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Abstract 
A striking fact about prices is the prevalence of ``sales'': large temporary price cuts followed 
by a return exactly to the former price. This paper builds a macroeconomic model with a 
rationale for sales based on firms facing consumers with different price sensitivities. Even if 
firms can vary sales without cost, monetary policy has large real effects owing to sales being 
strategic substitutes: a firm's incentive to have a sale is decreasing in the number of other 
firms having sales. Thus the flexibility of prices at the micro level due to sales does not 
translate into flexibility at the macro level. 
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1 Introduction

A striking fact about prices is that many price changes are “sales”: large temporary price cuts

followed by a return exactly to the former price. Figure 1 shows a typical price path for a six-pack

of Corona beer at an outlet of Dominick’s Finer Foods, a U.S. supermarket. Sales are frequent;

other types of price change are rare. This pattern is an archetype of retail pricing.1

Figure 1: Example price path

Corona beer: $ per six-pack
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Notes: Weekly price observations from Dominick’s Finer Foods, Oak Lawn, Illinois, U.S.A.
Source: James M. Kilts Center, GSB, University of Chicago (http://research.chicagogsb.edu/
marketing/databases/dominicks).

Monetary policy’s real effects on the economy depend crucially on the stickiness of prices. So

Figure 1 poses a conundrum: viewed from different perspectives, the price path exhibits great

flexibility on the one hand, but substantial stickiness on the other. While changes between some

“normal” price and a “sale” price are frequent, the “normal” price itself changes far less often.

Consequently, empirical estimates of price stickiness significantly diverge when sales are treated

differently. Bils and Klenow (2004) count sales as price changes and find that the median duration

of a price spell across the whole consumer price index is around 4 months; by disregarding sales,

Nakamura and Steinsson (2007) find a median duration of around 9 months.2 Quantitative models

deliver radically different estimates of the real effects of monetary policy depending on which of

these two numbers is used. Hence an understanding of sales is needed to answer the question of

how large those real effects should be.

Given the pattern of price adjustment documented in Figure 1, changes in the aggregate price

level can come from three sources: changes in the “normal” price, changes in the size of the sale

discount, and changes in proportion of goods on sale. Consider first a world where all changes in the

1See Hosken and Reiffen (2004), Nakamura and Steinsson (2007), Kehoe and Midrigan (2007), Goldberg and
Hellerstein (2007), and Eichenbaum, Jaimovich and Rebelo (2008) for recent studies.

2Comparisons across euro-area countries also reveals that the treatment of sales has a large bearing on the mea-
sured frequency of price adjustment, as discussed in Dhyne, Álvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker,
Lünnemann, Rumler and Vilmunen (2006).
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aggregate price level are driven by variations in the fraction of goods on sale. For instance, this could

be modelled by assuming firms have a fixed normal price, a fixed sale discount, and optimally choose

the fraction of time their good is on sale. If consumer preferences were standard, with all firms facing

a constant price-elasticity demand function, then this paper shows firms’ profit-maximizing choice

of the frequency of sales would lead to approximate money neutrality. Even if the normal price and

sale discount were fixed, the optimizing variation in the fraction of goods on sale would mimic the

price changes chosen by firms in a world of completely flexible prices.

But this simple framework for analysing sales is not complete. No reason has been presented

for why firms would want to choose a pricing strategy in which sales discounts play a significant

role. In the IO literature, the most prominent theories of sales are based on incomplete information

about prices and consumer preferences. Leading examples include Salop and Stiglitz (1977), Salop

and Stiglitz (1982), Varian (1980), Sobel (1984), and Lazear (1986). This paper builds a general-

equilibrium macroeconomic model with sales that draws upon the rationale proposed in the IO

literature. Despite substantial heterogeneity at the micro level, the model can be easily aggregated

to study macroeconomic questions.3

The model presented in this paper assumes consumers have different preferences over goods, and

for each good, some consumers are more price sensitive than others. There are two types: loyal

consumers with low price elasticities, and bargain hunters with high elasticities. Firms do not know

the type of an individual customer, so they cannot practise price discrimination. One key finding

of the paper is that if the difference between the price elasticities of loyal consumers and bargain

hunters is sufficiently large, and there is a sufficient mixture of the two types, then in the unique

equilibrium of the model firms strictly prefer to sell their good at a high price at some moments

and at a low price at other moments. The choice of different prices at different moments is a profit-

maximizing strategy even in a deterministic environment. Each of the two prices is targeted toward

a particular type of consumer. Firms would like to price discriminate, but as this is impossible,

their best strategy is to target the two types at different moments, even though all customers at a

given moment actually pay the same price.

The existence of consumers with different price elasticities leads to sales being strategic substi-

tutes, or in other words, the more others have sales, the less any individual firm wants to have a

sale. Since there is a group of more price sensitive consumers, the difficulty faced by a given firm in

trying to win their custom is greatly dependent on the extent to which other firms are having sales.

In contrast, a firm can rely on its loyal customers, whose purchases are much less sensitive to other

firms’ sales decisions. Thus the relative attractiveness of targeting the bargain hunters decreases

when others are targeting them with sales. The resulting market equilibrium features a balance

between the fractions of time a given firm spends targeting the two groups of consumers.

Having built a model of sales, the key question of the paper is: for the purposes of monetary

policy analysis, does it matter that the normal price is sticky amidst all the flexibility in sales seen

3Another possibility is that the normal price and sale discount would be chosen ex ante to give firms flexibility to
respond to shocks if it were too costly to choose a completely new price. This seems implausible, and it is difficult to
see why the best way to achieve this insurance would correspond to the observed pattern of sales. Furthermore, to
the best of our knowledge, this explanation of sales has not been proposed in the IO literature.
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in Figure 1? In sharp contrast to the simple framework discussed first where flexibility in sales

implied money was approximately neutral, monetary policy has strong real effects in the IO-based

model of sales when the normal price is sticky but sales decisions are completely flexible.

The strong real effects of monetary policy are due to sales being strategic substitutes. Following

an expansionary shock to monetary policy, an individual firm has an incentive to decrease its sales,

thus increasing the price it sells at on average. However, if all other firms were to follow this

course of action then the bargain hunters would be relatively neglected compared to the loyal

consumers, increasing the returns to targeting the bargain hunters for any one firm. This leads

firms in equilibrium not to adjust sales by much in response to a monetary shock because all firms

are trying to respond in the same way. Therefore the aggregate price level adjusts by less and

monetary policy shocks have larger real effects.

The model can be calibrated to match some simple facts about sales, and thus assess quantita-

tively the real effects of monetary policy. If the normal price is completely sticky and sales decisions

are completely flexible then the elasticity of output with respect to an unanticipated change in the

money supply is around 0.9, and the elasticity of the price level is around 0.1. The flexibility of

sales seen at the level of individual prices contributes little toward flexibility of the aggregate price

level. Therefore the real effects of monetary policy in a model with a sticky normal price and fully

flexible sales are very similar to those found in a model with a single sticky price. These numerical

results turn out to be not particularly sensitive to the calibrated parameters.

This analysis treats the normal price as sticky, an assumption in line with the stylized facts as

illustrated in Figure 1. A branch of the macroeconomics literature has proposed many justifications

for price rigidity, some of which can be applied to explain why the normal price is not continuously

readjusted. While these features are not directly incorporated into the model, there are three

findings of the model relevant to this issue. First, if a firm had to monitor continuously either its

normal price or its sale price, it would choose the latter. Second, deviations of actual from desired

normal prices are small even though the model features very large individual price changes, so the

losses from failing to make such adjustments are much smaller than might be supposed simply from

looking at the size of the average price change. Third, the absolute size of any reoptimization costs

needed to justify a constant normal price is much lower than in an otherwise comparable model

where the normal price is the only price.

This paper then constructs a dynamic version of the model with sales where firms’ normal prices

are reoptimized at staggered intervals. This dynamic extension is tractable and an expression for the

resulting Phillips curve is derived analytically. It is embedded into a complete dynamic stochastic

general equilibrium model and the results of simulations are compared to the same DSGE model

incorporating a standard New Keynesian Phillips curve. A quantitative analysis reveals that the

difference between the real effects of monetary policy in the two models is small, and thus in line

with the findings of the static analysis.

Even though the recent empirical literature on price adjustment has highlighted the importance

of sales, macroeconomic models have largely side-stepped the issue. The one exception is Kehoe and

Midrigan (2007). In their model, firms face different menu costs depending on whether they make

3



temporary or permanent price changes. Coupled with large but transitory idiosyncratic shocks, this

mechanism gives rise to sales in equilibrium.

Section 2 sets out a simple model with a fixed normal price and sales discount, which provides

a benchmark for subsequent analysis. The IO-based model of sales is introduced in section 3, and

the equilibrium of the model is characterized in section 4. The response to monetary shocks is

studied in section 5. Section 6 examines the robustness of the results to different assumptions about

wage flexibility. Section 7 constructs the dynamic extension of the model. Section 8 draws some

conclusions.

2 Benchmark model

As a first pass at exploring the implications of sales for monetary policy analysis, this section adds

sales in the simplest possible way to an otherwise standard macroeconomic model. While ad hoc,

this benchmark model will be useful in shedding light on the mechanism found in the complete

model, and also provides a point of comparison for later results.

The economy contains a measure-one continuum H of households with utility function

U ≡ u
(

2C
1
2m

1
2

)
− ν(H) , [2.1]

where C denotes consumption of a composite good, m is real money balances, and H is hours

of labour supplied. The utility function u(·) is differentiable, strictly increasing and concave, and

disutility ν(·) is differentiable, strictly increasing and convex.

The composite good C is a Dixit-Stiglitz aggregator over a measure-one continuum T of types

of goods:

C ≡
(∫

T

c(τ)
ε−1
ε dτ

) ε−1
ε

,

where c(τ) is consumption of good type τ ∈ T and ε is the elasticity of substitution, which satisfies

ε > 1.

Each household makes all its consumption purchases at only one random point in time, however

in equilibrium it is indifferent about when it shops. At a given point in time suppose the money

price of good τ is p(τ). Minimizing the cost of purchasing composite good C implies the following

demand function for each individual good τ :

c(τ) =

(
p(τ)

P

)−ε
C ,

where the price level P is

P ≡
(∫

T

p(τ)1−εdτ

) 1
1−ε

.

Households may pay different prices for individual goods depending on when they make their
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purchases, but in equilibrium they all face the same cost P of buying one unit of the composite

good. Households hold money balances M , or equivalently, real money balances m ≡ M/P . The

money wage is W per hour of labour. Each household receives dividends D from firms (households

have equal equity stakes), and a lump-sum transfer T, both of which are specified in money terms.

The household budget constraint is thus

PC +M = WH + D + T . [2.2]

The utility-maximizing choice of real money balances implies:

C =
M

P
, [2.3]

and in equilibrium, M is equal to the monetary transfer T. This provides a simple specification

of aggregate demand, similar to a cash-in-advance constraint. There is no capital accumulation,

and no government or international sectors in the economy, so goods market equilibrium requires

C = Y , and therefore:

c(τ) =

(
p(τ)

P

)−ε
Y ,

Y =
M

P
. [2.4]

Each good is made by a single firm subject to production function Q = F(H), where Q is

output sold at across all points in time and H is hours of labour hired. The production function is

differentiable, strictly increasing and concave.

Firms sell their goods at all points in time, and can choose to vary their prices. To isolate the

effects of firms adjusting the fraction of time their good is on sale, the benchmark model assumes

that firms start with two predetermined prices, taken as exogenous here, and they can choose how

often each price is charged. Denote the lower of the two prices by pS, referred to as the “sale” price,

and the other price by pN , referred to as the “normal” price. Firms then choose the fraction of time

s when the good is on sale at price pS, with the good sold at price pN for the remaining fraction of

time 1− s. Firms choose the timing of their sales randomly, which is an equilibrium strategy given

that other firms are doing so. This also implies consumers face the same price index irrespective of

when they do their shopping.

Since households select their shopping time at random, the total quantity Q sold by a firm across

all moments is obtained from households’ demand functions,

Q = s
(pS
P

)−ε
Y + (1− s)

(pN
P

)−ε
Y ,

and thus total profits P are:

P = spS

(pS
P

)−ε
Y + (1− s)pN

(pN
P

)−ε
Y −WF−1

(
s
(pS
P

)−ε
Y + (1− s)

(pN
P

)−ε
Y

)
. [2.5]
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Firms choose the sales fraction s to maximize profits, taking predetermined prices pS and pN as

given for now.

Suppose that prices pS and pN and wage W are fixed in money terms. Now consider a shock

to the money supply M . Firms adjust s in response, which means that they can effectively choose

the average price they sell at. This gives them considerable freedom to respond to shocks. The

following proposition establishes that firms find it optimal to use this freedom to the full: in this

setting, money is neutral.

Proposition 1 Given predetermined prices pN and pS, and predetermined wage W , if firms choose

sales fraction s to maximize profits [2.5], as long as s ∈ (0, 1) before and after the monetary shock,

firms’ output Q is unaffected by the shock.

Proof The first-order condition with respect to s is

1

F ′ (F−1(Q))
=

1

W

(
p1−ε
S − p1−ε

N

p−εS − p−εN

)
. [2.6]

Note that the marginal product of labour, and therefore the quantity produced Q, depend only on

predetermined variables which are not affected by the realization of the monetary shock. �

This result shows monetary policy does not affect the physical output Q of firms. A positive

shock to M leads firms to sell fewer of their goods on sale. As the quantity produced is constant,

an increase in the money supply has to be followed by a corresponding increase in the price level.

The prices pS and pN are sticky; the proportion s sold on sale is responsible for the adjustment.

The intuition is the following: higher s means that (i) revenues are higher because demand is

price elastic; (ii) costs are higher because quantity sold is higher; and (iii) the marginal cost of

production increases because the production function is concave. If pS, pN and W are fixed, both

an increase in the price level P and an increase in output Y multiply the demand for goods at the

sale and normal prices by the same factors, and so effects (i) and (ii) exactly cancel out. Therefore

profit maximization requires keeping the marginal cost of production, and hence quantity produced

Q, constant.

As households buy different goods at different prices, aggregate output Y is not exactly equal

to the physical quantity of output Q. Proposition 1 shows that Q is constant in face of monetary

shocks, and though aggregate output Y is affected by these shocks, the size of the effect is extremely

small and its direction is necessarily ambiguous. Furthermore, if a shock resulted in the sales fraction

s changing from (almost) zero to (almost) one, then output Y would be completely unaffected.

The result is even more surprising in light of the assumption of a predetermined money wage.

Usually nominal rigidity need only be present in either prices or wages for monetary policy to have

real effects.
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3 The model of sales

The benchmark model assumed that firms start with two prices pS and pN . However, this is not

a profit-maximizing strategy given household preferences in that setting. This section proposes a

model in which firms want to choose two prices even in a deterministic environment.

3.1 Households

Each household ı ∈ H has the same utility function [2.1] over their composite good C(ı), real

money balances m(ı) and hours H(ı) as was used in section 2. The budget constraint [2.2] and

aggregate demand [2.4] are also as before. The only change introduced here is in the specification

of each household’s composite good.

The utility-maximizing trade-off between consumption and hours is given by

νh(H(ı))

uc(C(ı))
=
W

P
, [3.1]

making use of the first-order condition [2.3] for optimal real balances, which implies C(ı) = m(ı).

3.2 Composite goods

Household ı’s consumption C(ı) is a composite good comprising a large number of individual prod-

ucts. Individual goods are categorized as brands of particular product types. There is a measure-one

continuum of product types T in the economy. For each product type τ ∈ T , there is a measure-

one continuum of brands B, with individual brands indexed by b ∈ B. Hence every good in the

economy can be uniquely referred to by a type-brand pair (τ, b) ∈ (T ×B).

Households have different preferences over this set of goods. Taking a given household, there is a

set of product types Λ ⊂ T for which that household is loyal to a particular brand of each product

type τ ∈ Λ in the set. For product type τ ∈ Λ, the brand receiving the household’s loyalty is denoted

by B(τ), where B : Λ → B is a mapping from types to brands. Loyalty means the household gets

no utility from consuming any other brands of that product type. When the household is not loyal

to a particular brand of a product type τ , that is, τ ∈ T \Λ, the household is said to be a bargain

hunter for product type τ . This means the household can get utility from consuming any of the

brands of that product type.

The composite consumption good is first defined in terms of a Dixit-Stiglitz aggregator over

product types with elasticity of substitution ε. For those product types where the household is a

bargain hunter, there is an additional Dixit-Stiglitz aggregator defined over all brands, with elasticity

of substitution η. The overall aggregator C for a given household is:

C ≡
(∫

Λ

c(τ,B(τ))
ε−1
ε dτ +

∫
T \Λ

(∫
B

c(τ, b)
η−1
η db

) η(ε−1)
ε(η−1)

dτ

) ε
ε−1

, [3.2]
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where c(τ, b) is the household’s consumption of brand b of product type τ . It is assumed that

η > ε > 1, so bargain hunters are more likely to substitute between different brands than households

are to substitute between different product types. Households have a zero elasticity of substitution

between brands of product types for which they are loyal to a particular brand.

There is a continuum of shopping moments M when goods can be purchased and consumed. A

household does all its shopping at a randomly chosen moment  ∈M . Denote the set of households

that shop at moment  by H (). As shown later, all households are indifferent in equilibrium

between all shopping moments.

The price level P is the minimum cost of buying one unit of the composite good [3.2]:

P ≡ min
c(τ,b)

∫
T

∫
B

p(τ, b)c(τ, b)dbdτ s.t. C ≥ 1 ,

where p(τ, b) is the money price of brand b of product type τ prevailing at a given moment. For the

composite good defined in [3.2], the minimized level of expenditure is:

P =

(∫
Λ

p(τ,B(τ))1−εdτ +

∫
T \Λ

(∫
B

p(τ, b)1−ηdb

) 1−ε
1−η

dτ

) 1
1−ε

, [3.3]

The expenditure-minimizing demand functions are:

c(τ, b) =


(
p(τ,b)
pB(τ)

)−η (
pB(τ)
P

)−ε
C if τ ∈ T \Λ , and where pB(τ) ≡

(∫
B
p(τ, b)1−ηdb

) 1
1−η ,(

p(τ,b)
P

)−ε
C if τ ∈ Λ and b = B(τ) ,

0 if τ ∈ Λ and b 6= B(τ) ,

[3.4]

where C is the amount of the composite good consumed and P is the price level given in [3.3]. The

term pB(τ) is an index of prices for all brands of type τ , as is relevant to those households who

are bargain hunters for that product type. With these demand functions, total expenditure on all

consumption goods is: ∫
T

∫
B

p(τ, b)c(τ, b)dbdτ = PC .

Household preferences over goods are completely characterized by the consumption aggregator

C in [3.2], the loyal set Λ, and the brands B(τ) receiving the household’s loyalty. All households are

assumed to share a consumption aggregator of the same form with the same elasticities of substi-

tution ε and η, but Λ and B(τ) differ across households, being drawn randomly from a probability

distribution.

For each product type τ ∈ T , households have probability λ of including type τ in their loyal

set Λ. This event is independent across households and product types. Formally,

PH [τ ∈ Λ] = λ , for all τ ∈ T . [3.5]
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Consequently, the loyal set Λ and the set of types T \Λ for which a household is a bargain hunter

have measures λ and 1 − λ respectively for all households. It is assumed that 0 < λ < 1, so all

households are loyal to a brand for some product types and bargain hunters for others. When this

paper refers to consumers as either loyal or bargain hunters, note that this designation is for a

specific product type only.

Conditional on including product type τ in the loyal set Λ, all brands of that type have an

equal chance of receiving a household’s loyalty. The assignment of brands to loyal households is

independent across households and product types. Formally,

PH

[
B(τ) ∈ B

∣∣τ ∈ Λ
]

=

∫
B

db , for all B ⊆ B and any τ ∈ T . [3.6]

Viewed from the perspective of a firm, assumptions [3.5] and [3.6] imply that it operates in a market

where a randomly selected fraction λ of households are loyal to it, and a fraction 1− λ are bargain

hunters.

3.3 Firms

Each brand b of each product type τ is owned and produced by a single firm, indexed by (τ, b) ∈
(T × B). All firms have the same production technology. With H hours of labour, a firm can

produce physical output Q of its good according to the production function

Q = F(H) , [3.7]

where F(·) is a differentiable, strictly increasing and concave function with F(0) = 0. Hence the

minimum cost C (Q;W ) of producing output Q for given wages W is

C (Q;W ) = WF−1(Q) . [3.8]

This cost function is differentiable, strictly increasing and convex in Q and satisfies C (0;W ) = 0 as

a result of the properties of the production function [3.7].

Each firm sells its branded good at every shopping moment, but not necessarily at the same price

at all moments. Consider a given firm producing brand b of product type τ , and a given moment

 ∈ M , where households H () are doing their shopping. Take a particular household ı ∈ H ().

If the household is loyal to this brand and the brand is sold at price p, equation [3.4] shows that

p−ε(P (ı)εC(ı)) units are demanded. On the other hand, if the household is a bargain hunter then

demand is p−ηP η−ε
B (P (ı)εC(ı)), where PB is the bargain hunter’s price index for all brands of type

τ , that is, the price index pB(τ) from equation [3.4] constructed using prices posted at moment .

PB is the same for all bargain hunters of the same product type at the same moment. The only

component of demand that could be household specific is P (ı)εC(ı), which multiplies the amount

demanded irrespective of whether the household is loyal or a bargain hunter, and determines the

overall level of expenditure. Define E() to be the average of this household-specific expenditure

9



component taken over all shoppers at moment :

E() ≡
∫

H ()

P (ı)εC(ı)dı . [3.9]

Since the fraction of households who are loyal is λ, the fraction who are bargain hunters is 1−λ,

and because the product types and brands benefiting from households’ loyalty are selected randomly

according to [3.5] and [3.6], and as households choose shopping moments at random, total demand

for a brand sold at price p is

D(p;PB, E) = (λ+ (1− λ)v(p;PB)) p−εE , where v(p;PB) ≡
(
p

PB

)−(η−ε)
, [3.10]

at a moment with bargain hunters’ price index PB for brands of the same type, and an average

household expenditure level [3.9] equal to E . Demand is specified in terms of the function v(p;PB),

referred to as the purchase multiplier, defined as the ratio of the amount sold to a given measure of

bargain hunters relative to the same measure of loyal customers.

The demand function D(p;PB, E) can be used to define the total revenue R(q;PB, E) received

from selling quantity q at a particular moment with PB and E given:

R(q;PB, E) ≡ qD−1(q;PB, E) , with p = D−1(q;PB, E) , [3.11]

where D−1(q;PB, E) is the inverse demand function corresponding to [3.10].

3.4 Price setting

Now consider the profit-maximization problem for a given firm, which chooses a price for its good

at each shopping moment. As will be seen below, the average household expenditure level E , as

defined in [3.9], will be the same at all moments. Furthermore, the bargain hunters’ price index

PB appearing in demand function [3.10] will be the same for all product types and at all moments.

Under these conditions, the profit-maximization problem reduces to choosing a distribution of prices

across all possible shopping moments.

For the specification of demand used in benchmark model of section 2, firms would choose a

single price at all moments even if they were to have the option of choosing a general distribution.

But this is not true when consumers have the preferences described in section 3.2.

Let F (p) be a general distribution function of prices. This distribution function is chosen to

maximize profits P,

P =

∫
p

R (D(p;PB, E);PB, E) dF (p)− C

(∫
p

D(p;PB, E)dF (p);W

)
, [3.12]

where R(q;PB, E) is total revenue from sales at one moment, defined in [3.11], and C (Q;W ) is the

total cost [3.8] of producing the entire output Q of the good sold across all shopping moments.
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Consider a discrete distribution of prices {pi} with probabilities {ωi}.4 The first-order conditions

for maximizing [3.12] with respect to prices pi and probabilities ωi are

R ′ (D(pi;PB, E);PB, E) = C ′
(∑

j

ωjD(pj;PB, E);W

)
and , [3.13a]

R (D(pi;PB, E);PB, E) = ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi > 0 , [3.13b]

R (D(pi;PB, E);PB, E) ≤ ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi = 0 , [3.13c]

where ℵ is the Lagrangian multiplier attached to the constraint
∑

i ωi = 1. Equation [3.13a] is the

usual marginal revenue equals marginal cost condition, which must hold for any price that receives

positive probability. The interpretation of first-order conditions [3.13b] and [3.13c] is discussed later.

3.5 Aggregation

Since households are randomizing over their choice of shopping moment, and preferences in terms

of brand loyalty are drawn randomly according to [3.5] and [3.6], there is no intrinsic difference

between any two shopping moments. As long as firms are selecting prices for particular moments

at random from their desired price distributions, the price index PB is the same at all shopping

moments and for all product types.5 This also means that P (ı) = P for all ı ∈H , and it therefore

makes sense to talk about the aggregate price level P , in spite of households’ actual consumption

baskets differing.

Given that households share a common price index and have the same preferences [2.1] over

their composite goods, money balances and hours, it follows that all households have the same level

of composite consumption, real money balances and hours. That is, C(ı) = C, m(ı) = m and

H(ı) = H for all ı ∈ H . Since consumption is the only source of demand in the economy, goods

market equilibrium requires C = Y , where Y is aggregate income.

The common level of consumption C = Y and the common price level P imply that the average

household expenditure level [3.9] is the same across all moments, as claimed earlier. This is equal

to E = P εY at all moments  ∈ M . Together with the randomization assumptions for household

preferences, this justifies the claim that all firms face the same demand function at all shopping

moment, so firms cannot improve upon randomly selecting the moments at which they charge

particular prices from their desired distribution.

Finally, note that randomization by firms makes households indifferent between shopping mo-

ments, as is assumed.

4It is shown later that restricting attention to discrete distributions is without loss of generality.
5This is true so long as the distribution of firms’ price distributions is not different across product types. This

will be at all points in this paper, including the dynamic extension of the model.
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4 Equilibrium with flexible prices and wages

First consider the equilibrium of the economy when all exogenous variables are constant and prices

can be adjusted freely as discussed in section 3.4, and wages adjust to clear the labour market. With

a constant money supply, and no shifts in the production function [3.7], the general price level and

aggregate output are also constant.

The equilibrium pricing strategies chosen by firms depend on the nature of the demand function

D(p;PB, E) for a firm’s brand at a particular moment, as given in equation [3.10]. What is crucial

is that demand comes from two different sources: loyal customers and bargain hunters — and these

groups have different price sensitivities. Loyal customers do not want to switch to other brands,

so the only margin of substitution they have is shifting expenditure to other types of product in

their consumption basket. On the other hand, bargain hunters want to find the brands offering the

best deals for a particular product type. The price elasticities for these two groups are ε and η

respectively, and it makes sense to assume η > ε. This means that the overall demand curve does

not have a constant elasticity: the elasticity changes with the composition of the firm’s customers.

High prices mean that most bargain hunters will have deserted its brand, and the residual mass of

loyal customers has a low price elasticity. Low prices put the firm in contention to win over the

bargain hunters, but competition among brands for these customers means the price elasticity is

high.

These arguments suggest that the price elasticity of demand decreases with price. This is con-

firmed by differentiating demand function D(p;PB, E) in [3.10] to obtain the price elasticity ζ(p;PB)

(in absolute value):

ζ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ+ (1− λ)v(p;PB)
. [4.1]

This elasticity is a weighted average of ε and η, with the weight on the larger elasticity η increasing

with the purchase multiplier v(p;PB), as defined in [3.10]. The higher is price p, the lower is the

purchase multiplier, and the smaller is the price elasticity. Such a change in elasticity is simply a less

extreme version of a “kinked” demand curve. For very low prices, the elasticity is approximately

constant and equal to η because the bargain hunters dominate; and for very high prices, it is

approximately constant and equal to ε because only loyal customers remain. In the middle of the

demand curve there is a smooth transition between η and ε.

As is the case with a kinked demand curve, the varying price elasticity of demand means that the

marginal revenue curve is not necessarily downward sloping for all prices, even though demand curve

[3.10] is downward sloping everywhere. To see this, note that marginal revenue can be expressed in

terms of the price and the price elasticity of demand as follows:

R ′(D(p;PB, E);PB, E) =

(
ζ(p;PB)− 1

ζ(p;PB)

)
p . [4.2]

It can be confirmed that if η is sufficiently large for a given ε then marginal revenue is indeed

non-monotonic.
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Proposition 2 Consider the total revenue function R(q;PB, E) defined in [3.11] and suppose η >

ε > 1. Then marginal revenue R ′(q;PB, E) is non-monotonic if and only if 0 < λ < 1 and

η > (3ε− 1) + 2
√

2ε(ε− 1) [4.3]

hold, and everywhere downward sloping otherwise.

Proof See appendix A.2. �

Observe from [4.2] that to obtain non-monotonicity it is necessary to have a sufficiently large response

of the price elasticity ζ(p;PB) outweighing a falling price in some range. From [4.1], this happens

when the gap between η and ε is larger.

With a non-monotonic marginal revenue curve R ′(q;PB, E), it is possible that more than one

price can be associated with the same level of marginal revenue. First-order condition [3.13a] then

suggests firms might want to charge different prices at different shopping moments.

As was discussed in the introduction, an interesting case is where firms find it optimal to choose

a distribution with just two prices: a “normal” high price, and a low “sale” price. Denote these two

prices respectively by pN and pS with pN > pS, and let qN = D(pN ;PB, E) and qS = D(pS;PB; E)

be the quantities demanded by customers at these prices, clearly with qS > qN . The fraction of

shopping moments when the brand is on sale is denoted by s. If 0 < s < 1 then both prices must

satisfy the first-order conditions [3.13a]–[3.13b]. By eliminating the Lagrangian multiplier ℵ from

[3.13b], profit maximization requires:

R ′(qN ;PB, E) = R ′(qS;PB, E) =
R(qS;PB, E)−R(qN ;PB, E)

qS − qN
= C ′ (sqS + (1− s)qN ;W ) . [4.4]

Hence there are three requirements for optimality: marginal revenue must be equalized at all mo-

ments, the extra revenue generated by having a sale at a particular moment per extra unit sold

must be equal to the common marginal revenue; and marginal revenue and average extra revenue

must both equal marginal cost.

Firms have a choice at which moment they sell each unit of output, so switching one unit from

one moment to another must not increase total revenue, thus marginal revenue must be equalized at

all moments. Furthermore, firms must be indifferent between having a sale or not at one particular

moment. This requires that the extra revenue generated by the sale per extra unit sold must be

equal to marginal cost.

A graphical interpretation of the first two optimality conditions from [4.4] is shown in Figure 2.

Marginal revenue is initially downward sloping, then becomes upward sloping, before finally changing

direction once more to become downward sloping. Both quantities qN and qS are associated with

the same marginal revenue, which is in turn equal to the marginal cost MC of producing total

output Q = sqS + (1 − s)qN (note that the marginal cost curve is not shown). The average extra

revenue condition can be represented in the diagram as the equality of the two shaded areas bounded

between the marginal revenue curve and the horizontal line MC, and between the quantities qN and

qS.
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Figure 2: Demand function and non-monotonic marginal revenue function

qSqN q

pN

pS

MC

p

D−1(q; PB, E)

R ′(q; PB, E)

Notes: Schematic representation of demand function [3.10] and marginal revenue function [4.2]. Shown
for the case where parameters ε and η satisfy [4.3].

The full set of optimality conditions is depicted in Figure 3. The first point to note is that

because firms can charge different prices at different moments the total revenue function can be

made concave. This raises attainable total revenue in the range between qN and qS. The first two

optimality conditions in [4.4] require that total revenue has a common tangent line at both quantities

qN and qS, which is equivalent to the slope of the chord being the same as the tangent itself. This

slope then determines the unique point where marginal cost equals marginal revenue, which yields

the total quantity sold and therefore the sales fraction.

The conditions for the existence and uniqueness of this type of two-price equilibrium are given

in the following result.

Theorem 1 Suppose firms choose distributions of prices to maximize profits as given in equation

[3.12].

(i) If elasticities ε and η are such that the non-monotonicity condition [4.3] holds then there exist

λ(ε, η) and λ(ε, η) such that 0 < λ(ε, η) < λ(ε, η) < 1, and if λ ∈ [λ(ε, η), λ(ε, η)] then there

exists a two-price equilibrium, and no other equilibria exist.

(ii) If either of these conditions fails then there exists a one-price equilibrium, and no other equi-

libria exist.

Proof See appendix A.3 �

This result indicates that two conditions need to be satisfied for two prices to be an equilib-

rium. First, marginal revenue must be non-monotonic, as has been discussed above and analysed in

Proposition 2. Second, there must not be too many loyal consumers, or too many bargain hunters,
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Figure 3: Total revenue and total cost functions

C (q; W )

R(q; PB, E)

qqSqN Q

C (Q; W ) + C ′(Q; W )(q −Q)

R(qN ; PB, E) + R ′(qN ; PB, E)(q − qN)

Notes: Schematic representation of total revenue function R(q;PB , E) from [3.11] and total cost
function C (Q;W ) from [3.8], shown for parameters ε and η satisfying [4.3].

but instead a sufficient mixture of the two. This justifies having a high price designed for the loyal

customers, and a low one for the bargain hunters at other moments, even though no actual price

discrimination can be practised as it is not possible for firms to distinguish the two types prior to

the moment of purchase.

Note that there is no reference to the degree of convexity of the cost function in Theorem 1.

What guarantees the existence and uniqueness of the two-price equilibrium for a wide range of

parameters, even if marginal cost were constant, is that the actions of other firms affect the total

revenue function, in particular the slope of the chord in Figure 3. This interdependence of firms

plays a key role throughout the paper and is discussed in full later.

Although the analysis considers just two types of consumers, adding more types does not neces-

sarily make more prices sustainable in equilibrium. There are two reasons: more prices in equilibrium

requires more humps in the marginal revenue curve, and a common tangent line of the total revenue

function at more than two points. Neither of these two configurations follows automatically on the

addition of extra types.

Given the stylized facts discussed in the introduction, this paper focuses on the two-price equilib-

rium. The total physical quantity of output sold by firms is Q = sqS +(1−s)qN . Let X ≡ C ′(Q;W )

denote the associated marginal cost in money terms. Using the relationship between price and

marginal revenue in [4.2], the marginal revenue equals marginal cost conditions for each price can
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be expressed in terms of desired markups on marginal cost:

pi = µ(pi;PB)X , with µ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ(ε− 1) + (1− λ)(η − 1)v(p;PB)
. [4.5]

The desired markups depend on the parameters ε, η and λ, and the purchase multiplier v(p;PB)

from [3.10]. Let vS ≡ v(pS;PB) and vN ≡ v(pN ;PB) denote the two purchase multipliers, and the

µS ≡ µ(pS;PB) and µN ≡ µ(pN ;PB) the associated markups. Hence,

µS =
λε+ (1− λ)ηvS

λ(ε− 1) + (1− λ)(η − 1)vS
, µN =

λε+ (1− λ)ηvN
λ(ε− 1) + (1− λ)(η − 1)vN

. [4.6]

By using the demand function from [3.10], the first-order condition in [4.4] linking average extra

revenue to marginal cost can be expressed as:

µS − 1

µN − 1
=

(λ+ (1− λ)vN)µ−εN
(λ+ (1− λ)vS)µ−εS

. [4.7]

Given that a fraction s of all prices are set at pS and the remaining 1 − s are set to pN , equation

[3.4] implies the price index PB for the bargain hunters is

PB =
(
sp1−η

S + (1− s)p1−η
N

) 1
1−η . [4.8]

In finding the equilibrium, the model has a convenient block-recursive structure, or in other

words, the microeconomic aspects can be characterized independently of the macroeconomic side,

which is then determined afterwards. The key micro variables are the sales fraction s, the relative

markup µ ≡ µS/µN , and the relative quantity sold at the sale price compared to at the normal

price, denoted by χ ≡ qS/qN . Using the demand function [3.10], first-order condition [4.7] gives the

relationship between quantity ratio χ and markups µS and µN .

χ =
µN − 1

µS − 1
.

The following proposition verifies the block-recursive structure and derives some comparative statics

Proposition 3 Suppose parameters ε, η and λ are such that there is a unique two-price equilibrium.

(i) The equilibrium values of µ, χ, s, vS, vN , µS and µN are uniquely determined only by param-

eters ε, η and λ.

(ii) For given values of ε and η:

∂µ

∂λ
= 0 ,

∂µS
∂λ

= 0 ,
∂µN
∂λ

= 0 ,
∂χ

∂λ
= 0 ,

∂s

∂λ
< 0 .
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(iii) Let λ(ε, η) and λ(ε, η) be as defined in Theorem 1:

lim
λ→λ(ε,η)+

s = 1 , lim
λ→λ(ε,η)−

s = 0 .

(iv) The markup and quantity ratios µ and χ are continuous functions of ε and η, and:

lim
ε→1+

µ = 0 , lim
ε→1+

χ =∞ , lim
η→η∗(ε)+

µ = 1 , lim
η→η∗(ε)+

χ = 1 ,

where η∗(ε) ≡ (3ε− 1) + 2
√

2ε(ε− 1) is the lower bound for η that ensures non-monotonicity,

according to [4.3] in Proposition 2.

Proof See appendix A.4. �

The first part establishes the separation of the equilibrium for the micro variables from the

broader macroeconomic equilibrium. Furthermore, the second part shows that only ε and η are

needed to pin down the relative markup µ and quantity ratio χ, and then λ determines the sales

fraction s. The equilibrium sales fraction s is strictly decreasing in λ and varies from one to zero as

λ covers the interval of values consistent with a two-price equilibrium. The final part shows there is

a smooth transition between the two-price and the one-price equilibria, and the markup ratio and

quantity ratios span their natural ranges for admissible parameter values.

Given the purchase multipliers and markups, finding the equilibrium values of the other en-

dogenous variables is straightforward. The general price level P is obtained by combining [3.3] and

demand functions [3.4], and making use of the definition of the purchase multipliers in [3.10]:

P =
(
s(λ+ (1− λ)vS)p1−ε

S + (1− s)(λ+ (1− λ)vN)p1−ε
N

) 1
1−ε .

This allows the level of real marginal cost x ≡ X/P to be deduced as follows:

x =
(
s(λ+ (1− λ)vS)µ1−ε

S + (1− s)(λ+ (1− λ)vN)µ1−ε
N

) 1
ε−1 . [4.9]

With real marginal cost and the markups, relative prices %S ≡ pS/P and %N ≡ pN/P are determined.

This yields the amounts sold at the two prices relative to aggregate output:

qS = (λ+ (1− λ)vS) %−εS Y , qN = (λ+ (1− λ)vN) %−εN Y . [4.10]

Given that total physical output is Q = sqS + (1− s)qN , the ratio of Y to Q, denoted by δ, is:

δ ≡ 1

s(λ+ (1− λ)vS)%−εS + (1− s)(λ+ (1− λ)vN)%−εN
.

Using the production function [3.7], the cost function [3.8], and the labour supply function [3.1], a
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relationship is obtained between real marginal cost x and output Y :

x =
νh (F−1(Y/δ))

uc(Y )F ′ (F−1(Y/δ))
. [4.11]

Since the equilibrium x is already known from [4.9], the equation above determines output Y . Using

equation [2.4], the price level P is then given by P = M/Y .

5 Monetary shocks in a model of sales

The benchmark model of section 2 analysed the effect of a monetary shock with predetermined

prices pS and pN and wage W , but crucially, the reason why firms started with two prices rather

than just one was left unexplained. The sales model introduced in section 3 provides precisely such

a reason, and this section performs a similar experiment when sales are flexible.6

Starting from the flexible-price equilibrium as characterized in section 4, suppose that prices pS

and pN , and wage W are set at levels consistent with expected money supply M̄ . Following the

realization of the actual money supply M , firms can adjust their sales through either price pS or

quantity s. The normal price pN remains at its predetermined level, and for now, the money wage

W also remains constant.

The freedom to adjust sales, but not the normal price pN , means that of the first-order conditions

in [4.4], only the second and third equalities holds:

pSqS − pNqN
qS − qN

= X , pS = µ(pS;PB)X , [5.1]

where achieving the optimal markup µ(pS;PB) is equivalent to equalizing marginal revenue at the

sale price and marginal cost.

The use of the sales margin in the benchmark model led to money neutrality. But it turns out

that the answer to the question of whether monetary shocks have real effects is radically different

once a reason for sales is built into the model: monetary shocks now have large real effects. The

crux of the result is that sales are strategic substitutes : firms find sales more attractive when other

firms are having fewer sales.

Monetary shocks are analysed by considering a situation where the money supply is in a neigh-

bourhood of the flexible-price equilibrium level. Denote log deviations of variables from the flexible-

price equilibrium using sans serif letters, and the flexible-price equilibrium values themselves with

a bar over the variable.

Theorem 2 Consider parameters values ε, η and λ for which the economy has a two-price equilib-

rium, as described in Theorem 1.

6Actually this exercise gives firms greater freedom than in the benchmark model by allowing firms to vary the size
of the sale discount. In the benchmark model, if pS could be changed then money would be automatically neutral
because the profit-maximizing strategy there is to charge a single price.
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(i) If the sales fraction s is adjusted optimally according to the first equation in [5.1] then the

elasticity of marginal cost X with respect to PB is unity, and no other variables have first-order

effects on marginal cost:

X = PB ,

(ii) If both the sales fraction and the sale price pS are adjusted optimally according to [5.1] then

the elasticity of the optimal sale price pS with respect to marginal cost is unity, and no other

variables have first-order effects on the optimal sale price:

pS = X .

Proof See appendix A.6. �

The first part of the theorem makes sales strategic substitutes. As other firms cut back on sales

either by reducing s or increasing pS, the bargain hunters’ price index PB increases. Theorem 1

shows this leads a given firm optimally to raise total quantity sold to the point where marginal cost

X has risen one-for-one with PB. As the normal price is not adjusted, the increase in quantity sold

is brought about by an increase in sales.

The problem of choosing the profit-maximizing sales adjustment is essentially one of a firm

deciding how much to target its loyal customers versus the bargain hunters. Because competition

for the bargain hunters is more intense than for loyal customers, the incentive to target them is

much more sensitive to the extent that other firms are targeting them as well. Thus, a firm’s desire

to target the bargain hunters with sales is decreasing in the extent to which others are doing the

same.

The option of adjusting the fraction of sales s was also open to firms in the benchmark model,

but here the use of this margin has important implications for the competition among firms. This

can be seen algebraically by substituting the demand function and purchase multipliers from [3.10],

and the cost function [3.8] into the first part of [5.1]:

1

F ′ (F−1(Q))
=

1

W

p1−ε
S

(
λ+ (1− λ)

(
pS
PB

)−(η−ε)
)
− p1−ε

N

(
λ+ (1− λ)

(
pN
PB

)−(η−ε)
)

p−εS

(
λ+ (1− λ)

(
pS
PB

)−(η−ε)
)
− p−εN

(
λ+ (1− λ)

(
pN
PB

)−(η−ε)
) . [5.2]

This difference between the models can be understood by looking at the respective first-order

conditions [2.6] and [5.2] for the sales fraction s. The key difference is the presence of PB in the

model with sales. The terms involving PB reflect the different degrees of competition for loyal

customers and bargain hunters.

Recall that in the benchmark model, firms have an incentive to reduce sales in response to a

positive monetary shock, essentially mimicking an increase in price. The same incentive exists here,

but is counteracted by another effect. As firms reduce their sales, an individual firm has a strong
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incentive to target the bargain hunters, who are being neglected by the others. Consequently the

fall in sales will be smaller, and so the price level will rise by less. Therefore, output will increase.

The effects of others’ actions on an individual firm’s incentives to hold sales are shown in Figure 4.

Others’ price changes operate on marginal revenue through both P and PB. A rise in P shifts the

demand curve outward, with proportional effect at every point. In contrast, a rise in PB has a much

more marked effect on demand at lower prices and higher quantities where the bargain hunters are

found. This upsets the balance between profits from selling at both prices, boosting profits from

selling on sale, which is seen in differential between the shaded areas bounded between marginal

revenue and marginal cost. This does not happen following the change in P , which was the only

operative channel in the benchmark model.

Figure 4: Impact of other firms’ price changes on the demand and marginal revenue functions

p p

qq

pS

pN

pS

pN

qS qN

MC MC

qS qN

Change in P Change in PB

D−1(q; PB, E)D−1(q; PB, E)

R ′(q; PB, E)

R ′(q; PB, E)

Notes: Schematic representation of shifts of demand and marginal revenue functions [3.10] and [4.2].
The price level P affects demand through E = P εY according to [3.9].

This analysis demonstrates that there are two conflicting effects on sales and the price level after

a monetary shock. One leads to money neutrality, while the other leads to money having real effects.

It is therefore a quantitative question how strong the real effects will be.

The previous discussion explains why there must be a positive relationship between PB and

X, but the result of Theorem 2 is stronger: the elasticity must be unity. This follows from some

elementary properties of the profit function. Define P(p;PB, X, P, Y ) be the level of profits at the

margin from selling at price p at one shopping moment:

P(p;PB, X, P, Y ) = (p−X)D(p;PB, P
εY ) , [5.3]

where E = P εY has been used, in accordance with [3.9]. The first-order condition for the optimal
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sales fraction is ℘(pS, pN , PB, X, P, Y ) = 1, where

℘(pS, pN , PB, X, P, Y ) ≡ P(pS;PB, X, P, Y )

P(pN ;PB, X, P, Y )
, [5.4]

is the ratio of profits from selling at the sale price to profits from the normal price. The demand

function is homogeneous of degree zero in all prices, and so the profit function [5.3] must be ho-

mogeneous of degree one in p, PB, P and X, and therefore the profit ratio ℘(pS, pN , PB, X, P, Y )

is homogeneous of degree zero in pS, pN , PB, P and X. The form of the demand function [3.10]

implies that P and Y proportionately affect profits at both prices and thus have no influence on

relative profits, so ℘(pS, pN , PB, X, P, Y ) = ℘(pS, pN , PB, X, 1, 1) for all P and Y . Consequently,

relative profits [5.4] must be homogeneous of degree zero in pS, pN , PB and X alone. Since pS

and the predetermined value of pN are chosen optimally, neither pS nor pN has a first-order effect

on either profits or relative profits. Therefore, relative profits ℘(pS, pN , PB, X, 1, 1) must be locally

homogeneous of degree zero in just PB and X. Hence to ensure relative profits remain equal to one,

PB and X must change by the same proportion.

The second part of Theorem 2 states that when both the sales fraction and sale price are chosen

optimally, the sale price features a constant markup on marginal cost, at least locally. The first-order

condition for the sale price is pS/(µ(pS, PB)X) = 1, and this equation is homogeneous of degree

zero in pS, PB and X because the optimal markup function µ(p;PB) in [4.5] is also homogeneous

of degree zero in prices. As PB and X must move proportionately to be consistent with an optimal

choice of the sales fraction, a movement of pS in the same proportion is required to satisfy the

first-order condition.

5.1 Calibration

The distinguishing parameters of the sales model are the two elasticities ε and η and the fraction λ

of loyal consumers. As was shown in section 4, these parameters are directly related to observable

prices and quantities: the markup ratio µ, which gives the size of the discount offered when a good

is on sale; the quantity ratio χ, which states how much more is purchased when a good is on sale;

and the fraction s of goods sold at the sale price. There are thus three unknown parameters that

can be matched to data on three observables.

There is a growing empirical literature examining price adjustment patterns at the microeconomic

level. This literature provides information about the markup ratio and the sales fraction. The

benchmark values of these variables are taken from Nakamura and Steinsson (2007). Their study

draws on individual price data from the BLS CPI research database, which covers approximately

70% of U.S. consumer expenditure. They report that the fraction of price quotes that are sales

(weighted by expenditure) is 7.4%. They also report that the median difference between log(pS)

and log(pN) is 0.295, which yields µ = 0.745.

In the retail and marketing literature, there has for a long time been a discussion of the effects

of price promotions on demand. This literature provides information about the quantity ratio.
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However, papers in this literature report a range of estimates conditional on factors other than price

that affect the impact of the price promotion, for example, advertising. The benchmark value of the

quantity ratio is obtained from the study by Chakravarthi, Neslin and Sen (1996). Their results are

based on scanner data from a large number of U.S. supermarkets. According to the elasticities they

report, a price cut of the size consistent with the markup ratio taken from Nakamura and Steinsson

(2007) implies a quantity ratio of between approximately 4 and 6 if the retailer draws the price cut

to the attention of customers. The benchmark number used here is the simple average of the two,

so χ = 5.

The three facts about sales, summarized in Table 1, are then used to find matching values of

the unknown parameters. This exercise first requires finding the equilibrium of the economy for the

variables µ, χ and s. Proposition 3 shows that these depend only on the parameters ε, η and λ.

Lemma 3 in the appendix shows how µ and χ are determined as functions of ε and η. Then equation

[A.3.6] in the proof of Theorem 1 determines s as a function of all three parameters.

Table 1: Stylized facts about sales

Description Parameter Value

Ratio of sale markup to normal markup (µS/µN) µ 0.745†

Ratio of quantity sold at sale price to normal price (qS/qN) χ 5‡

Fraction of goods sold at sale price s 0.074†

† Source: Nakamura and Steinsson (2007)
‡ Source: Chakravarthi, Neslin and Sen (1996)

Given this solution method, parameters matching the stylized facts were found using the Nelder-

Mead simplex algorithm. An extensive grid search over ε and η was used to verify that these are the

only parameters matching µ and χ. Proposition 3 demonstrates that given ε and η, there is always

one and only one λ value matching the sales fraction s. The results of this exercise are shown in

Table 2.

Table 2: Parameters matching stylized facts about sales

Description Parameter Value

Elasticity of substitution between product types ε 3.01
Elasticity of substitution between brands for a bargain hunter η 19.7
Fraction of product types for which a consumer is loyal to a brand λ 0.901

Notes: These parameters are exactly consistent with the three stylized facts about sales given in
Table 1.

In order to compute the effects of a monetary policy shock, the elasticity of marginal cost with

respect to output must be known, which requires one further parameter to be calibrated. This is
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done by specifying a production function

F(H) = AHα , [5.5]

and setting α = 2/3 to match the labour share of income.

5.2 Results

This section calculates the elasticities of output and the price level with respect to a monetary

surprise, evaluated at the flexible-price equilibrium described in section 4 drawing on the first-order

Taylor approximation of the model presented in appendix A.7. The equilibrium values of output and

the price level are now determined under the assumption that the sales fraction and the sale price

are chosen optimally, but the normal price and the nominal wage remain at their predetermined

equilibrium values. The equations that characterize the equilibrium after a monetary shock are as

in section 4, except that the first-order conditions for price pN in [4.4], and wage W in [4.11] are

dropped. The first-order conditions for optimal sales are given in [5.1].7

The results for the benchmark calibration are examined first. Using the parameters from Table 2

and α = 2/3 the elasticities are:

d log Y

d logM
= 0.895 ,

d logP

d logM
= 0.105 .

For a 1% surprise increase in the money supply, output rises by 0.895%. The results are not

very sensitive to the stylized facts about sales used to calibrate the model. A sensitivity analysis

is shown in Figure 5. Of the three targets, the effects of monetary policy are most sensitive to the

sales fraction s. In the range of empirically plausible s values (5% – 15%), monetary policy has

substantial real effects: the elasticity varies between 0.84 and 0.92.

The quantity ratio χ is the target for which the literature yields widest range of estimates. But

nonetheless, varying χ from 3 to 8 implies that the elasticity lies between 0.87 and 0.90. Finally,

the target value of the markup ratio µ makes essentially no difference to the results.

These findings are in sharp contrast to the results of the experiment performed using the bench-

mark model of section 2, where there was no rationale for having a two-price distribution. In the

new model, consumer preferences are such that sales are an equilibrium phenomenon. In both cases,

firms have an incentive to adjust the fraction of sales following a monetary shock. But the consumer

preferences introduced to explain sales also give rise to strategic substitutability in the sales deci-

sion. Strategic substitutability is so strong that flexibility in sales brings very little flexibility to the

aggregate price level.

7Although determining the flexible-price equilibrium requires specifying the utility function, this information is
not needed to compute the elasticities of output and prices. This can be seen by examining the first-order Taylor
approximation of the model in appendix A.7.
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Figure 5: Sensitivity analysis
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Notes: The results are obtained by fixing two of the three targets at their benchmark values as given
in Table 1 and choosing matching values of the parameters ε, η and λ as explained in section 5.1.

5.3 Justification for the “sticky” normal price

The previous analysis treated pN as fixed, and s and pS as completely flexible. In reality, there may

be costs of readjusting s and pS, but this paper shows that even without such costs, the possibility

of continuously adjusting sales decisions has only a small impact on the real effects of monetary
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policy. Thus stickiness in pN suffices to explain why monetary policy has real effects.

Recent micro evidence on price setting has highlighted the relative stickiness of so-called “ref-

erence” prices (Eichenbaum, Jaimovich and Rebelo, 2008), which correspond to “normal” prices in

this paper. The model developed in this paper is consistent with the finding of sticky reference

prices, and moreover, in the setting of the model, it makes sense for the normal price to be relatively

sticky. This section develops three arguments in support of this claim: (i) in the context of the

model, the extra gains from adjusting the normal price after firms have optimally chosen s and pS

are only 14% of the corresponding gains in a standard sticky price model; (ii) adjusting the sales

fraction reaps most of the benefits of price adjustment; and (iii) after adjusting s, the gains from

repeatedly adjusting the normal price (which is used 92.6% of the time in the baseline calibration)

are actually very close to the gains obtained by changing the sale price only when the good is on

sale (which occurs 7.4% of the time).

These results build on the following proposition:

Proposition 4 Consider arbitrary distributions of pN and pS around their flexible-price equilibrium

values from section 4. Suppose all firms optimally choose sales fraction s according to the first part

of equation [5.1].

(i) The nominal marginal cost X is the same for all firms irrespective of their individual prices pS

and pN , and moreover, X = PB.

(ii) The quantity sold Q is the same for all firms irrespective of their individual prices pS and pN .

(iii) If p∗S and p∗N denote the log-deviations of the desired sale and normal prices then p∗S = p∗N = X.

(iv) A second-order approximation of the gain from adjusting individual prices from pS and pN to

p∗S and p∗N respectively (expressed as a fraction of steady-state total revenue) is:

Gain =
1

2
s̄
q̄S
Q̄
x̄

(
ζ̄S −

(η − ε)2λ(1− λ)v̄S(µ̄S − 1)

(λ+ (1− λ)v̄S)2

)
(pS − X)2

+
1

2
(1− s̄) q̄N

Q̄
x̄

(
ζ̄N −

(η − ε)2λ(1− λ)v̄N(µ̄N − 1)

(λ+ (1− λ)v̄N)2

)
(pN − X)2 [5.6]

Proof See appendix A.8. �

Corollary If pS is optimally chosen, so pS = p∗S = X then the gain from adjusting pN to p∗N is:

Gain =
1

2
(1− s̄) q̄N

Q̄
x̄

(
ζ̄N −

(η − ε)2λ(1− λ)v̄N(µ̄N − 1)

(λ+ (1− λ)v̄N)2

)
(pN − X)2 [5.7]

�

The proposition considers the implications of firms optimally adjusting s, while the corollary

considers also that pS is optimally chosen.

The first part of Proposition 4 shows that the optimal choice of the sales fraction already implies

an optimal choice of quantity sold, in the sense that if a firm were also to adjust optimally either
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its normal price or its sale price then this would make no difference to the quantity sold. The

implication is that most of the gains from price adjustment are already exhausted by choosing the

sales fraction optimally. Quantitatively, the size of any remaining gains from changing the sale and

normal prices themselves are assessed using the fourth part of the proposition.

To see how this compares with standard analyses of menu costs and sticky prices, the expression

for the gain in profits can be contrasted with that which obtains in a model with entirely standard

Dixit-Stiglitz preferences, and thus one price in equilibrium, but which is otherwise identical. As

is demonstrated in appendix A.11, the gain in profits from price adjustment (again expressed as a

fraction of steady-state total revenue) is:

Gain =
1

2
ε(1 + εγ)x̄

(
p−

(
P +

1

1 + εγ
x

))2

, [5.8]

where ε is the constant price elasticity of demand and γ is the elasticity of marginal cost with respect

to quantity produced. With the production function [5.5], γ = (1− α)/α.

When comparing the gain from adjusting only s with the gain from adjusting price in a standard

one-price model, there are two crucial differences between [5.6] and [5.8]. Quantitatively, the most

important difference between the profit gains corresponds to the term 1 + εγ, which appears only

in [5.8]. This represents the gains from selling the optimal quantity, which in a standard model can

only be achieved through a price change. But as Proposition 4 shows, the gains from producing the

optimal quantity automatically accrue when firms are free to choose their desired sales fraction.

The second reason for a smaller gain relative to a standard model from adjusting the normal and

sale prices is that with a demand function consistent with sales in equilibrium, the price elasticity

is decreasing in price, thus if prices are too high the desired markup also increases, and vice versa

if prices are too low. The bracketed terms in [5.6] multiplying the deviations of prices are smaller

than the price elasticities of demand ζ̄N and ζ̄S, since the terms being subtracted are unambiguously

positive. In contrast, in [5.8], the deviation is multiplied simply by the price elasticity ε.

In the sales model, the sizes of desired adjustment of the normal price being contemplated by

firms in response to monetary shocks are significantly smaller than the changes observed in individual

prices, which mostly correspond to shifts between the normal and sale prices. Therefore, large price

changes are observed, but full reoptimization of prices requires only small adjustments, and so only

small losses are incurred if firms fail to make these desired changes. This means that reoptimization

of the normal price falls exactly within the remit of the literature in macroeconomics which seeks

to justify why firms do not always make small price changes, such as Mankiw (1985) and Akerlof

and Yellen (1985).8

The gains from adjusting prices in the sales model are compared with those in a one-price model

where firms are faced with the same shocks, even though a one-price model would require much

larger shocks to generate the magnitude of observed price changes. The difference in the size of

menu costs needed to rule out a flexible-price equilibrium can be computed using the calibration

8Direct empirical evidence on costs of reoptimizing prices is presented in Levy, Bergen, Dutta and Venable (1997)
and Zbaracki, Ritson, Levy, Dutta and Bergen (2004).

26



from section 5.1 and the expressions [5.6] and [5.8]. In the latter, the constant price elasticity ε is

chosen to imply a markup equal to the average markup found in the calibrated model with sales.9

With an elasticity of output with respect to hours of 2/3, the implied γ is 0.5. In the sales model,

the menu cost needed to dissuade a given firm from changing both its sale and normal prices is only

27% of the menu cost that justifies not changing price in the standard model.

The same exercise can be performed assuming that pS and s are optimally chosen, which corre-

sponds to comparing the gains implied by [5.6] and [5.7]. This exercise reveals that the menu cost

needed to dissuade a firm from adjusting pN is only 14% of the menu cost needed to deter price ad-

justment in a standard model. This constitutes approximately half of the total gains from changing

both pS and pN , which shows that the coefficients of the deviations of pS and pN are approximately

the same.

Even though the coefficients are very close, at a given moment, the gains from optimally adjusting

pS are approximately 12 times larger than those from adjusting pN . As the price elasticity is much

higher at pS than at pN , the profit function is much more convex, the margin is narrower, and the

quantity sold is larger, so deviations from the optimal price are much more costly. The importance

of adjusting pS and pN turns out to be similar because s is around 12 times smaller than (1 − s).
So at a given moment, if there is no intrinsic difference between the cost of adjusting a normal price

versus a sale price, a firm would strongly prefer to reoptimize its sale price.

It may seem contradictory that firms are able to extract most of the gains from changing price

simply by varying the sales fraction, but at the same time, choose to do so sparingly in response to

a monetary shock. This apparent puzzle is resolved by noting the reason for the small response of

the sales fraction is not its lack of efficacy for an individual firm, but that other firms also react to

common shocks in the same way, and sales have been shown to be strategic substitutes.

6 Flexible wages

This section considers the model of sales with fully flexible wages. In this case, the first-order

condition of households for labour supply [3.1] holds at all times. Since all households face the same

prices, this implies:
νh(H)

uc(Y )
=
W

P
. [6.1]

The remainder of the model is as described in section 5.

Obtaining the effects of a monetary shock now requires calibrating the utility function. The main

issue is to avoid the counterfactual prediction that the real wage fluctuates by more than output.

Thus a lower bound for the real effects of monetary policy is found by choosing a utility function

that implies the real wage and output move one for one. This is done by adopting the conventional

9The bracketed terms are multiplied by s̄q̄S/Q̄ and (1 − s̄)q̄N/Q̄, which weight them according to the relative
quantities sold. In the sales model, µS = 1.09, µN = 1.47, and s̄q̄S/Q̄ = 0.28, which yields an average markup of
1.36. With Dixit-Stiglitz preferences, the optimal markup is ε/(ε− 1), so ε = 3.77.
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specification of log utility in consumption and linear disutility in hours worked:10

u(C) = logC , ν(H) = aH .

As in section 5, the economy is subject to a money-supply shock. The sales fraction s, the sale

price pS, and wage W are optimally adjusted. Only the normal price pN is predetermined. The

elasticities of output and the price level to the monetary surprise are:

d log Y

d logM
= 0.685 ,

d logP

d logM
= 0.315 .

These results show the strength of the strategic substitutability of sales. Even though wages are

fully flexible (and adjust more than in the data), and firms face no costs of adjusting either the sale

price or the sales fraction, monetary policy has large real effects.

7 Dynamics

This section extends the previous analysis to a dynamic environment, where the normal price is

adjusted, but not continuously so. There is a tractable dynamic version of the sales model and this

section derives the resulting Phillips curve, which is easily embedded into any DSGE framework.

While the presence of sales in the model adds an extra effect when compared to the standard New

Keynesian Phillips curve, quantitatively the difference turns out not to be large. The conclusions

are thus in line with the findings of section 5.

7.1 Staggered adjustment of the normal price

The model developed here continues to allow firms costlessly to vary the sales fraction and the sale

price, but now they can choose a new normal price at random times, as in the Calvo (1983) pricing

model. It is important to stress that the Calvo pricing assumption is used only for changes of the

normal price; a firm has complete discretion to switch its price without cost between the normal

and sale price at any given moment, and to change the sale price itself.

The assumption of Calvo pricing for the normal price is made only for simplicity. Of course

the choice of an alternative model of price stickiness, for example, state-dependent pricing, would

affect the results in its own right. But there is no obvious reason to believe that the interaction of

different models with firms’ optimal choice of sales will significantly affect the results (unless those

models yield the counterfactual prediction that the price pN is continuously adjusted, thus making

the sales margin redundant). This is because Proposition 4 implies that profit-maximizing prices

are a function only of the aggregate state of the economy, and thus independent of the distribution

10This follows standard practice in the real business cycle literature following Hansen (1985), and is also a speci-
fication employed in recent theoretical work on pricing, such as Golosov and Lucas (2007) and Kehoe and Midrigan
(2007).
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of prices. Furthermore, a firm’s optimal sales decisions depend only on its own normal price and

the aggregate state of the economy.

In each period, each firm has a probability 1 − φp of receiving an opportunity to adjust its

normal price. Consider a firm that receives such an opportunity at time t. The optimal price it

selects is referred to as its reset price, and is denoted by RN,t. Asset markets are assumed to be

complete: At+`|t denotes the asset-pricing kernel for state-contingent monetary payoffs (relative to

the conditional probability of each state occurring). The optimal sales decisions will in principle

depend on the firm’s normal price, and so on its last adjustment time. Denote by s`,t and pS,`,t the

optimal sales fraction and sale price for a firm at time t that last changed its normal price ` periods

ago. The reset price RN,t is chosen to maximize:

max
RN,t

∞∑
`=0

φ`pEt

At+`|t

 s`,t+`pS,`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)RN,tD(RN,t;PB,t+`, Et+`)
−C

(
s`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)D(RN,t;PB,t+`, Et+`);Wt+`

)


[7.1]

The first-order condition for the optimal reset price is given by:

∞∑
`=0

φ`pEt

[
(1− s`,t+`)Vt+`|t

{
RN,t

Pt+`
− µ(RN,t;PB,t+`)

C ′(Q`,t+`;Wt+`)

Pt+`

}]
= 0 , [7.2]

where Vt+`|t ≡
(ζ(RN,t;PB,t+`)− 1)D(RN,t;PB,t+`, Et+`)Pt+`At+`|t

Pt
.

Note that the optimal reset price is identical for all firms that change their normal price at the same

time. Hence the expression for the aggregate price index Pt is

Pt =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,t(λ+ (1− λ)v(pS,`,t, PB,t))p

1−ε
S,`,t

+(1− s`,t)(λ+ (1− λ)v(RN,t−`, PB,t))R
1−ε
N,t−`

}) 1
1−ε

, [7.3]

and the bargain hunters’ price index PB,t is defined accordingly.

The sales fraction s`,t and sale price pS,`,t are determined as in [5.1]:

pS,`,tqS,`,t −RN,t−`qN,`,t
qS,`,t − qN,`,t

= X`,t , pS,`,t = µ(pS,`,t;PB,t)X`,t , [7.4]

where qS,`,t and qN,`,t are the quantities sold at the sale and normal prices by a firm that changed

its normal price ` periods ago, and X`,t is nominal marginal cost for such a firm.

7.2 A Phillips curve with sales

To study the dynamic implications of the model, it is helpful to derive a Phillips curve that can

be compared with those from standard models with Calvo pricing. It turns out that the dynamic

model with sales also yields a simple Phillips curve.

Theorem 3 Suppose firms determine optimal reset price RN,t according to equation [7.2] and their
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optimal sales fractions and sale prices using [7.4]. Let πt ≡ Pt/Pt−1 be the inflation rate for the

aggregate price index [7.3]. Log-linearizing around the flexible-price equilibrium of section 4 with

zero inflation yields an optimal reset price satisfying

RN,t = (1− βφp)
∞∑
`=0

(βφp)
`EtXt+` ,

where Xt is the common level of nominal marginal cost which results from firms optimizing over

their sales fractions as shown in Proposition 4, and β is the discount factor. The implied Phillips

curve linking inflation πt and real marginal cost xt is

πt = βEtπt+1 +
1

1− ψ (κxt + ψ (∆xt − βEt∆xt+1)) , [7.5]

where the parameter ψ is defined as follows:

ψ ≡
((

1− ∂ logPB
∂ logPS

)
∂ logP

∂s
+
∂ logP

∂ logPS

∂ logPB
∂s

)/∂ logPB
∂s

,

and κ ≡ ((1− φp)(1− βφp)) /φp. By solving forwards, inflation can also be expressed as:

πt =
κ

1− ψ
∞∑
`=0

β`Etxt+` +
ψ

1− ψ∆xt . [7.6]

Proof See appendix A.9. �

Notice first that the Phillips curve with sales [7.5] reduces to the standard New Keynesian Phillips

curve in the case that ψ = 0, but ψ is always positive in the model with sales. When ψ → 1 the

economy converges to the case of price flexibility. The condition ψ < 1 is equivalent to:

−∂ logP

∂s

/(
1− ∂ logP

∂ logPS

)
< −∂ logPB

∂s

/(
1− ∂ logPB

∂ logPS

)
. [7.7]

First note that the elasticity of PB with respect to PS is always larger than that of P because

bargain hunters buy more goods at sale prices, so the denominator of the right-hand side is smaller.

Second, the numerator on the right-hand side is larger as long as an increase in the number of sales

benefits bargain hunters more than loyal consumers, which is intuitively plausible and true in the

baseline calibration, although it cannot hold for all possible parameters. Because the first claim is

always true, the second condition is sufficient but not necessary for [7.7] to hold. In the baseline

calibration, ψ is 0.26.

The effect of a positive value of ψ is to increase the response of inflation to real marginal cost

when compared to the standard New Keynesian Phillips curve. This is best seen by looking at the

solved-forwards version of the Phillips curve in [7.6], where there are two differences. The first is

scaling of the coefficient multiplying expected real marginal costs, which is isomorphic to an increase
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in the probability of price adjustment. The second is the term driven by changes in real marginal

cost, which is linked to the possibility of varying sales each period. It is subsequently shown how

this will affect the dynamics of output and prices.

7.3 A DSGE model with sales

This section embeds sales into a calibrated dynamic stochastic general equilibrium model with

staggered adjustment of normal prices and wages.

Household ı ∈H ’s lifetime utility function is given by

Ut(ı) =
∞∑
`=0

β`Et [υ(Ct+`(ı),mt+`(ı))− ν(Ht+`(ı))] . [7.8]

The utility function υ(C,m) is differentiable, strictly increasing and concave in both C and m;

ν(H) is a differentiable, strictly increasing and convex function of H. Each household supplies

a differentiated labour input. The parameter β is the subjective discount factor, which satisfies

0 < β < 1.

Denote by At+1(ı) household ı’s portfolio of Arrow-Debreu securities with nominal payoffs held

between periods t and t+ 1. Household ı’s period-t budget constraint is thus

PtCt(ı) +Mt(ı) + Et

[
At+1|tAt+1(ı)

]
= Wt(ı)Ht(ı) + Dt + Tt +Mt−1(ı) +At(ı) . [7.9]

Households have equal initial financial wealth and all have the same expected lifetime income.

There are no arbitrage opportunities in financial markets, so the yield it on a one-period risk-free

nominal bond satisfies:

1 + it =
(
EtAt+1|t

)−1
. [7.10]

Maximization of lifetime utility [7.8] subject to the budget constraint [7.9] implies first-order

conditions for consumption Ct(ı) and real money balances mt(ı):

β
υc(Ct+1(ı),mt+1(ı))

υc(Ct(ı),mt(ı))
= At+1|t

Pt+1

Pt
, [7.11a]

υm(Ct(ı),mt(ı))

υc(Ct(ı),mt(ı))
=

it
1 + it

. [7.11b]

Equation [7.11a] is the intertemporal Euler equation for consumption, with υc(C,m) denoting the

marginal utility of consumption. The optimal tradeoff between holding money balances and con-

sumption is given by [7.11b], with υm(C,m) denoting the marginal utility of real balances and

it/(1 + it) being the opportunity cost of holding money.

As in Erceg, Henderson and Levin (2000), firms hire differentiated types of labour. So hours H in

the production function [3.7] is now a composite labour input defined by the following Dixit-Stiglitz
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aggregator

H ≡
(∫

H

H(ı)
ς−1
ς dı

) ς
ς−1

,

where H(ı) is hours supplied by household ı ∈H to a given firm, and ς is the elasticity of substitu-

tion between labour types. It is assumed that ς > 1, and that firms are price takers in the markets

for labour inputs. The money wage received by labour input ı is W (ı). The minimum cost of hiring

one unit of the composite labour input H is denoted by W , and this is the relevant wage index in

firms’ cost function [3.8]. This wage index is given by

W ≡
(∫

H

W (ı)1−ςdı

) 1
1−ς

, [7.12]

and the cost-minimizing labour demand functions are

H(ı) =

(
W (ı)

W

)−ς
H . [7.13]

Suppose that households have a probability 1 − φw of being able to adjust their money wage

in any given time period. Since households have equal initial wealth and expected lifetime income,

asset markets are complete, and utility [7.8] is additively separable between hours and consumption,

households are fully insured and hence have equal consumption and money balances in equilibrium.

As before, consumption is the only source of expenditure, so goods market equilibrium requires

Ct = Yt. Hence using [7.10], [7.11a] and [7.11b], the following intertemporal IS equation and money

demand are obtained:

β(1 + it)Et

[
υc(Yt+1,mt+1)

υc(Yt,mt)

1

πt+1

]
= 1 ,

υm(Yt,mt)

υc(Yt,mt)
=

it
1 + it

. [7.14]

As households are selected to change their wages at random, enjoy the same consumption, and face

the same demand curve for their labour services, all households setting a new wage at time t choose

the same wage. This common wage is referred to as the reset wage, and is denoted by RW,t. It

is chosen to maximize expected utility over the lifetime of the wage subject to the labour demand

function [7.13]. As shown by Erceg, Henderson and Levin (2000), the first-order condition for this

maximization problem is:

∞∑
`=0

(βφw)`Et

[
W ς
t+`Ht+`υc(Yt+`,mt+`)

υc(Yt,mt)

{
RW,t

Pt+`
− ς

ς − 1

νh
(
R−ςW,tW

ς
t+`Ht+`

)
υc(Yt+`,mt+`)

}]
= 0 . [7.15]

Given that all households who change their wage at the same time pick the same reset wage, the

wage index Wt in [7.12] evolves according to:

Wt =

(
(1− φw)

∞∑
`=0

φ`wR
1−ς
W,t−`

) 1
1−ς

. [7.16]
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7.4 Dynamic calibration

This section presents the calibration of the DSGE model described above.

One period corresponds to one month. The discount factor β is chosen to yield a 3% annual

real interest rate, the intertemporal elasticity of consumption σc is chosen to match a coefficient

of relative risk aversion of 3, and the Frisch elasticity σh is set to 0.7, which lies in the range of

estimates found in the literature. The elasticity of money demand with respect to income ϑy, the

interest semi-elasticity ϑi, and the real balance effect of money on consumption ϑm are taken from

Woodford (2003), making the conversion from a quarterly to a monthly calibration.

Table 3: Dynamic calibration

Description Parameter Value

Preference parameters
Subjective discount factor β 0.9975
Intertemporal elasticity of substitution σc 0.333
Frisch elasticity of labour supply σh 0.7
Income elasticity of money demand ϑy 1.0†

Interest semi-elasticity of money demand ϑi 84†

Real balance effect on consumption ϑm 0.0067†

Technology parameters
Elasticity of output with respect to hours α 0.667
Elasticity of marginal cost with respect to output γ 0.5
Elasticity of substitution between differentiated labour inputs ς 20‡

Nominal rigidities
Probability of stickiness of “normal” prices φp 0.889§

Probability of wage stickiness φw 0.889

Notes: Monthly calibration.
† Source: Woodford (2003)
‡ Source: Christiano, Eichenbaum and Evans (2005)
§ Source: Nakamura and Steinsson (2007)

The elasticity of output with respect to hours α is chosen to match a labour share of 2/3. With

the specification [5.5] of the production function, this implies an elasticity of marginal cost with

respect to output of γ = (1 − α)/α. So α = 2/3 yields γ = 0.5. The elasticity of substitution

between labour inputs ς is taken from Christiano, Eichenbaum and Evans (2005). The probability

φp of stickiness of the normal price is set to match a price-spell duration of 9 months, which is

taken from Nakamura and Steinsson (2007). The same number is used for the probability of wage

stickiness φw, as evidence shows that most, but not all, wages are adjusted annually.

All the calibrated parameters are listed in Table 3.

The model is analysed under different assumptions about monetary policy. First, a first-order
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autoregressive process for money growth is considered:

Mt

Mt−1

=

(
Mt−1

Mt−2

)ϕm
exp(et) , et ∼ i.i.d.(0, v2) . [7.17a]

The persistence parameter ϕm is chosen to match the empirical first-order autocorrelation coefficient

of M1 growth in the U.S. from 1979:8 to 1996:12.

Second, the case of a monetary policy rule with feedback from the state of the economy is

considered. A Taylor rule with interest-rate smoothing is the most popular specification for this:

1 + it = (1 + it−1)ϕi
(

(1 + ī)
(πt
π̄

)ϕπ (Yt
Ȳ

)ϕy)1−ϕi
exp(et) , et ∼ i.i.d.(0, v2) , [7.17b]

where ϕπ is the interest-rate response to inflation, ϕy is the response to output (or the output gap),

and ϕi is the interest-rate smoothing parameter. The Taylor rule parameters are taken from the

baseline estimates of the Volcker–Greenspan period in Clarida, Gaĺı and Gertler (1998), which is

1979:8–1996:12 (the same sample period as was used for the money-supply growth specification).

Table 4: Parameters used for the monetary policy experiments

Description Parameter Value

Exogenous path for growth of the money supply
First-order serial correlation of the money-supply growth rate ϕm 0.6†

Taylor rule
Response of interest rates to deviations of inflation from target ϕπ 2.15‡

Response of interest rates to deviations of aggregate output from target ϕy 0.078‡

Degree of interest-rate smoothing ϕi 0.924‡

Notes: Monthly calibration.
† Source: Authors’ calculations using data on M1 for the period 1979:8–1996:12. Series M1SL from Federal

Reserve Economic Data (http://research.stlouisfed.org/fred2).
‡ Source: Clarida, Gaĺı and Gertler (1998), converted from estimates based on quarterly data to a monthly

calibration.

7.5 Dynamic simulations

This section calculates the impulse responses of output and the price level to monetary policy shocks

in the DSGE model with sales described in section 7.1 and section 7.3. These are compared to the

corresponding impulse responses in a standard DSGE model, that is, one where consumers have

regular Dixit-Stiglitz preferences and thus firms employ a one-price strategy, and price adjustment

times are staggered according to the Calvo model. With Calvo pricing, a standard New Keynesian

Phillips curve is obtained.11 The latter model is otherwise identical to the DSGE model with sales.

11See appendix A.10 for details.
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The calibrated parameters of the DSGE model with sales are given in Table 2 and Table 3.

For the standard model, the same parameter values from Table 3 are used, with the probability of

price stickiness applying to a firm’s single price, rather than its normal price in the sales model. In

place of parameters ε, η and λ, the standard model requires only a calibration of the constant price

elasticity of demand ε. This is chosen to match the average markup found in the sales model.12

Impulse response functions are calculated for the two monetary policy experiments described

in section 7.4: a persistent shock to money growth [7.17a]; and a shock to a Taylor rule with

interest-rate smoothing [7.17b].

Figure 6: Impulse responses to a persistent shock to money growth
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Notes: The specification of monetary policy used is equation [7.17a].

Figure 6 plots the impulse responses when money growth follows an AR(1) process in both

the sales model and the standard model. As in the static analysis of section 5, the real effects of

monetary policy in the model with sales are large and very similar to those found in the standard

model, in spite of the full flexibility of sales. The ratio of the cumulative deviations of output in

the two models is 0.929. The response of prices in the sales model shows a small jump immediately

12See footnote 9 for details. The calculations lead to ε = 3.77.
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after the shock. This corresponds to the term ∆xt in the Phillips curve [7.6].

The impulse responses are not particularly sensitive to the calibrated parameters. Considering

the same range of parameters as was done in the sensitivity analysis of section 5.2 leads only to

small differences in the findings.

Figure 7 shows an example of a price path in the model with sales using the baseline calibra-

tion. The underlying stochastic process for the money supply is a random walk with drift. The

behaviour depicted is qualitatively and quantitatively consistent with real-world examples of prices,

even without any idiosyncratic shocks in the model.13

Figure 7: Theoretical price path implied by the model with sales

Time
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0.80
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Notes: Generated using the baseline calibration of the DSGE model with sales when the money supply
follows a random walk with drift.

When the central bank follows a Taylor rule, as in [7.17b], the reaction to shocks is somewhat

different, as is seen in Figure 8. The responses of output in the sales model and in the standard

model are now virtually identical. But the responses of prices are different. As before, the sales

model features an initial jump in the price level. This is more marked than in the case of a shock to

the money supply. The difference in price-level response diminishes over time, but does not vanish

in the long run, and is found to be around 17% in the baseline calibration.

In essence, however, this finding is not in conflict with the those obtained when the money

supply is exogenous. The addition of sales to the model affects the Phillips curve relationship,

which determines how much inflation is generated for a given output gap. The analysis in the case

of exogenous money shows that sales cause a slight reduction in the real effects of monetary policy.

In the case of the Taylor rule, the effect on output is approximately the same in both models, but

cumulated inflation in the sales model is a little higher.

13Without any shocks at all, sales would still occur at a very similar frequency, but the price would alternate
between two fixed levels.
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Figure 8: Impulse responses to interest-rate shock with a Taylor rule
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Notes: The specification of monetary policy used is equation [7.17b].

8 Conclusions

For macroeconomists grappling with the welter of recent micro pricing evidence, one particularly

puzzling feature is noteworthy: the large, frequent and short-lived price changes followed by prices

returning exactly to their former levels. If price changes are driven purely by shocks then explaining

this tendency requires a very special configuration of shocks. The model presented in this paper

shows that this pricing behaviour arises in equilibrium if firms face consumers with sufficiently

different price sensitivities. No idiosyncratic shocks are needed to generate sales.

The model explains why firms choose a two-price distribution with a normal price and a sale

price, and thus want to switch frequently between the two points of the distribution. The two desired

prices themselves are sensitive to shocks, but the magnitude of changes in the desired normal and sale

prices is dwarfed by the gap between the two. So the apparent “puzzle” of why prices return to their

former levels reduces to explaining why after a move from $5.99 to $4.49, a price returns to $5.99

instead of $6.02. But small costs of reoptimizing the normal price would explain firms’ reluctance

to make such small changes in accordance with a well-established literature in macroeconomics.
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One main message from the micro evidence is that the normal price is indeed considerably sticky,

despite the significant flexibility of sales. Since the real effects of monetary policy depend on how

sticky prices are, how should this evidence be interpreted? On the one hand, some would argue that

temporary sales are orthogonal to monetary policy and ignore such price changes. On the other

hand, others would argue that if decisions about temporary sales react to demand fluctuations,

they should also react to monetary policy shocks to the extent that these shocks have an impact on

aggregate demand.

The model proposed in this paper contains a rationale for sales, and therefore can be used to

understand the impact of flexibility in the sales decisions alongside stickiness in the normal price for

monetary policy analysis. In the model, sales are there for a reason, but firms do have an incentive

to vary sales in response to shocks of all kinds, including those to monetary policy. However, it turns

out that firms barely adjust sales in response to monetary policy shocks because the rationale for

sales also implies that sales are strategic substitutes, that is, firms have incentives to increase sales

when others decrease them. While a firm may adjust sales strongly in response to shocks affecting

only itself, it will not do so in the case of shocks affecting all firms.

The findings of this paper indicate that in a world with both sticky normal prices and flexible

sales, it is predominantly stickiness in the normal price that matters so far as monetary policy

analysis is concerned. Arriving at this conclusion requires a careful modelling of the reasons for

sales. Thus the results highlight the importance for macroeconomics of understanding what lies

behind firms’ pricing decisions.
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A Technical appendix

A.1 Properties of the demand, total revenue and marginal revenue
functions

The structure of household consumption preferences introduced in section 3.2 implies that firms face a
demand curve q = D(p;PB, E) of the form given in equation [3.10] at each moment. It it easier to analyse
the properties of this demand function — and the associated total and marginal revenue functions — by
working with what can be thought of as the corresponding “relative” demand function D(ρ), defined by

D(ρ) ≡ λρ−ε + (1− λ)ρ−η , [A.1.1]

which satisfies D(1) = 1 for all choices of parameters. The relative demand function q = D(ρ) gives the
“relative” quantity sold q as a function of the relative price ρ, where relative price here means money price
p relative to PB, the price level for bargain hunters from [3.4], and relative quantity means quantity q
relative to E/P εB, where E = P εY is a measure of aggregate expenditure:

ρ ≡ p

PB
, q ≡ P εB

E q . [A.1.2]

With these definitions, the original demand function [3.10] can be stated in terms of the relative demand
function [A.1.1]:

D(p;PB, E) =
E
P εB
D
(
p

PB

)
. [A.1.3]

The relative demand function [A.1.1] is a continuously differentiable function of ρ for all ρ > 0, and
is strictly decreasing everywhere. Notice also that D(ρ) → ∞ as ρ → 0, and D(ρ) → 0 as ρ → ∞. By
continuity and monotonicity, this implies that every q > 0 there is a unique ρ > 0 such that q = D(ρ).
Thus the inverse demand function D−1(q) is well defined for all q > 0, and is itself strictly decreasing and
continuously differentiable. The total revenue function R(q) is defined in terms of the relative demand
function as follows:

R(q) ≡ qD−1(q) . [A.1.4]

Using the inverse demand function ρ = D−1(q), total revenue can be equivalently expressed as R(q) =
D−1(q)D

(
D−1(q)

)
, and by substituting the demand function from [A.1.1],

R(q) = λ
(
D−1(q)

)1−ε + (1− λ)
(
D−1(q)

)1−η
.

Since ε > 1 and η > 1, and given the limiting behaviour of the demand function established above, it must
be the case that R(q)→∞ as q→∞ and R(q)→ 0 as q→ 0. Hence, R(0) = 0, and R(q) is continuously
differentiable for all q ≥ 0.

Differentiating the total revenue function R(q) from [A.1.4] using the inverse function theorem and the
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demand function [A.1.1] yields the marginal revenue function

R′ (D(ρ)) =
(

(ε− 1)λ+ (η − 1)(1− λ)ρε−η

ελ+ η(1− λ)ρε−η

)
ρ , [A.1.5]

for all ρ > 0. Because ε > 1 and η > 1, it must be the case that R′(q) > 0 for all q, so total revenue R(q)
is a strictly increasing in q. Furthermore, because ρ → ∞ as q → 0, and ρ → 0 as q → ∞, [A.1.5] implies
R′(q)→∞ as q→ 0 and R′(q)→ 0 as q→∞.

Just as [A.1.3] shows the original demand function D(p;PB, E) in [3.10] is related to the relative demand
function D(ρ) in [A.1.1], there are similar connections between the original inverse demand function, original
total revenue R(q;PB, E) and marginal revenue R′(q;PB, E) functions and their equivalents defined in terms
of the relative demand function. The relation between the inverse demand functions follows directly from
[A.1.3]:

D−1(q;PB, E) = PBD−1

(
qP εB
E

)
. [A.1.6]

Equations [3.11], [A.1.4] and [A.1.6] justify the following links between the total revenue functions and their
derivatives:

R(q;PB, E) = P 1−ε
B ER

(
qP εB
E

)
, R′(q;PB, E) = PBR′

(
qP εB
E

)
, R′′(q;PB, E) =

P 1+ε
B

E R
′′
(
qP εB
E

)
.

[A.1.7]
The next result examines the conditions under which marginal revenue R′(q) is non-monotonic.

Lemma 1 Consider the marginal revenue function R′(q) derived from [A.1.4] using the relative demand
function [A.1.1], and suppose that η > ε > 1.

(i) If λ = 0 or λ = 1 or condition [4.3] does not hold then marginal revenue R′(q) is strictly decreasing
for all q ≥ 0.

(ii) If 0 < λ < 1 and ε and η satisfy condition [4.3] then there exist q and q such that 0 < q < q < ∞
and where R′(q) is strictly decreasing between 0 and q and above q, and strictly increasing between
q and q.

Proof (i) If λ = 0 then it follows from [A.1.5] that R′(q) = ((η − 1)/η)D−1(q), and if λ = 1 that
R′(q) = ((ε− 1)/ε)D−1(q). Since the inverse demand function D−1(q) is strictly decreasing, then so must
be marginal revenue in these cases.

(ii) In what follows, assume 0 < λ < 1. Differentiate [A.1.5] to obtain

D′(ρ)R′′ (D(ρ)) =
η(η − 1)

(
1−λ
λ ρε−η

)2 − ((η − ε)2 − η(ε− 1)− ε(η − 1)
) ( (1−λ)

λ ρε−η
)

+ ε(ε− 1)(
ε+ η

(
1−λ
λ ρε−η

))2 , [A.1.8]

for all ρ > 0, where the assumption that λ 6= 0 has been used to simplify the expression by dividing through
by λ2. Define the function Z(q) in terms of inverse demand function D−1(q),

Z(q) ≡ 1− λ
λ

(
D−1(q)

)ε−η
, [A.1.9]

and use this together with [A.1.8] to write the derivative of marginal revenue as:

R′′(q) =
η(η − 1) (Z(q))2 −

(
(η − ε)2 − η(ε− 1)− ε(η − 1)

)
Z(q) + ε(ε− 1)

D′ (D−1(q)) (ε+ ηZ(q))2 . [A.1.10]

Since D′
(
D−1(q)

)
< 0 for all q, and the remaining term in the denominator of [A.1.10] is strictly positive,

the sign of R′′(q) is the opposite of that of the quadratic function

Q(z) ≡ η(η − 1)z2 −
(
(η − ε)2 − η(ε− 1)− ε(η − 1)

)
z + ε(ε− 1) , [A.1.11]
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evaluated at z = Z(q). The aim is to find a region where marginal revenue is upward sloping, which is
corresponds to Q(z) being negative, which is in turn equivalent to its having positive roots (because it is
u-shaped).

Under the assumptions ε > 1 and η > 1, the product of the roots of quadratic equation Q(z) = 0 is
positive, so it has either no real roots, two negative real roots, or two positive real roots (possibly including
repetitions). In the first two cases, since Q(0) = ε(ε − 1) > 0 it then follows that Q(z) > 0 for all z > 0.
To see which elasticities ε and η lead to positive real roots, define the following two quadratic functions of
the elasticity η (for a given value of the elasticity ε):

Gp(η; ε) ≡ η2 − (4ε− 1)η + ε(ε+ 1) , Gr(η; ε) ≡ η2 − 2(3ε− 1)η + (ε+ 1)2 . [A.1.12]

By comparing Gp(η; ε) to the coefficient of z in [A.1.11], the sum of the roots Q(z) = 0 is positive if and
only if Gp(η; ε) > 0 since η > 1. The discriminant of the quadratic Q(z) can be factored in terms of Gr(η; ε)
as follows: (

(η − ε)2 − η(ε− 1)− ε(η − 1)
)2 − 4εη(ε− 1)(η − 1) = (η − ε)2Gr(η; ε) , [A.1.13]

and as η 6= ε, the equation Q(z) = 0 has two distinct real roots if and only if Gr(η; ε) > 0.
To summarize, the quadratic Q(z) has two positive real roots if and only if Gp(η; ε) > 0 and Gr(η; ε) > 0.

It turns out that in the relevant parameter region η > ε > 1, the binding condition is Gr(η; ε) > 0.
As ε > 1, the quadratic equations Gp(η; ε) = 0 and Gr(η; ε) = 0 in η (for a given value of ε) both have

two distinct positive real roots (this can be confirmed by deriving the discriminants and the sums and
products of the roots). Let η∗(ε) be the larger of the two roots of the equation Gr(η; ε) = 0:

η∗(ε) ≡ (3ε− 1) + 2
√

2ε(ε− 1) ,

and observe that η∗(ε) > ε for all ε > 1. Since both quadratics Gp(η; ε) and Gr(η; ε) have a positive coefficient
on η2, it must be the case that they are negative for all η values lying strictly between their two roots.

The difference between the two quadratic functions Gp(η; ε) and Gr(η; ε) in [A.1.12] is

Gp(η; ε)− Gr(η; ε) = (2ε− 1)η − (ε+ 1) ,

a linear function of η. Thus let η̂(ε) be the unique solution for η of the equation Gp(η; ε) = Gr(η; ε), taking
ε as given. Since ε > 1, such a solution exists and is unique, and Gp(η; ε) > Gr(η; ε) if and only if η > η̂(ε).
The difference between solution η̂(ε) and ε is given by:

η̂(ε)− ε =
2ε− (2ε2 − 1)

2ε− 1
. [A.1.14]

Consider first the case of ε values where η̂(ε) ≤ ε. So for all η > ε, Gr(η; ε) ≤ Gp(η; ε). Since Gp(ε; ε) =
−2ε(ε − 1) < 0 for all ε > 1, it must also be the case that Gr(ε; ε) < 0. Therefore, the smaller root of
Gr(η; ε) = 0 is less than ε. This establishes that the only η values for which all the inequalities η > ε,
Gr(η; ε) > 0 and Gp(η; ε) > 0 hold are those satisfying η > η∗(ε).

Now consider what happens in the remaining case where η̂(ε) > ε. By rearranging the terms in [A.1.12],
notice that Gp(η; ε) = (η − ε)2 − 1− ((2ε− 1)η − (ε+ 1)). Therefore, from the definition of η̂(ε), it follows
that Gp(η̂(ε); ε) = Gr(η̂(ε); ε) = (η̂(ε) − ε)2 − 1. As η̂(ε) > ε in this case, equation [A.1.14] implies that
2ε− (2ε2 − 1) > 0, and therefore 0 < η̂(ε)− ε < 1 if 2ε2 − 1 > 1, which is equivalent to ε2 > 1. This must
hold since ε > 1, and hence (η̂(ε)− ε)2 < 1. Thus Gp(η̂(ε); ε) = Gr(η̂(ε); ε) < 0. As Gp(η; ε) > Gr(η; ε) holds
for η > η̂(ε), the larger of the roots of Gp(η; ε) = 0 lies strictly between η̂(ε) and η∗(ε). Therefore in this
case as well, the only values of η consistent with all the inequalities η > ε, Gr(η; ε) > 0 and Gp(η; ε) > 0 are
those satisfying η > η∗(ε).

Therefore, for η > ε > 1, if η > η∗(ε) then the quadratic equation Q(z) = 0 from [A.1.11] has two
distinct positive real roots z and z such that z < z, and Q(z) < 0 must hold for all z ∈ [z, z] since the
coefficient of z2 is positive. For z ∈ [0, z) or z ∈ (z,∞), the quadratic satisfies Q(z) > 0. If η ≤ η∗(ε)
then Q(z) > 0 for all z (except at just one isolated z value when η = η∗(ε) exactly). Therefore, in the case
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η ≤ η∗(ε), it follows from [A.1.10] and [A.1.11] that R′(q) is strictly decreasing for all q ≥ 0.
Now restrict attention to the case where η > η∗(ε). Since 0 < λ < 1, η > ε, and the inverse demand

function D−1(q) is strictly decreasing, the function Z(q) defined in [A.1.9] is strictly increasing. Its inverse
is

Z−1(z) = D
((

λ

1− λz
) 1
ε−η
)
, [A.1.15]

which is also a strictly increasing function. Define q ≡ Z−1(z) and q ≡ Z−1(z) using the roots z and z of
the quadratic equation Q(z) = 0. From [A.1.10] and [A.1.11] it follows that R′′(q) = 0 and R′′(q) = 0. As
Z−1(z) is a strictly increasing function, it must therefore be the case that R′(q) is strictly decreasing for
0 < q < q and q > q, and strictly increasing for q < q < q. The condition η > η∗(ε) is the same as that
given in [4.3], so this completes the proof. �

Given the non-monotonicity of the marginal revenue function R′(q), the following result provides the
foundation for verifying the existence and uniqueness of the two-price equilibrium.

Lemma 2 Given the total revenue function R(q) defined in [A.1.4], suppose that 0 < λ < 1, and ε and η
are such that the non-monotonicity condition [4.3] holds:

(i) There exist unique values qS and qN such that 0 < qS < qN <∞ which satisfy the equations:

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [A.1.16]

(ii) The solutions qS and qN of the above equations must also satisfy the inequalities:

R′′(qS) < 0 , R′′(qN ) < 0 , R(qS)/qS > R′(qS) , R(qN )/qN > R′(qN ) . [A.1.17]

(iii) The following holds for all q ≥ 0:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN ) . [A.1.18]

Proof (i) When 0 < λ < 1, and condition [4.3] hold then Lemma 1 demonstrates that there exist q and
q such that 0 < q < q < ∞ and R′′(q) = R′′(q) = 0. Define R′ ≡ R′(q) and R′ ≡ R′(q). Since Lemma 1
also shows that R′(q) is strictly increasing between q and q, it must be the case that R′ < R′.

The function R′(q) is continuously differentiable for all q > 0 and limq→0R′(q) =∞. Hence there must
exist a value q

1
such that R′(q

1
) = R′ and q

1
< q. Define q1 ≡ q. According to Lemma 1, the function

R′(q) is strictly decreasing on the [q
1
, q1], and thus has range [R′,R′].

Define q
2
≡ q and q2 ≡ q. Given the construction of R′ and R′ and the fact that R′(q) is strictly

increasing on [q
2
, q2], the range of the function is [R′,R′] on this interval.

Now define q
3
≡ q. Since limq→∞R′(q) = 0 and R′(q) is continuously differentiable, there must exist a

q3 such that R′(q3) = R′ and q3 > q
3
. Lemma 1 shows that R′(q) is strictly decreasing on [q

3
, q3] and so

has range [R′,R′] on this interval.
For each κ ∈ [0, 1], define the function q1(κ) to be

q1(κ) ≡ (1− κ)q
1

+ κq1 , [A.1.19]

in other words, a convex combination of q
1

and q1, which is strictly increasing in κ. The construction
of this function, the monotonicity of R′(q) on [q

1
, q1], and the definitions of R′ and R′ guarantee that

R′ ≤ R′(q1(κ)) ≤ R′ for all κ ∈ [0, 1]. Given that the function R′(q) is also strictly monotonic on each
of intervals [q

2
, q2] and [q

3
, q3], and has range [R′,R′] on both, there must exist unique values q2 ∈ [q

2
, q2]

and q3 ∈ [q
3
, q3] such that R′(q2) = R′(q3) = R′(q1(κ)) for a particular κ. Hence define the functions

q2(κ) and q3(κ) to give these values on the two intervals for each specific κ ∈ [0, 1]:

R′(q1(κ)) ≡ R′(q2(κ)) ≡ R′(q3(κ)) . [A.1.20]
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At the endpoints of the intervals (corresponding to κ = 0 or κ = 1) note that

q2(0) = q3(0) = q , q1(1) = q2(1) = q . [A.1.21]

Continuity and differentiability of R′(q) and of q1(κ) from [A.1.19] guarantee that q2(κ) and q3(κ) are
continuous for all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). By differentiating [A.1.20] it follows that:

q′2(κ) =
R′′(q1(κ))
R′′(q2(κ))

q′1(κ) , q′3(κ) =
R′′(q1(κ))
R′′(q3(κ))

q′1(κ) .

As Lemma 1 establishes R(q) is concave on [q
1
, q1] and [q

3
, q3], and convex on [q

2
, q2], it follows from the

above that q′2(κ) < 0 and q′3(κ) > 0 for all κ ∈ (0, 1).

Existence

Now for each κ ∈ [0, 1], define the function z(κ) in terms of the following integrals:

z(κ) ≡
∫ q3(κ)

q2(κ)

(
R′(q)−R′(q2(κ))

)
dq−

∫ q2(κ)

q1(κ)

(
R′(q2(κ))−R′(q)

)
dq . [A.1.22]

From continuity and differentiability of q1(κ), q2(κ) and q3(κ), it follows that z(κ) is also continuous for
all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). Evaluating z(κ) at the endpoints of the interval [0, 1] and
making use of [A.1.21] yields:

z(0) = −
∫ q2

q
1

(
R′ −R′(q)

)
dq < 0 , z(1) =

∫ q3

q
2

(
R′(q)−R′

)
dq > 0 ,

where the first inequality follows because R′(q) < R′ for all q
1
< q < q2, and the second because R′(q) > R′

for all q
2
< q < q3. By differentiating z(κ) in [A.1.22] using Leibniz’s rule and substituting the definitions

from [A.1.20] leads to the following expression:

z′(κ) = −(q3(κ)− q1(κ))q′2(κ)R′′(q2(κ)) > 0 ,

for all κ ∈ (0, 1) since q3(κ) > q1(κ), q′2(κ) < 0, and R′′(q2(κ)) > 0 by the result of Lemma 1. Therefore,
because z(0) < 0, z(1) > 0, and z(κ) is continuous and strictly increasing in κ, there exists a unique
κ∗ ∈ (0, 1) such that z(κ∗) = 0.

The unique solution of the system of equations [A.1.16] is found by setting qN ≡ q1(κ∗) and qS ≡ q3(κ∗),
using the solution κ = κ∗ of equation z(κ) = 0 obtained above. From [A.1.20], it follows immediately
that R′(qN ) = R′(qS), establishing the first equality in [A.1.16]. Since z(κ∗) = 0, the definition of z(κ)
in equation [A.1.22] implies:∫ qS

q2(κ∗)

(
R′(q)−R′(q2(κ∗))

)
dq =

∫ q2(κ∗)

qN

(
R′(q2(κ∗))−R′(q)

)
dq , [A.1.23]

which can be rearranged to deduce∫ qS

qN

R′(q)dq = (qS − qN )R′(q2(κ∗)) . [A.1.24]

And because [A.1.20] implies R′(q2(κ∗)) = R′(qN ) = R′(qS), it is established that

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
, [A.1.25]

that is, these values of qN and qS are indeed a solution of the equations in [A.1.16].

Uniqueness
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Now the uniqueness of this solution is demonstrated. First note that given the monotonicity of R′(q)
on the intervals [0, q] and [q,∞), and using the fact that the range of this function is [R′,R′] on [q

1
, q1],

[q
2
, q2] and [q

3
, q3], it follows that no solution of [A.1.16] can be found in either [0, q

1
) or (q3,∞) since

marginal revenue R′(q) needs to be equalized at two points. Furthermore, as the definition of the functions
q1(κ), q2(κ) and q3(κ) in [A.1.20] makes clear, for marginal revenue to be equalized at two quantities, it
is necessary that those quantities correspond to two out of the three of q1(κ), q2(κ) and q3(κ) for some
particular κ ∈ [0, 1].

In addition to equalizing marginal revenue, the solution qS and qN must satisfy the second equality in
[A.1.16]. If qN is set equal to q1(κ) and qS equal to q3(κ) for the same value of κ ∈ [0, 1], then equations
[A.1.23] and [A.1.24] show that the second equality in [A.1.16] requires z(κ) = 0. But it has already been
demonstrated that there is one and only one solution of this equation.

Now consider the alternative choices of setting qN to q1(κ) and qS to q2(κ) for some common κ ∈ [0, 1],
or to q2(κ) and q3(κ) respectively, again for some common value of κ. Since [A.1.20] holds by construction,
and the function R′(q) is strictly decreasing on the intervals [q

1
, q1] and [q

3
, q3], and strictly increasing on

[q
2
, q2], it follows that:∫ q2(κ)

q1(κ)
R′(q)dq < (q2(κ)− q1(κ))R′(q2(κ)) ,

∫ q3(κ)

q2(κ)
R′(q)dq > (q3(κ)− q2(κ))R′(q2(κ)) ,

and hence both inequalities R(q2(κ))−R(q1(κ)) < (q2(κ)− q1(κ))R′(q2(κ)) and R(q3(κ))−R(q2(κ)) >
(q3(κ) − q2(κ))R′(q2(κ)) must hold for every κ ∈ [0, 1]. Consequently, there is no way that all three
equations in [A.1.25] can hold except by setting qN = q1(κ∗) and qS = q3(κ∗). Therefore the solution of
[A.1.16] constructed above is unique.

(ii) Lemma 1 shows that R(q) is a strictly concave function on the intervals [0, q] and [q,∞). The
argument above demonstrating the existence and uniqueness of the solution establishes that qN and qS
must lie respectively in the intervals (q

1
, q1) and (q

3
, q3), which are themselves contained in [0, q] and [q,∞)

respectively. Together these results imply R′′(qN ) < 0 and R′′(qS) < 0, and that the following inequalities
must hold

R(q) ≤ R(qN )+R′(qN )(q−qN ) ∀q ∈ [0, q] , and R(q) ≤ R(qS)+R′(qS)(q−qS) ∀q ∈ [q,∞) , [A.1.26]

where the inequalities are strict for q 6= qN and q 6= qS respectively. Note that the equations in [A.1.16]
characterizing qS and qN can be rearranged to show that:

R(qS)−R′(qS)qS = R(qN )−R′(qN )qN . [A.1.27]

By evaluating the first inequality in [A.1.26] at q = 0, where R(0) = 0, and making use of the equation
above it can be deduced that

R(qS)−R′(qS)qS > 0 , R(qN )−R′(qN )qN > 0 ,

and thus R(qS)/qS > R′(qS) and R(qN )/qN > R′(qN ). This confirms all the inequalities in [A.1.17].

(iii) By applying the inequalities in [A.1.26] at the endpoints q and q of the intervals [0, q] and [q,∞):

R(q) ≤ R(qN ) +R′(qN )(q− qN ) , and R(q) ≤ R(qN ) +R′(qN )(q− qN ) . [A.1.28]

Now take any q ∈ (q, q) and note that because Lemma 1 demonstrates R(q) is a convex function on this
interval:

R(q) ≡ R
((

q− q

q− q

)
q +

(
q− q

q− q

)
q

)
≤
(

q− q

q− q

)
R(q) +

(
q− q

q− q

)
R(q) , [A.1.29]

using the fact that the coefficients of R(q) and R(q) in the above are strictly positive and sum to one. A
weighted average of the two inequalities in [A.1.28] using as weights the coefficients from [A.1.29] yields
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R(q) ≤ R(qN ) +R′(qN )(q − qN ) for all q ∈ (q, q). This finding, together with the inequalities in [A.1.26]
and the equations [A.1.25] and [A.1.27], implies

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN )

for all q ≥ 0. Thus [A.1.18] is established, which completes the proof. �

The existence and uniqueness of the solution of equations [A.1.16] has been demonstrated given the
condition [4.3] for the non-monotonicity of the marginal revenue function R′(q). A method for computing
this solution and a characterization of which parameters affect the solution is provided in the following
result.

Lemma 3 Let qS and qN be the solution of equations [A.1.16] (under the conditions assumed in Lemma 2),
and ρN ≡ D−1(qN ) and ρS ≡ D−1(qS) are the corresponding relative prices consistent with demand function
[A.1.1]. In addition, define the markup ratio µ ≡ ρS/ρN and the quantity ratio χ ≡ qS/qN .

Consider the functions:

a0(µ; ε, η) ≡ ε(ε− 1)µη−ε , [A.1.30a]

a1(µ; ε, η) ≡ η(ε− 1)
(

1− µη−ε+1

1− µ

)
+ ε(η − 1)

(
µη−ε − µ

1− µ

)
, [A.1.30b]

a2(η) ≡ η(η − 1) , [A.1.30c]

b0(µ; ε, η) ≡ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
, [A.1.30d]

b1(µ; ε, η) ≡ (η − 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
)
, [A.1.30e]

b2(µ; ε, η) ≡ (ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η − 1)
(
µη−ε − µη

1− µη
)
, [A.1.30f]

b3(η) ≡ (η − 1) , [A.1.30g]

and the resultant R(µ; ε, η), defined in terms of the following determinant

R(µ; ε, η) ≡

∣∣∣∣∣∣∣∣∣∣
a0(µ; ε, η) a1(µ; ε, η) a2(η) 0 0

0 a0(µ; ε, η) a1(µ; ε, η) a2(η) 0
0 0 a0(µ; ε, η) a1(µ; ε, η) a2(η)

b0(µ; ε, η) b1(µ; ε, η) b2(µ; ε, η) b3(η) 0
0 b0(µ; ε, η) b1(µ; ε, η) b2(µ; ε, η) b3(η)

∣∣∣∣∣∣∣∣∣∣
. [A.1.31]

Define the function z(µ; ε, η):

z(µ; ε, η) ≡ −a1(µ; ε, η)−
√

a1(µ; ε, η)2 − 4a2(η)a0(µ; ε, η)
2a2(η)

. [A.1.32]

(i) The markup ratio µ ≡ ρS/ρN is the only solution of R(µ; ε, η) = 0 for 0 < µ < 1 where z(µ; ε, η) is a
positive real number, and thus µ depends only on the parameters ε and η.

(ii) Given the value of µ satisfying R(µ; ε, η) = 0 and the function z(µ; ε, η) from [A.1.32], the quantity
ratio χ ≡ qS/qN is

χ = µ−ε
(

1 + µ−(η−ε)z(µ; ε, η)
1 + z(µ; ε, η)

)
, [A.1.33]

and thus depends only on the parameters ε and η.
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(iii) The equilibrium markups µS and µN depend only on ε and η and are given by:

µS =
ε+ ηµ−(η−ε)z(µ; ε, η)

(ε− 1) + (η − 1)µ−(η−ε)z(µ; ε, η)
, µN =

ε+ ηz(µ; ε, η)
(ε− 1) + (η − 1)z(µ; ε, η)

. [A.1.34]

(iv) The equilibrium values of ρN , ρS , qN and qS depend on parameters ε, η and λ and can be obtained
as follows:

ρN =
(

λ

1− λz(µ; ε, η)
)− 1

η−ε
, ρS =

(
λ

1− λz(µ; ε, η)
)− 1

η−ε
µ , [A.1.35]

and qN = D(ρN ) and qS = D(ρS) using the relative demand function D(ρ) from [A.1.1].

Proof (i) Using the expression for marginal revenue from [A.1.5], the first equality in [A.1.16] is
equivalent to the requirement that(

λ(ε− 1) + (1− λ)(η − 1)ρε−ηN

λε+ (1− λ)ηρε−ηN

)
ρN =

(
λ(ε− 1) + (1− λ)(η − 1)ρε−ηS

λε+ (1− λ)ηρε−ηS

)
ρS .

By dividing numerator and denominator of the above by λ, defining z ≡ ((1−λ)/λ)ρε−ηN , and restating the
resulting equation in terms of µ ≡ ρS/ρN and z it is seen that:

µ =

(
ε+ ηµ−(η−ε)z

ε+ ηz

)(
(ε− 1) + (η − 1)z

(ε− 1) + (η − 1)µ−(η−ε)z

)
. [A.1.36]

Since ρS < ρN the markup ratio satisfies 0 < µ < 1, and thus neither of the denominators of the fractions
above can be zero. Hence [A.1.36] can be rearranged to obtain a quadratic equation in z, for a given value
of µ,

η(η − 1)µ−(η−ε)(1− µ)z2 +
(
ε(η − 1)

(
1− µ1−(η−ε)

)
+ η(ε− 1)

(
µ−(η−ε) − µ

))
z + ε(ε− 1)(1− µ) = 0 ,

which as 0 < µ < 1 can in turn be multiplied on both sides by µη−ε/(1 − µ) to obtain an equivalent
quadratic:

η(η − 1)z2 +
(
η(ε− 1)

(
1− µη−ε+1

1− µ

)
+ ε(η − 1)

(
µη−ε − µ

1− µ

))
z + ε(ε− 1)µη−ε = 0 . [A.1.37]

This quadratic is denoted by Q(z;µ, ε, η) ≡ a0(µ; ε, η)+a1(µ; ε, η)z+a2(η)z2, where the coefficient functions
a0(µ; ε, η), a1(µ; ε, η) and a2(η) listed in [A.1.30] are obtained directly from [A.1.37].

Now note that the equations in [A.1.16] can be rearranged to deduce R(qN ) − qNR′(qN ) = R(qS) −
qSR′(qS). The definition of the total revenue function R(q) in [A.1.4] shows that it can also be written as
R (D(ρ)) = ρD(ρ) for all ρ > 0. By combining these two observations and substituting qS = D(ρS) and
qN = D(ρN ), the following equation is obtained:

qS
(
ρS −R′(qS)

)
= qN

(
ρN −R′(qN )

)
. [A.1.38]

Expressing this in terms of the quantity ratio χ ≡ qS/qN and dividing both sides by R′(qS) = R′(qN )
(justified by equation [A.1.16]), [A.1.38] becomes

χ =
(

ρN
R′ (D(ρN ))

− 1
)/( ρS

R′ (D(ρS))
− 1
)
. [A.1.39]

The formula for marginal revenue R′(D(ρ)) in [A.1.5] can be rearranged to show

ρ

R′ (D(ρ))
− 1 =

λ+ (1− λ)ρε−η

λ(ε− 1) + (η − 1)(1− λ)ρε−η
,
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which can be substituted into [A.1.39] to obtain

χ =

(
λ+ (1− λ)ρε−ηN

λ+ (1− λ)ρε−ηS

)(
(ε− 1)λ+ (η − 1)(1− λ)ρε−ηS

(ε− 1)λ+ (η − 1)(1− λ)ρε−ηN

)
.

By dividing numerator and denominator of both fractions by λ and recalling the definitions of µ ≡ ρS/ρN
and z ≡ ((1− λ)/λ)ρε−ηN , this equation is equivalent to:

χ =
(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η − 1)µ−(η−ε)z

(ε− 1) + (η − 1)z

)
. [A.1.40]

Using the relative demand function from equation [A.1.1], the quantity ratio can also be written as
χ = D(ρS)/D(ρN ), thus

χ =
λρ−εS + (1− λ)ρ−ηS
λρ−εN + (1− λ)ρ−ηN

,

and by factorizing λρ−εS and λρ−εN from the numerator and denominator respectively, and using the defini-
tions µ ≡ ρS/ρN and z ≡ ((1− λ)/λ)ρε−ηN , the expression becomes

χ = µ−ε
(

1 + µ−(η−ε)z
1 + z

)
. [A.1.41]

Putting together the two expressions for quantity ratio χ from [A.1.40] and [A.1.41], µ and z must
satisfy the equation(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η − 1)µ−(η−ε)z

(ε− 1) + (η − 1)z

)
= µ−ε

(
1 + µ−(η−ε)z

1 + z

)
. [A.1.42]

Since the quantity ratio χ is finite, none of the terms in the denominators of [A.1.40] or [A.1.41] can be
zero, so [A.1.42] may be rearranged to obtain a cubic equation in z for a given value of µ:

(η − 1)µ−(2η−ε) (1− µη) z3 + µ−(2η−ε) ((ε− 1)
(
1− µ2η−ε)+ 2(η − 1) +

(
µη−ε − µη

))
z2

+ µ−(2η−ε)
(

(η − 1)
(
µ2(η−ε) − µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε)) z

+ (ε− 1)µ−(2η−ε)
(
µ2(η−ε) − µ2η−ε

)
= 0 .

Because 0 < µ < 1, both sides of the above can be multiplied by µ2η−ε/(1 − µη) to obtain an equivalent
cubic equation:

(η − 1)z3 +
(

(ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η − 1)
(
µη−ε − µη

1− µη
))

z2

+

(
(η − 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
))

z

+ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
= 0 . [A.1.43]

This cubic is denoted by C(z;µ, ε, η) ≡ b0(µ; ε, η)+b1(µ; ε, η)z+b2(µ; ε, η)z2 +b3(η)z3, where the coefficient
functions b0(µ; ε, η), b1(µ; ε, η), b2(µ; ε, η) and b3(η) listed in [A.1.30] are obtained directly from [A.1.43].

These steps have demonstrated that starting from a solution qS and qN of [A.1.16], the quadratic and the
cubic equations [A.1.37]–[A.1.43] in z must simultaneously hold for z = ((1−λ)/λ)ρε−ηN , with ρN ≡ D−1(qN ),
and where the coefficient functions [A.1.30] are evaluated at µ = ρS/ρN , with ρS ≡ D−1(qS). If the
quadratic equation Q(z;µ, ε, η) = 0 and cubic equation C(z;µ, ε, η) = 0 share a root then it is a standard
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result from the theory of polynomials that the resultant R(µ; ε, η), as defined in [A.1.31], is zero. Since
the coefficients of the polynomials Q(z;µ, ε, η) and C(z;µ, ε, η) are functions of the markup ratio µ and the
parameters ε and η, solving the equation R(µ; ε, η) = 0 provides a straightforward procedure for finding the
equilibrium markup ratio µ. Furthermore, the only parameters appearing in the equation R(µ; ε, η) = 0
are ε and η, so the equilibrium markup ratio µ can depend only on these parameters.

It is known that the solution of [A.1.16] for qS and qN is unique, and therefore so must the solution of
R(µ; ε, η) = 0 for µ, given the additional condition that the shared root z of the quadratic Q(z;µ, ε, η) = 0
and cubic C(z;µ, ε, η) = 0 is a positive real number. This restriction is required because z = ((1−λ)/λ)ρε−ηN ,
and ρN must of course also be a positive real number. As the product of the roots of the quadratic Q(z) = 0
is positive, the shared root z is positive and real if and only if either branch of the quadratic root function
is positive and real. Thus this can be tested by checking whether z(µ; ε, eta) is positive and real.

Note that the resultant is always zero at µ = 0 and µ = 1 for all values of ε and η. This can be seen by
taking limits of the coefficients in [A.1.30] as µ→ 0 and µ→ 1, which yields

C(z; 0, ε, η) = zQ(z; 0, ε, η) , and C(z; 1, ε, η) = (1 + z)Q(z; 1, ε, η) ,

and as the polynomials Q(z;µ, ε, η) and C(z;µ, ε, η) clearly share roots when µ = 0 or µ = 1, it follows that
R(0; ε, η) = R(1; ε, η) = 0. Thus these zeros of the equation R(µ; ε, η) = 0 must be ignored when solving
for µ.

(ii) The quadratic equation Q(z;µ, ε, η) = 0 with z = ((1 − λ)/λ)ρε−ηN finds the relative price ρN such
that with ρS = µρN , marginal revenue is the same at both ρS and ρN . Given the properties of marginal
revenue derived in Lemma 1 under the conditions shown by Lemma 2, which are necessary for the solution
qS and qN to exist, there are two candidate solutions for ρN that meet this criterion. However, Lemma 2
shows that both ρN and ρS are on the downward-sloping sections of the marginal revenue curve. To rule out
a solution in the middle upward-sloping section of marginal revenue, it is necessary to discard the smaller
of the two ρN candidates to select the correct solution. Since z is decreasing in ρN , this is equivalent to
discarding the larger of the two roots of the quadratic. Given that a2(η) from [A.1.30] is positive, the
smaller of the two roots of quadratic Q(z;µ, ε, η) = 0 is found using the expression z(µ; ε, η) in [A.1.32].

The equilibrium quantity ratio χ is obtained by substituting z = z(µ; ε, η) into [A.1.41].

(iii) Since ρS ≡ PS/PB and ρN ≡ PN/PB according to [A.1.2], the formula for the purchase multipliers
in [3.10] implies vN = ρε−ηN and vS = µε−ηvN . Using the fact that z ≡ ((1 − λ)/λ)ρε−ηN , and dividing
numerator and denominator by λ in the expression [4.5] yields [A.1.34].

(iv) By rearranging the definition of z ≡ ((1−λ)/λ)ρε−ηN and using ρS = µρN , the expressions for relative
prices ρS and ρN are obtained. This completes the proof. �

A.2 Proof of Proposition 2

Using the relationship between the total revenue function R(q;PB, E) and its equivalent R(q) defined in
[A.1.4] using relative demand function D(ρ) from [A.1.1], the corresponding marginal revenue functions
R′(q;PB, E) and R′(q) are proportional according to [A.1.7]. Lemma 1 demonstrates that R′(q) is non-
monotonic under the condition [4.3], which yields the result.

A.3 Proof of Theorem 1

Existence of two-price equilibrium

For a two-price equilibrium to exist it is necessary that first-order conditions [4.4] for profit-maximization
are satisfied for two prices pS and pN , with associated quantities qS = D(pS ;PB, E) and qN = D(pN ;PB, E),
where PB is the price index for a bargain hunter, and E = P εY is the measure of aggregate expenditure.
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The necessary conditions for the two-price equilibrium are now restated in terms of the relative demand
function D(ρ) defined in [A.1.1], and its associated total and marginal revenue functions R(q) and R′(q),
as defined in [A.1.4] and analysed in section A.1. The relative demand function q = D(ρ) is specified in
terms of the relative price ρ ≡ p/PB and relative quantity q ≡ q/(E/P εB), in accordance with [A.1.2]. Using
the relationships in [A.1.3] and [A.1.7], the first two optimality conditions in [4.4] are equivalent to:

R′
(
qSP

ε
B

E

)
= R′

(
qNP

ε
B

E

)
=
R
(
qSP

ε
B
E

)
−R

(
qNP

ε
B
E

)
qSP

ε
B
E − qNP

ε
B
E

. [A.3.1]

With qS ≡ qS/(E/P εB) and qN ≡ qN/(E/P εB), the first-order conditions in [A.3.1] become identical to the
equations from [A.1.16] studied in Lemma 2. These clearly require marginal revenueR′(q) to be equalized at
two different quantities, which means that the marginal revenue function must be non-monotonic. Lemma 1
then shows that 0 < λ < 1 and parameters ε and η satisfying the inequality [4.3] are necessary and sufficient
for this. If these conditions are met, then Lemma 2 demonstrates the existence of a unique solution qS and
qN to the equations [A.1.16].

It is necessary to check the relative quantities qS and qN are well defined to confirm the solution is
economically meaningful. This means that if ρS = D−1(qS) and ρN = D−1(qN ) are the corresponding
prices pS and pN relative to PB, then ρS < 1 < ρN . This is a necessary requirement because the price
index equation for PB in [4.8] implies

sρ1−η
S + (1− s)ρ1−η

N = 1 , [A.3.2]

and the equilibrium sales fraction s must satisfy s ∈ (0, 1).
Assume the parameters are such that ε and η satisfy [4.3], and consider a given value of λ ∈ (0, 1).

Lemma 3 shows that the markup ratio (or price ratio) µ ≡ µS/µN = ρS/ρN consistent with the unique
solution of [A.1.16] is a function of the elasticities ε and η only. The equilibrium relative prices ρS and ρN
are functions of all three parameters ε, η and λ, and can be obtained from equation [A.1.35] by substituting
the equilibrium value of µ into the function z(µ; ε, η) defined in [A.1.32]. Since ρS = µρN and µ < 1, the
requirement ρS < 1 < ρN implies µ < ρS < 1. By substituting for ρS from [A.1.35], this condition is
equivalent to:

z (µ; ε, η) <
1− λ
λ

< µ−(η−ε)z (µ; ε, η) . [A.3.3]

Define lower and upper bounds for λ conditional on ε and η using the function z(µ; ε, η) together with the
equilibrium µ as a function of ε and η:

λ(ε, η) ≡ 1
1 + µ−(η−ε)z (µ; ε, η)

, and λ(ε, η) ≡ 1
1 + z (µ; ε, η)

. [A.3.4]

Note that if z(µ; ε, η) > 0 and 0 < µ < 1 then 0 < λ(ε, η) < λ(ε, η) < 1. By rearranging the inequality
[A.3.3] and using the above definitions of the bounds on λ, it is seen to be equivalent to λ lying in the
interval:

λ(ε, η) < λ < λ(ε, η) . [A.3.5]

This restriction on λ is necessary and sufficient for the existence of an equilibrium sales fraction s ∈ (0, 1)
satisfying [A.3.2]. To see this, substitute the expressions for ρS and ρN from [A.1.35] into [A.3.2]:

{
1 + s

(
µ−(η−1) − 1

)}( λ

1− λz(µ; ε, η)
) η−1
η−ε

= 1 .

This is a linear equation in s, and has a unique solution since η > 1 and 0 < µ < 1. Solving explicitly for
s yields:

s =

(
λ

1−λz(µ; ε, η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [A.3.6]
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Recalling the equivalence of inequalities [A.3.3] and [A.3.5], it follows that s ∈ (0, 1) if and only if λ ∈
(λ(ε, η), λ(ε, η)). Therefore, for λ ∈ [0, λ(ε, η)] or λ ∈ [λ(ε, η), 1] there can be no two-price equilibrium.

Therefore, given elasticities ε and η satisfying with non-monotonicity condition [4.3] and loyal fraction
λ ∈ (λ(ε, η), λ(ε, η)), by using the arguments above there exist two distinct relative prices ρS ≡ pS/PB
and ρN ≡ pN/PB and a sales fraction s ∈ (0, 1) consistent with the first two equalities in [4.4]. Lemma 3
then demonstrates that the two purchase multipliers vS and vN and the two optimal markups µS and µN
are also determined. Equations [4.1], [4.2] and [4.5], it follows that by using the optimal markups, the
remaining first-order condition in [4.4] involving marginal cost is also satisfied. The other variables needed
for the macroeconomic equilibrium can then be determined as discussed in section 4.

Finally, the remaining first-order condition [3.13c] is checked, and then it is argued that the first-order
conditions collectively are sufficient as well as necessary for maximizing profits. Using the relationships in
[A.1.7] and the results in [A.1.17] of Lemma 2 the following can be deduced:

R(qS ;PB, E)−R′(qS ;PB, E)qS > 0 , and R(qN ;PB, E)−R′(qN ;PB, E)qN > 0 . [A.3.7]

Since s ∈ (0, 1), the Lagrangian multiplier ℵ from first-order conditions [3.13b]–[3.13c] can be determined:

ℵ = R(qS ;PB, E)−R′(qS ;PB, E)qS = R(qN ;PB, E)−R′(qN ;PB, E)qN ,

and thus from [A.3.7] it is known that ℵ > 0. By combining this expression for the Lagrangian multiplier
with the first-order condition [3.13c]:

R(q;PB, E) ≤ R(qN ;PB, E) + R′(qN ;PB, E)(q − qN ) = R(qS ;PB, E) + R′(qS ;PB, E)(q − qS) , [A.3.8]

which is required to hold for all q ≥ 0. This inequality is verified by appealing to the result in [A.1.18] of
Lemma 2 and again using [A.1.7].

The assumptions made on the production function [3.7] ensure that the total cost function C (Q;W ) in
[3.8] is continuously differentiable and convex, so for all q ≥ 0:

C (q;W ) ≥ C (Q;W ) + C ′(Q;W )(q −Q) , [A.3.9]

where Q ≡ sqS+(1−s)qN is the specific total physical quantity sold using the two-price strategy constructed
earlier. Now consider a general alternative pricing strategy for a given firm, assuming that all other firms
continue to use the same two-price strategy. The new strategy is specified in terms of a distribution function
F (p) for prices. Let G(q) ≡ 1 − F (D(p;PB, E)) be the implied distribution function for quantities sold.
The level of profits P from the new strategy can be obtained by making a change of variable from prices
to quantities in the integrals in [3.12]:

P =
∫
q
R(q;PB, E)dG(q)− C

(∫
q
qdG(q);W

)
.

Applying the inequalities for the total revenue and total cost functions from [A.3.8] and [A.3.9] to the
expression for profits yields:

P ≤
(
R(qN ;PB, E)−R′(qN ;PB, E)qN

)
−
(
C (Q;W )− C ′(Q;W )Q

)
+
(
R′(qN ;PB, E)− C ′(Q;W )

)(∫
q
qdG(q)

)
.

The first-order conditions [4.4] imply that the coefficient of the integral in the above is zero, and that
R(qN ;PB, E)−R′(qN ;PB, E)qN = R(qS ;PB, E)−R′(qS ;PB, E)qS . Recalling that Q = sqS + (1− s)qN , it
follows that

P ≤ sR(qS ;PB, E) + (1− s)R(qN ;PB, E)− C (sqS + (1− s)qN ;W ) ,

for all alternative pricing strategies. There is thus no profit-improving deviation from the two-price strategy.
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This establishes that a two-price equilibrium exists when [4.3] and λ ∈ (λ(ε, η), λ(ε, η)) hold, and that it is
unique within the class of two-price equilibria.

Uniqueness of two-price equilibrium

Suppose that the parameters ε and η are such that the two-price equilibrium exists. Now consider the
possibility that a one-price equilibrium also exists for the same parameters. Since all firms are symmetric,
the relative price corresponding to this single price must necessarily be equal to one. The relative prices
ρS and ρN in the two-price equilibrium cannot be found on the same side of one, implying µ < ρS < 1 and
thus ρS < 1 < ρN , where ρS = D−1(qS) and ρN = D−1(ρN ) for the relative quantities qS and qN . Since
[A.1.1] implies D(1) = 1 and because demand D(ρ) is strictly decreasing in ρ, it must be the case that
qN < 1 < qS .

It is known from Lemma 1 that R(q) is strictly concave in the intervals (0, q) and (q,∞), strictly convex
in (q, q), and from Lemma 2 that qN < q < q < qS .

Consider first the case where q < 1 < q. Since q = 1 for all firms in the one-price equilibrium, the
actual common quantity being produced is q1 = E/P εB using [A.1.2], where PB and E are the values of these
variables associated with the putative one-price equilibrium. Since R′′(1) > 0, equation [A.1.7] implies
R′′(q1;PB, E) > 0. Therefore, for sufficiently small ξ > 0, the profits P from offering quantity q1 − ξ to
one half of moments and q1 + ξ to the other half exceed profits from offering one price and quantity to all
moments:

1
2
R(q1 − ξ;PB, E) +

1
2
R(q1 + ξ;PB, E)− C

(
1
2

(q1 − ξ) +
1
2

(q1 + ξ);W
)
> R(q1;PB, E)− C (q1;W ) .

Therefore a one-price equilibrium cannot exist in this case.
Now consider the case where qN < 1 < q. Let p1 = PB denote the price that it is claimed all firms will

use in a one-price equilibrium, and q1 = E/P εB the associated quantity sold. Now let qS = D(ρSp1;PB, E)
be quantity sold if the sales relative price ρS = D−1(qS) is used when other firms are following the one-price
strategy of charging p1. Consider an alternative strategy that sells at price ρSp1 at a fraction ξ of moments
and at price p1 at the remaining fraction 1− ξ. Profits from the hybrid strategy are denoted by P and are
given by

P = (1− ξ)R(q1;PB, E) + ξR(qS ;PB, E)− C ((1− ξ)q1 + ξqS ;W ) . [A.3.10]

Since the cost function C (q;W ) is differentiable in q, the above equation can be expressed as

P = (R(q1;PB, E)− C (q1;W )) + ξ(qS − q1)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

− C ′(q1;W )
)

+ O
(
ξ2
)
,

where O
(
ξ2
)

denotes second- and higher-order terms in ξ. A necessary condition for a one-price equilibrium
is that the single price p1 is chosen optimally, which reduces to the usual marginal revenue equals marginal
cost condition R′(q1;PB, E) = C ′(q1;W ), so:

P = (R(q1;PB, E)− C (q1;W )) + ξ(qS − q)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

−R′(q1;PB, E)
)

+ O
(
ξ2
)
.

[A.3.11]
Since qN < 1 < qS in the case under consideration, the results from Lemma 2 in [A.1.16] can be

expressed as follows ∫ 1

qN

R′(q)dq +R(qS)−R(q1) = (qS − qN )R′(qN ) . [A.3.12]

Because qN < 1 < q and R′(q) is strictly decreasing for q < q, the integral satisfies∫ 1

qN

R′(q)dq < (1− qN )R′(qN ) . [A.3.13]

Noting that R′(qN ) > R′(1) because qN < 1 < q, and by substituting [A.3.13] into [A.3.12] and rearranging
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yields:
R(qS)−R(1)

qS − 1
> R′(qN ) > R′(1) , [A.3.14]

where qS > 1 has been used to preserve the direction of the inequality. Now given the fact that q1 = (E/P εB)
and qS = (E/P εB)qS from [A.1.2] and the links between the functions R(q) and R(q;PB, E) as set out in
[A.1.7]:

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

> R′(q1;PB, E) . [A.3.15]

Therefore, by comparing this inequality with [A.3.11] and noting qS > q1, it follows that for sufficiently
small ξ > 0 that P > R(q1;PB, E)−C (q1;W ), so profits from a hybrid strategy exceed those from following
the strategy required for a one-price equilibrium.

The final case to consider is q < 1 < qS . The argument here is analogous to that given above.
The alternative strategy considered is offering price pN = ρNp1 (where ρN = D−1(qN )) at a fraction
ξ of moments and price p1 = PB at the remaining fraction 1 − ξ, with quantities sold respectively of
qN = D(ρNp1;PB, E) and q1. Following the steps of [A.3.10]–[A.3.11] leads to an expression for profits P
from following this strategy:

P = (R(q1;PB, E)− C (q1;W )) + ξ(q1 − qN )
(

R′(q1;PB, E)− R(q1;PB, E)−R(qN ;PB, E)
q1 − qN

)
+ O

(
ξ2
)
.

[A.3.16]
Appealing to the properties of R(q) for q > q and following similar steps to those in [A.3.12]–[A.3.14] leads
to R′(1) > R′(qS) > (R(1)−R(qN ))/(1− qN ), and an equivalent of [A.3.15]:

R′(q1;PB, E) >
R(q1;PB, E)−R(qN ;PB, E)

q1 − qN
. [A.3.17]

Given q1 > qN , for sufficiently small ξ > 0, [A.3.16] and [A.3.17] show that there is a hybrid strategy
that delivers higher profits than the one-price strategy used by all other firms. This proves that for all
parameters where the two-price equilibrium exists, a one-price equilibrium cannot exist for any of these
parameter values.

One-price equilibrium

The first thing to note is that when the two-price equilibrium fails to exist owing to the violation of
the non-monotonicity condition [4.3], then marginal revenue R′(q;PB, E) is strictly decreasing for all q.
This makes total revenue R(q;PB, E) a strictly concave function of quantity q. Since total cost C (q;W )
is a convex function, it is easy to see that the profit function is globally concave, and thus a one-price
equilibrium will always exist, and be the only possible equilibrium for this parameter range.

To see that a one-price equilibrium exists and is unique in the other case where a two-price equilibrium
is not found, namely when marginal revenue is non-monotonic, but λ ∈ [0, λ(ε, η)] or λ ∈ [λ(ε, η), 1], note
that λ lying in these intervals is equivalent to 1 > qS or 1 < qN respectively.

Taking the first of these cases, the concavity of R(q) on [q,∞) (which includes qS), as shown in
Lemma 1, establishes that R(q) ≤ R(1) + R′(1)(q − 1) for all q ∈ [q,∞). Lemma 2 shows that R(q) ≤
R(qS) +R′(qS)(q− qS) for all q ≥ 0. First note that the concavity of R(q) implies R′(qS) > R′(1), which
together with the second of the previous inequalities yields R(q) ≤ R(qS) +R′(1)(q− qS) for all q ∈ [0, qS ].
Applying the first inequality at q = qS gives R(qS) ≤ R(1) +R′(1)(qS − 1). By combining these results,
R(q) ≤ R(1) +R′(1)(q− 1) for all q ≥ 0 is obtained. Then using [A.1.2] and [A.1.7] to translate this into
a property of the original total revenue function R(q;PB, E) for all q:

R(q;PB, E) ≤ R(q1;PB, E) + R′(q1;PB, E)(q − q1) . [A.3.18]

When λ ∈ [λ(ε, η), 1] then the other case to consider is 1 < qN . Using an exactly analogous argument
to that given above, it can be deduced that R(q) ≤ R(1) +R′(1)(q − 1) for all q ≥ 0 in this case as well.
Hence [A.3.18] holds in both cases. The convexity of total cost function C (q;W ) together with [A.3.18]
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proves that no pricing strategy can improve on that used in the one-price equilibrium. This completes the
proof.

A.4 Proof of Proposition 3

(i) It is shown in Lemma 3 that µ and χ can be uniquely determined as functions of ε and η when
inequality [4.3] is satisfied, as is necessary for a two-price equilibrium. Lemma 3 also gives solutions for
µS and µN , and implicitly vS and vN using [A.1.35] and the fact that vS = (pS/PB)−(η−ε) and vN =
(pN/PB)−(η−ε). These only depend on ε, η and λ. In conjunction with equation [4.8], knowledge of vS and
vN yield a linear equation for s after dividing both sides by PB.

(ii) Lemma 3 shows that µ, µS , µN and χ are independent of λ, establishing the first four claims.
Differentiating [A.3.6] yields the fifth claim.

(iii) Substituting the bounds for λ from [A.3.4] into equation [A.3.6] proves the claim.

(iv) The markup ratio µ is characterized implicitly as a root of the function R(µ; ε, η) = 0 from [A.1.31].
This is a determinant of a matrix containing continuous functions of µ, ε and η. Therefore, µ is a continuous
function of ε and η.

Obtaining the roots z and z of the quadratic Q(z) = 0 from [A.1.11] of Lemma 1, and taking the limit
as ε→ 1+ yields z → 0 and z → (η− 2)/η. Note that q and q from Lemma 1 are related to z and z by the
transformation Z−1(z) from [A.1.15], which is strictly increasing.

Let zS and zN be defined as follows in terms of the relative prices ρS and ρN :

zS ≡
1− λ
λ

ρε−ηS , zN ≡
1− λ
λ

ρε−ηN . [A.4.1]

Lemma 2 shows that qN < q < q < qS , and hence by using the monotonicity of the Z−1(z) transformation,
it follows that zN < z < z < zS . By using these inequalities and the definitions in [A.4.1], µ = ρS/ρN must
satisfy:

µ =
(
zN
zS

) 1
η−ε

<
(
z
/
z
) 1
η−ε .

As ε → 1+, µ converges to zero. Then note that χ is given by equation [A.1.33] with z(µ; ε, η) = zN , and
so χ→∞ as ε→ 1+.

The proof of Lemma 1 shows that as η → η∗(ε), Gr(η; ε)→ 0, which implies the discriminant of quadratic
Q(z) in [A.1.13] tends to zero. Therefore the roots z and z converge to some common point. Given the
continuity of the transformation Z−1(z), it follows that q and q must converge to a common point q0.
Thus in the limit, R′′(q) < 0 except at q = q0. At each stage in approaching the limit, R′(qS) = R′(qN )
must hold, and therefore qS → qN , consequently χ converges to one. Given the continuity of the demand
function D(ρ), it follows that ρS → ρN and so µ converges to one. This completes the proof.

A.5 Log linearizations

A.5.1 Sales model

The notational convention adopted here is that a bar above a variable denotes its flexible-price steady-state
value, and the corresponding sans serif letter denotes the log deviation of the variable from its steady-state
value (except for the sales fraction s, where it denotes just the deviation).

Consider first the demand function faced by firms. In the following, pS and pN denote a particular
firm’s sale price and normal price respectively. PS and PN denote the common sale and normal prices
chosen by other firms. Equation [4.10] gives the levels of demand qS and qN at sale and normal prices pS
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and pN , which has the following log-linearized form:

qS =
(

(1− λ)v̄S
λ+ (1− λ)v̄S

)
vS − ε(pS − P) + Y , [A.5.1a]

qN =
(

(1− λ)v̄N
λ+ (1− λ)v̄N

)
vN − ε(pN − P) + Y , [A.5.1b]

given in terms of log deviations of the purchase multipliers:

vS = −(η − ε) (pS − PB) , vN = −(η − ε) (pN − PB) . [A.5.2]

Substituting the purchase multipliers into the demand functions:

qS = −
(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

)
pS + (η − ε)

(
(1− λ)v̄S

λ+ (1− λ)v̄S

)
PB + εP + Y [A.5.3a]

qN = −
(
λε+ (1− λ)ηv̄N
λ+ (1− λ)v̄N

)
pN + (η − ε)

(
(1− λ)v̄N

λ+ (1− λ)v̄N

)
PB + εP + Y , [A.5.3b]

From equation [4.5], the log-linearized optimal markups at given sale and normal prices are:

µS = −cSvS , with cS ≡
λ(1− λ)(η − ε)v̄S

(λε+ (1− λ)ηv̄S) (λ(ε− 1) + (1− λ)(η − 1)v̄S)
, [A.5.4a]

µN = −cNvN , and cN ≡
λ(1− λ)(η − ε)v̄N

(λε+ (1− λ)ηv̄N ) (λ(ε− 1) + (1− λ)(η − 1)v̄N )
, [A.5.4b]

Overall demand Q = sqS + (1− s)qN can be log-linearized as follows:

Q =
(

q̄S − q̄N
s̄q̄S + (1− s̄)q̄N

)
s +

(
s̄q̄S

s̄q̄S + (1− s̄)q̄N

)
qS +

(
(1− s̄)q̄N

s̄q̄S + (1− s̄)q̄N

)
qN . [A.5.5]

The price level PB for bargain hunters as given in [4.8] (and its later generalizations) is log-linearized
as follows:

PB = θBPS + (1− θB)PN − ψBs , where [A.5.6]

θB ≡
(

s̄

s̄+ (1− s̄)µ̄η−1

)
, and ψB ≡

1
η − 1

(
1− µ̄η−1

s̄+ (1− s̄)µ̄η−1

)
,

where PS and PN are the average log-deviations of pS and pN , and s is the average deviation of the sales
fractions. In the static model, PS = pS = X and PN = pN = 0. These averages are interpreted differently
in the dynamic model.

Similarly, the log-linearized general price level P in [3.3] is:

P = s̄(λ+ (1− λ)v̄S)%̄1−ε
S PS + (1− s̄)(λ+ (1− λ)v̄N )%̄1−ε

N PN −
(

1− λ
ε− 1

)
s̄v̄S %̄

1−ε
S vS

−
(

1− λ
ε− 1

)
(1− s̄)v̄N %̄1−ε

N vN −
1

ε− 1
(
(λ+ (1− λ)v̄S)%̄1−ε

S − (λ+ (1− λ)v̄N )%̄1−ε
N

)
s ,

where PS , PN and s are averages as discussed above, and the log-deviations of the purchase multipliers
are evaluated at the average prices. Then using the expressions for the purchase multipliers and relative
prices in the flexible-price equilibrium together with the log-deviation of vS and vN from [A.5.2], and the
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expression for PB in [A.5.6], the aggregate price level is given by:

P = θPPS + (1− θP )PN − ψP s , where [A.5.7]

θP ≡ s̄(λ+ (1− λ)v̄S)%̄1−ε
S , and ψP ≡

λ

ε− 1
(
%̄1−ε
S − %̄1−ε

N

)
+

1− λ
η − 1

(
v̄S %̄

1−ε
S − v̄N %̄1−ε

N

)
.

The production function [3.7] can be log-linearized to yield

Q = αH , where α ≡ F
−1(Q̄)F ′(F−1(Q̄))
F(F−1(Q̄))

. [A.5.8]

The nominal marginal cost function [3.8] has the following log-linear form:

X = γQ + W , where γ ≡ Q̄C ′′(Q̄; W̄ )
C ′(Q̄; W̄ )

=
(
−F

−1(Q̄)F ′′(F−1(Q̄))
F ′(F−1(Q̄))

)(
Q̄

F−1(Q̄)F ′(F−1(Q̄))

)
. [A.5.9]

The final relationship to derive is that between Y and Q. The log-deviation of the ratio Y/Q is δ = Y−Q.
To find its determinants, substitute [A.5.3] into [A.5.5], and using pS = PB = X:

Q = Y + εP +
(
q̄S − q̄N

Q̄

)
s−

(
(1− s̄)ζ̄N q̄N

Q̄

)
PN

+
(
δ(η − ε)(1− λ)

(
s̄v̄S %̄

−ε
S + (1− s̄)v̄N %̄−εN

)
− s̄ζ̄S q̄S

Q̄

)
X . [A.5.10]

where PN and s are the averages discussed above. Substituting pS = PB = X into [A.5.6] for PB and
rearranging yields:

s =
(1− θB)
ψB

(PN − X) . [A.5.11]

Using the above equation and making the same substitutions in equation [A.5.7] for P:

PN =
(

ψB
(1− θP )ψB − (1− θB)ψP

)
P−

(
(1− θB)ψP θPψB

(1− θP )ψB − (1− θB)ψP

)
X . [A.5.12]

Substituting equations [A.5.11] and [A.5.12] into [A.5.10] yields the following expression for δ = Y − Q:

δ =
(
ε+

(q̄S − q̄N )(1− θB)− ψB(1− s̄)ζ̄N q̄N
((1− θP )ψB − (1− θB)ψP ) Q̄

)
(X− P) , [A.5.13]

which has been simplified by noting all the constituent equations are homogeneous of degree zero in nominal
variables, so the resulting expression for δ must be expressible in terms of real marginal cost. Writing this
as δ = δxx, where x = X− P, the coefficient δx is given by:

δx ≡ ε− δ
ψB(1− s̄) (λε+ (1− λ)ηv̄N ) %̄−εN − (1− θB)

(
(λ+ (1− λ)v̄S)%̄−εS − (λ+ (1− λ)v̄N )%̄−εN

)
(1− θP )ψB − (1− θB)ψP

,

[A.5.14]
where the expressions for the flexible-price equilibrium values ζ̄N , q̄S , q̄N and Q̄ have been used.

A.5.2 Model with flexible wages

The log-linearized real wage w = W − P adjusts so that the log linearization of equation [6.1] is satisfied:

w =
σ−1
h

α
Q + σ−1

c Y , where σc ≡ −
(
Ȳ ucc(Ȳ )
uc(Ȳ )

)−1

, and σh ≡
(F−1(Ȳ /δ)νhh(F−1(Ȳ /δ))

νh(F−1(Ȳ /δ))

)−1

.

[A.5.15]
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A.5.3 Aggregation in the dynamic sales model

The equivalent of aggregate price level Pt in [7.3] for PB,t, the bargain hunters’ price index, is obtained
from the definition [4.8]:

PB,t =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,tp

1−η
S,`,t + (1− s`,t)R1−η

N,t−`

}) 1
1−η

.

Using the demand function [3.10], the total quantity sold for a vintage-` firm is:

Q`,t ≡ s`,tqS,`,t + (1− s`,t)qN,`,t , where qS,`,t = D(pS,`,t;PB,t, Et) , and qN,`,t = D(RN,t−`;PB,t, Et) .

where qS,`,t and qN,`,t are the quantities sold at the individual prices. The corresponding purchase multipliers
are vS,`,t = v(pS,`,t;PB,t) and vN,`,t = v(RN,t−`;PB,t). Given total quantity produced, the vintage-specific
number of hours H`,t and nominal marginal cost X`,t are:

H`,t = F−1(Q`,t) , X`,t ≡ C ′(Q`,t;Wt) .

Proposition 4 shows X`,t = Xt, Q`,t = Qt and pS,`,t = PS,t. It follows immediately that H`,t = Ht,
qS,`,t = qS,t and vS,`,t = vS,t.

The log linearizations derived in section A.5.1 continue to hold in the dynamic version of the model
if certain variables are reinterpreted as weighted averages over normal-price vintages. These weighted
averages are:

st ≡ (1− φp)
∞∑
`=0

φ`ps`,t , qN,t ≡ (1− φp)
∞∑
`=0

φ`pqN,`,t , vN,t ≡ (1− φp)
∞∑
`=0

φ`pvN,`,t ,

and also:

PN,t ≡ (1− φp)
∞∑
`=0

φ`pRN,t−` . [A.5.16]

A.5.4 DSGE log-linearizations

The log linearization of the intertemporal IS equation in [7.14] is:

Yt = EtYt+1 + ϑm (mt − Etmt+1)− σc (it − Etπt+1) , [A.5.17]

where it ≡ log(1 + it)− log(1 + ī) is the log deviation of the gross nominal interest rate, and the elasticities
σc and ϑm are given by:

σc ≡ −
(
Ȳ υcc(Ȳ , m̄)
υc(Ȳ , m̄)

)−1

, ϑm ≡ −
m̄υmc(Ȳ , m̄)
Ȳ υcc(Ȳ , m̄)

.

Money demand from [7.14] is log linearized as follows:

mt = ϑyYt − ϑiit , [A.5.18]

where the income elasticity ϑy and interest semi-elasticity ϑi are given by:

ϑy ≡
Ȳ υmc(Ȳ ,m̄)
υm(Ȳ ,m̄)

− Ȳ υcc(Ȳ ,m̄)
υc(Ȳ ,m̄)

m̄υmc(Ȳ ,m̄)
υc(Ȳ ,m̄)

− m̄υmm(Ȳ ,m̄)
υm(Ȳ ,m̄)

, ϑi ≡
β

(1− β)
(
m̄υmc(Ȳ ,m̄)
υc(Ȳ ,m̄)

− m̄υmm(Ȳ ,m̄)
υm(Ȳ ,m̄)

) .
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Note that after specifying σc, ϑy and ϑi, the steady-state ratio of real money balances to income (the
reciprocal of velocity) is restricted as follows:

m̄ =

 (1− β)ϑm
βσcϑy

(1−β)ϑi
− 1

 Ȳ . [A.5.19]

Equation [7.15] for the utility-maximizing reset wage is log linearized as follows:

RW,t =
(1− βφw)
(1 + ςσ−1

h )

∞∑
`=0

(βφw)`Et
[
Pt+` + ςσ−1

h Wt+` + σ−1
c (Yt+` − ϑmmt+`) + σ−1

h Ht+`
]
,

which has the following recursive form:

RW,t = βφwEtRW,t+1 +
(1− βφw)
(1 + ςσ−1

h )

(
Pt + ςσ−1

h Wt + σ−1
c (Yt − ϑmmt) + σ−1

h Ht
)
. [A.5.20]

The log-linearized wage index [7.16] is:

Wt =
∞∑
`=0

(1− φw)φ`wRW,t−` ,

which also has a recursive form:
Wt = φwWt−1 + (1− φw)RW,t . [A.5.21]

Putting together the reset wage equation [A.5.20] and wage index equation [A.5.21] yields an expression
for wage inflation πW,t ≡Wt −Wt−1:

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςσ−1

h

(
σ−1
h

α
Qt + σ−1

c (Yt − ϑmmt)− wt

)
, [A.5.22]

where the link between hours Ht and quantity Qt in [A.5.8] has been used.

A.6 Proof of Theorem 2

(i) Suppose all firms share the same fixed pN consistent with the flexible-price equilibrium. The first-
order condition for the optimal choice of the sales fraction s from the first part of [5.1] is log-linearized as
follows:

(q̄S − q̄N )X = µ̄S q̄SpS + (µ̄S − 1)q̄S(qS − qN ) ,

where the fact that (µ̄S−1)q̄S = (µ̄N−1)q̄N has been used to simplify the expression. By using log-linearized
demand functions [A.5.3] and recalling that pN = 0:

(q̄S − q̄N )X =
(
µ̄S − (µ̄S − 1)

(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

))
q̄SpS

+ (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

− (1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄S − 1)q̄SPB . [A.6.1]
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Given the expressions for µ̄S in [4.6], the coefficient of pS in the above is zero. Since q̄S > q̄N , this equation
implies X is independent of pS . By using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N again, [A.6.1] implies:

(q̄S − q̄N )X = (q̄S − q̄N )PB −
(

1− (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

)
(µ̄S − 1)

)
q̄SPB

+
(

1− (η − ε)
(

(1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄N − 1)

)
q̄NPB . [A.6.2]

By substituting the expressions for µ̄S and µ̄N from [4.6], the above equation reduces to

(q̄S − q̄N )X = (q̄S − q̄N )PB + (ε− 1) ((µ̄S − 1)q̄S − (µ̄N − 1)q̄N ) PB ,

and noting that the coefficient on the final term is zero, it is established that X = PB for all pS .

(ii) The optimal pS is characterized by the second part of [5.1]. In log-linear terms:

pS = µS + X .

By substituting the expression for the log-linearized optimal sales markup from [A.5.4] and the sales pur-
chase multiplier from [A.5.2], and rearranging terms:

(1− (η − ε)cS) (pS − X) = 0 ,

so pS = X if the coefficient can be shown to be zero. Using the expressions for cS from [A.5.4] and µ̄S from
[4.6]:

(1− (η − ε)cS)
µ̄S

=
(λ(ε− 1) + (1− λ)(η − 1)v̄S) (λε+ (1− λ)ηv̄S)− (η − ε)2λ(1− λ)v̄S

(λε+ (1− λ)ηv̄S)2 .

Using [A.1.8] and noting that vS = ρε−ηS it follows that 1 − (η − ε)cS = µSD′(ρS)R′′(D(ρS)), where the
functions D(ρ) and R(q) are defined in [A.1.1] and [A.1.4]. Since D′(ρS) < 0 and Lemma 2 shows that
R′′(D(ρS)) < 0, it is established that pS = X. This completes the proof.

A.7 Log-linearized solution of the static model

A.7.1 Fixed wages

The model is log linearized around the flexible price and flexible wage equilibrium characterized in section 4.
The system of log-linearized equations is:

P = θPpS − ψP s , [A.7.1a]
PB = θBpS − ψBs , [A.7.1b]
pS = X , [A.7.1c]
PB = X , [A.7.1d]
Y = Q + δx(X− P) , [A.7.1e]
X = γQ , [A.7.1f]
Y = M− P . [A.7.1g]

Equations [A.7.1a] and [A.7.1b] are [A.5.7] and [A.5.6] with PN = 0. Equations [A.7.1c] and [A.7.1d] are
the results of Theorem 2. Equation [A.7.1e] is taken from [A.5.13] and [A.5.14] with δ = Y − Q. Equation
[A.7.1f] follows from [A.5.9] with W = 0. Finally, equation [A.7.1g] is the log linearization of [2.4]. The
money supply M is exogenous.
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A.7.2 Flexible wages

The system of equations is the same as [A.7.1] except that [A.7.1f] is dropped and replaced by [A.5.9], and
the additional equation for wage W is taken from [A.5.15]:

W = P +
σ−1
h

α
Q + σ−1

c Y , [A.7.2a]

X = W + γQ . [A.7.2b]

A.8 Proof of Proposition 4

(i) Consider a firm with arbitrary deviations pS and pN of the sale and normal price from the flexible-
price equilibrium. The log-linearized first-order condition for the sales fraction (the first part of [5.1]) is:

(q̄S − q̄N )X = µ̄S q̄SpS − µ̄N q̄NpN + (µ̄S − 1)q̄S(qS − qN ) , [A.8.1]

where the fact that (µ̄S − 1)q̄S = (µ̄N − 1)q̄N has been used to simplify the expression. By using [A.5.3]:

(q̄S − q̄N )X =
(
µ̄S − (µ̄S − 1)

(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

))
q̄SpS

−
(
µ̄N − (µ̄N − 1)

(
λε+ (1− λ)ηv̄N
λ+ (1− λ)v̄N

))
q̄NpN

+ (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

− (1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄S − 1)q̄SPB .

Given the expressions for µ̄S and µ̄N in [4.5], the coefficients of both pS and pN in the above are zero.
Since q̄S > q̄N , this equation implies X is independent of pS and pN . By using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N
again, [A.8.1] implies the same expression involving X and PB as in [A.6.2], which following the same steps
establishes that X = PB.

(ii) From the log linearization of nominal marginal cost in [A.5.9], since all firms face the same wage
W, and as part (i) shows that all have the same nominal marginal cost X, all must produce the same total
quantity Q.

(iii) If both prices are optimally readjusted then [4.5] implies p∗S = µSX and p∗N = µNX, which in
log-linear terms becomes:

p∗ = µS + X , p∗N = µN + X .

By following the same steps as in the proof of part (ii) of Theorem 2, it is shown that p∗ = X and p∗N = X.

(iv) Let pS and pN be given prices for a particular firm, and let s be the optimal sales fraction implied
by the first part of [5.1]. Profits [3.12] are denoted by P:

P = spSqS + (1− s)pNqN − C (Q;W ) ,

where C (Q;W ) is the cost function [3.8]. Taking a second-order Taylor expansion of profits around the
flexible-price equilibrium yields:

P = s̄p̄S q̄S (pS + qS) + p̄S q̄Ss + (1− s̄)p̄N q̄N (pN + qN )− p̄N q̄N s + p̄S q̄Ss (pS + qS)

− p̄N q̄N s (pN + qN ) +
1
2
p̄S q̄S s̄ (pS + qS)2 +

1
2
p̄N q̄N (1− s̄) (pN + qN )2

− Q̄X̄Q− 1
2
Q̄X̄(1 + γ)Q2 − Q̄X̄QW + t.i.p. + O(3) . [A.8.2]
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The first-order approximation [A.5.3] of the demand functions [4.10] is extended to include second-order
terms:

qS = −ζ̄SpS + dS +
(η − ε)2λ(1− λ)v̄S
2(λ+ (1− λ)v̄S)2

(pS − PB)2 + O(3) , [A.8.3a]

qN = −ζ̄NpN + dN +
(η − ε)2λ(1− λ)v̄N
2(λ+ (1− λ)v̄N )2

(pN − PB)2 + O(3) , [A.8.3b]

where the expressions for the price elasticities in [4.1] have been used, and the following are defined:

dS =
(η − ε)(1− λ)v̄S
λ+ (1− λ)v̄S

PB + εP + Y , dN =
(η − ε)(1− λ)v̄N
λ+ (1− λ)v̄N

PB + εP + Y .

Then using the following second-order expansion of total quantity Q = sqS + (1− s)qN :

Q̄

(
Q +

Q2

2

)
= s̄q̄SqS + (1− s̄)q̄NqN + (q̄S − q̄N )s +

s̄q̄S
2

q2
S +

(1− s̄)q̄N
2

q2
N + q̄SsqS − q̄N sqN + O(3) ,

the level of profits P from [A.8.2] is broken down into four components:

P = P1 + P2 + P3 + P4 + t.i.p. + O(3) ,

where:

P1 ≡ s̄p̄S q̄S (pS + qS) + (1− s̄)p̄N q̄N (pN + qN ) + (p̄S q̄S − p̄N q̄N )s
− X̄(s̄q̄SqS + (1− s̄)q̄NqN + (q̄S − q̄N )s) [A.8.4a]

P2 ≡
1
2
p̄S q̄S s̄ (pS + qS)2 +

1
2
p̄N q̄N (1− s̄) (pN + qN )2 − X̄

(
s̄q̄S
2

q2
S +

(1− s̄)q̄N
2

q2
N

)
[A.8.4b]

P3 ≡ p̄S q̄Ss (pS + qS)− p̄N q̄N s (pN + qN )− X̄ (q̄SsqS − q̄N sqN ) [A.8.4c]

P4 ≡ −
γX̄Q̄

2
Q2 − X̄Q̄WQ [A.8.4d]

By using the identities p̄S = µ̄SX̄ and p̄N = µ̄NX̄ and simplifying, the expression for P1 in [A.8.4a]
becomes:

P1 = s̄q̄SX̄(µ̄SpS + (µ̄S − 1)qS) + (1− s̄)q̄NX̄(µ̄NpN + (µ̄N − 1)qN ) + X̄(q̄S(µ̄S − 1)− q̄N (µ̄N − 1))s .

Substituting the second-order expansions of demand from [A.8.3a] and using the expressions for µ̄S and µ̄N
from [4.6], and q̄S(µ̄S − 1) = q̄N (µ̄N − 1) to demonstrate that the first-order terms have zero coefficients:

P1 =
s̄q̄SX̄(µ̄S − 1)(η − ε)2λ(1− λ)v̄S

2(λ+ (1− λ)v̄S)2
(pS − PB)2

+
(1− s̄)q̄NX̄(µ̄N − 1)(η − ε)2λ(1− λ)v̄N

2(λ+ (1− λ)v̄N )2
(pN − PB)2 + t.i.p. + O(3) . [A.8.5]

To simplify the expression for P2, note that [A.8.3a] implies qS = −ζ̄SpS + dS + O(2), and so by
substituting this into the following:

p̄S (pS + qS)2 − X̄q2
S = X̄

(
µ̄S

(µ̄S − 1)2
p2
S − 2

µ̄S
µ̄S − 1

pSdS + µ̄Sd2
S

)
− X̄

(
µ̄2
S

(µ̄S − 1)2
p2
S − 2

µ̄S
µ̄S − 1

pSdS + d2
S

)
+ O(3)

= −X̄ µ̄S
µ̄S − 1

p2
S + t.i.p. + O(3) ,
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where µ̄S − 1 = 1/(ζ̄S − 1) has been used. A similar expression holds for pN and qN . Substituting this
result into [A.8.4b] yields:

P2 = −X̄
2
(
s̄q̄S ζ̄Sp2

S + (1− s̄)q̄N ζ̄Np2
N

)
+ t.i.p. + O(3) . [A.8.6]

Taking out s as a common factor from P3 in [A.8.4c] and noting that p̄S = µ̄SX̄ and p̄N = µ̄NX̄:

P3 = X̄ (q̄S (µ̄SpS + (µ̄S − 1)qS)− q̄N (µ̄NpN + (µ̄N − 1)qN )) s . [A.8.7]

Equation [A.8.3a] implies qS = −ζ̄SpS + dS + O(2) and qN = −ζ̄NpN + dN + O(2), and by substituting
these into [A.8.7] and noting that µ̄S − 1 = 1/(ζ̄S − 1) and (µ̄S − 1)q̄S = (µ̄N − 1)q̄N :

P3 = X̄q̄S(µ̄S − 1)s(dS − dN ) + O(3) [A.8.8]

To simplify the expression for P3, note that:

q̄S(µ̄S − 1)(dS − dN ) = q̄S(µ̄S − 1)
(

(η − ε)(1− λ)v̄S
λ+ (1− λ)v̄S

− (η − ε)(1− λ)v̄N
λ+ (1− λ)v̄N

)
PB

=
(
q̄S

(η − ε)(1− λ)v̄S(µ̄S − 1)
λ+ (1− λ)v̄S

− q̄N
(η − ε)(1− λ)v̄N (µ̄N − 1)

λ+ (1− λ)v̄N

)
PB

= (q̄S (1− (ε− 1)(µ̄S − 1))− q̄N (1− (ε− 1)(µ̄N − 1))) PB = (q̄S − q̄N )PB ,

using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N repeatedly and the expressions for µ̄S and µ̄N from [4.6]. Substituting the
result into [A.8.8]:

P3 = X̄PB(q̄S − q̄N )s + O(3) = −X̄(s̄q̄SqS + (1− s̄)q̄NqN − Q̄Q)PB + O(3) ,

where the second equality makes use of the first-order expansion of total quantity Q from [A.5.5].
Appealing to Proposition 4, the log deviations of nominal marginal cost X and total quantity sold Q

are independent of an individual firm’s choice of pS and pN . Therefore all the terms in P4 are independent
of pricing policy. Furthermore, in the expression for P3, the product of Q and PB is also independent.
Therefore:

P3 = −X̄(s̄q̄SqS + (1− s̄)q̄NqN )PB + t.i.p. + O(3) , P4 = t.i.p. [A.8.9]

By adding P2 and P3 from [A.8.6] and [A.8.9] and substituting the first-order expansion of the demands
qS and qN into the latter, the following is obtained:

P2 + P3 = −X̄
2
(
s̄q̄S ζ̄Sp2

S + (1− s̄)q̄N ζ̄Np2
N

)
+ X̄(s̄q̄S ζ̄SpS + (1− s̄)q̄N ζ̄NpN )PB + t.i.p. + O(3) .

By completing the square and noting that the remainder is independent of pricing policy:

P2 + P3 = −1
2
s̄q̄S ζ̄SX̄ (pS − PB)2 − 1

2
(1− s̄)q̄N ζ̄NX̄ (pN − PB)2 + t.i.p. + O(3) .

Proposition 4 shows that PB = X + O(2), and by combining the above equation with the expression for
P1 from [A.8.5]:

P = −1
2
s̄q̄SX̄

(
ζ̄S −

(η − ε)2λ(1− λ)v̄S(µ̄S − 1)
(λ+ (1− λ)v̄S)2

)
(pS − X)2

− 1
2

(1− s̄)q̄NX̄
(
ζ̄N −

(η − ε)2λ(1− λ)v̄N (µ̄N − 1)
(λ+ (1− λ)v̄N )2

)
(pN − X)2 + t.i.p. + O(3) ,

which completes the proof.
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A.9 Proof of Theorem 3

The first step is to log-linearize equation [7.2] for the optimal reset price Rt at time t. Since R̄N = p̄N =
µ̄NX̄, it follows that this equation simplifies to:

∞∑
`=0

(βφp)`Et [RN,t − µN,`,t+` − X`,t+`] = 0 , [A.9.1]

where µN,`,t is the log-deviation of the optimal markup µN,`,t ≡ µ(RN,t−`;PB,t). The optimal markup
function is log-linearized in [A.5.4] and is given in terms of the purchase multiplier, itself log-linearized in
[A.5.2]. Putting together those results, it follows that µN,`,t+` = (η − ε)cN (RN,t − PB,t+`). Proposition 4
shows that marginal cost is equalized across all price vintages and thus X`,t = Xt. Furthermore it shows
that Xt = PB,t. Substituting these findings into [A.9.1]:

(1− (η − ε)cN )
∞∑
`=0

(βφp)`Et [RN,t − Xt+`] = 0 .

The proof of part (iii) of Proposition 4 establishes that 1− (η − ε)cN > 0, hence:

RN,t = (1− βφp)
∞∑
`=0

(βφp)`EtXt+` ,

which can be expressed in an equivalent recursive form:

RN,t = βφpEtRt+1 + (1− βφp)Xt . [A.9.2]

Using the log-linearizations [A.5.7] and [A.5.6] and the definition of the price index PN,t in [A.5.16], the
expressions for Pt and PB,t are:

Pt = θPPS,t + (1− θP )PN,t − ψP st , PB,t = θBPS,t + (1− θB)PN,t − ψBst , [A.9.3]

where the fact that pS,`,t = PS,t has been used in accordance with Proposition 4. The recursive form of the
expression for PN,t in [A.5.16] is:

PN,t = φpPN,t−1 + (1− φp)RN,t . [A.9.4]

Proposition 4 establishes that PS,t = Xt and therefore, by substituting this into [A.9.3],

ψP st = θP (Xt − Pt) + (1− θP )(PN,t − Pt) . [A.9.5]

Likewise, by using PB,t = Xt and performing similar substitutions into the second part of [A.9.3],

ψBst = (1− θB)(PN,t − Xt) . [A.9.6]

Equation [A.9.5] can be written as

ψP st = θP (Xt − Pt) + (1− θP ) ((PN,t − Xt)− (Xt − Pt)) ,

and st can be eliminated using [A.9.6]. After some rearrangement this leads to:

Xt − PN,t =
1

1− ψ xt , [A.9.7]

where ψ is as defined in the theorem and xt = Xt − Pt is real marginal cost.
By multiplying both sides of [A.9.2] by (1− φp) and by substituting the recursive equation [A.9.4] for
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PN,t,
PN,t − φpPN,t−1 = βφpEt [PN,t+1 − φpPN,t] + (1− φp)(1− βφp)Xt ,

which can be expressed in terms of πN,t ≡ PN,t − PN,t−1:

πN,t = βEtπN,t+1 + κ(Xt − PN,t) , [A.9.8]

where κ is as defined in the statement of the theorem.
Taking the first difference of [A.9.6] yields:

∆st = −(1− θB)
ψB

(∆Xt − πN,t) . [A.9.9]

Now take the first part of [A.9.3] making the substitution PS,t = Xt as before and then take first differences
and rearrange to obtain:

πt = πN,t + θP (∆Xt − πN,t)− ψP∆st .

Eliminating ∆st from this equation using [A.9.9]:

πt = πN,t + ψ (∆Xt − πN,t) .

Substituting the first difference of [A.9.7] into the above yields:

πN,t = πt −
ψ

1− ψ∆xt .

By using this equation and [A.9.7] together with [A.9.8] leads to:(
πt −

ψ

1− ψ∆xt

)
= βEt

[
πt+1 −

ψ

1− ψ∆xt+1

]
+

κ

1− ψ xt ,

which can be rearranged to yield the result [7.5].
By recursive forward substitution of the Phillips curve [7.5]:

πt =
1

1− ψ
∞∑
`=0

β`Et [κxt+` + ψ (∆xt+` − β∆xt+1+`)]

Notice that all ∆xt+` terms apart from ∆xt cancel out because they occur twice with opposite signs and
thus equation [7.6] is obtained. This completes the proof.

A.10 Log-linearized solution of the DSGE model

The model is log linearized around the flexible price and flexible wage equilibrium characterized in section 4,
with [4.11] replaced by:

x̄ =
νh
(
F−1(Ȳ /δ)

)
υc(Ȳ , m̄)F ′

(
F−1(Ȳ /δ)

) ,
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where the link between m̄ and Ȳ is given in [A.5.19]. The system of dynamic log-linearized equations is:

πt = βEtπt+1 +
1

1− ψ (κxt + ψ (∆xt − βEt∆xt+1)) , [A.10.1a]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςσ−1

h

(
σ−1
h

α
Qt + σ−1

c (Yt − ϑmmt)− wt

)
, [A.10.1b]

∆wt = πW,t − πt , [A.10.1c]
Yt = Qt + δxxt , [A.10.1d]
xt = wt + γQt , [A.10.1e]
Yt = EtYt+1 + ϑm (mt − Etmt+1)− σc (it − Etπt+1) , [A.10.1f]
mt = ϑyYt − ϑiit . [A.10.1g]

Equation [A.10.1a] is the Phillips curve derived in Theorem 3. Equation [A.10.1b] is the Phillips curve for
wage inflation from [A.5.22], and [A.10.1c] follows from the definition of the real wage. Equations [A.10.1d]
and [A.10.1e] are taken from [A.7.1e] and [A.7.2b], which continue to hold in the dynamic model. The IS
equation [A.10.1f] and money demand [A.10.1g] come from [A.5.17] and [A.5.18].

There are two specifications of monetary policy considered: exogenous money growth [7.17a],

∆Mt = ϕm∆Mt−1 + et , [A.10.1h]

and the Taylor rule [7.17b],

it = ϕiit−1 + (1− ϕi) (ϕππt + ϕyYt) + et . [A.10.1i]

The standard model with Dixit-Stiglitz preferences, a one-price equilibrium, and Calvo staggered ad-
justment times leads to the following New Keynesian Phillips curve:

πt = βEtπt+1 + κxt ,

in place of [A.10.1a].14 Equation [A.10.1d] is replaced by Qt = Yt.

A.11 Second-order approximation of profits in standard model

Suppose a given firm charges price p and the general price level is P and output is Y . Standard Dixit-Stiglitz
preferences imply the following demand function:

q =
( p
P

)−ε
Y .

Assume the total cost function is C (q;W ). Profits P are then given by

P =
p1−ε

P−ε
Y − C

(( p
P

)−ε
Y ;W

)
.

Taking a second-order approximation of total revenue yields

p1−ε

P−ε
Y = Ȳ

(
1 + (1− ε)p− εP + Y +

1
2

((1− ε)p− εP + Y)2

)
+ O(3) ,

and of total cost yields:

C (q;W ) = C (Ȳ ; W̄ ) +
(
ε− 1
ε

)
Ȳ

(
−ε(p− P) + Y +

1
2

(1 + γ) (−ε(p− P) + Y)2

)
+ O(3) ,

14See Woodford (2003) for a derivation of this equation.
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where γ ≡ Ȳ C ′′(Ȳ ; W̄ )/C ′(Ȳ ; W̄ ), and C ′(Ȳ ; W̄ ) = (ε − 1)/ε and q = −ε(p − P) + Y have been used.
Putting these expressions together and rearranging terms leads to the following expression for profits:

P = −1
2
ε(1 + εγ)x̄P̄ Ȳ

(
p−

(
P +

1
1 + εγ

x

))2

+ t.i.p. + O(3) ,

where x = γY is the real marginal cost of all other firms.

66



CENTRE FOR ECONOMIC PERFORMANCE 
Recent Discussion Papers 

886 Andrew E. Clark 
David Masclet 
Marie-Claire Villeval 

Effort and Comparison Income 
Experimental and Survey Evidence 

885 Alex Bryson 
Richard B. Freeman 

How Does Shared Capitalism Affect Economic 
Performance in the UK? 

884 Paul Willman 
Rafael Gomez 
Alex Bryson 

Trading Places: Employers, Unions and the 
Manufacture of Voice 

883 Jang Ping Thia The Impact of Trade on Aggregate Productivity 
and Welfare with Heterogeneous Firms and 
Business Cycle Uncertainty 

882 Richard B. Freeman When Workers Share in Profits: Effort and 
Responses to Shirking 

881 Alex Bryson 
Michael White 

Organizational Commitment: Do Workplace 
Practices Matter? 

880 Mariano Bosch 
Marco Manacorda 

Minimum Wages and Earnings Inequality in 
Urban Mexico.  Revisiting the Evidence 

879 Alejandro Cuñat 
Christian Fons-Rosen 

Relative Factor Endowments and International 
Portfolio Choice 

878 Marco Manacorda The Cost of Grade Retention 

877 Ralph Ossa A ‘New Trade’ Theory of GATT/WTO 
Negotiations 

876 Monique Ebell 
Albrecht Ritschl 

Real Origins of the Great Depression: 
Monopoly Power, Unions and the American 
Business Cycle in the 1920s 

875 Jang Ping Thia Evolution of Locations, Specialisation and 
Factor Returns with Two Distinct Waves of 
Globalisation 

874 Monique Ebell 
Christian Haefke 

Product Market Deregulation and the U.S. 
Employment Miracle 

873 Monique Ebell Resurrecting the Participation Margin 

872 Giovanni Olivei 
Silvana Tenreyro 

Wage Setting Patterns and Monetary Policy: 
International Evidence 



871 Bernardo Guimaraes Vulnerability of Currency Pegs: Evidence from 
Brazil 

870 Nikolaus Wolf Was Germany Ever United? Evidence from 
Intra- and International Trade 1885 - 1993 

869 L. Rachel Ngai 
Roberto M. Samaniego 

Mapping Prices into Productivity in 
Multisector Growth Models 

868 Antoni Estevadeordal 
Caroline Freund 
Emanuel Ornelas 

Does Regionalism Affect Trade Liberalization 
towards Non-Members? 

867 Alex Bryson 
Harald Dale-Olsen 

A Tale of Two Countries: Unions, Closures 
and Growth in Britain and Norway 

866 Arunish Chawla Multinational Firms, Monopolistic Competition 
and Foreign Investment Uncertainty 

865 Niko Matouschek 
Paolo Ramezzana 
Frédéric Robert-Nicoud 

Labor Market Reforms, Job Instability, and the 
Flexibility of the Employment Relationship 

864 David G. Blanchflower 
Alex Bryson 

Union Decline in Britain 

863 Francesco Giavazzi 
Michael McMahon 

Policy Uncertainty and Precautionary Savings 

862 Stephen Hansen 
Michael F. McMahon 

Delayed Doves: MPC Voting Behaviour of 
Externals 

861 Alex Bryson 
Satu Nurmi 

Private Sector Employment Growth, 1998-
2004: A Panel Analysis of British Workplaces 

860 Alejandro Cuñat 
Szabolks Deak 
Marco Maffezzoli 

Tax Cuts in Open Economies 

859 Bernd Fitzenberger 
Karsten Kohn 
Alexander Lembcke 

Union Density and Varieties of Coverage: The 
Anatomy of Union Wage Effects in Germany 

858 Dimitra Petropoulou International Trade, Minimum Quality 
Standards and the Prisoners’ Dilemma 

857 Andreas Georgiadis Efficiency Wages and the Economic Effects of 
the Minimum Wage: Evidence from a Low-
Wage Labour Market 

856 L. Rachel Ngai 
Christopher A. Pissarides 

Employment Outcomes in the Welfare State 

The Centre for Economic Performance Publications Unit 
Tel 020 7955 7673  Fax  020 7955 7595  Email info@cep.lse.ac.uk 

Web site http://cep.lse.ac.uk  


	1 Introduction
	2 Benchmark model
	3 The model of sales
	3.1 Households
	3.2 Composite goods
	3.3 Firms
	3.4 Price setting
	3.5 Aggregation

	4 Equilibrium with flexible prices and wages
	5 Monetary shocks in a model of sales
	5.1 Calibration
	5.2 Results
	5.3 Justification for the ``sticky'' normal price

	6 Flexible wages
	7 Dynamics
	7.1 Staggered adjustment of the normal price
	7.2 A Phillips curve with sales
	7.3 A DSGE model with sales
	7.4 Dynamic calibration
	7.5 Dynamic simulations

	8 Conclusions
	References
	A Technical appendix
	A.1 Properties of the demand, total revenue and marginal revenue functions
	Lemma 1
	Lemma 2
	Lemma 3

	A.2 Proof of Proposition 2
	A.3 Proof of Theorem 1
	A.4 Proof of Proposition 3
	A.5 Log linearizations
	A.5.1 Sales model
	A.5.2 Model with flexible wages
	A.5.3 Aggregation in the dynamic sales model
	A.5.4 DSGE log-linearizations

	A.6 Proof of Theorem 2
	A.7 Log-linearized solution of the static model
	A.7.1 Fixed wages
	A.7.2 Flexible wages

	A.8 Proof of Proposition 4
	A.9 Proof of Theorem 3
	A.10 Log-linearized solution of the DSGE model
	A.11 Second-order approximation of profits in standard model




