of length T" on a

graph @ with n nodes N and edges £. We will tend to assume that @Q is connected unless stated



otherwise. A pure strategy for the Attacker is a pair [i, I], where i € N is called the attack
node and I C 7T is an m-interval called the attack interval. A pure strategy for the Patroller
is a walk w : 7 —Q called a patrol. If i € w(I) we say that the patrol intercepts the attack,
in which case the Patroller wins and the payoff is P = 1; otherwise we have P = 0. Thus the
payoff is given by

1 (Patroller wins), if i € w(I) (Patroller intercepts attack),
P (w,[i,I]) =

0, (Attacker wins), if i ¢ w(I) (attack is successful),
The Value V° of this game G° is thus the probability that the attack is successfully intercepted.
Except in trivial cases, optimal strategies must be mixed.

The periodic game GP is similar except that the patrols (Patroller pure strategies) are now
walks of period T" (satisfying w (t + 1) = w (¢) for all T"). Attack intervals are now m-intervals
in the time circle T* = T mod (T), so for example if T is 24 and m is 5, the attack could be
carried out overnight, during the interval {22,23,0, 1,2} (10 o’clock to 2 in the morning). We
can also view the patrols as walks w : 7* — N. The periodic game is simpler to analyze because
the attack can be assumed to take place equiprobably in any time interval, which simplifies the
analysis (see Subsection 3.1). When the values of the games differ, we will use the superscripts
VP and V? to distinguish between the Values, using V' when the result applies to both cases.
V (VP, V°) can be considered as parameterized by @, T', and m just as G is, but most of the
time writing V (Q, T, m) is distracting and confusing and we will tend to suppress some or all of
these arguments. We denote by d(4,4’) the distance function on the node set A/, the minimum
number of edges between ¢ and i/ € N.

This formulation makes a number of assumptions which are not in fact as restrictive as they
might appear. The first is the assumption an attack will take place. An immediate response
to this is that even though attacks occur very rarely, one should patrol on the assumption that

an attack will happen - otherwise what is the point of patrolling at all? A more sophisticated



response is that the parties are really engaged in a non-zero sum deterrence game and the
Patroller only has to reduce the probability of attack to a level where the expected value of
the attack is less than the value to the Attacker of engaging in an attack elsewhere (another
airport, another art museum). As it turns it, however, the game studied in this paper can be
seen as being embedded in a larger non-zero sum deterrence game in the manner of Avenhaus,
von Stengel and Zamir (2002). In this case the key to the analysis of the larger non-zero
sum game is precisely the analysis of the game discussed in the current paper. The second
and third assumptions are that the node values are equal (all paintings are worth the same
amount of money; the damage inflicted by an attack at some airport terminal will be the same
as at any other airport terminal), and that the distances between nodes are equal, respectively.
Obviously this may well not hold in an application setting. However, it is not hard to modify
the modelling framework to include these features and although the resulting games are not
analytically tractable, they can be analyzed computationally with the mechanisms discussed in

the companion paper Alpern, Morton and Papadaki (in preparation a).

2.2 General Properties of the Value V

We now make some observations about the Value V', which apply to both versions of the game.
We start with a monotonicity result (Lemma 1), the last part of which involves the well known
notion of identifying nodes of a graph. Formally this can be defined by a projection map
7: N — N’ where N is the node set of the new graph @', and 7! (j') represents a set of
nodes of @) that have been identified. For example, we can easily obtain the line graph with n
nodes L, by vertically identifying nodes of the cycle with 2 (n — 1) nodes Cy(,,_1) (see Figure 1

for the case n = 5).




Figure 1. L5 as a projection of Cg.

Lemma 1

1. V(Q,T, m) is nondecreasing in m.

2. V(Q,T,m) cannot decrease if an additional edge is added between two nonadjacent nodes
of the graph @. That is, V is nondecreasing in £ (with the ordering on the latter understood

in the sense of set inclusion).

3. VP(Q,T,m) <V°(Q,T,m)

4. If @' is obtained from @ by node identification, V (Q') > V (Q) .

Proof. The first part follows from the observation that a patrol that intercepts an attack [z, I]
also intercepts [i, I'] if I’ D I. The next two are based on the fact that in a zero sum game
a player cannot do worse if he gets additional strategies. The last is based on the following
observation: If a patrol w intercepts an attack on a node i of @ then the patrol 7 (w) intercepts
the associated attack on the node 7 (i) of @'. So the Patroller can ensure that the expected
payoff is at least V (Q) by choosing patrols w for @) according to some optimal mixed strategy,
and then playing the projected patrol 7 (w). m

The next result gives easy general bound on the Value.

Lemma 2 % <V <2 for Voequal to VP or V° and any parameters Q, T and m. More
generally, V- < w/n, where w is the maximum number of nodes that any patrol can cover (w

depends on whether the one-off or periodic version is being played).

Proof. The Patroller can obtain the left inequality by randomly picking a node and waiting
there. The Attacker can obtain the right inequality by attacking a random node during some
fixed time interval I. Of these n pure strategies, the Patroller can intercept at most |w (I)| <
|I| = m of them, giving the bound m/n, or more generally the bound w/n, since |w (I)| < w by

definition. m



It is worth observing that w is bounded above by the node size of the largest component of
Q@ (if it is not connected), with w/n equalling 1/n for the completely disconnected graph. Also
note that for the one-off game with m = 1, where @ is the complete graph K, this is a special
case of Ruckle’s "Simple Search Game" (Ruckle, 1983). Since we thus have (from Part 2 of

Lemma 1) V = 1/n whenever m = 1, we will assume for the remainder of the paper that m > 2.

3 Strategy Reduction Techniques

Even for small graphs, the number of pure strategies available to the players can be quite
large. So for practical purposes, as well as in proofs, it is useful to have methods for reducing
the number of strategies that must be considered. This section discusses three such methods:

symmetrization, dominance and decomposition.

3.1 Symmetrization

Symmetry considerations can simplify both the placement and timing of attacks and patrols.
First we consider the placement of attacks in terms of the spatial symmetry of (). As an example,
note that the nodes 2 and 3 are symmetrically placed in the Kite Graph KT of Figure 2. So it
follows from well known arguments (discussed below) that there is an optimal mixed Attacker
strategy with the property that, for any attack interval I, these two nodes are attacked with

equal probability.

5
®
3

Figure 2. Kite Graph KT



This idea can be formalized by considering the automorphisms of @), that is, the adjacency-
preserving bijections of Q). (For the kite graph there are only the identity automorphism and the
reflection about the vertical axis.) Calling nodes equivalent if some automorphism o of @ takes
one into the other, we need consider only attacks equiprobably distributed over the equivalence
class of nodes. Similarly, two patrols wy and ws are equivalent if ws (¢) = ow; (t) for some
automorphism o, and we can restrict our attention to the equiprobable mixture of such patrols.

A similar line of reasoning applies to time. In the periodic game all attack intervals are
equivalent under some rotation of the time circle, so we need only consider the attack node. In
the one-off game, attack intervals I; and I are equivalent if  (I1) = Iy where  is the reflection
automorphism of the time interval 7 ={0,...,T — 1} defined by v (¢t) =T —t.

The fact that we need only consider symmetrical strategies, that is, mixed strategies which
give equal probability to equivalent strategies, is demonstrated in Alpern and Asic (1985), and
Zoroa and Zoroa (1993). Given a game G we call the modification of G where we restrict
attention to attacker and patroller strategies which are equiprobable mixtures over the equiv-
alence classes defined by the space and time automorphisms, the symmetrization of G; this
symmetrized game has the same value as the original G, but has fewer strategies and so is easier

to study.

3.2 Dominance

Since the Patrolling Game is a win-lose game, we can use the following weak notion of dominance.
We say a pure strategy s1 dominates a pure strategy so of the same player if it wins against every
opponent strategy that s wins against, and against at least one more. The Value is unchanged
if we successively eliminate dominated strategies.

As an example of how successive elimination of dominated strategies can be used, consider
again the kite graph KT of Figure 2. The node 4 is what we call a penultimate node, that is, a

non-leaf node that is adjacent to a leaf node (node 5 in KT'). Our next result shows that there

10



is an optimal strategy on KT which does not involve any attacks on a penultimate node.

Lemma 3 Assume Q is connected and T > 3. For m > 2, patrols that stay on any node
for three consecutive periods are dominated. For m > 3, attacks on penultimate nodes are
dominated, and consequently the Attacker has an optimal strategy concentrated on nodes which

are not penultimate.

Proof. The proof is by iterated dominance. Suppose the patrol w; is at the same node i for
the three consecutive periods I = {t — 1,¢,¢ + 1}. Define wy to be the same as w; except that
wy (t) = ¢, where ¢’ is adjacent to i. For m > 2, the patrol wy intercepts every attack that wq
intercepts, as well as the attack on ¢’ during I, and hence dominates w;. So we can now assume
that the Patroller does not use patrols which stay at a node for three consecutive periods.
Next suppose that i’ is a penultimate node adjacent to a leaf node i. We now show that any
attack on node ' during an m—interval I is dominated by an attack on i during I. If w wins
against the attack [4, I], then w (t) = 4, for some ¢ € I. Let the other two periods in I be called
t" and t”. So by our earlier argument we know that either w (¢') or w (¢) is #’. If m > 3, I must
contain both ¢" and ", and so i’ € w (I), and w wins against [/, I]. Hence attacking at node 4’

is a dominated strategy. m

3.3 The importance of timing: the line graph Lg with 7"=5 and m = 3

To illustrate the ideas of symmetry and dominance, we now analyze the line graph Lg with nodes
i=1,...,6, for the case T'=5 and m = 3. The product of Lg (drawn vertically) and the time
space 7 = {1,...,5} (drawn horizontally) is shown three times in Figure 3. An attack with
probability p at node i and time interval {¢ — 1,¢,¢ + 1} is represented by a p at the middle of the
attack interval (¢,¢). Since there are three possible attack intervals ({1,2,3},{2,3,4},{3,4,5})
there are 6 x 3 = 18 possible attacks.

We first consider the one-off game G° (Lg, 5,3), and in a restricted form where the Attacker

must use a time invariant strategy. This is illustrated in the left drawing of Figure 3, where
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there are no attacks at penultimate nodes ({2,4}) (using Lemma 3). Since nodes 1 and 6, and
nodes 3 and 4 are equivalent under symmetry, we can assume they are attacked with equal
probability. So the most general Attacker mixed strategy is shown, where 6x + 6y = 1. The
patrol w1 = (3,2,1,2,3) intercepts all attacks at node 1 and two attacks at node 3, so wins
with probability 3z + 2y; similarly we = (1,2, 3,4, any) intercepts one attack at node 1 and five
attacks at nodes 3 and 4, and wins with probability x + 5y. These two patrols together dominate
all others. So the Attacker minimaxes when 3z + 2y = = + 5y. This occurs when x = 1/10 and
y = 1/15, with minimax value V* = 13/30 = .43333... . (An easy calculation then shows that

the Patroller should adopt w; and wy with probabilities 4/5 and 1/5.)

it 1 2 3 4 5

Figure 3. Optimal attacking and patrolling strategies for G°(Lg) with T =5 and m = 3

In the (unrestricted) game G° (Lg, 5, 3) it is harder to derive the equilibrium strategy pair,
but it is fairly easy to demonstrate that the Value is V° = 3/8 = 0.375, which shows that no time
invariant mixed Attacker strategy can be optimal. To see that V° < 3/8, consider the Attack
strategy shown in the middle drawing, and observe that no patrol can intercept more than three
of the eight equiprobable attacks. An optimal Patroller mixed strategy is to adopt the four
strategies (2,1,2,3,4),(2,3,4,5,6) and their reflections (5,6, 5,4, 3), (5,4, 3,2,1) (drawn in thin
blue slanted lines) with probability 1/8 each; and adopt the two equivalent strategies (3,2, 1,2, 3)
and (4,5,6,5,4) (drawn in thick red lines) with probability 1/4 each. The assertion V° > 3/8
follows from the observation that every one of the eighteen possible attacks is intercepted (hit,

to the right of, to the left of) by at least three of the patrols, counting the thick red ones as
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two. It is also interesting to observe that all ten attacks which are not used at all in the middle
drawing are intercepted by more than three of these patrols. Thus, the Value of the one-off game
G° (Lg,5,3) is 3/8, but it requires the use of time dependent Attacker strategies: the middle
node is only to be attacked in the middle time interval {3,4,5} .

Next we analyze the periodic version, the game GP (Lg, 5, 3) . This is similar to the restricted
version of the one-off game discussed above, except that the middle of the attack can be at any
time, so comparing with the left drawing of Figure 3, the z’s and y’s would extend throughout
the rows, and so we have 10z + 10y = 1. The (periodic) patrol ws = (3,4, 3,4,3) intercepts
all ten attacks at middle nodes 3 and 4, and wins with probability 10y. The (periodic) patrol
wg = (1,2,3,2,1) intercepts four of the attacks at node 1 (all except the one during times
2,3,4) and three of the attacks at node 3, so wins with probability 4z + 3y. These two (together
with their symmetric translations) dominate all other patrols. So the Attacker minimaxes when
10y = 4x + 3y. This has solution z = 7/110 and y = 4/110, with minimax V? = 4/11. For the
Patroller, ws (and its equivalents) should be used with probability 1/11, wy with probability
10/11.

To summarize, for line graph Lg, with T'=5 and m = 3, we have

VP~ 0.36364 < V?=.375 < V*~ 43333 .

Thus the Attacker does better in the one-off game, and thus the bound stated in Lemma 1 Part
3 need not be tight. Further, in this instance, the Attacker has to adopt a time dependent

strategy in order to benefit fully.

3.4 Decomposition

Sometimes we can think of a graph @) as being made up of simpler graphs Q1 and Q2. We call

this a decomposition of (). The nodes of the original graph @) are the union of the nodes @
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and Q3. All nodes which are adjacent in @) are also adjacent in any (); which contains both
of them. See Figure 4 for an illustration. @ can of course be decomposed into multiple @Q;
through repeated decomposition. If the nodes of @1 and Q2 are disjoint and () has no edges
between nodes in distinct @);, then we say it is a disjoint decomposition.

-
~ -

Q , - Q,
/ Ik D
J ~
N
1 \
1 |
\ ‘ \1’
\ ’
N
)
Vd P4
\
A 7 Q2
S ¢
\\ ”

Figure 4. Decomposition of a network

Lemma 4 Let V =V (Q,T,m) and V}; =V (Qk,T,m) . If the graphs Qx, k = 1,..., K, form

a decomposition of @, then
1
V2w o0
>k 1/Vi

with equality in the case of a disjoint decomposition.

Proof. Suppose the Patroller restricts himself to a family of mixed strategies Sk, where Sy is
an optimal mixed strategy for the game G (Q, T, m). Suppose he picks Sy with a probability

qr such that gV, = c is constant. In this case we have

K K K
1= qu = CZ 1/Vi, or c = 1/21/Vk.
k=1 k=1 k=1

For any attack pair [z, I], the node i belongs to the node set of some graph Q. So with probability
qr the Patroller will be optimally patrolling QJ; and in this case will intercept the Attacker with
probability at least V. Hence the Patroller wins with probability at least ¢ Vi = c. Hence the
value of the game on graph @) is at least ¢, as claimed. If the Patroller is only allowed to search
nodes from a single graph @)y, the best he can do is win with probability ¢, so it follows that if

the graphs @ have disjoint node sets and are disconnected, then V =c. =

14



3.5 Example: the kite graph

To demonstrate the use of all of our strategy reduction techniques, we analyze the periodic game
for the kite graph illustrated in Figure 5 with 7' = m = 3. The dominance argument of Lemma
3 showed that the Attacker would never attack node 4, as it is always better for him to attack
the adjacent leaf node 5. Moreover, in the periodic case for T' = 3, there is no feasible Patroller
strategy which visits both node 5 and any one of 1,2, or 3. Therefore, we can remove node 4
and be confident that the periodic game on the resulting graph KT’ has the same Value as the

game on KT.

3

Figure 5. Decomposition of Kite graph KT into KT’

Lemma 4 shows that for ()1 and @2 as in Figure 5, we have

P N — 1
) = ey + v @) W

Obviously VP (Q2) = 1, and it can be easily shown that V? (L3) = 1/2 for T'= m = 3. Hence
by (1) we have
1 1

This is an another example where the Patroller does strictly better in the one-off game,
in which V° = 3/5. To see this first note that by Lemma 2 the Attacker can ensure that

Ve <m/n = 3/5 by attacking equiprobably at the five nodes. Then observe that by using the

four patrols (2,1,3), (2,4,5),(3,4,5), (1,4, 5) with respective probabilities 2/5,1/5,1/5,1/5 the

15



Patroller ensures any attack at any node will be intercepted with probability 3/5 and thus that
V¢ > 3/5. Note that if edge (1,4) is removed, the Value V° goes down to 1/2; the Attacker
chooses nodes 1 and 5 equiprobably and the Patroller chooses the first three of the above patrols

with probabilities 1/2,1/4,1/4.

4 Generic Strategies and Their Effectiveness

In general, the type of strategies available to the Patroller depends crucially on the path and
circuit structure of the underlying graph ). However, for purposes of analysis, it is possible to
identify certain generic strategy types which are available on all graphs; or on all graphs in a
class. For the Attacker, we define here the uniform, independent and diametrical strategies. For

the Patroller, we define the covering strategy.

4.1 The uniform Attacker strategy

In zero sum games often the most random strategy is optimal. For the Attacker, this is the
uniform strategy, in which the attack [¢, I] has ¢ and I chosen equiprobably and independently
over their domains. That is, a random node is attacked at a random time. In the periodic game
this strategy is the equiprobable mixture of the n1" possible attacks. For the purposes of the

next result, we make use of a standard definition:

Definition 5 A graph is bipartite if it has no odd cycles.

The reader will note that (for example) all trees are bipartite.

We have already shown that V' < 7. For bipartite graphs we are able to tighten this bound.

Lemma 6 If T is odd and @ is bipartite, the bound of Lemma 2 can be tightened to VP <
% . This bound is guaranteed by the Attacker adopting the uniform strategy in the

periodic game.

16



Proof. In the uniform strategy, all nT" possible attacks are adopted with probability 1/(nT). If
T is odd, and there are no odd cycles (because @ is bipartite), then for any w, w (t) = w (t + 1)
for some t in the periodic game. In these two periods (that is, ¢ and ¢ + 1), at most m + 1 of
the attacks can be intercepted, and as before at most m in each of the other T — 2 periods. So
at most (T'—2)m + (m+ 1) = (T — 1) m + 1 attacks can be intercepted altogether, giving the

desired inequality. m

4.2 The diametrical strategy

The diameter d of a graph Q is given by d = max; yen d (4,7') . A pair of nodes at distance d is
called diametrical, and the Attacker’s diametrical strategy is to attack these nodes equiprobably
during a random time interval I. It is easy to show the following. If d is very large with respect
to m and T then it is clear the best the Patroller can do against the diametrical strategy is
to wait at one of the nodes and win half the time. On the other hand if m and T are large,
the best the Patroller can do in the one-off game is go back and forth repeatedly on a geodesic
between the diametrical points and win with probability m/ (2(]) . Since he cannot do better in

the periodic game, we have the following.

Theorem 7 V < max [m/ (2(1?) 1/ 2] . The diametrical strategy guarantees this payoff.

4.3 Independent and covering strategies

The graph theoretic notion of independence and covering numbers has already been shown to
be useful in related games of infiltration (Alpern, 1992). We give here modified versions of these

concepts.

Definition 8 A patrol w is called intercepting if it intercepts every attack on a node that it
contains. That is, if a node i lies on a patrol w, then it appears in any subpath of w of length

m. A set of intercepting patrols is called a covering set if every node of Q) is contained in at
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least one of the patrols. The covering number J is the minimum cardinality of any covering

set.

Definition 9 If, for any two nodes © and j, any patrol which intercepts an attack at node 1
i attack interval I, cannot also intercept an attack at j in attack interval I, then i and j
will be said to be independent. In the one-off game G°, this is equivalent to requiring any
two nodes to satisfy d(i,i') > m; in the periodic game GP, they must satisfy d (i,i') > m or
T <2d(i,i') (because the Patroller has to return to his starting point by the end of the period).
The independence number T is the cardinality of a maximal independent set. Obuviously

<J.

Observe that both Z and J depend on the parameters @),7T,m and on the version of the
game that is played, G° or GP. For example, when 7' = 3 and m = 3, the node subset {1, 3} of
Ls is independent for the periodic game but not for the one-off game.

For the Attacker, the independent strategy is to fix an attack interval and then choose the
attack node equiprobably from some maximal independent set. For the Patroller, the covering
strategy is to choose equiprobably from a minimal set of covering patrols.

Note that for T' = 2, patrols can be identified with edges of @, so these definitions reduce to
the usual notion of an independent set not having adjacent nodes and a covering set consisting

of edges.
Lemma 10 % <V <2 (withV =1/ whenT=J).

Proof. The Attacker’s independent strategy gives the upper bound and the Patroller’s covering
strategy gives the lower bound. m

The cases where 7 = J deal with many patrolling games. For example, we can use this
technique to give another solution to the kite graph KT of Figure 2 for the periodic game with
T = m = 3. Here the nodes 2,3, and 5 form an independent set (because 2d (i,7') =4 >3="1T)

and intercepting patrols on the top left, top right and bottom edges (period 3 patrols of the
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form (a,a,b,a,a,b...)) form a covering set. Thus Lemma 10 gives V = 1/7 = 1/3, as we

demonstrated earlier by another method.

5 Patrolling on Special Classes of Graphs

We have no single form of analysis that is sufficiently robust to give the Value of an arbitrary
patrolling game; in general the Value would have to be obtained computationally. However
for certain classes of graphs we can determine the Value in terms of the parameters m and n
(the number of nodes), at least for certain values of T. These classes are Hamiltonian graphs,

bipartite graphs and line graphs.

5.1 Hamiltonian graphs

A Hamiltonian graph is a graph containing at least one cycle which visits each node exactly
once (i.e. a Hamiltonian cycle). A special case of the Hamiltonian graphs is the simple cycle
with n nodes C),. (Another special case is the complete graph K,,.) The existence of a natural
cycle in the underlying graph is a common feature of the problem faced in application settings,
as often the area to be patrolled will be physically compact (consider, e.g. patrolling a campus).
Note that if m > n the Patroller can win by following the Hamiltonian cycle, so we assume that
m < n. We define a random Hamiltonian patrol to be one which fixes some Hamiltonian cycle,
starts at a random node ¢, and follows the cycle in a fixed direction, repeating as required. Such
a patrol is always feasible in the one-off game G° and is feasible in the periodic game GP if T is
a multiple of n. Using this mixed strategy, the Patroller can get the best possible interception

probability V, namely the upper bound m/n of Proposition 2.
Theorem 11 If QQ is Hamiltonian then

1. Vo=

33

2. VP < with equality if T' is a multiple of n, and VP — m/n as T — oc.
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Proof. First observe that in either case we have V' < m/n by Lemma 2. In the one-off game,
suppose the Patroller adopts a random Hamiltonian patrol. Then for any attack interval I,
w (I) is a random m-arc of the Hamiltonian cycle, and as such contains the attack node ¢ with
probability m/n, as claimed. If T is a multiple of n, this strategy is also feasible in the periodic
game. To obtain the limiting result, note that if ¢ = T modn # 0, the periodic Patroller
can modify the random Hamiltonian patrol by waiting at a random node during a random o-
interval. This will not hurt him unless the attack interval I overlaps the waiting interval, which
has probability (¢ +m — 1) /T, so

-1
e R )
T n n

Since the above result applies to the cycle graph, we can use it to solve the game on some
graphs which can be obtained from the cycle graph by identification of nodes. We now solve
the periodic Patrolling Game for the eight node graph shown below on the left of Figure 6 in
the case T' = 10 and m = 4. First note that since the diameter is d = 5 we have from Theorem
7 that the diametrical Attack strategy ensures that V < m/ (2d) = 4/10. By viewing the graph
as a projection of Cig (with Value m/10 = 4/10 from Theorem 11) we conclude from Lemma 1

Part 4 that V' > 4/10, so V = 4/10.

OO O

Figure 6. A graph shown as projection of Cyg
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5.2 Bipartite graphs

If Q is a bipartite graph (as defined earlier as having no odd cycles) we can partition its node
set into halfsets A = {a1,...,aq} and B = {5;,...,,}, with a < b, such that its only edges
are between nodes in A and nodes in B. If all such node pairs are edges then we say @ is the
complete bipartite graph K, .

If m > 2b then the Patroller can win by using a patrol with period 2b which covers all the

nodes, that is, the covering number J is 1. So we assume m < 2b.

Theorem 12 If Q) is bipartite with with halfsets of sizes a < b, then

1. VO <m/(2b), with equality if Q is complete bipartite (Kqp);

2. VP <m/ (2b), with equality if Q is complete bipartite (K,p) and T is a multiple of 2b. If

Q = Kgup then VP —m/ (2b) as T — oo.

Proof. We first show that V° < m/ (2b), which then gives the weaker inequality V? < m/ (2b).
Consider the Attacker mixed strategy of fixing an attack interval I and picking the node
equiprobably among the b elements of B. For any patrol w, the probability that a random 7 in B
belongs to w (I) equals |w (1) N B|/b < (m/2) /b =m/ (2b). If m is odd, the Attacker strategy
must be modified to pick I and the shifted interval I + 1 equiprobably. In this case for any w
we have | (w(I) N B) |+ |w (I +1) N B| < m and the probability that the attack is intercepted

by any w is given by

The equality part follows for a = b from Theorem 11, as K is Hamiltonian. As in Theorem 11,
we have separate results for the one-off and periodic cases, and specifically we are only able to
show that our result applies for particular or limiting values of T" in the periodic case. If a < b
then we can obtain K, from Kj; by identifying together a subset of b — a nodes of one of the

halfsets of K} and then applying Lemma 1 (part 4) to assert that V (K, ) > VO (Kpp) = m/20b
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in general and with a similar limiting result for the periodic case. m

In all these cases, informally speaking, an optimal strategy for the Attacker is to fix an attack
interval and choose the attack node equiprobably from the larger halfset; an optimal strategy for
the Patroller is to randomize over a collection of strategies which visit the larger half set every
second time period. In the case of m = 2, Patroller chooses an edge joining the halfsets; the
Attacker’s and Patroller’s strategies can be seen as a random choice from an independence and
covering set respectively; in this case the Theorem can be understood as a version of Konig’s
Theorem (Harary, 1971, Theorem 10.2) in our context, since Konig’s Theorem states that the
independence and covering numbers of a bipartite graph are identical.

To illustrate the proof, consider the special case of the star graph S,, = Kj ,,—1 consisting of
a central node connected to n — 1 extreme nodes. This models the situation where the Patroller
has responsibility for the safekeeping of a building which has multiple wings, accessible through
a common lobby area. We can view S, as obtained from the even cycle graph Cy,_1) by

identifying (say) all even numbered nodes, as in Figure 7.
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Figure 7. S5 obtained from Cg by node identification.

This mode of reasoning leads us to discover additional equilibrium pairs for the Hamiltonian
case. Consider the cycle graph C,, for even n and T a multiple of n. We saw earlier that the
uniform strategy was optimal for the Attacker. But since C,, = K, /3 /2 is bipartite Theorem
12 now gives the additional optimal strategy of attacking equiprobably on the odd (or even)
nodes. In fact there is one more optimal Attacker strategy: since the diameter is d = n/2, the

diametrical strategy also gives m/ (26?) = m/n by Theorem 7.
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5.3 Line graphs

Line graphs L, seem to be particularly complex to analyze and will be the main subject of a
forthcoming article by the authors (Alpern, Morton and Papadaki, in preparation b), but we
give here some special cases which illustrate the techniques we have developed earlier. We note
that they are important in the patrolling context for their relation to the problem of patrolling

a channel: preventing an agent from crossing a partially defended line between two regions.

Theorem 13 If QQ is a line and n < m + 1, then

2. VP < L_l) with equality if T a multiple of 2(n —1); VP — % as T — oo.

2(n

Proof. Since d = n — 1, it follows from Theorem 7 that VP < V° < 2(:11). That this bound is

tight follows from a use of Lemma 1 Part 4 and Theorem 11: we can arrive at Ly, from Cy,_1)

through node identification in the manner of Figure 1. Thus, V(L) > V(Cy—1)) = 2(7’;11). ]
In most of the examples in this paper the optimal strategies have been highly random, in

that the players used equiprobable mixtures of similar pure strategies. We did this mainly to

keep things simple, but the reader should not be misled into thinking this is always the case.

For example, consider the game GP (Ls,4,3). We claim that the value of this game is %

Lemma 4 tells us that VP (Ls,4,3) > — 1. Since V?(L2,4,3) = 1 and (from

VP(L5,4,3) T VP(L3,4,3)

Theorem 13) VP (L3, 4,3) = %, we have that VP (Ls,4,3) > % Now consider the game from

the Attacker’s point of view. There are four possible attack intervals I, and five possible attack
nodes 7. Suppose the Attacker randomizes equiprobably over the intervals and over the nodes
with probabilities % each for nodes 1 and 5, and % for node 3. The Patroller could remain at
node 1 or node 5 and intercept an attack with probability % or randomly move between either
1 and 3 or 3 between and 5. She then has a % chance of intercepting an attack which will take

place with probability % and a % chance of intercepting an attack with will take place with
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probability %, for an overall probability of interception of % (% + %) = % All other patrols yield
a lower expected payoff and so VP (L5, 4,3) < %

Next consider GP (L7, 5,2) . We claim that the value of this game is %. We have 7 = 4 and so
from Theorem 10 we have VP < 1/4. To ensure winning with this probability, the Patroller must
use "biased oscillations" on edges (7,4") of the form (i,4,4’,4,4"), which we denote as i «— #’, with
a random time rotation. Clearly ¢ «— ¢’ intercepts any attack on ¢ and intercepts any attack

on ¢’ with probability 4/5 (that is unless the attack coincides with a repeated i). The optimal

probabilities of the biased oscillations on consecutive nodes are shown below.

1 4&6 9 1&6 33£6 4 3&6 1/;6 6 4&6

5) 7

Attacks on any node are intercepted with probability at least 1/4, with equality except
for the central node 4 (which should never be attacked). For example an attack on node 2 is
intercepted with probability 4/5 if either 1 «— 2 or 3 «— 2 is adopted by the Patroller, that is

with probability (4/16 +5/16) = 5/16. So it is intercepted with probability (4/5) (5/16) = 1/4.

6 Hardening Nodes or Adding Edges

Up to now we have taken the network @) as given. But the agency that controls the Patroller
(the "Defender") may be able to pay to either ‘harden’ a site so that it is immune to attack or
to build a passageway to help the Patroller move more quickly between sites. In our formulation
this corresponds either to reducing the Attacker’s strategy space by removing an attack node,
or adding an edge to the graph. In this section we give some very simple examples in the easy
case where all sites (nodes) are equally expensive to harden and new passageways (edges) are
equally expensive to build (more complex examples will be dealt with in our forthcoming paper

on the computational aspects of this problem).

6.1 Hardening nodes
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We can modify the Patrolling Game so that a certain set of nodes of () cannot be attacked. For
simplicity, we assume that only one node ¢ can be hardened. We focus on the graph A shown
in Figure 8, and consider GP(A, 3,3). The analysis has been made easy by taking an example
where all the problems satisfy Z = J, so that the Value is given by the relevant value of 1/Z,
which in the case of A is % Our arguments regarding independent and covering sets can still be
used, by requiring independent sets to avoid i and requiring a collection of intercepting patrols
to include all but i. When removing i from the nodes to be attacked (the node i is circled),
we can also remove any edges such that the resulting distances between the other nodes do not
increase. Since there are no 3—cycles, the intercepting patrols can all be identified with edges,

so the calculation of 7 and J is particularly easy.

- O

A: 1=J=3, V=1/3 B: 1=J=3, V=1/3 C:1=J=2, V=1/2

Oo

D: I=J=3, V=1/2 E: 1=J=8, V=1/3

Figure 8. The graph A and four ways of hardening a node

From the analysis presented in Figure 9 it can be seen that hardening any but the top/bottom
nodes or the leaf node is a waste of money, as there is no improvement in the interception
probability V, but that hardening any of these nodes gives a 1/6 = 1/2 — 1/3 probability

improvement.
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6.2 Adding edges

We observed earlier (Lemma 1) that adding edges can not hurt the Patroller, and used this to
analyze certain networks. Here we take a different point of view and ask whether it pays for the
Player that controls the Patroller to spend money to add an edge between two nodes in order
to increase the efficacy of the Patroller. We consider again the network A and GP(A,3,3) and
ask how the interception probability increases, if at all, by adding edges between nonadjacent
nodes of A. The independent sets are indicated in all cases by disks at nodes in Figure 9. The
covering sets are either identified with edges or 3—cycles, which are thickened.

We observe that adding edges as in B or E achieves no increase at all in the interception
probability (the Value V'), but as in C or D increases it to 1/2 from 1/3. The intuition is that
these edges create 3—cycles, which are more efficient for patrols than oscillations on edges with

a repeated node.

S val Ve

A:1=J=3, V=1/3 B: 1=J=3, V=1/3 C:1=J=2, V=1/2
D: I=J=2, V=1/2 E: 1=J=3, V=1/3

Figure 9. The graph A and four ways of adding an edge

7 Conclusion

In this paper we have described a simple, intuitive model which can serve as the basis for
obtaining optimal randomized patrols. The assumptions of the present paper can be relaxed in

the following extended models:
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e The nodes can have different values (e.g. paintings of varying artistic merit in an art
gallery). The simplest way to model this is to keep the same strategies but view the
Patroller as wanting to minimize the value of a successfully attacked node. So this version

comes with a cost vector ¢, where ¢ (i) denotes the cost of a successful attack on node i.

e Some nodes may be unequally hard, or even impossible, to attack. We thus replace the
parameter m by a vector M, where M (i) denotes the number of periods required to
successfully attack node 7. In a related way, edges may have lengths attached to them.
(Two nodes with an intervening node which cannot be attacked are in some sense two time

units apart.)

e There may be multiple patrollers and/ or attackers. Some of the results of the current
paper transfer over easily to this situation - for example one can simply "multiply up" the
numerator of Lemma 10 to handle the situation where there are several patrollers - but in

general this seems to be rather more complex.

e Perhaps the Patroller must start at a known node ¢ = 0 in the one-off game. Of course,
in this case the diameter of () cannot be large with respect to m, otherwise the Attacker
will always win. A natural conjecture is that the Attacker would attack earlier in order to
take advantage of his greater knowledge of where the Patroller will be, but is this always

so?

e It may be natural to consider a continuous time formulation of this problem. An attack
takes place at any point of the network (not necessarily a node) on a continuous time
interval of fixed length. The Patroller uses a unit speed path and wins if he is at the
attacked point at some time during the attack interval. This would model, for example,

the defense of a pipeline system.

e The Patroller may be alerted (perhaps noisily and with some error) to the presence of

an Attacker; and the Attacker may be alerted by a confederate who can identify when a
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Patroller leaves a particular node (for example, if the Patroller is in a marked police car).

Many of these problems are not analytically tractable, and some of them will be discussed in
our forthcoming paper on computational aspects of these games (Alpern, Morton and Papadaki

in preparation a).

Acknowledgement 14 We would like to thank Delof von Winterfeldt for suggesting this prob-
lem to us, and to Milind Tambe for interesting discussions. AM and KP are also grateful to
the Centre for Risk and Economic Analysis of Terrorist Events (CREATE) at the University of
Southern California for their support and hospitality. SA was supported by NATO Collaborative

Linkage Grant 983583 on Defense Against Terrorism.

8 References

Alpern, S. (1992). Infiltration games on arbitrary graphs. J. Math. Anal. Appl. 163, no. 1,
286-288.

Alpern, S. and M. Asic (1985). "The Search Value of a Network." Networks 15(2): 229-238.

Alpern, S. and S. Gal (2003). The Theory of Search Games and Rendezvous. Dordrecht,
Kluwer.

Alpern, Morton, and Papadaki (in preparation a). Computing optimized patrols.

Alpern, Morton, and Papadaki (in preparation b). Patrolling a channel for a slow infiltrator.

Auger, J. (1991) An infiltration game on k arcs. Nav. Res. Logist. 38, 511-530.

Avenhaus, R., B. Von Stengel, et al. (2002). Inspection games. Handbook of Game Theory
with Economic Applications. R. J. Aumann and S. Hart. Amsterdam Elsevier.

Baston, V., F. Bostock, et al. (1989). "The Number Hides Game." Proceedings of the
American Mathematical Society 107(2): 437-447.

Bier, V. M. and M. N. Azaiez (eds) (2009). Game Theoretic Risk Analysis of Security

Threats. New York, Springer.

28



Brown, G., Carlyle, M., Salmeron, J. and Wood, K. (2006). "Defending Critical Infrastruc-
ture". Interfaces 36, 530-544.

Chelst, K. (1978). An algorithm for deploying a crime directed (tactical) patrol force. Man-
agement Science, Vol. 24, No. 12, pp. 1314-1327

Feichtinger, G. (1983). A differential games solution to a model of competition between a
thief and the police. Management Science, Vol. 29, No. 6 , pp. 686-699.

Fox, C. R., D. Bardolet, et al. (2005). Partition dependence in decision analysis, resource
allocation and consumer choice. Experimental Business Research. Volume III. R. Zwick and A.
Rappoport. Doredrecht, Kluwer.

Garnaev, A. (2000). Search games and other applications of game theory: Lecture notes in
Economics and Mathematical Systems 485. Berlin, Springer.

Garnaev, A., G. Garnaeva and P. Goutal (1997). On the infiltration game. Int. J. Game
Theory 26: 215-221.

Gordon, L. (2007). "USC student’s computer program enlisted in security efforts at LAX."
Los Angeles Times October 1(http://teamcore.usc.edu/ARMOR /LATIMES.pdf).

Harary, F. (1971). Graph theory. Reading, MA, Addison-Wesley.

Isaacs, R. (1999). Differential Games Dover.

Larson, R. C. (1972). Urban Police Patrol Analysis. Boston, MIT Press.

Lindelauf, R., Borm, P., Hamers, H. (2009). The influence of secrecy on the communication
structure of covert networks. Social Networks, 31, 126-137.

Morse, P. M. and G. E. Kimball (1950). Methods of Operations Research. London, MIT
Press and Wiley.

Newsweek (2007). The Element of Surprise. Newsweek. http://teamcore.usc.edu/ARMOR /newsweek.pdf.

Paruchuri, P., J. P. Pearce, et al. (2007). An efficient heuristic approach for security against
multiple adversaries. AAMAS ’07, Honolulu, Hawaii, ACM.

Rosenshine, M. (1970). Contributions to a theory of patrol scheduling. Operational Research

29



Quarterly, Vol. 21, No. 1, pp. 99-106
Ruckle, W. H. (1983). Geometric Games and Their Application. Boston, Pitman.
Sherman, L. and Eck, J. E., (2002). Policing for crime prevention. In: Evidence-based crime
prevention, L.Sherman et. al., eds, Routledge, Taylor and Francis, New York.
Urrutia, J. (2000). Art gallery and illumination problems. Handbook of computational
geometry. J.-R. Sack and J. Urrutia. Amsterdam, Elsevier.
Washburn, A. (2003). Two-person zero-sum games, 3rd edition. Linthicum, MD, INFORMS.
Zoroa, N. and P. Zoroa (1993). "Some games of search on a lattice." Naval Research Logistics

40: 525-541.

30



