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Abstract

A striking fact about prices is the prevalence of ““sales": large temporary price cuts followed
by a return exactly to the former price. This paper builds a macroeconomic model with a
rationale for sales based on firms facing consumers with different price sensitivities. Even if
firms can vary sales without cost, monetary policy has large real effects owing to sales being
strategic substitutes: a firm's incentive to have a sale is decreasing in the number of other
firms having sales. Thus the flexibility of prices at the micro level due to sales does not
translate into flexibility at the macro level.
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1 Introduction

A striking fact about prices is that many price changes are “sales”: large temporary price cuts
followed by a return exactly to the former price. Figure 1 shows a typical price path for a six-pack
of Corona beer at an outlet of Dominick’s Finer Foods, a U.S. supermarket. Sales are frequent;

other types of price change are rare. This pattern is an archetype of retail pricing.

Figure 1: Example price path
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Notes: Weekly price observations from Dominick’s Finer Foods, Oak Lawn, Illinois, U.S.A.
Source: James M. Kilts Center, GSB, University of Chicago (http://research.chicagogsb.edu/
marketing/databases/dominicks).

Monetary policy’s real effects on the economy depend crucially on the stickiness of prices. So
Figure 1 poses a conundrum: viewed from different perspectives, the price path exhibits great
flexibility on the one hand, but substantial stickiness on the other. While changes between some
“normal” price and a “sale” price are frequent, the “normal” price itself changes far less often.
Consequently, empirical estimates of price stickiness significantly diverge when sales are treated
differently. Bils and Klenow (2004) count sales as price changes and find that the median duration
of a price spell across the whole consumer price index is around 4 months; by disregarding sales,
Nakamura and Steinsson (2007) find a median duration of around 9 months.? Quantitative models
deliver radically different estimates of the real effects of monetary policy depending on which of
these two numbers is used. Hence an understanding of sales is needed to answer the question of
how large those real effects should be.

Given the pattern of price adjustment documented in Figure 1, changes in the aggregate price
level can come from three sources: changes in the “normal” price, changes in the size of the sale

discount, and changes in proportion of goods on sale. Consider first a world where all changes in the

1See Hosken and Reiffen (2004), Nakamura and Steinsson (2007), Kehoe and Midrigan (2007), Goldberg and
Hellerstein (2007), and Eichenbaum, Jaimovich and Rebelo (2008) for recent studies.

2Comparisons across euro-area countries also reveals that the treatment of sales has a large bearing on the mea-
sured frequency of price adjustment, as discussed in Dhyne, Alvaurez7 Le Bihan, Veronese, Dias, Hoffmann, Jonker,
Liilnnemann, Rumler and Vilmunen (2006).
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aggregate price level are driven by variations in the fraction of goods on sale. For instance, this could
be modelled by assuming firms have a fixed normal price, a fixed sale discount, and optimally choose
the fraction of time their good is on sale. If consumer preferences were standard, with all firms facing
a constant price-elasticity demand function, then this paper shows firms’ profit-maximizing choice
of the frequency of sales would lead to approximate money neutrality. Even if the normal price and
sale discount were fixed, the optimizing variation in the fraction of goods on sale would mimic the
price changes chosen by firms in a world of completely flexible prices.

But this simple framework for analysing sales is not complete. No reason has been presented
for why firms would want to choose a pricing strategy in which sales discounts play a significant
role. In the IO literature, the most prominent theories of sales are based on incomplete information
about prices and consumer preferences. Leading examples include Salop and Stiglitz (1977), Salop
and Stiglitz (1982), Varian (1980), Sobel (1984), and Lazear (1986). This paper builds a general-
equilibrium macroeconomic model with sales that draws upon the rationale proposed in the IO
literature. Despite substantial heterogeneity at the micro level, the model can be easily aggregated
to study macroeconomic questions.?

The model presented in this paper assumes consumers have different preferences over goods, and
for each good, some consumers are more price sensitive than others. There are two types: loyal
consumers with low price elasticities, and bargain hunters with high elasticities. Firms do not know
the type of an individual customer, so they cannot practise price discrimination. One key finding
of the paper is that if the difference between the price elasticities of loyal consumers and bargain
hunters is sufficiently large, and there is a sufficient mixture of the two types, then in the unique
equilibrium of the model firms strictly prefer to sell their good at a high price at some moments
and at a low price at other moments. The choice of different prices at different moments is a profit-
maximizing strategy even in a deterministic environment. Each of the two prices is targeted toward
a particular type of consumer. Firms would like to price discriminate, but as this is impossible,
their best strategy is to target the two types at different moments, even though all customers at a
given moment actually pay the same price.

The existence of consumers with different price elasticities leads to sales being strategic substi-
tutes, or in other words, the more others have sales, the less any individual firm wants to have a
sale. Since there is a group of more price sensitive consumers, the difficulty faced by a given firm in
trying to win their custom is greatly dependent on the extent to which other firms are having sales.
In contrast, a firm can rely on its loyal customers, whose purchases are much less sensitive to other
firms’ sales decisions. Thus the relative attractiveness of targeting the bargain hunters decreases
when others are targeting them with sales. The resulting market equilibrium features a balance
between the fractions of time a given firm spends targeting the two groups of consumers.

Having built a model of sales, the key question of the paper is: for the purposes of monetary

policy analysis, does it matter that the normal price is sticky amidst all the flexibility in sales seen

3 Another possibility is that the normal price and sale discount would be chosen ex ante to give firms flexibility to
respond to shocks if it were too costly to choose a completely new price. This seems implausible, and it is difficult to
see why the best way to achieve this insurance would correspond to the observed pattern of sales. Furthermore, to
the best of our knowledge, this explanation of sales has not been proposed in the IO literature.



in Figure 17 In sharp contrast to the simple framework discussed first where flexibility in sales
implied money was approximately neutral, monetary policy has strong real effects in the IO-based
model of sales when the normal price is sticky but sales decisions are completely flexible.

The strong real effects of monetary policy are due to sales being strategic substitutes. Following
an expansionary shock to monetary policy, an individual firm has an incentive to decrease its sales,
thus increasing the price it sells at on average. However, if all other firms were to follow this
course of action then the bargain hunters would be relatively neglected compared to the loyal
consumers, increasing the returns to targeting the bargain hunters for any one firm. This leads
firms in equilibrium not to adjust sales by much in response to a monetary shock because all firms
are trying to respond in the same way. Therefore the aggregate price level adjusts by less and
monetary policy shocks have larger real effects.

The model can be calibrated to match some simple facts about sales, and thus assess quantita-
tively the real effects of monetary policy. If the normal price is completely sticky and sales decisions
are completely flexible then the elasticity of output with respect to an unanticipated change in the
money supply is around 0.9, and the elasticity of the price level is around 0.1. The flexibility of
sales seen at the level of individual prices contributes little toward flexibility of the aggregate price
level. Therefore the real effects of monetary policy in a model with a sticky normal price and fully
flexible sales are very similar to those found in a model with a single sticky price. These numerical
results turn out to be not particularly sensitive to the calibrated parameters.

This analysis treats the normal price as sticky, an assumption in line with the stylized facts as
illustrated in Figure 1. A branch of the macroeconomics literature has proposed many justifications
for price rigidity, some of which can be applied to explain why the normal price is not continuously
readjusted. While these features are not directly incorporated into the model, there are three
findings of the model relevant to this issue. First, if a firm had to monitor continuously either its
normal price or its sale price, it would choose the latter. Second, deviations of actual from desired
normal prices are small even though the model features very large individual price changes, so the
losses from failing to make such adjustments are much smaller than might be supposed simply from
looking at the size of the average price change. Third, the absolute size of any reoptimization costs
needed to justify a constant normal price is much lower than in an otherwise comparable model
where the normal price is the only price.

This paper then constructs a dynamic version of the model with sales where firms” normal prices
are reoptimized at staggered intervals. This dynamic extension is tractable and an expression for the
resulting Phillips curve is derived analytically. It is embedded into a complete dynamic stochastic
general equilibrium model and the results of simulations are compared to the same DSGE model
incorporating a standard New Keynesian Phillips curve. A quantitative analysis reveals that the
difference between the real effects of monetary policy in the two models is small, and thus in line
with the findings of the static analysis.

Even though the recent empirical literature on price adjustment has highlighted the importance
of sales, macroeconomic models have largely side-stepped the issue. The one exception is Kehoe and

Midrigan (2007). In their model, firms face different menu costs depending on whether they make



temporary or permanent price changes. Coupled with large but transitory idiosyncratic shocks, this
mechanism gives rise to sales in equilibrium.

Section 2 sets out a simple model with a fixed normal price and sales discount, which provides
a benchmark for subsequent analysis. The 10-based model of sales is introduced in section 3, and
the equilibrium of the model is characterized in section 4. The response to monetary shocks is
studied in section 5. Section 6 examines the robustness of the results to different assumptions about
wage flexibility. Section 7 constructs the dynamic extension of the model. Section 8 draws some

conclusions.

2 Benchmark model

As a first pass at exploring the implications of sales for monetary policy analysis, this section adds
sales in the simplest possible way to an otherwise standard macroeconomic model. While ad hoc,
this benchmark model will be useful in shedding light on the mechanism found in the complete
model, and also provides a point of comparison for later results.

The economy contains a measure-one continuum 7 of households with utility function
U=u <20%m%> —-v(H), 2.1]

where C' denotes consumption of a composite good, m is real money balances, and H is hours
of labour supplied. The utility function u(-) is differentiable, strictly increasing and concave, and
disutility v(+) is differentiable, strictly increasing and convex.

The composite good C'is a Dixit-Stiglitz aggregator over a measure-one continuum .7 of types

of goods:

C = (/f(T)TdT) - ,

where ¢(7) is consumption of good type 7 € 7 and ¢ is the elasticity of substitution, which satisfies
e>1.

Each household makes all its consumption purchases at only one random point in time, however
in equilibrium it is indifferent about when it shops. At a given point in time suppose the money
price of good 7 is p(7). Minimizing the cost of purchasing composite good C' implies the following

demand function for each individual good 7:

- ("2) e,

P= (/ﬁp(T)l_adT)lls :

Households may pay different prices for individual goods depending on when they make their

where the price level P is



purchases, but in equilibrium they all face the same cost P of buying one unit of the composite
good. Households hold money balances M, or equivalently, real money balances m = M/P. The
money wage is W per hour of labour. Each household receives dividends ® from firms (households
have equal equity stakes), and a lump-sum transfer T, both of which are specified in money terms.

The household budget constraint is thus
PC+M=WH+9+%. 2.2]

The utility-maximizing choice of real money balances implies:

and in equilibrium, M is equal to the monetary transfer €. This provides a simple specification
of aggregate demand, similar to a cash-in-advance constraint. There is no capital accumulation,
and no government or international sectors in the economy, so goods market equilibrium requires

C =Y, and therefore:
p(T)\
P

M
=% - 2.4]

Each good is made by a single firm subject to production function Q = F(H), where @ is
output sold at across all points in time and H is hours of labour hired. The production function is
differentiable, strictly increasing and concave.

Firms sell their goods at all points in time, and can choose to vary their prices. To isolate the
effects of firms adjusting the fraction of time their good is on sale, the benchmark model assumes
that firms start with two predetermined prices, taken as exogenous here, and they can choose how
often each price is charged. Denote the lower of the two prices by pg, referred to as the “sale” price,
and the other price by py, referred to as the “normal” price. Firms then choose the fraction of time
s when the good is on sale at price pg, with the good sold at price py for the remaining fraction of
time 1 — s. Firms choose the timing of their sales randomly, which is an equilibrium strategy given
that other firms are doing so. This also implies consumers face the same price index irrespective of
when they do their shopping.

Since households select their shopping time at random, the total quantity ) sold by a firm across
all moments is obtained from households’ demand functions,

0=s(B) vra-a(B) Y.

and thus total profits &2 are:

2 =5 () v+ -y () Ty owr (s () v e -9 (B) ) L ks
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Firms choose the sales fraction s to maximize profits, taking predetermined prices ps and py as
given for now.

Suppose that prices ps and py and wage W are fixed in money terms. Now consider a shock
to the money supply M. Firms adjust s in response, which means that they can effectively choose
the average price they sell at. This gives them considerable freedom to respond to shocks. The
following proposition establishes that firms find it optimal to use this freedom to the full: in this

setting, money is neutral.

Proposition 1 Given predetermined prices py and ps, and predetermined wage W | if firms choose
sales fraction s to maximize profits [2.5], as long as s € (0,1) before and after the monetary shock,

firms’ output () is unaffected by the shock.

PROOF The first-order condition with respect to s is

1 1 1—¢ _ 1—¢
ST o (%) : [2.6]
FUFHQ) W\ ps" —py
Note that the marginal product of labour, and therefore the quantity produced @), depend only on

predetermined variables which are not affected by the realization of the monetary shock. |

This result shows monetary policy does not affect the physical output @) of firms. A positive
shock to M leads firms to sell fewer of their goods on sale. As the quantity produced is constant,
an increase in the money supply has to be followed by a corresponding increase in the price level.
The prices ps and py are sticky; the proportion s sold on sale is responsible for the adjustment.

The intuition is the following: higher s means that (i) revenues are higher because demand is
price elastic; (ii) costs are higher because quantity sold is higher; and (iii) the marginal cost of
production increases because the production function is concave. If pg, py and W are fixed, both
an increase in the price level P and an increase in output Y multiply the demand for goods at the
sale and normal prices by the same factors, and so effects (i) and (ii) exactly cancel out. Therefore
profit maximization requires keeping the marginal cost of production, and hence quantity produced
(), constant.

As households buy different goods at different prices, aggregate output Y is not exactly equal
to the physical quantity of output ). Proposition 1 shows that () is constant in face of monetary
shocks, and though aggregate output Y is affected by these shocks, the size of the effect is extremely
small and its direction is necessarily ambiguous. Furthermore, if a shock resulted in the sales fraction
s changing from (almost) zero to (almost) one, then output Y would be completely unaffected.

The result is even more surprising in light of the assumption of a predetermined money wage.
Usually nominal rigidity need only be present in either prices or wages for monetary policy to have

real effects.



3 The model of sales

The benchmark model assumed that firms start with two prices ps and py. However, this is not
a profit-maximizing strategy given household preferences in that setting. This section proposes a

model in which firms want to choose two prices even in a deterministic environment.

3.1 Households

Each household ¢ € .7 has the same utility function [2.1] over their composite good C(z), real
money balances m(:) and hours H(z) as was used in section 2. The budget constraint [2.2] and
aggregate demand [2.4] are also as before. The only change introduced here is in the specification
of each household’s composite good.
The utility-maximizing trade-off between consumption and hours is given by
vp(H(2)) W

ul(C@) ~ P -

making use of the first-order condition [2.3] for optimal real balances, which implies C(z) = m(2).

3.2 Composite goods

Household ’s consumption C(z) is a composite good comprising a large number of individual prod-
ucts. Individual goods are categorized as brands of particular product types. There is a measure-one
continuum of product types 7 in the economy. For each product type 7 € .7, there is a measure-
one continuum of brands 4, with individual brands indexed by b € %. Hence every good in the
economy can be uniquely referred to by a type-brand pair (7,b) € (F x A).

Households have different preferences over this set of goods. Taking a given household, there is a
set of product types A C .7 for which that household is loyal to a particular brand of each product
type 7 € A in the set. For product type 7 € A, the brand receiving the household’s loyalty is denoted
by B(7), where B : A — 2 is a mapping from types to brands. Loyalty means the household gets
no utility from consuming any other brands of that product type. When the household is not loyal
to a particular brand of a product type 7, that is, 7 € J\A, the household is said to be a bargain
hunter for product type 7. This means the household can get utility from consuming any of the
brands of that product type.

The composite consumption good is first defined in terms of a Dixit-Stiglitz aggregator over
product types with elasticity of substitution e. For those product types where the household is a
bargain hunter, there is an additional Dixit-Stiglitz aggregator defined over all brands, with elasticity

of substitution 7. The overall aggregator C' for a given household is:

€

n(e—=1) e—1
e—1 n—1 e(n—1)
= ( / o, B(r))Fdr + / ( / o(r, b)ndb) dT> | 3.9
A 70 \J




where ¢(7,b) is the household’s consumption of brand b of product type 7. It is assumed that
1 > € > 1, so bargain hunters are more likely to substitute between different brands than households
are to substitute between different product types. Households have a zero elasticity of substitution
between brands of product types for which they are loyal to a particular brand.

There is a continuum of shopping moments .# when goods can be purchased and consumed. A
household does all its shopping at a randomly chosen moment j € .#. Denote the set of households
that shop at moment 3 by J#(7). As shown later, all households are indifferent in equilibrium
between all shopping moments.

The price level P is the minimum cost of buying one unit of the composite good [3.2]:

P= min/ /p(T, b)e(r,b)dbdr s.t. C>1,
(b)) )7 Jz

where p(7,b) is the money price of brand b of product type 7 prevailing at a given moment. For the

composite good defined in [3.2], the minimized level of expenditure is:

1

P= (/AP(T,B(T))ledT + /y\A (/%p(T’ b)lndb) o dT) - ; [3.3]

The expenditure-minimizing demand functions are:

<5(B;(,2>*n (’)BTST))%C' if 7€ Z\A, and where pp(7) = (f%p(T, b)k”db)ﬁ ,
e(r,b) = <@>_€C’ if 7€ Aand b= B(7),
0 if 7€ A and b# B(7),
3.4]
where C' is the amount of the composite good consumed and P is the price level given in [3.3]. The
term pp(7) is an index of prices for all brands of type 7, as is relevant to those households who

are bargain hunters for that product type. With these demand functions, total expenditure on all

consumption goods is:

/9 /@p(ﬁ b)e(t, b)dbdr = PC .

Household preferences over goods are completely characterized by the consumption aggregator
C'in [3.2], the loyal set A, and the brands B(7) receiving the household’s loyalty. All households are
assumed to share a consumption aggregator of the same form with the same elasticities of substi-
tution € and 7, but A and B(7) differ across households, being drawn randomly from a probability
distribution.

For each product type 7 € .7, households have probability A of including type 7 in their loyal

set A. This event is independent across households and product types. Formally,

Pwlre A=\, forall T€ 7. 3.5]



Consequently, the loyal set A and the set of types .7\ A for which a household is a bargain hunter
have measures A and 1 — A respectively for all households. It is assumed that 0 < A < 1, so all
households are loyal to a brand for some product types and bargain hunters for others. When this
paper refers to consumers as either loyal or bargain hunters, note that this designation is for a
specific product type only.

Conditional on including product type 7 in the loyal set A, all brands of that type have an
equal chance of receiving a household’s loyalty. The assignment of brands to loyal households is

independent across households and product types. Formally,
Py [B(r) € Bl € A] = / db, forall BC % andany 7€ .7 . [3.6]
B

Viewed from the perspective of a firm, assumptions [3.5] and [3.6] imply that it operates in a market
where a randomly selected fraction A of households are loyal to it, and a fraction 1 — A\ are bargain

hunters.

3.3 Firms

Each brand b of each product type 7 is owned and produced by a single firm, indexed by (7,b) €
(7 x A). All firms have the same production technology. With H hours of labour, a firm can

produce physical output @) of its good according to the production function
Q=F(H), 3.7]

where F(-) is a differentiable, strictly increasing and concave function with F(0) = 0. Hence the

minimum cost ¢’ (Q; W) of producing output @ for given wages W is
CQ;W)=WF Q). [3.8]

This cost function is differentiable, strictly increasing and convex in ) and satisfies ¢’ (0; W) = 0 as
a result of the properties of the production function [3.7].

Each firm sells its branded good at every shopping moment, but not necessarily at the same price
at all moments. Consider a given firm producing brand b of product type 7, and a given moment
J € M, where households () are doing their shopping. Take a particular household ¢+ € (7).
If the household is loyal to this brand and the brand is sold at price p, equation [3.4] shows that
p~(P(1)C(2)) units are demanded. On the other hand, if the household is a bargain hunter then
demand is p" P32 “(P(2)°C(z)), where Pg is the bargain hunter’s price index for all brands of type
7, that is, the price index pg(7) from equation [3.4] constructed using prices posted at moment j.
Pg is the same for all bargain hunters of the same product type at the same moment. The only
component of demand that could be household specific is P(2)°C(2), which multiplies the amount
demanded irrespective of whether the household is loyal or a bargain hunter, and determines the

overall level of expenditure. Define £()) to be the average of this household-specific expenditure



component taken over all shoppers at moment j:
£y = / P()C(1)du . 3.9]
H ()

Since the fraction of households who are loyal is A, the fraction who are bargain hunters is 1 — A,
and because the product types and brands benefiting from households’ loyalty are selected randomly
according to [3.5] and [3.6], and as households choose shopping moments at random, total demand

for a brand sold at price p is

D —(n—e€)
D(p; Pg,E) = (A4 (1 — Nv(p; Pg))p~ <€, where v(p; Pp) = (P—B> : [3.10]

at a moment with bargain hunters’ price index Pp for brands of the same type, and an average
household expenditure level [3.9] equal to £. Demand is specified in terms of the function v(p; Pp),
referred to as the purchase multiplier, defined as the ratio of the amount sold to a given measure of
bargain hunters relative to the same measure of loyal customers.

The demand function Z(p; Pg, ) can be used to define the total revenue Z(q; P, £) received

from selling quantity ¢ at a particular moment with Pg and & given:
#(q;: Pp.E) =927 (¢; Pp,€) , with p=27(q; P, E) [3.11]

where 27(q; Pg, £) is the inverse demand function corresponding to [3.10].

3.4 Price setting

Now consider the profit-maximization problem for a given firm, which chooses a price for its good
at each shopping moment. As will be seen below, the average household expenditure level £, as
defined in [3.9], will be the same at all moments. Furthermore, the bargain hunters’ price index
Py appearing in demand function [3.10] will be the same for all product types and at all moments.
Under these conditions, the profit-maximization problem reduces to choosing a distribution of prices
across all possible shopping moments.

For the specification of demand used in benchmark model of section 2, firms would choose a
single price at all moments even if they were to have the option of choosing a general distribution.
But this is not true when consumers have the preferences described in section 3.2.

Let F(p) be a general distribution function of prices. This distribution function is chosen to

maximize profits &,

7 = [# @ o) o) a6 ( [ 7w pr.00r 0 ). 3.12

where Z(q; Pg, £) is total revenue from sales at one moment, defined in [3.11], and €' (Q; W) is the
total cost [3.8] of producing the entire output @ of the good sold across all shopping moments.

10



Consider a discrete distribution of prices {p;} with probabilities {w;}.* The first-order conditions

for maximizing [3.12] with respect to prices p; and probabilities w; are
X' (2 (pi; Pg,E); Pg,E) =€’ (ij_@(pj;PB,S); W) and , 3.13a]
J
Z(2(pi; P, E); Pp,E) = N+ D(p;; P, E)E’ (Z w;i9(p;; Ps, E); W) if w;>0, [3.13b]
J
% (2 (pi; P, E); Pg,E) < N+ D(p;; Py, E)E" (Z w; D (p;; Pp, ); W) if w;=0,  [3.13¢]
J

where XN is the Lagrangian multiplier attached to the constraint ), w; = 1. Equation [3.13a] is the
usual marginal revenue equals marginal cost condition, which must hold for any price that receives

positive probability. The interpretation of first-order conditions [3.13b] and [3.13c]| is discussed later.

3.5 Aggregation

Since households are randomizing over their choice of shopping moment, and preferences in terms
of brand loyalty are drawn randomly according to [3.5] and [3.6], there is no intrinsic difference
between any two shopping moments. As long as firms are selecting prices for particular moments
at random from their desired price distributions, the price index Pg is the same at all shopping
moments and for all product types.” This also means that P(:) = P for all 2 € 5, and it therefore
makes sense to talk about the aggregate price level P, in spite of households’ actual consumption
baskets differing.

Given that households share a common price index and have the same preferences [2.1] over
their composite goods, money balances and hours, it follows that all households have the same level
of composite consumption, real money balances and hours. That is, C(:) = C, m(1) = m and
H(:) = H for all « € 5. Since consumption is the only source of demand in the economy, goods
market equilibrium requires C' =Y, where Y is aggregate income.

The common level of consumption C' =Y and the common price level P imply that the average
household expenditure level [3.9] is the same across all moments, as claimed earlier. This is equal
to & = PY at all moments j € .#. Together with the randomization assumptions for household
preferences, this justifies the claim that all firms face the same demand function at all shopping
moment, so firms cannot improve upon randomly selecting the moments at which they charge
particular prices from their desired distribution.

Finally, note that randomization by firms makes households indifferent between shopping mo-

ments, as is assumed.

4Tt is shown later that restricting attention to discrete distributions is without loss of generality.
5This is true so long as the distribution of firms’ price distributions is not different across product types. This
will be at all points in this paper, including the dynamic extension of the model.
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4 Equilibrium with flexible prices and wages

First consider the equilibrium of the economy when all exogenous variables are constant and prices
can be adjusted freely as discussed in section 3.4, and wages adjust to clear the labour market. With
a constant money supply, and no shifts in the production function [3.7], the general price level and
aggregate output are also constant.

The equilibrium pricing strategies chosen by firms depend on the nature of the demand function
P(p; Pg, E) for a firm’s brand at a particular moment, as given in equation [3.10]. What is crucial
is that demand comes from two different sources: loyal customers and bargain hunters — and these
groups have different price sensitivities. Loyal customers do not want to switch to other brands,
so the only margin of substitution they have is shifting expenditure to other types of product in
their consumption basket. On the other hand, bargain hunters want to find the brands offering the
best deals for a particular product type. The price elasticities for these two groups are ¢ and 7
respectively, and it makes sense to assume 1 > e. This means that the overall demand curve does
not have a constant elasticity: the elasticity changes with the composition of the firm’s customers.
High prices mean that most bargain hunters will have deserted its brand, and the residual mass of
loyal customers has a low price elasticity. Low prices put the firm in contention to win over the
bargain hunters, but competition among brands for these customers means the price elasticity is
high.

These arguments suggest that the price elasticity of demand decreases with price. This is con-
firmed by differentiating demand function 2(p; Pg, £) in [3.10] to obtain the price elasticity ((p; Pg)

(in absolute value):

Ae + (1= A)no(p; Ps)
- Pr) =
) = T A o)

This elasticity is a weighted average of € and 7, with the weight on the larger elasticity n increasing

[4.1]

with the purchase multiplier v(p; Pg), as defined in [3.10]. The higher is price p, the lower is the
purchase multiplier, and the smaller is the price elasticity. Such a change in elasticity is simply a less
extreme version of a “kinked” demand curve. For very low prices, the elasticity is approximately
constant and equal to 1 because the bargain hunters dominate; and for very high prices, it is
approximately constant and equal to € because only loyal customers remain. In the middle of the
demand curve there is a smooth transition between 7 and e.

As is the case with a kinked demand curve, the varying price elasticity of demand means that the
marginal revenue curve is not necessarily downward sloping for all prices, even though demand curve
[3.10] is downward sloping everywhere. To see this, note that marginal revenue can be expressed in
terms of the price and the price elasticity of demand as follows:

[4.2]

%' (D (p; Pp,E); Pp,€) = (M)

C(p; Pp)

It can be confirmed that if 7 is sufficiently large for a given e then marginal revenue is indeed

non-monotonic.
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Proposition 2 Consider the total revenue function %(q; Pg, ) defined in [3.11] and suppose n >
¢ > 1. Then marginal revenue #'(q; Pg, &) is non-monotonic if and only if 0 < A < 1 and

n> (3¢ — 1) +24/2¢(e — 1) 4.3]

hold, and everywhere downward sloping otherwise.

PROOF See appendix A.2. [ ]

Observe from [4.2] that to obtain non-monotonicity it is necessary to have a sufficiently large response
of the price elasticity ((p; Pg) outweighing a falling price in some range. From [4.1], this happens
when the gap between n and € is larger.

With a non-monotonic marginal revenue curve #'(q; Pg, ), it is possible that more than one
price can be associated with the same level of marginal revenue. First-order condition [3.13a] then
suggests firms might want to charge different prices at different shopping moments.

As was discussed in the introduction, an interesting case is where firms find it optimal to choose
a distribution with just two prices: a “normal” high price, and a low “sale” price. Denote these two
prices respectively by py and pg with py > pg, and let gv = Z(pn; P, €) and qs = Z(ps; Pp; E)
be the quantities demanded by customers at these prices, clearly with gs > qy. The fraction of
shopping moments when the brand is on sale is denoted by s. If 0 < s < 1 then both prices must
satisfy the first-order conditions [3.13a]-[3.13b]. By eliminating the Lagrangian multiplier X from
[3.13b], profit maximization requires:

Z(qs; P, &) — Z(qn; Ps, €)

%' (qn; Pp, €) = #'(qs: Pp, €) = p—— =% (sqs + (1 —s)qn; W) . [4.4]

Hence there are three requirements for optimality: marginal revenue must be equalized at all mo-
ments, the extra revenue generated by having a sale at a particular moment per extra unit sold
must be equal to the common marginal revenue; and marginal revenue and average extra revenue
must both equal marginal cost.

Firms have a choice at which moment they sell each unit of output, so switching one unit from
one moment to another must not increase total revenue, thus marginal revenue must be equalized at
all moments. Furthermore, firms must be indifferent between having a sale or not at one particular
moment. This requires that the extra revenue generated by the sale per extra unit sold must be
equal to marginal cost.

A graphical interpretation of the first two optimality conditions from [4.4] is shown in Figure 2.
Marginal revenue is initially downward sloping, then becomes upward sloping, before finally changing
direction once more to become downward sloping. Both quantities ¢y and gg are associated with
the same marginal revenue, which is in turn equal to the marginal cost MC of producing total
output Q) = sqs + (1 — s)gy (note that the marginal cost curve is not shown). The average extra
revenue condition can be represented in the diagram as the equality of the two shaded areas bounded

between the marginal revenue curve and the horizontal line MC, and between the quantities ¢y and

qs-
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Figure 2: Demand function and non-monotonic marginal revenue function

pl\

A4

QN qs q

Notes: Schematic representation of demand function [3.10] and marginal revenue function [4.2]. Shown
for the case where parameters e and 1 satisfy [4.3].

The full set of optimality conditions is depicted in Figure 3. The first point to note is that
because firms can charge different prices at different moments the total revenue function can be
made concave. This raises attainable total revenue in the range between ¢y and qg. The first two
optimality conditions in [4.4] require that total revenue has a common tangent line at both quantities
gy and gg, which is equivalent to the slope of the chord being the same as the tangent itself. This
slope then determines the unique point where marginal cost equals marginal revenue, which yields
the total quantity sold and therefore the sales fraction.

The conditions for the existence and uniqueness of this type of two-price equilibrium are given

in the following result.

Theorem 1 Suppose firms choose distributions of prices to maximize profits as given in equation
[3.12].

(i) If elasticities € and 1 are such that the non-monotonicity condition [4.3] holds then there exist
Me,m) and A(e,n) such that 0 < Me,n) < Me,n) < 1, and if X € [A(e,n), M€, n)] then there

exists a two-price equilibrium, and no other equilibria exist.

(ii) If either of these conditions fails then there exists a one-price equilibrium, and no other equi-

libria exist.

PROOF See appendix A.3 |

This result indicates that two conditions need to be satisfied for two prices to be an equilib-
rium. First, marginal revenue must be non-monotonic, as has been discussed above and analysed in

Proposition 2. Second, there must not be too many loyal consumers, or too many bargain hunters,
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Figure 3: Total revenue and total cost functions

A

Z(qn; P, &)+ %' (qn; P, E)(q — an), »°

’
’
’

Notes: Schematic representation of total revenue function %(¢; Pp,&) from [3.11] and total cost
function €(Q; W) from [3.8], shown for parameters € and 7 satisfying [4.3].

but instead a sufficient mixture of the two. This justifies having a high price designed for the loyal
customers, and a low one for the bargain hunters at other moments, even though no actual price
discrimination can be practised as it is not possible for firms to distinguish the two types prior to
the moment of purchase.

Note that there is no reference to the degree of convexity of the cost function in Theorem 1.
What guarantees the existence and uniqueness of the two-price equilibrium for a wide range of
parameters, even if marginal cost were constant, is that the actions of other firms affect the total
revenue function, in particular the slope of the chord in Figure 3. This interdependence of firms
plays a key role throughout the paper and is discussed in full later.

Although the analysis considers just two types of consumers, adding more types does not neces-
sarily make more prices sustainable in equilibrium. There are two reasons: more prices in equilibrium
requires more humps in the marginal revenue curve, and a common tangent line of the total revenue
function at more than two points. Neither of these two configurations follows automatically on the
addition of extra types.

Given the stylized facts discussed in the introduction, this paper focuses on the two-price equilib-
rium. The total physical quantity of output sold by firms is @ = sqs+ (1 —s)qn. Let X = € (Q; W)
denote the associated marginal cost in money terms. Using the relationship between price and

marginal revenue in [4.2], the marginal revenue equals marginal cost conditions for each price can
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be expressed in terms of desired markups on marginal cost:

Ae+ (1 — N)nu(p; Pp)

pi = pulp;; Pe)X ,  with pu(p; Pg) = Me—1) + (1N — Do(p; Pg)

[4.5]

The desired markups depend on the parameters €, n and A, and the purchase multiplier v(p; Pg)
from [3.10]. Let vg = v(ps; Pg) and vy = v(pn; Pg) denote the two purchase multipliers, and the
s = u(ps; Pg) and puny = p(pn; Pp) the associated markups. Hence,

e + (1 — N)nus B e+ (1 — N)nuy
Me—D+(1—Nm—1Dos” "™ T Xe—D+ (1N Doy

s = [4.6]

By using the demand function from [3.10], the first-order condition in [4.4] linking average extra

revenue to marginal cost can be expressed as:

ps—1 _ (v (1= Now)y
v =1 O (L= Aoshug

[4.7]

Given that a fraction s of all prices are set at ps and the remaining 1 — s are set to py, equation

[3.4] implies the price index Pp for the bargain hunters is
_1
Pa = (spy"+ (1= s)ph )™ . 48

In finding the equilibrium, the model has a convenient block-recursive structure, or in other
words, the microeconomic aspects can be characterized independently of the macroeconomic side,
which is then determined afterwards. The key micro variables are the sales fraction s, the relative
markup g = ps/un, and the relative quantity sold at the sale price compared to at the normal
price, denoted by x = ¢s/qn. Using the demand function [3.10], first-order condition [4.7] gives the

relationship between quantity ratio y and markups pug and py.

ps — 1

The following proposition verifies the block-recursive structure and derives some comparative statics
Proposition 3 Suppose parameters €, n and X\ are such that there is a unique two-price equilibrium.

(i) The equilibrium values of i, X, s, Vs, Un, ps and py are uniquely determined only by param-

eters €, n and .
(ii) For given values of € and n:

0 0
ou_o  Oms _

8NN—O ox ds
ox 7 oN

O v =Y e T
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(iii) Let A(e,n) and A(e,n) be as defined in Theorem 1:

lim s=1, lim s=0.
A—=A(en)t A—X(en)~

(iv) The markup and quantity ratios u and x are continuous functions of € and n, and:

lim p=0, lim xy=o00, lim =1, lim =1,
e—1t . e—1+ X n—n*(e)* s n—n*(e)t X
where n*(€) = (3¢ — 1) + 21/2¢(e — 1) is the lower bound for 1) that ensures non-monotonicity,

according to [4.3] in Proposition 2.

PROOF See appendix A 4. [ ]

The first part establishes the separation of the equilibrium for the micro variables from the
broader macroeconomic equilibrium. Furthermore, the second part shows that only € and n are
needed to pin down the relative markup p and quantity ratio y, and then A determines the sales
fraction s. The equilibrium sales fraction s is strictly decreasing in A and varies from one to zero as
A covers the interval of values consistent with a two-price equilibrium. The final part shows there is
a smooth transition between the two-price and the one-price equilibria, and the markup ratio and
quantity ratios span their natural ranges for admissible parameter values.

Given the purchase multipliers and markups, finding the equilibrium values of the other en-
dogenous variables is straightforward. The general price level P is obtained by combining [3.3] and

demand functions [3.4], and making use of the definition of the purchase multipliers in [3.10]:

1

P = (S<>\ +(1— )\)vs)p}g_E +(1—=s) A+ (1 - )\)UN)p]lV—e) =

This allows the level of real marginal cost x = X/P to be deduced as follows:
= (s(A+ (1= Nog)pg “+ (1= s)(A+ (1= Noy)uy )T . 4.9]

With real marginal cost and the markups, relative prices ps = ps/P and oy = py/P are determined.

This yields the amounts sold at the two prices relative to aggregate output:
gs= A+ 1 =Nvs)o5Y, qv=A+(1-Novy)oyY . [4.10]

Given that total physical output is @ = sqs + (1 — s)qu, the ratio of Y to @, denoted by 0, is:

1

d SN+ (1= Nus)og 4+ (1 —s) A+ (1 = Now)oy

Using the production function [3.7], the cost function [3.8], and the labour supply function [3.1], a
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relationship is obtained between real marginal cost x and output Y:

_ u(F)
W) F (FA/5)

[4.11]

Since the equilibrium z is already known from [4.9], the equation above determines output Y. Using
equation [2.4], the price level P is then given by P = M/Y.

5 Monetary shocks in a model of sales

The benchmark model of section 2 analysed the effect of a monetary shock with predetermined
prices ps and py and wage W, but crucially, the reason why firms started with two prices rather
than just one was left unexplained. The sales model introduced in section 3 provides precisely such
a reason, and this section performs a similar experiment when sales are flexible.%

Starting from the flexible-price equilibrium as characterized in section 4, suppose that prices pg
and py, and wage W are set at levels consistent with expected money supply M. Following the
realization of the actual money supply M, firms can adjust their sales through either price pg or
quantity s. The normal price py remains at its predetermined level, and for now, the money wage
W also remains constant.

The freedom to adjust sales, but not the normal price py, means that of the first-order conditions

in [4.4], only the second and third equalities holds:

Psqs — PNGN

=X, ps=ups;Ps)X, [5.1]
4ds — 4N

where achieving the optimal markup u(pg; Pg) is equivalent to equalizing marginal revenue at the
sale price and marginal cost.

The use of the sales margin in the benchmark model led to money neutrality. But it turns out
that the answer to the question of whether monetary shocks have real effects is radically different
once a reason for sales is built into the model: monetary shocks now have large real effects. The
crux of the result is that sales are strategic substitutes: firms find sales more attractive when other
firms are having fewer sales.

Monetary shocks are analysed by considering a situation where the money supply is in a neigh-
bourhood of the flexible-price equilibrium level. Denote log deviations of variables from the flexible-
price equilibrium using sans serif letters, and the flexible-price equilibrium values themselves with

a bar over the variable.

Theorem 2 Consider parameters values €, n and A\ for which the economy has a two-price equilib-

rium, as described in Theorem 1.

6 Actually this exercise gives firms greater freedom than in the benchmark model by allowing firms to vary the size
of the sale discount. In the benchmark model, if ps could be changed then money would be automatically neutral
because the profit-maximizing strategy there is to charge a single price.
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(i) If the sales fraction s is adjusted optimally according to the first equation in [5.1] then the
elasticity of marginal cost X with respect to Pp is unity, and no other variables have first-order

effects on marginal cost:
X = PB )

(ii) If both the sales fraction and the sale price pg are adjusted optimally according to [5.1] then
the elasticity of the optimal sale price ps with respect to marginal cost is unity, and no other

variables have first-order effects on the optimal sale price:

ps = X.

PROOF See appendix A.6. |

The first part of the theorem makes sales strategic substitutes. As other firms cut back on sales
either by reducing s or increasing pg, the bargain hunters’ price index Pg increases. Theorem 1
shows this leads a given firm optimally to raise total quantity sold to the point where marginal cost
X has risen one-for-one with Pg. As the normal price is not adjusted, the increase in quantity sold
is brought about by an increase in sales.

The problem of choosing the profit-maximizing sales adjustment is essentially one of a firm
deciding how much to target its loyal customers versus the bargain hunters. Because competition
for the bargain hunters is more intense than for loyal customers, the incentive to target them is
much more sensitive to the extent that other firms are targeting them as well. Thus, a firm’s desire
to target the bargain hunters with sales is decreasing in the extent to which others are doing the
same.

The option of adjusting the fraction of sales s was also open to firms in the benchmark model,
but here the use of this margin has important implications for the competition among firms. This
can be seen algebraically by substituting the demand function and purchase multipliers from [3.10],
and the cost function [3.8] into the first part of [5.1]:

PO W e ran () ") e e aon () ™)

This difference between the models can be understood by looking at the respective first-order

conditions [2.6] and [5.2] for the sales fraction s. The key difference is the presence of Pg in the
model with sales. The terms involving Pp reflect the different degrees of competition for loyal
customers and bargain hunters.

Recall that in the benchmark model, firms have an incentive to reduce sales in response to a
positive monetary shock, essentially mimicking an increase in price. The same incentive exists here,

but is counteracted by another effect. As firms reduce their sales, an individual firm has a strong
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incentive to target the bargain hunters, who are being neglected by the others. Consequently the
fall in sales will be smaller, and so the price level will rise by less. Therefore, output will increase.
The effects of others’ actions on an individual firm’s incentives to hold sales are shown in Figure 4.
Others’ price changes operate on marginal revenue through both P and Pg. A rise in P shifts the
demand curve outward, with proportional effect at every point. In contrast, a rise in Pg has a much
more marked effect on demand at lower prices and higher quantities where the bargain hunters are
found. This upsets the balance between profits from selling at both prices, boosting profits from
selling on sale, which is seen in differential between the shaded areas bounded between marginal
revenue and marginal cost. This does not happen following the change in P, which was the only

operative channel in the benchmark model.

Figure 4: Impact of other firms’ price changes on the demand and marginal revenue functions

DA Change in P DA Change in Pp

Notes: Schematic representation of shifts of demand and marginal revenue functions [3.10] and [4.2].
The price level P affects demand through & = P¢Y according to [3.9].

This analysis demonstrates that there are two conflicting effects on sales and the price level after
a monetary shock. One leads to money neutrality, while the other leads to money having real effects.
It is therefore a quantitative question how strong the real effects will be.

The previous discussion explains why there must be a positive relationship between Pp and
X, but the result of Theorem 2 is stronger: the elasticity must be unity. This follows from some
elementary properties of the profit function. Define & (p; Pp, X, P,Y’) be the level of profits at the

margin from selling at price p at one shopping moment:
P (p; Pp, X, PY) = (p— X)Z(p; Pp, PY) [5.3]

where £ = PY has been used, in accordance with [3.9]. The first-order condition for the optimal
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sales fraction is p(ps, pn, P, X, P,Y) = 1, where

‘gz(pS;PB7X7 P7Y)

p(pSapNaPBaXv-Pay) = y(pNPB X PY) )

[5.4]

is the ratio of profits from selling at the sale price to profits from the normal price. The demand
function is homogeneous of degree zero in all prices, and so the profit function [5.3] must be ho-
mogeneous of degree one in p, Pg, P and X, and therefore the profit ratio p(ps, pn, Pp, X, P,Y)
is homogeneous of degree zero in pg, pny, Pg, P and X. The form of the demand function [3.10]
implies that P and Y proportionately affect profits at both prices and thus have no influence on
relative profits, so p(ps,pn, P, X, P,Y) = o(ps,pn, P, X,1,1) for all P and Y. Consequently,
relative profits [5.4] must be homogeneous of degree zero in pg, py, Pp and X alone. Since pg
and the predetermined value of py are chosen optimally, neither pg nor py has a first-order effect
on either profits or relative profits. Therefore, relative profits p(ps, pn, Pg, X, 1,1) must be locally
homogeneous of degree zero in just Pg and X. Hence to ensure relative profits remain equal to one,
Pg and X must change by the same proportion.

The second part of Theorem 2 states that when both the sales fraction and sale price are chosen
optimally, the sale price features a constant markup on marginal cost, at least locally. The first-order
condition for the sale price is pg/(u(ps, Pg)X) = 1, and this equation is homogeneous of degree
zero in pg, Pg and X because the optimal markup function p(p; Pg) in [4.5] is also homogeneous
of degree zero in prices. As Pg and X must move proportionately to be consistent with an optimal
choice of the sales fraction, a movement of pg in the same proportion is required to satisfy the

first-order condition.

5.1 Calibration

The distinguishing parameters of the sales model are the two elasticities € and 7 and the fraction A
of loyal consumers. As was shown in section 4, these parameters are directly related to observable
prices and quantities: the markup ratio p, which gives the size of the discount offered when a good
is on sale; the quantity ratio y, which states how much more is purchased when a good is on sale;
and the fraction s of goods sold at the sale price. There are thus three unknown parameters that
can be matched to data on three observables.

There is a growing empirical literature examining price adjustment patterns at the microeconomic
level. This literature provides information about the markup ratio and the sales fraction. The
benchmark values of these variables are taken from Nakamura and Steinsson (2007). Their study
draws on individual price data from the BLS CPI research database, which covers approximately
70% of U.S. consumer expenditure. They report that the fraction of price quotes that are sales
(weighted by expenditure) is 7.4%. They also report that the median difference between log(ps)
and log(py) is 0.295, which yields p = 0.745.

In the retail and marketing literature, there has for a long time been a discussion of the effects

of price promotions on demand. This literature provides information about the quantity ratio.
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However, papers in this literature report a range of estimates conditional on factors other than price
that affect the impact of the price promotion, for example, advertising. The benchmark value of the
quantity ratio is obtained from the study by Chakravarthi, Neslin and Sen (1996). Their results are
based on scanner data from a large number of U.S. supermarkets. According to the elasticities they
report, a price cut of the size consistent with the markup ratio taken from Nakamura and Steinsson
(2007) implies a quantity ratio of between approximately 4 and 6 if the retailer draws the price cut
to the attention of customers. The benchmark number used here is the simple average of the two,
so Y = 5.

The three facts about sales, summarized in Table 1, are then used to find matching values of
the unknown parameters. This exercise first requires finding the equilibrium of the economy for the
variables p, x and s. Proposition 3 shows that these depend only on the parameters €, n and A.
Lemma 3 in the appendix shows how p and y are determined as functions of € and 7. Then equation

[A.3.6] in the proof of Theorem 1 determines s as a function of all three parameters.

Table 1: Stylized facts about sales

Description Parameter Value
Ratio of sale markup to normal markup (pus/pn) i 0.7457
Ratio of quantity sold at sale price to normal price (gs/qn) X 5t

Fraction of goods sold at sale price S 0.0747

t Source: Nakamura and Steinsson (2007)
t Source: Chakravarthi, Neslin and Sen (1996)

Given this solution method, parameters matching the stylized facts were found using the Nelder-
Mead simplex algorithm. An extensive grid search over € and 7 was used to verify that these are the
only parameters matching 1 and x. Proposition 3 demonstrates that given e and 7, there is always

one and only one A value matching the sales fraction s. The results of this exercise are shown in
Table 2.

Table 2: Parameters matching stylized facts about sales

Description Parameter Value
Elasticity of substitution between product types € 3.01
Elasticity of substitution between brands for a bargain hunter n 19.7
Fraction of product types for which a consumer is loyal to a brand A 0.901

Notes: These parameters are exactly consistent with the three stylized facts about sales given in
Table 1.

In order to compute the effects of a monetary policy shock, the elasticity of marginal cost with

respect to output must be known, which requires one further parameter to be calibrated. This is
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done by specifying a production function
F(H)=AH", [5.5]

and setting o = 2/3 to match the labour share of income.

5.2 Results

This section calculates the elasticities of output and the price level with respect to a monetary
surprise, evaluated at the flexible-price equilibrium described in section 4 drawing on the first-order
Taylor approximation of the model presented in appendix A.7. The equilibrium values of output and
the price level are now determined under the assumption that the sales fraction and the sale price
are chosen optimally, but the normal price and the nominal wage remain at their predetermined
equilibrium values. The equations that characterize the equilibrium after a monetary shock are as
in section 4, except that the first-order conditions for price py in [4.4], and wage W in [4.11] are
dropped. The first-order conditions for optimal sales are given in [5.1].7

The results for the benchmark calibration are examined first. Using the parameters from Table 2

and a = 2/3 the elasticities are:

dlogY _0 dlog P

=0. =0.105.
dlog M " dlog M 0-105

For a 1% surprise increase in the money supply, output rises by 0.895%. The results are not
very sensitive to the stylized facts about sales used to calibrate the model. A sensitivity analysis
is shown in Figure 5. Of the three targets, the effects of monetary policy are most sensitive to the
sales fraction s. In the range of empirically plausible s values (5% — 15%), monetary policy has
substantial real effects: the elasticity varies between 0.84 and 0.92.

The quantity ratio y is the target for which the literature yields widest range of estimates. But
nonetheless, varying x from 3 to 8 implies that the elasticity lies between 0.87 and 0.90. Finally,
the target value of the markup ratio g makes essentially no difference to the results.

These findings are in sharp contrast to the results of the experiment performed using the bench-
mark model of section 2, where there was no rationale for having a two-price distribution. In the
new model, consumer preferences are such that sales are an equilibrium phenomenon. In both cases,
firms have an incentive to adjust the fraction of sales following a monetary shock. But the consumer
preferences introduced to explain sales also give rise to strategic substitutability in the sales deci-
sion. Strategic substitutability is so strong that flexibility in sales brings very little flexibility to the

aggregate price level.

7Although determining the flexible-price equilibrium requires specifying the utility function, this information is
not needed to compute the elasticities of output and prices. This can be seen by examining the first-order Taylor
approximation of the model in appendix A.7.
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Figure 5: Sensitivity analysis
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: The results are obtained by fixing two of the three targets at their benchmark values as given

in Table 1 and choosing matching values of the parameters €, 7 and A as explained in section 5.1.

5.3 Justification for the “sticky” normal price

The previous analysis treated py as fixed, and s and pg as completely flexible. In reality, there may

be costs of readjusting s and pg, but this paper shows that even without such costs, the possibility

of continuously adjusting sales decisions has only a small impact on the real effects of monetary
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policy. Thus stickiness in py suffices to explain why monetary policy has real effects.

Recent micro evidence on price setting has highlighted the relative stickiness of so-called “ref-
erence” prices (Eichenbaum, Jaimovich and Rebelo, 2008), which correspond to “normal” prices in
this paper. The model developed in this paper is consistent with the finding of sticky reference
prices, and moreover, in the setting of the model, it makes sense for the normal price to be relatively
sticky. This section develops three arguments in support of this claim: (i) in the context of the
model, the extra gains from adjusting the normal price after firms have optimally chosen s and pg
are only 14% of the corresponding gains in a standard sticky price model; (ii) adjusting the sales
fraction reaps most of the benefits of price adjustment; and (iii) after adjusting s, the gains from
repeatedly adjusting the normal price (which is used 92.6% of the time in the baseline calibration)
are actually very close to the gains obtained by changing the sale price only when the good is on
sale (which occurs 7.4% of the time).

These results build on the following proposition:

Proposition 4 Consider arbitrary distributions of pyy and pg around their flexible-price equilibrium
values from section 4. Suppose all firms optimally choose sales fraction s according to the first part

of equation [5.1].

(i) The nominal marginal cost X is the same for all firms irrespective of their individual prices pg

and py, and moreover, X = Pp.
(ii) The quantity sold Q is the same for all firms irrespective of their individual prices ps and py.
(iii) If p% and p}y denote the log-deviations of the desired sale and normal prices then p§ = pj = X.

(iv) A second-order approximation of the gain from adjusting individual prices from pg and py to

p% and ply respectively (expressed as a fraction of steady-state total revenue) is:

. (n —e)*M1 = Nos(fis — 1) 2

Gain = 55513 (Cs — Ot (1= N)ig)? ) (ps — X)
oot~ BP0 o,
PROOF See appendix A.8. [ ]

Corollary If pg is optimally chosen, so ps = pg = X then the gain from adjusting py to py is:

(= *A(1 = Now (fin —
A+ (1= N)oy)?

Gain — %(1 - s)%vx (gN - 1)) (py — X)? 5.7]

O
The proposition considers the implications of firms optimally adjusting s, while the corollary
considers also that pg is optimally chosen.
The first part of Proposition 4 shows that the optimal choice of the sales fraction already implies

an optimal choice of quantity sold, in the sense that if a firm were also to adjust optimally either
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its normal price or its sale price then this would make no difference to the quantity sold. The
implication is that most of the gains from price adjustment are already exhausted by choosing the
sales fraction optimally. Quantitatively, the size of any remaining gains from changing the sale and
normal prices themselves are assessed using the fourth part of the proposition.

To see how this compares with standard analyses of menu costs and sticky prices, the expression
for the gain in profits can be contrasted with that which obtains in a model with entirely standard
Dixit-Stiglitz preferences, and thus one price in equilibrium, but which is otherwise identical. As
is demonstrated in appendix A.11, the gain in profits from price adjustment (again expressed as a

fraction of steady-state total revenue) is:

Gain = %5(1 +ev)z <p - (P + ! x))2 : 5.8]

1+ey

where ¢ is the constant price elasticity of demand and ~y is the elasticity of marginal cost with respect
to quantity produced. With the production function [5.5], v = (1 — o) /.

When comparing the gain from adjusting only s with the gain from adjusting price in a standard
one-price model, there are two crucial differences between [5.6] and [5.8]. Quantitatively, the most
important difference between the profit gains corresponds to the term 1 + v, which appears only
in [5.8]. This represents the gains from selling the optimal quantity, which in a standard model can
only be achieved through a price change. But as Proposition 4 shows, the gains from producing the
optimal quantity automatically accrue when firms are free to choose their desired sales fraction.

The second reason for a smaller gain relative to a standard model from adjusting the normal and
sale prices is that with a demand function consistent with sales in equilibrium, the price elasticity
is decreasing in price, thus if prices are too high the desired markup also increases, and vice versa
if prices are too low. The bracketed terms in [5.6] multiplying the deviations of prices are smaller
than the price elasticities of demand (x and (g, since the terms being subtracted are unambiguously
positive. In contrast, in [5.8], the deviation is multiplied simply by the price elasticity e.

In the sales model, the sizes of desired adjustment of the normal price being contemplated by
firms in response to monetary shocks are significantly smaller than the changes observed in individual
prices, which mostly correspond to shifts between the normal and sale prices. Therefore, large price
changes are observed, but full reoptimization of prices requires only small adjustments, and so only
small losses are incurred if firms fail to make these desired changes. This means that reoptimization
of the normal price falls exactly within the remit of the literature in macroeconomics which seeks
to justify why firms do not always make small price changes, such as Mankiw (1985) and Akerlof
and Yellen (1985).8

The gains from adjusting prices in the sales model are compared with those in a one-price model
where firms are faced with the same shocks, even though a one-price model would require much
larger shocks to generate the magnitude of observed price changes. The difference in the size of

menu costs needed to rule out a flexible-price equilibrium can be computed using the calibration

8Direct empirical evidence on costs of reoptimizing prices is presented in Levy, Bergen, Dutta and Venable (1997)
and Zbaracki, Ritson, Levy, Dutta and Bergen (2004).
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from section 5.1 and the expressions [5.6] and [5.8]. In the latter, the constant price elasticity ¢ is
chosen to imply a markup equal to the average markup found in the calibrated model with sales.”
With an elasticity of output with respect to hours of 2/3, the implied v is 0.5. In the sales model,
the menu cost needed to dissuade a given firm from changing both its sale and normal prices is only
27% of the menu cost that justifies not changing price in the standard model.

The same exercise can be performed assuming that pg and s are optimally chosen, which corre-
sponds to comparing the gains implied by [5.6] and [5.7]. This exercise reveals that the menu cost
needed to dissuade a firm from adjusting py is only 14% of the menu cost needed to deter price ad-
justment in a standard model. This constitutes approximately half of the total gains from changing
both ps and py, which shows that the coefficients of the deviations of pg and py are approximately
the same.

Even though the coefficients are very close, at a given moment, the gains from optimally adjusting
pg are approximately 12 times larger than those from adjusting py. As the price elasticity is much
higher at pg than at py, the profit function is much more convex, the margin is narrower, and the
quantity sold is larger, so deviations from the optimal price are much more costly. The importance
of adjusting ps and py turns out to be similar because s is around 12 times smaller than (1 — s).
So at a given moment, if there is no intrinsic difference between the cost of adjusting a normal price
versus a sale price, a firm would strongly prefer to reoptimize its sale price.

It may seem contradictory that firms are able to extract most of the gains from changing price
simply by varying the sales fraction, but at the same time, choose to do so sparingly in response to
a monetary shock. This apparent puzzle is resolved by noting the reason for the small response of
the sales fraction is not its lack of efficacy for an individual firm, but that other firms also react to

common shocks in the same way, and sales have been shown to be strategic substitutes.

6 Flexible wages

This section considers the model of sales with fully flexible wages. In this case, the first-order
condition of households for labour supply [3.1] holds at all times. Since all households face the same
prices, this implies:

) W 6.1]
u(Y) P

The remainder of the model is as described in section 5.

Obtaining the effects of a monetary shock now requires calibrating the utility function. The main
issue is to avoid the counterfactual prediction that the real wage fluctuates by more than output.
Thus a lower bound for the real effects of monetary policy is found by choosing a utility function

that implies the real wage and output move one for one. This is done by adopting the conventional

9The bracketed terms are multiplied by 5Gs/Q and (1 — 5)gn/Q, which weight them according to the relative
quantities sold. In the sales model, us = 1.09, uy = 1.47, and 53s/Q = 0.28, which yields an average markup of
1.36. With Dixit-Stiglitz preferences, the optimal markup is /(¢ — 1), so € = 3.77.
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specification of log utility in consumption and linear disutility in hours worked:!’
u(C)=1logC, v(H)=aH.

As in section 5, the economy is subject to a money-supply shock. The sales fraction s, the sale
price pg, and wage W are optimally adjusted. Only the normal price py is predetermined. The

elasticities of output and the price level to the monetary surprise are:

dlogy dlog P

. =0.315.
dlog M " dlog M 0315

These results show the strength of the strategic substitutability of sales. Even though wages are
fully flexible (and adjust more than in the data), and firms face no costs of adjusting either the sale

price or the sales fraction, monetary policy has large real effects.

7 Dynamics

This section extends the previous analysis to a dynamic environment, where the normal price is
adjusted, but not continuously so. There is a tractable dynamic version of the sales model and this
section derives the resulting Phillips curve, which is easily embedded into any DSGE framework.
While the presence of sales in the model adds an extra effect when compared to the standard New
Keynesian Phillips curve, quantitatively the difference turns out not to be large. The conclusions

are thus in line with the findings of section 5.

7.1 Staggered adjustment of the normal price

The model developed here continues to allow firms costlessly to vary the sales fraction and the sale
price, but now they can choose a new normal price at random times, as in the Calvo (1983) pricing
model. It is important to stress that the Calvo pricing assumption is used only for changes of the
normal price; a firm has complete discretion to switch its price without cost between the normal
and sale price at any given moment, and to change the sale price itself.

The assumption of Calvo pricing for the normal price is made only for simplicity. Of course
the choice of an alternative model of price stickiness, for example, state-dependent pricing, would
affect the results in its own right. But there is no obvious reason to believe that the interaction of
different models with firms’ optimal choice of sales will significantly affect the results (unless those
models yield the counterfactual prediction that the price py is continuously adjusted, thus making
the sales margin redundant). This is because Proposition 4 implies that profit-maximizing prices

are a function only of the aggregate state of the economy, and thus independent of the distribution

0This follows standard practice in the real business cycle literature following Hansen (1985), and is also a speci-
fication employed in recent theoretical work on pricing, such as Golosov and Lucas (2007) and Kehoe and Midrigan
(2007).
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of prices. Furthermore, a firm’s optimal sales decisions depend only on its own normal price and
the aggregate state of the economy.

In each period, each firm has a probability 1 — ¢, of receiving an opportunity to adjust its
normal price. Consider a firm that receives such an opportunity at time ¢. The optimal price it
selects is referred to as its reset price, and is denoted by Ry;. Asset markets are assumed to be
complete: 74, denotes the asset-pricing kernel for state-contingent monetary payoffs (relative to
the conditional probability of each state occurring). The optimal sales decisions will in principle
depend on the firm’s normal price, and so on its last adjustment time. Denote by s,; and pge: the
optimal sales fraction and sale price for a firm at time ¢ that last changed its normal price ¢ periods

ago. The reset price Ry, is chosen to maximize:

Se,t+eps,£,t+£@(p5,e,t+z; PB,t+£7 5t+£) + (1 - Sz,t+é)RN,t9(RN,t; PB,t+£, gt+€)

max Z ¢£Et ‘Q{Hlilt
Rt =0 _Cg<3£,t+€-@(p5,&t+€; PB7t+£a 5t+£) + (1 - Sé,t—i-é)-@(RN,t; PB,t+£, 5t+e); Wt+£>

[7.1]
The first-order condition for the optimal reset price is given by:
- R ¢’ W,
Z QbfaEt {(1 - 3£,t+e)’nt+£\t { PN’t - ,U(RN,t; PB,t+€) (Q&;rg HZ) }} =0, [7-2]
=0 t+0 t-+0

(C(Rng; Peate) = V)P (Rny; Ppves Ere) Prvo i
P '

Where ‘BHZ“ =

Note that the optimal reset price is identical for all firms that change their normal price at the same

time. Hence the expression for the aggregate price index P, is

1

- set(A 4+ (1= Nv(psies, Poa))pses }) o
Po=(1=¢)) ¢, o : 7.3
<( )ez(; { +(1 = s0) (A + (1 = No(Ru—e, Pt)) Ry sy =

and the bargain hunters’ price index Pg, is defined accordingly.

The sales fraction s;; and sale price pgy; are determined as in [5.1]:

Ds,,95,6t — BN—eqn o

= Xot, Dser = wPses; Pee)Xer [7.4]
qset — ANt

where gs¢; and gy are the quantities sold at the sale and normal prices by a firm that changed

its normal price ¢ periods ago, and X, is nominal marginal cost for such a firm.

7.2 A Phillips curve with sales

To study the dynamic implications of the model, it is helpful to derive a Phillips curve that can
be compared with those from standard models with Calvo pricing. It turns out that the dynamic

model with sales also yields a simple Phillips curve.

Theorem 3 Suppose firms determine optimal reset price Ry, according to equation [7.2] and their
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optimal sales fractions and sale prices using [7.4]. Let my = P,/P,_; be the inflation rate for the
aggregate price index [7.3]. Log-linearizing around the flexible-price equilibrium of section 4 with

zero inflation yields an optimal reset price satisfying

Rve = (1= 565) Y (86p) EiXips |
/=0

where X; is the common level of nominal marginal cost which results from firms optimizing over
their sales fractions as shown in Proposition 4, and (3 is the discount factor. The implied Phillips

curve linking inflation 7, and real marginal cost x; is

1
T = PB4 + 11— (rxe + ¥ (Axp — BEAx11)) [7.5]

(8

where the parameter 1) is defined as follows:

= 1_f)logPB dlog P 0Olog P 0log Py 0log Pp
- 0log Pg 0s dlog Ps  0Os ds

and k = ((1 — ¢,)(1 — B¢,)) /¢p. By solving forwards, inflation can also be expressed as:

fwAm. 17.6]

PROOF See appendix A.9. |

Notice first that the Phillips curve with sales [7.5] reduces to the standard New Keynesian Phillips
curve in the case that v = 0, but v is always positive in the model with sales. When ¢y — 1 the

economy converges to the case of price flexibility. The condition ¢ < 1 is equivalent to:

dlog P Olog P 0log Pp alog Pg
— 1-— - 1-— . .
0s / ( Jlog PS) = Os / ( dlog Ps [77]

First note that the elasticity of Pg with respect to Ps is always larger than that of P because

bargain hunters buy more goods at sale prices, so the denominator of the right-hand side is smaller.
Second, the numerator on the right-hand side is larger as long as an increase in the number of sales
benefits bargain hunters more than loyal consumers, which is intuitively plausible and true in the
baseline calibration, although it cannot hold for all possible parameters. Because the first claim is
always true, the second condition is sufficient but not necessary for [7.7] to hold. In the baseline
calibration, v is 0.26.

The effect of a positive value of 9 is to increase the response of inflation to real marginal cost
when compared to the standard New Keynesian Phillips curve. This is best seen by looking at the
solved-forwards version of the Phillips curve in [7.6], where there are two differences. The first is

scaling of the coefficient multiplying expected real marginal costs, which is isomorphic to an increase
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in the probability of price adjustment. The second is the term driven by changes in real marginal
cost, which is linked to the possibility of varying sales each period. It is subsequently shown how

this will affect the dynamics of output and prices.

7.3 A DSGE model with sales

This section embeds sales into a calibrated dynamic stochastic general equilibrium model with
staggered adjustment of normal prices and wages.

Household » € J¢s lifetime utility function is given by

U(0) = Y BBt [0(Crre(0)s mere() = v(Hewe(2))] - [7.8]

=0

The utility function v(C,m) is differentiable, strictly increasing and concave in both C' and m;
v(H) is a differentiable, strictly increasing and convex function of H. Each household supplies
a differentiated labour input. The parameter [ is the subjective discount factor, which satisfies
0<p<l.

Denote by A;;1(2) household #’s portfolio of Arrow-Debreu securities with nominal payoffs held

between periods ¢t and ¢ + 1. Household +’s period-t budget constraint is thus
Pt(]t(z) + Mt(l) + Et [VQ{H_”t.AH_l(Z)} = Wt<l)Ht(2) + @t + It + Mt_1<l) + .At(l> . [79]

Households have equal initial financial wealth and all have the same expected lifetime income.
There are no arbitrage opportunities in financial markets, so the yield 7; on a one-period risk-free

nominal bond satisfies:

—1

1 —|— it = (Et%—l—lhﬁ) [710]

Maximization of lifetime utility [7.8] subject to the budget constraint [7.9] implies first-order

conditions for consumption Cy(z) and real money balances my(z):

ﬁvcgfgag ; mtJ(A)()Z)) «QZs+1|tP;1 7 [7.11a]
Um(Ce(0), mu(2)) [7.11b]

ve(Cy (1), m(2)) 144

Equation [7.11a] is the intertemporal Euler equation for consumption, with v.(C,m) denoting the
marginal utility of consumption. The optimal tradeoff between holding money balances and con-
sumption is given by [7.11b], with v,,(C,m) denoting the marginal utility of real balances and
it/(1 4 4;) being the opportunity cost of holding money.

As in Erceg, Henderson and Levin (2000), firms hire differentiated types of labour. So hours H in
the production function [3.7] is now a composite labour input defined by the following Dixit-Stiglitz
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aggregator

= /fﬂm‘fdz)‘gl ,

where H (2) is hours supplied by household © € J# to a given firm, and ¢ is the elasticity of substitu-
tion between labour types. It is assumed that ¢ > 1, and that firms are price takers in the markets
for labour inputs. The money wage received by labour input ¢ is W (z). The minimum cost of hiring
one unit of the composite labour input H is denoted by W, and this is the relevant wage index in

firms’ cost function [3.8]. This wage index is given by

1

W= ( 3 W(z)l_gdi) o 7.12]

and the cost-minimizing labour demand functions are

H() = <W7(’)) s 7.13]

Suppose that households have a probability 1 — ¢,, of being able to adjust their money wage
in any given time period. Since households have equal initial wealth and expected lifetime income,
asset markets are complete, and utility [7.8] is additively separable between hours and consumption,
households are fully insured and hence have equal consumption and money balances in equilibrium.
As before, consumption is the only source of expenditure, so goods market equilibrium requires
C; =Y;. Hence using [7.10], [7.11a] and [7.11b], the following intertemporal IS equation and money

demand are obtained:

Ve(Yigr, meyr) 1 1 U (Ye,my) i

14+ 4)E = — .
R N A wVomy) ~ 1474

[7.14]

As households are selected to change their wages at random, enjoy the same consumption, and face
the same demand curve for their labour services, all households setting a new wage at time ¢ choose
the same wage. This common wage is referred to as the reset wage, and is denoted by Ry,. It
is chosen to maximize expected utility over the lifetime of the wage subject to the labour demand
function [7.13]. As shown by Erceg, Henderson and Levin (2000), the first-order condition for this

maximization problem is:

o0}

(ﬁ(bw)eEt
=0

e eve(Yige, mige) {Rw,t S Vn (Rl;/ftWtith%) }] -0 [7.15]

7 Uc(Ynmt) Py a ¢—1 Uc(KH,th)

Given that all households who change their wage at the same time pick the same reset wage, the

wage index W, in [7.12] evolves according to:

1
1—¢

= ((1 ~ ) Z%Rav,:_o - 7.16
=0
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7.4 Dynamic calibration

This section presents the calibration of the DSGE model described above.

One period corresponds to one month. The discount factor 3 is chosen to yield a 3% annual
real interest rate, the intertemporal elasticity of consumption o, is chosen to match a coefficient
of relative risk aversion of 3, and the Frisch elasticity oy, is set to 0.7, which lies in the range of
estimates found in the literature. The elasticity of money demand with respect to income 9,, the
interest semi-elasticity v;, and the real balance effect of money on consumption ,, are taken from

Woodford (2003), making the conversion from a quarterly to a monthly calibration.

Table 3: Dynamic calibration

Description Parameter Value

Preference parameters

Subjective discount factor I} 0.9975
Intertemporal elasticity of substitution o 0.333
Frisch elasticity of labour supply Oh 0.7
Income elasticity of money demand vy 1.0
Interest semi-elasticity of money demand Y 84T
Real balance effect on consumption U 0.00677
Technology parameters

Elasticity of output with respect to hours Q@ 0.667
Elasticity of marginal cost with respect to output ¥ 0.5
Elasticity of substitution between differentiated labour inputs S 20¢
Nominal rigidities

Probability of stickiness of “normal” prices op 0.889%
Probability of wage stickiness o 0.889

Notes: Monthly calibration.
T Source: Woodford (2003)
t Source: Christiano, Eichenbaum and Evans (2005)
§ Source: Nakamura and Steinsson (2007)

The elasticity of output with respect to hours « is chosen to match a labour share of 2/3. With
the specification [5.5] of the production function, this implies an elasticity of marginal cost with
respect to output of v = (1 — a)/a. So a = 2/3 yields v = 0.5. The elasticity of substitution
between labour inputs ¢ is taken from Christiano, Eichenbaum and Evans (2005). The probability
¢, of stickiness of the normal price is set to match a price-spell duration of 9 months, which is
taken from Nakamura and Steinsson (2007). The same number is used for the probability of wage
stickiness ¢,,, as evidence shows that most, but not all, wages are adjusted annually.

All the calibrated parameters are listed in Table 3.

The model is analysed under different assumptions about monetary policy. First, a first-order
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autoregressive process for money growth is considered:

M, (Mt—l

$m
= ~1.i.d.(0,0%) . 7.17
M Mt2> exp(e), e ~1ii.d.(0,0%) [7.174a]

The persistence parameter ¢, is chosen to match the empirical first-order autocorrelation coefficient
of M1 growth in the U.S. from 1979:8 to 1996:12.
Second, the case of a monetary policy rule with feedback from the state of the economy is

considered. A Taylor rule with interest-rate smoothing is the most popular specification for this:

_ O Y Py 1—¢;
L4, = (1+ip )% <(1+¢)(%) (%) ) expler), e ~iid.(0,02), [7.17b]

where @, is the interest-rate response to inflation, ¢, is the response to output (or the output gap),
and ¢; is the interest-rate smoothing parameter. The Taylor rule parameters are taken from the
baseline estimates of the Volcker—Greenspan period in Clarida, Gali and Gertler (1998), which is
1979:8-1996:12 (the same sample period as was used for the money-supply growth specification).

Table 4: Parameters used for the monetary policy experiments

Description Parameter Value

Exogenous path for growth of the money supply
First-order serial correlation of the money-supply growth rate Om 0.6

Taylor rule

Response of interest rates to deviations of inflation from target O 2.154
Response of interest rates to deviations of aggregate output from target Oy 0.078*
Degree of interest-rate smoothing v 0.924%

Notes: Monthly calibration.

T Source: Authors’ calculations using data on M1 for the period 1979:8-1996:12. Series M1SL from Federal
Reserve Economic Data (http://research.stlouisfed.org/fred2).

¥ Source: Clarida, Gali and Gertler (1998), converted from estimates based on quarterly data to a monthly
calibration.

7.5 Dynamic simulations

This section calculates the impulse responses of output and the price level to monetary policy shocks
in the DSGE model with sales described in section 7.1 and section 7.3. These are compared to the
corresponding impulse responses in a standard DSGE model, that is, one where consumers have
regular Dixit-Stiglitz preferences and thus firms employ a one-price strategy, and price adjustment
times are staggered according to the Calvo model. With Calvo pricing, a standard New Keynesian
Phillips curve is obtained.!! The latter model is otherwise identical to the DSGE model with sales.

HGee appendix A.10 for details.
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The calibrated parameters of the DSGE model with sales are given in Table 2 and Table 3.
For the standard model, the same parameter values from Table 3 are used, with the probability of
price stickiness applying to a firm’s single price, rather than its normal price in the sales model. In
place of parameters €, n and A, the standard model requires only a calibration of the constant price
elasticity of demand e. This is chosen to match the average markup found in the sales model.'?

Impulse response functions are calculated for the two monetary policy experiments described
in section 7.4: a persistent shock to money growth [7.17a]; and a shock to a Taylor rule with

interest-rate smoothing [7.17h].

Figure 6: Impulse responses to a persistent shock to money growth
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Notes: The specification of monetary policy used is equation [7.17a].

Figure 6 plots the impulse responses when money growth follows an AR(1) process in both
the sales model and the standard model. As in the static analysis of section 5, the real effects of
monetary policy in the model with sales are large and very similar to those found in the standard
model, in spite of the full flexibility of sales. The ratio of the cumulative deviations of output in

the two models is 0.929. The response of prices in the sales model shows a small jump immediately

12Gee footnote 9 for details. The calculations lead to € = 3.77.
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after the shock. This corresponds to the term Ax; in the Phillips curve [7.6].

The impulse responses are not particularly sensitive to the calibrated parameters. Considering
the same range of parameters as was done in the sensitivity analysis of section 5.2 leads only to
small differences in the findings.

Figure 7 shows an example of a price path in the model with sales using the baseline calibra-
tion. The underlying stochastic process for the money supply is a random walk with drift. The
behaviour depicted is qualitatively and quantitatively consistent with real-world examples of prices,

even without any idiosyncratic shocks in the model.'?

Figure 7: Theoretical price path implied by the model with sales
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Notes: Generated using the baseline calibration of the DSGE model with sales when the money supply
follows a random walk with drift.

When the central bank follows a Taylor rule, as in [7.17b], the reaction to shocks is somewhat
different, as is seen in Figure 8. The responses of output in the sales model and in the standard
model are now virtually identical. But the responses of prices are different. As before, the sales
model features an initial jump in the price level. This is more marked than in the case of a shock to
the money supply. The difference in price-level response diminishes over time, but does not vanish
in the long run, and is found to be around 17% in the baseline calibration.

In essence, however, this finding is not in conflict with the those obtained when the money
supply is exogenous. The addition of sales to the model affects the Phillips curve relationship,
which determines how much inflation is generated for a given output gap. The analysis in the case
of exogenous money shows that sales cause a slight reduction in the real effects of monetary policy.
In the case of the Taylor rule, the effect on output is approximately the same in both models, but

cumulated inflation in the sales model is a little higher.

13Without any shocks at all, sales would still occur at a very similar frequency, but the price would alternate
between two fixed levels.
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Figure 8: Impulse responses to interest-rate shock with a Taylor rule
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Notes: The specification of monetary policy used is equation [7.17D].

8 Conclusions

For macroeconomists grappling with the welter of recent micro pricing evidence, one particularly
puzzling feature is noteworthy: the large, frequent and short-lived price changes followed by prices
returning exactly to their former levels. If price changes are driven purely by shocks then explaining
this tendency requires a very special configuration of shocks. The model presented in this paper
shows that this pricing behaviour arises in equilibrium if firms face consumers with sufficiently
different price sensitivities. No idiosyncratic shocks are needed to generate sales.

The model explains why firms choose a two-price distribution with a normal price and a sale
price, and thus want to switch frequently between the two points of the distribution. The two desired
prices themselves are sensitive to shocks, but the magnitude of changes in the desired normal and sale
prices is dwarfed by the gap between the two. So the apparent “puzzle” of why prices return to their
former levels reduces to explaining why after a move from $5.99 to $4.49, a price returns to $5.99
instead of $6.02. But small costs of reoptimizing the normal price would explain firms’ reluctance

to make such small changes in accordance with a well-established literature in macroeconomics.
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One main message from the micro evidence is that the normal price is indeed considerably sticky,
despite the significant flexibility of sales. Since the real effects of monetary policy depend on how
sticky prices are, how should this evidence be interpreted? On the one hand, some would argue that
temporary sales are orthogonal to monetary policy and ignore such price changes. On the other
hand, others would argue that if decisions about temporary sales react to demand fluctuations,
they should also react to monetary policy shocks to the extent that these shocks have an impact on
aggregate demand.

The model proposed in this paper contains a rationale for sales, and therefore can be used to
understand the impact of flexibility in the sales decisions alongside stickiness in the normal price for
monetary policy analysis. In the model, sales are there for a reason, but firms do have an incentive
to vary sales in response to shocks of all kinds, including those to monetary policy. However, it turns
out that firms barely adjust sales in response to monetary policy shocks because the rationale for
sales also implies that sales are strategic substitutes, that is, firms have incentives to increase sales
when others decrease them. While a firm may adjust sales strongly in response to shocks affecting
only itself, it will not do so in the case of shocks affecting all firms.

The findings of this paper indicate that in a world with both sticky normal prices and flexible
sales, it is predominantly stickiness in the normal price that matters so far as monetary policy
analysis is concerned. Arriving at this conclusion requires a careful modelling of the reasons for
sales. Thus the results highlight the importance for macroeconomics of understanding what lies

behind firms’ pricing decisions.
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A Technical appendix

A.1 Properties of the demand, total revenue and marginal revenue
functions

The structure of household consumption preferences introduced in section 3.2 implies that firms face a
demand curve ¢ = Z(p; Pp, ) of the form given in equation [3.10] at each moment. It it easier to analyse
the properties of this demand function — and the associated total and marginal revenue functions — by
working with what can be thought of as the corresponding “relative” demand function D(p), defined by

Dip)=rp “+(1=XN)p ", [A.1.1]

which satisfies D(1) = 1 for all choices of parameters. The relative demand function q = D(p) gives the
“relative” quantity sold q as a function of the relative price p, where relative price here means money price
p relative to Pp, the price level for bargain hunters from [3.4], and relative quantity means quantity ¢
relative to £/Pg, where £ = P°Y is a measure of aggregate expenditure:

P Py
=, g=-Z¢.
Py &

P [A.1.2]

With these definitions, the original demand function [3.10] can be stated in terms of the relative demand
function [A.1.1]:
Hp: P 5)—gz><p> A13)
p? B? - PE PB . D
The relative demand function [A.1.1] is a continuously differentiable function of p for all p > 0, and
is strictly decreasing everywhere. Notice also that D(p) — oo as p — 0, and D(p) — 0 as p — oo. By
continuity and monotonicity, this implies that every q > 0 there is a unique p > 0 such that q = D(p).
Thus the inverse demand function D~!(q) is well defined for all q > 0, and is itself strictly decreasing and
continuously differentiable. The total revenue function R(q) is defined in terms of the relative demand
function as follows:

R(q) = qD_l(q) ) [A.1.4]

Using the inverse demand function p = D~!(q), total revenue can be equivalently expressed as R(q) =
D~(q)D (D~*(q)), and by substituting the demand function from [A.1.1],

_ 1—e¢ _ 1—
R(@)=A(D"'(q) “+(1-N (D @) .
Since € > 1 and n > 1, and given the limiting behaviour of the demand function established above, it must
be the case that R(q) — oo as ¢ — oo and R(q) — 0 as ¢ — 0. Hence, R(0) = 0, and R(q) is continuously

differentiable for all q > 0.
Differentiating the total revenue function R(q) from [A.1.4] using the inverse function theorem and the

40



demand function [A.1.1] yields the marginal revenue function

o = (D),

for all p > 0. Because € > 1 and n > 1, it must be the case that R'(q) > 0 for all g, so total revenue R(q)
is a strictly increasing in q. Furthermore, because p — 0o as ¢ — 0, and p — 0 as q — oo, [A.1.5] implies
R'(q) —» 0o asq— 0 and R'(q) — 0 as q — oo.

Just as [A.1.3] shows the original demand function Z(p; Pp, £) in [3.10] is related to the relative demand
function D(p) in [A.1.1], there are similar connections between the original inverse demand function, original
total revenue Z(q; Pp, £) and marginal revenue %’ (q; Pp, £) functions and their equivalents defined in terms

of the relative demand function. The relation between the inverse demand functions follows directly from
[A.1.3]:

9~'(q; P, &) = PgD~! <q§3) : [A.1.6]

Equations [3.11], [A.1.4] and [A.1.6] justify the following links between the total revenue functions and their

derivatives:

qPg
£

#(q; Pp, &) = Py ER < I3 I3 £

[A.1.7]

2 P1+e pe
) ’ ‘%I(Q;PB#?):PBR'(Q B) . (¢ Pp, &) = LR <q3> .

The next result examines the conditions under which marginal revenue R’(q) is non-monotonic.

Lemma 1 Consider the marginal revenue function R'(q) derived from [A.1.4] using the relative demand
function [A.1.1], and suppose that n > € > 1.

(i) If \ =0 or A = 1 or condition [4.3] does not hold then marginal revenue R'(q) is strictly decreasing
for all q > 0.

(ii)) If 0 < A < 1 and € and 7 satisfy condition [4.3] then there exist q and § such that 0 < q < q < o0
and where R’(q) is strictly decreasing between 0 and q and aboveiﬁ, and strictly increasiﬁg between
q and q. B
PrROOF (i)  If A = 0 then it follows from [A.1.5] that R'(q) = ((n — 1)/7)D~'(q), and if A\ = 1 that
R'(q) = ((e — 1)/e)D~!(q). Since the inverse demand function D~!(q) is strictly decreasing, then so must
be marginal revenue in these cases.

(i)  In what follows, assume 0 < A < 1. Differentiate [A.1.5] to obtain
X e 2 N
n(n = 1) (520" = (0= 2 = n(e = 1) = ely = 1) (F2p7) + (e = 1)
D ()R (D(p)) = : (AL
(e+n(520)

for all p > 0, where the assumption that A # 0 has been used to simplify the expression by dividing through
by A2. Define the function Z(q) in terms of inverse demand function D~!(g),

2(q) = % (D (@) " A1)

and use this together with [A.1.8] to write the derivative of marginal revenue as:
n(n—1) (Z(a)* — ((n—¢)* —nle —1) —e(n — 1)) Z(q) + (e — 1)
D' (D~Y(q)) (e +nZ(q))”

Since D’ (D~!(q)) < 0 for all q, and the remaining term in the denominator of [A.1.10] is strictly positive,
the sign of R”(q) is the opposite of that of the quadratic function

Q(z) =n(n— 1)z2 — ((77 — 6)2 —nle—1)—e(n— 1)) z4+e(e—1), [A.1.11]

R"(q) =

. [A.1.10]
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evaluated at z = Z(q). The aim is to find a region where marginal revenue is upward sloping, which is
corresponds to Q(z) being negative, which is in turn equivalent to its having positive roots (because it is
u-shaped).

Under the assumptions € > 1 and 1 > 1, the product of the roots of quadratic equation Q(z) = 0 is
positive, so it has either no real roots, two negative real roots, or two positive real roots (possibly including
repetitions). In the first two cases, since Q(0) = e¢(e — 1) > 0 it then follows that Q(z) > 0 for all z > 0.
To see which elasticities € and 7 lead to positive real roots, define the following two quadratic functions of
the elasticity n (for a given value of the elasticity €):

Go(mie) =n" — (de—L)n+e(e+1), Ge(nie) =n° —2(Be— )+ (e+1). [A.1.12]

By comparing G,(n;€) to the coefficient of z in [A.1.11], the sum of the roots Q(z) = 0 is positive if and
only if G,(n; €) > 0 since n > 1. The discriminant of the quadratic Q(z) can be factored in terms of G, (7;€)
as follows:

((1— €)% —nle—1) — e(n — 1)) — den(e — 1)(n — 1) = (1 — €)*G,(n; €) , [A.1.13]

and as 1 # ¢, the equation Q(z) = 0 has two distinct real roots if and only if G.(n;€) > 0.

To summarize, the quadratic Q(z) has two positive real roots if and only if G, (n; €) > 0 and G,(n;€) > 0.
It turns out that in the relevant parameter region n > € > 1, the binding condition is G,(n;€) > 0.

As € > 1, the quadratic equations G,(n;€) = 0 and G,(n;¢) = 0 in n (for a given value of €) both have
two distinct positive real roots (this can be confirmed by deriving the discriminants and the sums and
products of the roots). Let n*(e) be the larger of the two roots of the equation G,(n;€) = 0:

n*(e) = (Be — 1) +2+/2¢(e — 1),

and observe that n*(e) > e for all e > 1. Since both quadratics G, (n; €) and G, (7; €) have a positive coefficient
on 72, it must be the case that they are negative for all 7 values lying strictly between their two roots.
The difference between the two quadratic functions G,(n;€) and G, (n;€) in [A.1.12] is

Gp(n;€) — Gr(me) = (2e —1)n — (e + 1),

a linear function of 1. Thus let 7j(e) be the unique solution for 7 of the equation G,(n; €) = G,(n; €), taking
€ as given. Since € > 1, such a solution exists and is unique, and G,(n;€) > G,(n; €) if and only if n > 7(e).
The difference between solution 7j(€) and € is given by:

. 2¢ — (262 - 1)
N(e) —e= e [A.1.14]

Consider first the case of € values where 7j(€) < e. So for all n > €, G.(1;€) < Gp(n;€). Since G,(€;€) =
—2¢e(e — 1) < 0 for all € > 1, it must also be the case that G,(e;e) < 0. Therefore, the smaller root of
Gr(m;€) = 0 is less than e. This establishes that the only n values for which all the inequalities n > e,
Gr(n;€) > 0 and G,(n;€) > 0 hold are those satisfying 7 > n*(e).

Now consider what happens in the remaining case where 7(e) > e. By rearranging the terms in [A.1.12],
notice that G,(n;€) = (n —€)? — 1 — ((2¢ — 1)n — (e + 1)). Therefore, from the definition of #(e), it follows
that G,(7(e);€) = Gr(A(€);€) = (A(e) — €)? — 1. As 7j(e) > € in this case, equation [A.1.14] implies that
2¢ — (2¢2 — 1) > 0, and therefore 0 < 7j(€) — € < 1 if 2¢2 — 1 > 1, which is equivalent to ¢ > 1. This must
hold since € > 1, and hence (7j(€) — €)? < 1. Thus G,(7(€); €) = G-(7(€);€) < 0. As G,(n;€) > G,(n; €) holds
for n > 7(e), the larger of the roots of G,(n;€) = 0 lies strictly between 7j(e) and n*(e). Therefore in this
case as well, the only values of 7 consistent with all the inequalities n > €, G.(n;€) > 0 and G,(n;€) > 0 are
those satisfying n > n*(e).

Therefore, for n > € > 1, if n > n*(¢) then the quadratic equation Q(z) = 0 from [A.1.11] has two
distinct positive real roots z and z such that z < Z, and Q(z) < 0 must hold for all z € [z,Z] since the
coefficient of 22 is positive. For z € [0,2) or 2z € (Z,00), the quadratic satisfies Q(z) > 0. If n < n*(e)
then Q(z) > 0 for all z (except at just one isolated z value when 7 = 1*(¢) exactly). Therefore, in the case
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n < n*(e), it follows from [A.1.10] and [A.1.11] that R/(q) is strictly decreasing for all g > 0.
Now restrict attention to the case where n > n*(e). Since 0 < A < 1, n > ¢, and the inverse demand
function D~1(q) is strictly decreasing, the function Z(q) defined in [A.1.9] is strictly increasing. Its inverse

) Zz) =D ((1 f )\z) 61") , [A.1.15]

which is also a strictly increasing function. Define q = Z71(2) and § = Z~1(2) using the roots z and Z of
the quadratic equation Q(z) = 0. From [A.1.10] and [A.1.11] it follows that R”(q) = 0 and R"(q) = 0. As
Z71(2) is a strictly increasing function, it must therefore be the case that R’ (q)ﬁ is strictly decreasing for
0 < g < gqandq > 7, and strictly increasing for q < q < g. The condition > n*(e) is the same as that
given in [21.3], so this completes the proof. B |

Given the non-monotonicity of the marginal revenue function R’(q), the following result provides the
foundation for verifying the existence and uniqueness of the two-price equilibrium.

Lemma 2 Given the total revenue function R(q) defined in [A.1.4], suppose that 0 < A < 1, and € and n
are such that the non-monotonicity condition [4.3] holds:

(i) There exist unique values qg and qy such that 0 < qg < qn < oo which satisfy the equations:

R(as) = R(an)

R'(as) = R'(an) = [A.1.16]
s — 4qnN
(ii) The solutions qs and quy of the above equations must also satisfy the inequalities:
R"(qs) <0, R"(an) <0, R(as)/as>R'(as), Rlan)/an >R'(an) . [A.1.17]
(iii) The following holds for all q > 0:
R(a) < R(as) +R'(4s)(a —as) = R(an) + R'(an)(q — an) - [A.1.18]

PROOF (i)  When 0 < A < 1, and condition [4.3] hold then Lemma 1 demonstrates that there exist q and
g such that 0 < g < § < oo and R”(q) = R”(§) = 0. Define R’ = R/(q) and R’ = R'(q). Since Lemma 1
also shows that R'(q) is strictly increasing between g and q, it must be the case that R’ < R

The function R'(q) is continuously differentiable for all ¢ > 0 and limg—.o R'(q) = co. Hence there must
exist a value g, such that R/ (9,) = R' and q; < g. Define §; = q. According to Lemma 1, the function

R'(q) is strictly decreasing on the [q,,7;], and thus has range [R/, R].

Define q, = g and g, = q. Given the construction of R’ and R’ and the fact that R'(q) is strictly
increasing on [4,, 5], the range of the function is [R’, R’] on this interval.

Now define g, = 4. Since limg—.oc R'(q) = 0 and R'(q) is continuously differentiable, there must exist a

g3 such that R'(q3) = R’ and g3 > g,. Lemma 1 shows that R'(q) is strictly decreasing on [q,,1s] and so

has range [R’, R'] on this interval.
For each s € [0, 1], define the function q;(3¢) to be

q1(5) = (1 — »)q, + 54, , [A.1.19]

in other words, a convex combination of q, and @, which is strictly increasing in ». The construction
of this function, the monotonicity of R'(q) on [q,,d;], and the definitions of R’ and R’/ guarantee that

R’ < R'(q1(»)) < R’ for all 5 € [0,1]. Given that the function R'(q) is also strictly monotonic on each
of intervals [q,,7,] and [q,, 73], and has range [R’, R'] on both, there must exist unique values gz € (4, T2]
and q3 € [q,,qs] such that R'(q2) = R'(q3) = R'(q1(3¢)) for a particular 5. Hence define the functions
q2(») and qs(s¢) to give these values on the two intervals for each specific » € [0, 1]:

R'(q1(32)) = R/ (q2(3¢)) = R'(q3(%)) . [A.1.20]
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At the endpoints of the intervals (corresponding to » = 0 or » = 1) note that

42(0) = q3(0) =9, qi(1) =q2(1) =gq. [A.1.21]

Continuity and differentiability of R’(q) and of q;(3¢) from [A.1.19] guarantee that q2(3¢) and q3(3¢) are
continuous for all » € [0, 1] and differentiable for all > € (0, 1). By differentiating [A.1.20] it follows that:

50 = B Ge) s i) = o )

As Lemma 1 establishes R(q) is concave on [q,,q;] and [q,, 73], and convex on [q,, q5], it follows from the
above that g5(5) < 0 and gq5(3¢) > 0 for all s € (0,1).

FExistence

Now for each s € [0, 1], define the function F () in terms of the following integrals:

q3(22) q2(22)
HMEL (W@—wwwmm—/ (R'(42()) — R'(a)) da . (A1.22]

2() q1(39)
From continuity and differentiability of qq(s¢), q2(>¢) and qs(), it follows that F () is also continuous for

all 5« € [0, 1] and differentiable for all s« € (0,1). Evaluating F () at the endpoints of the interval [0, 1] and
making use of [A.1.21] yields:

q2 a3

ro) == [T ®-R@)da<0, 1= [ (R@)-R)da>0.

ql q2

where the first inequality follows because R'(q) < R’ for all q, < g < Ty, and the second because R'(q) > R’
for all q, < q < q3. By differentiating F (5) in [A.1.22] using Leibniz’s rule and substituting the definitions
from [A.1.20] leads to the following expression:

F'(5¢) = —=(a3(5¢) — 91(30))a5(5)R"(q2(50)) > 0,

for all » € (0,1) since q3(3¢) > q1(3¢), g5(3¢) < 0, and R"(q2(3¢)) > 0 by the result of Lemma 1. Therefore,
because F (0) < 0, F (1) > 0, and [ (3¢) is continuous and strictly increasing in s, there exists a unique
»* € (0,1) such that F (»*) = 0.

The unique solution of the system of equations [A.1.16] is found by setting qn = q1(5¢*) and qg = q3(>¢*),
using the solution » = »* of equation f (3) = 0 obtained above. From [A.1.20], it follows immediately
that R'(qn) = R/(qs), establishing the first equality in [A.1.16]. Since F (3*) = 0, the definition of f ()
in equation [A.1.22] implies:

qs g2 (5c*)
/})mmwnwwﬁmma/ (R (q2(5¢")) — R'(a)) da A1.23]
qz(sc*

an
which can be rearranged to deduce

¥ R/ (@)dq = (a5 — an)R (420 - A124

an

And because [A.1.20] implies R'(q2(5¢*)) = R'(qn) = R'(qs), it is established that

R(qs) — R(qn)

. [A.1.25]

R'(4s) = R'(an) =

that is, these values of qx and qg are indeed a solution of the equations in [A.1.16].

Uniqueness
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Now the uniqueness of this solution is demonstrated. First note that given the monotonicity of R’(q)
on the intervals [0, q] and [, 00), and using the fact that the range of this function is [R’, R’] on [q,.q1),
[4,.d2] and [q,,q3], it follows that no solution of [A.1.16] can be found in either [0,q,) or (q3,o0) since
marginal revenue R’(q) needs to be equalized at two points. Furthermore, as the definition of the functions
q1(22), q2(3¢) and q3(5¢) in [A.1.20] makes clear, for marginal revenue to be equalized at two quantities, it
is necessary that those quantities correspond to two out of the three of qi(s¢), q2(5) and qs3(s¢) for some
particular s € [0, 1].

In addition to equalizing marginal revenue, the solution qg and qn must satisfy the second equality in
[A.1.16]. If qn is set equal to q1(») and qg equal to q3(s¢) for the same value of s € [0, 1], then equations
[A.1.23] and [A.1.24] show that the second equality in [A.1.16] requires F (»r) = 0. But it has already been
demonstrated that there is one and only one solution of this equation.

Now consider the alternative choices of setting qn to qi(») and qg to qa2(5¢) for some common 3 € [0, 1],
or to qz2(2r) and q3(») respectively, again for some common value of s. Since [A.1.20] holds by construction,
and the function R’(q) is strictly decreasing on the intervals [q . q;] and [q,,q3], and strictly increasing on
(4, d2), it follows that:

q2(22) q3(22)
/ R (a)dq < (a2() — 01 (50))R (42(59)) , / R (@)dq > (43(32) — 42059 R (a2(0)) .
q1 () qz2 ()

and hence both inequalities R(qa2(2)) — R(q1(5)) < (q2(3) — q1(5¢))R'(q2(3¢)) and R(q3(>)) — R(ga2(3)) >
(q3(5) — q2(2))R’(q2(5)) must hold for every » € [0,1]. Consequently, there is no way that all three
equations in [A.1.25] can hold except by setting qn = q1(»¢*) and qg = q3(5¢*). Therefore the solution of
[A.1.16] constructed above is unique.

(il)  Lemma 1 shows that R(q) is a strictly concave function on the intervals [0, q] and [q,00). The
argument above demonstrating the existence and uniqueness of the solution establishes that qy and qg
must lie respectively in the intervals (q,,q;) and (q,,q3), which are themselves contained in [0, g] and [q, co)
respectively. Together these results imply R”(qn) < 0 and R”(gqs) < 0, and that the following inequalities
must hold

R(q) < R(an)+R'(an)(a—an) Vg e[0,q], and R(q) < R(qs)+R'(4s)(a—qs) Vg€ [q,00), [A.1.26]

where the inequalities are strict for q # qn and q # qg respectively. Note that the equations in [A.1.16]
characterizing q¢ and qy can be rearranged to show that:

R(as) — R'(4s)as = R(an) — R'(an)an - [A.1.27]

By evaluating the first inequality in [A.1.26] at q = 0, where R(0) = 0, and making use of the equation
above it can be deduced that

R(qs) —R'(as)as >0, R(qn)—R'(an)ay >0,
and thus R(qs)/qs > R'(qs) and R(qn)/qn > R'(qn). This confirms all the inequalities in [A.1.17].
(i) By applying the inequalities in [A.1.26] at the endpoints q and q of the intervals [0, q] and [q, c0):
R(q) < R(an) + R'(an)(a —an), and R(q) < R(gn) + R'(an)(@ - an) - [A.1.28]

Now take any q € (q,q) and note that because Lemma 1 demonstrates R(q) is a convex function on this

using the fact that the coefficients of R(q) and R(q) in the above are strictly positive and sum to one. A

weighted average of the two inequalities in [A.1.28] using as weights the coefficients from [A.1.29] yields
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R(q) < R(an) +R'(an)(q — qn) for all g € (q,7). This finding, together with the inequalities in [A.1.26]
and the equations [A.1.25] and [A.1.27], implies

R(q) < R(as) +R'(as)(a — as) = R(an) + R'(an)(q — an)
for all ¢ > 0. Thus [A.1.18] is established, which completes the proof. [ |

The existence and uniqueness of the solution of equations [A.1.16] has been demonstrated given the
condition [4.3] for the non-monotonicity of the marginal revenue function R’(q). A method for computing
this solution and a characterization of which parameters affect the solution is provided in the following
result.

Lemma 3 Let qg and qx be the solution of equations [A.1.16] (under the conditions assumed in Lemma 2),
and py = D! (qn) and ps = D~'(qs) are the corresponding relative prices consistent with demand function
[A.1.1]. In addition, define the markup ratio p = ps/pn and the quantity ratio x = qs/qn-

Consider the functions:

ao(p; €,m) = e(e — )", [A.1.30a]
o —e+1 —€ __
(i) = e = 1) (F55 ) ety -1 (1) [A.1.30b]
az(n) =n(n—1), [A.1.30¢]
2(n—e) _ ,,2n—e¢
bo(;6,m) = (e — 1) (,u — ug ) 7 [A.1.30d]
2(n—€) _ n—e _ ,,2n—¢
by(ie,n) = (n—1) (W) +2(e—1) (w) , [A.1.30¢]
_2n—e —€ __ M
bo (i €m) = (¢ — 1) (%) + (- 1) <U) , [A.1.30]
bs(n) =(n—1), [A.1.30g]

and the resultant R(u;e,n), defined in terms of the following determinant

ao(ps€,m) ar(pse,n)  az(n) 0 0
0 ao(ps€,m) a1(pse,n)  az(n) 0
R(pse,m) = 0 0 ao(p; €,m)  ar1(use,m) az(n)| - [A.1.31]
bo(p;e,m) bi(u;e,m) ba(use,m)  ba(n) 0
0 bo(u;€,m) bi(use,m) ba(pse,n) bs(n)

Define the function 3(u;€,n):

—a1(p; €,m) — /a1 (p; €,m)? — daz(n)ag(p; €,m)
2az(n)

3(en) = : [A.1.32]

(i) The markup ratio pn = pg/pn is the only solution of R(p;€,m) =0 for 0 < p < 1 where 3(u;€,m) is a
positive real number, and thus p depends only on the parameters ¢ and 7.

(ii) Given the value of u satisfying R(p;€,m) = 0 and the function 3(p;€,n) from [A.1.32], the quantity

ratio x = qs/qn is
1 M=)z (
X = Iu_e < tu 3(”, & n)> , [A133]

L+ 3(p;€,m)

and thus depends only on the parameters € and 7.
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(iii) The equilibrium markups ps and uy depend only on € and n and are given by:

e+~ " V5(u; €, m) )
(e—=1) 4+ (n—1)p==93(u; €, 1) N e= 1)+ (- Da(usen) | |

(iv) The equilibrium values of py, ps, qn and qs depend on parameters €, n and \ and can be obtained

as follows: )

— (A E — (A o A.1.35
PN = Tydken) s s =\ Tyslwen) I [A.1.35]

and qn = D(pn) and qs = D(pg) using the relative demand function D(p) from [A.1.1].

PROOF (i) Using the expression for marginal revenue from [A.1.5], the first equality in [A.1.16] is
equivalent to the requirement that

(A(e—1>+<1—A><n—1>p§V”> _(A(6—1)+(1—A)(n—1)p§")
PN = ps -

e+ (1= Nnpy " e+ (1= Nnps "

By dividing numerator and denominator of the above by A, defining z = ((1 —X)/A)pfy ", and restating the
resulting equation in terms of u = pg/pn and z it is seen that:

_ (et (=1 +(n-1)
o ( €+nz ) <(6 1)+ (n— 1)M—(n—6)z> ) [A.1.36]

Since ps < pny the markup ratio satisfies 0 < p < 1, and thus neither of the denominators of the fractions
above can be zero. Hence [A.1.36] can be rearranged to obtain a quadratic equation in z, for a given value
of ,

n(y = D=1 = )2 + (etn = 1) (1= =07) e = 1) (5079 = 1) ) 2+ ee = (1= ) =0,

which as 0 < g < 1 can in turn be multiplied on both sides by p7¢/(1 — p) to obtain an equivalent
quadratic:

=0+ (n(e =) (1"“‘/;) rely-0 (Mt ) srele- i 0. A

This quadratic is denoted by Q(z; i, €, 1) = ag(u; €, 1) +a1 (i €, 7)z+az(n) 22, where the coefficient functions
ao(u; €,m), ar(u;e,m) and ag(n) listed in [A.1.30] are obtained directly from [A.1.37].

Now note that the equations in [A.1.16] can be rearranged to deduce R(qn) — qnR'(qn) = R(qs) —
qsR'(qs). The definition of the total revenue function R(q) in [A.1.4] shows that it can also be written as
R (D(p)) = pD(p) for all p > 0. By combining these two observations and substituting qs = D(ps) and
qn = D(pn), the following equation is obtained:

as (ps — R'(as)) = an (pv — R'(an)) - [A.1.38]

Expressing this in terms of the quantity ratio x = qg/qn and dividing both sides by R'(qs) = R'(qn)
(justified by equation [A.1.16]), [A.1.38] becomes

(i )/ (o ) 139

The formula for marginal revenue R'(D(p)) in [A.1.5] can be rearranged to show

P A+ (1= N\)pen
RDG) e D+ - DN’
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which can be substituted into [A.1.39] to obtain

(A=A (= DA+ (= D= Mg
A (1=Np5 ") \(e= DA+ m—1)(1-Npy")
By dividing numerator and denominator of both fractions by A and recalling the definitions of u = pg/pn
and z = ((1 — X)/A)pYy 7, this equation is equivalent to:

o 1+=2 (5—1)+(T}—1)M_(’7_5)z
X= <].—|—,LL_(77_5)2> ( (6_1)+(77_1)Z ) : [A140]

Using the relative demand function from equation [A.1.1], the quantity ratio can also be written as
X =D(ps)/D(pn), thus

_ A+ (= N)pg”
Aoy + (1= A)py”

and by factorizing A\pg“ and Apy° from the numerator and denominator respectively, and using the defini-

)

tions 1 = pg/pn and z = ((1 — X)/A)pYy ", the expression becomes

o ]_ _|_ M_(n_€)z
=u ‘l— . A.1.41
X = < s [ ]

Putting together the two expressions for quantity ratio x from [A.1.40] and [A.1.41], p and z must
satisfy the equation

1+2 (e—1)+(n—1Dpu 0z . 14+ (19,
(1-1-#(776)2)( (e—1)+(n—1)z )‘“ <1+z> : [A.1.42]

Since the quantity ratio x is finite, none of the terms in the denominators of [A.1.40] or [A.1.41] can be
zero, so [A.1.42] may be rearranged to obtain a cubic equation in z for a given value of pu:

(0= Dp= @1 (1= ) 2%+ p= 1) ((e = 1) (1= p®1=) +2(n — 1) + (u"‘e — ")) 2

+ @9 ((7] —1) (,u2(7776) - ) +2(e—1) ( T — 7)) 2
—|—(6 —(2n—e) ('u2(77 € 6):0
Because 0 < p < 1, both sides of the above can be multiplied by u?7=¢/(1 — i) to obtain an equivalent

cubic equation:

(n—1)2% + ((e —1) <11__“Z:> +2(n—-1) (H)) 2
() o (52)

2(n—e) _ ,,2n—e¢
+(e—1) (W) —0. [A.1.43]

This cubic is denoted by €(z; u1, €, 1) = bo(i; €,m) + b1 (15 €,1m) 2+ ba(p; €,m) 22 +b3(n) 23, where the coefficient
functions bo(u;€,m), bi(u;€,m), ba(u;e,n) and bz(n) listed in [A.1.30] are obtained directly from [A.1.43].
These steps have demonstrated that starting from a solution qg and qu of [A.1.16], the quadratic and the
cubic equations [A.1.37]-[A.1.43] in z must simultaneously hold for z = ((1-\)/\)p% ", with py = D~ (qn),
and where the coefficient functions [A.1.30] are evaluated at u = ps/pn, with ps = D7 !(qs). If the
quadratic equation Q(z;u,€,mn) = 0 and cubic equation €(z; u,€,n7) = 0 share a root then it is a standard
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result from the theory of polynomials that the resultant R(u;e,n), as defined in [A.1.31], is zero. Since
the coefficients of the polynomials Q(z; i, €,7) and €(z; i, €,n) are functions of the markup ratio u and the
parameters € and 7, solving the equation JR(u; e, ) = 0 provides a straightforward procedure for finding the
equilibrium markup ratio p. Furthermore, the only parameters appearing in the equation R(u;€e,n7) = 0
are € and 7, so the equilibrium markup ratio p can depend only on these parameters.

It is known that the solution of [A.1.16] for qg and qx is unique, and therefore so must the solution of
R(p; e,m) =0 for p, given the additional condition that the shared root z of the quadratic Q(z;u,€e,m7) =0
and cubic €(z; p1, €,m) = 0 is a positive real number. This restriction is required because z = ((1—X)/A)py ",
and py must of course also be a positive real number. As the product of the roots of the quadratic Q(z) =0
is positive, the shared root z is positive and real if and only if either branch of the quadratic root function
is positive and real. Thus this can be tested by checking whether 3(u; €, eta) is positive and real.

Note that the resultant is always zero at ;4 = 0 and p = 1 for all values of € and 7. This can be seen by
taking limits of the coefficients in [A.1.30] as p — 0 and p — 1, which yields

€(z;0,¢,m) = 2Q(2;0,e,m) , and €(z;1,e,m) = (14 2)Q(z;1,€,7m) ,

and as the polynomials Q(z; u, €,) and €(z; u, €,m) clearly share roots when = 0 or u = 1, it follows that
R(0;¢,m) = R(1;€e,m) = 0. Thus these zeros of the equation R(p;€,m) = 0 must be ignored when solving
for p.

(i)  The quadratic equation Q(z;pu,€e,n) = 0 with z = ((1 — X\)/A\)p}y " finds the relative price py such
that with pg = ppn, marginal revenue is the same at both pg and py. Given the properties of marginal
revenue derived in Lemma 1 under the conditions shown by Lemma 2, which are necessary for the solution
gs and quy to exist, there are two candidate solutions for py that meet this criterion. However, Lemma 2
shows that both py and pg are on the downward-sloping sections of the marginal revenue curve. To rule out
a solution in the middle upward-sloping section of marginal revenue, it is necessary to discard the smaller
of the two pn candidates to select the correct solution. Since z is decreasing in py, this is equivalent to
discarding the larger of the two roots of the quadratic. Given that az(n) from [A.1.30] is positive, the
smaller of the two roots of quadratic Q(z; u,€,n) = 0 is found using the expression 3(u;€,n) in [A.1.32].
The equilibrium quantity ratio y is obtained by substituting z = 3(u; €, ) into [A.1.41].

(ili))  Since pg = Pg/Pp and py = Py/Pp according to [A.1.2], the formula for the purchase multipliers
in [3.10] implies vy = pY | and vg = p“"vy. Using the fact that z = ((1 — X\)/A)p}y ", and dividing
numerator and denominator by A in the expression [4.5] yields [A.1.34].

iv y rearranging the definition of z = ((1— p~ | and using ps = ppn, the expressions for relative
i B ing the definition of 1-X\)/A)py " and th for relat
prices pg and py are obtained. This completes the proof. |

A.2 Proof of Proposition 2

Using the relationship between the total revenue function Z(q; Pg,€) and its equivalent R(q) defined in
[A.1.4] using relative demand function D(p) from [A.1.1], the corresponding marginal revenue functions
#'(q; Pp,€E) and R'(q) are proportional according to [A.1.7]. Lemma 1 demonstrates that R'(q) is non-
monotonic under the condition [4.3], which yields the result.

A.3 Proof of Theorem 1

Existence of two-price equilibrium
For a two-price equilibrium to exist it is necessary that first-order conditions [4.4] for profit-maximization

are satisfied for two prices pg and py, with associated quantities g5 = Z(ps; P, €) and gy = Z2(pn; P, E),
where Pp is the price index for a bargain hunter, and £ = P¢Y is the measure of aggregate expenditure.
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The necessary conditions for the two-price equilibrium are now restated in terms of the relative demand
function D(p) defined in [A.1.1], and its associated total and marginal revenue functions R(q) and R'(q),
as defined in [A.1.4] and analysed in section A.1. The relative demand function q = D(p) is specified in
terms of the relative price p = p/Pp and relative quantity q = ¢/(£/Pj;), in accordance with [A.1.2]. Using
the relationships in [A.1.3] and [A.1.7], the first two optimality conditions in [4.4] are equivalent to:

as Pg an Pg
r (BB _ pr (5 _R< €B>_R< 53) [A.3.1]
< = I3 - qsfé _% ' -

With qg = ¢5/(£/Pf;) and qn = gn/(E/Pg), the first-order conditions in [A.3.1] become identical to the
equations from [A.1.16] studied in Lemma 2. These clearly require marginal revenue R’(q) to be equalized at
two different quantities, which means that the marginal revenue function must be non-monotonic. Lemma 1
then shows that 0 < A\ < 1 and parameters € and 7 satisfying the inequality [4.3] are necessary and sufficient
for this. If these conditions are met, then Lemma 2 demonstrates the existence of a unique solution qg and
qn to the equations [A.1.16].

It is necessary to check the relative quantities qg and qy are well defined to confirm the solution is
economically meaningful. This means that if pg = D~ (qs) and py = D '(qy) are the corresponding
prices pg and py relative to Pp, then pg < 1 < py. This is a necessary requirement because the price
index equation for Pp in [4.8] implies

oL+ (L—s)pk =1, [A.3.2]

and the equilibrium sales fraction s must satisfy s € (0, 1).

Assume the parameters are such that e and 7 satisfy [4.3], and consider a given value of A € (0,1).
Lemma 3 shows that the markup ratio (or price ratio) u = ps/un = ps/pn consistent with the unique
solution of [A.1.16] is a function of the elasticities € and 7 only. The equilibrium relative prices pg and py
are functions of all three parameters €, 7 and A, and can be obtained from equation [A.1.35] by substituting
the equilibrium value of p into the function 3(u;e,n) defined in [A.1.32]. Since ps = ppy and p < 1, the
requirement pg < 1 < py implies p < pg < 1. By substituting for pg from [A.1.35], this condition is
equivalent to:

=X o
s(mem) < == <™ (pen) . [A.3.3]

Define lower and upper bounds for A conditional on € and 1 using the function 3(u;€,n) together with the
equilibrium g as a function of € and 7:

1 _ 1
, and Ae,n)=-——77——.
L+ p==93 (s €,1m) S L+ 3 (5 6,m)

Ale,n) = [A.3.4]

Note that if 3(u;€,7) > 0 and 0 < g < 1 then 0 < A(e,) < A(e,n) < 1. By rearranging the inequality
[A.3.3] and using the above definitions of the bounds on ), it is seen to be equivalent to A lying in the
interval:

Ae,n) <A< Aen) . [A.3.5]

This restriction on A is necessary and sufficient for the existence of an equilibrium sales fraction s € (0, 1)
satisfying [A.3.2]. To see this, substitute the expressions for pg and py from [A.1.35] into [A.3.2]:

n—1

{1 +5 (/f(”*l) - 1)} <1>\/\3(u; ¢, n)> =1,

This is a linear equation in s, and has a unique solution since n > 1 and 0 < p < 1. Solving explicitly for
s yields:

(Prslse. n)>_(2_i> ~1

T [A.3.6]

S =
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Recalling the equivalence of inequalities [A.3.3] and [A.3.5], it follows that s € (0,1) if and only if A €
(A(e,m), M(e,n)). Therefore, for A € [0, A(e,n)] or A € [A(e,n), 1] there can be no two-price equilibrium.

Therefore, given elasticities € and 7 satisfying with non-monotonicity condition [4.3] and loyal fraction
A € (Ae,n),Xe,n)), by using the arguments above there exist two distinct relative prices ps = ps/Pg
and py = pny/Pp and a sales fraction s € (0, 1) consistent with the first two equalities in [4.4]. Lemma 3
then demonstrates that the two purchase multipliers vg and vy and the two optimal markups pug and un
are also determined. Equations [4.1], [4.2] and [4.5], it follows that by using the optimal markups, the
remaining first-order condition in [4.4] involving marginal cost is also satisfied. The other variables needed
for the macroeconomic equilibrium can then be determined as discussed in section 4.

Finally, the remaining first-order condition [3.13c| is checked, and then it is argued that the first-order
conditions collectively are sufficient as well as necessary for maximizing profits. Using the relationships in
[A.1.7] and the results in [A.1.17] of Lemma 2 the following can be deduced:

#(qs; P, &) — %' (qs; P, E)qs >0, and Z(qn;Pp,E) — % (qn; P, E)qn > 0. [A.3.7]
Since s € (0, 1), the Lagrangian multiplier X from first-order conditions [3.13b]-[3.13c] can be determined:
R = Z(qs; Pp, E) — #'(as; Pp, E)as = #(qn; Pp, ) — %' (an; Pp, €)an

and thus from [A.3.7] it is known that ® > 0. By combining this expression for the Lagrangian multiplier
with the first-order condition [3.13c]:

%(q: Pp, &) < Z(qn: Pp, €) + %' (an; P, €)(q¢ — an) = #(qs; P, €) + #'(as: P, E)(q —as) ,  [A.3.8]

which is required to hold for all ¢ > 0. This inequality is verified by appealing to the result in [A.1.18] of
Lemma 2 and again using [A.1.7].

The assumptions made on the production function [3.7] ensure that the total cost function €' (Q; W) in
[3.8] is continuously differentiable and convex, so for all ¢ > 0:

C(GW) > C(Q;W)+F"(Q;W)(g—Q), [A.3.9]

where @ = sqs+(1—s)qy is the specific total physical quantity sold using the two-price strategy constructed
earlier. Now consider a general alternative pricing strategy for a given firm, assuming that all other firms
continue to use the same two-price strategy. The new strategy is specified in terms of a distribution function
F(p) for prices. Let G(q) =1 — F(Z2(p; Pg,£)) be the implied distribution function for quantities sold.
The level of profits & from the new strategy can be obtained by making a change of variable from prices
to quantities in the integrals in [3.12]:

7 = / %(q;PB,adG(q)—%( / qu<q>;W) |

q

Applying the inequalities for the total revenue and total cost functions from [A.3.8] and [A.3.9] to the
expression for profits yields:

P < (%(qn; PB,E) — #'(an; P, E)an) — (€(Q; W) — €'(Q; W)Q)
T (# (ay: Pp. €) — €'(Q: W) ( / qu<q>) |

The first-order conditions [4.4] imply that the coefficient of the integral in the above is zero, and that
#(qn; Pp,E) — #'(qn; P, E)an = #(qs; P, E) — #'(qs; P, £)qs. Recalling that Q = sqs + (1 — s)qn, it
follows that

P < s#(qs; Pp,E) + (1 — 8)%(an; Pp, &) — € (sqs + (1 — s)an; W)

for all alternative pricing strategies. There is thus no profit-improving deviation from the two-price strategy.
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This establishes that a two-price equilibrium exists when [4.3] and A € (A(€,7), A(¢,n)) hold, and that it is
unique within the class of two-price equilibria.

Uniqueness of two-price equilibrium

Suppose that the parameters € and 7 are such that the two-price equilibrium exists. Now consider the
possibility that a one-price equilibrium also exists for the same parameters. Since all firms are symmetric,
the relative price corresponding to this single price must necessarily be equal to one. The relative prices
ps and py in the two-price equilibrium cannot be found on the same side of one, implying y < pg < 1 and
thus ps < 1 < pn, where ps = D~!(qs) and py = D~ '(pn) for the relative quantities qg and qy. Since
[A.1.1] implies D(1) = 1 and because demand D(p) is strictly decreasing in p, it must be the case that
gy <1 <gs.

It is known from Lemma 1 that R(q) is strictly concave in the intervals (0, q) and (g, 00), strictly convex
in (q,9), and from Lemma 2 that qy < g <q < gs. -

Consider first the case where ¢ < 1 < . Since q = 1 for all firms in the one-price equilibrium, the
actual common quantity being produced is ¢; = £/ Pf, using [A.1.2], where Pg and & are the values of these
variables associated with the putative one-price equilibrium. Since R”(1) > 0, equation [A.1.7] implies
" (q1; Pg,E) > 0. Therefore, for sufficiently small £ > 0, the profits & from offering quantity ¢; — & to
one half of moments and g; + £ to the other half exceed profits from offering one price and quantity to all
moments:

S0 — € P, €) + LA (a1 + & P, €)% (;@1 ~O)+ 3@ +) W) > B(q1; Ps, €) — € (qu; W) .
Therefore a one-price equilibrium cannot exist in this case.

Now consider the case where qy < 1 < q. Let p; = Pp denote the price that it is claimed all firms will
use in a one-price equilibrium, and ¢; = £ /?% the associated quantity sold. Now let g = Z2(psp1; P, &)
be quantity sold if the sales relative price ps = D~!(qs) is used when other firms are following the one-price
strategy of charging p;. Consider an alternative strategy that sells at price pgp; at a fraction £ of moments
and at price p; at the remaining fraction 1 — £. Profits from the hybrid strategy are denoted by & and are
given by

P = (1= % (aq1; Po, €) + ER(q: P, €) — € (1 — )1 + a5 W) - [A.3.10]

Since the cost function €’ (¢; W) is differentiable in ¢, the above equation can be expressed as

%#(qs; Pp,E) — %#(qu; PB, E)
gs —q1

P = (B(qu: Po.E) — € W) + Elgs — 1) ( ~(ar W)) Lo,

where 0 (52) denotes second- and higher-order terms in £. A necessary condition for a one-price equilibrium
is that the single price p; is chosen optimally, which reduces to the usual marginal revenue equals marginal
cost condition #'(q1; Pg,&) = €' (q1; W), so:

%#(qs; Pp,E) — %#(q1; P, E)
gs —q1

P = (B(qr: Ps.E) — € W) + Elgs — ) ( @ (g PB,6>) Lo .

[A.3.11]
Since qy < 1 < qg in the case under consideration, the results from Lemma 2 in [A.1.16] can be
expressed as follows

/ R'(q)dq + R(qs) — R(a1) = (45 — an)R'(an) - [A.3.12]
aN

Because qy < 1 < q and R/(q) is strictly decreasing for q < g, the integral satisfies

1
/ R(@)dq < (1 — qn)R(aw) - A.3.13
qN

Noting that R'(qy) > R'(1) because qy < 1 < g, and by substituting [A.3.13] into [A.3.12] and rearranging
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yields:

R(gs) = R(1) >R (qy) > R'(1), [A.3.14]
qgs — 1

where qg > 1 has been used to preserve the direction of the inequality. Now given the fact that ¢, = (£/Pf)
and gs = (£/Pg)qs from [A.1.2] and the links between the functions R(q) and Z(q; Pg,€) as set out in
[A.1.7]:

Z(qs; P, &) — #(q1; P, €)

qs —q1

Therefore, by comparing this inequality with [A.3.11] and noting gs > q1, it follows that for sufficiently
small £ > 0 that & > Z(q1; Pp,E)—%(q1; W), so profits from a hybrid strategy exceed those from following
the strategy required for a one-price equilibrium.

The final case to consider is ¢ < 1 < qg. The argument here is analogous to that given above.
The alternative strategy considered is offering price py = pnp1 (where py = D~ !(qy)) at a fraction
& of moments and price p; = Pp at the remaining fraction 1 — £, with quantities sold respectively of
gn = Z(pnp1; P, €) and q;. Following the steps of [A.3.10]-[A.3.11] leads to an expression for profits &
from following this strategy:

> %' (q1; Pg,€) . [A.3.15]

#(q1; Pp,E) — Z(qn; PB,E)

+0(&) .
@1 — 4N

[A.3.16]
Appealing to the properties of R(q) for ¢ > g and following similar steps to those in [A.3.12]-[A.3.14] leads

to R'(1) > R'(qs) > (R(1) — R(qn))/(1 — qn), and an equivalent of [A.3.15]:

P = (R P, €) — 6 (qi: W) + (a1 — aw) (%%ql; Py.€) -

- #(q1; P, &) — %Z(qn; Pp, €)

X' (q1; PB, E)
q1 — 4N

[A.3.17]

Given ¢ > gy, for sufficiently small £ > 0, [A.3.16] and [A.3.17] show that there is a hybrid strategy
that delivers higher profits than the one-price strategy used by all other firms. This proves that for all
parameters where the two-price equilibrium exists, a one-price equilibrium cannot exist for any of these
parameter values.

One-price equilibrium

The first thing to note is that when the two-price equilibrium fails to exist owing to the violation of
the non-monotonicity condition [4.3], then marginal revenue %#’'(q; Pp, &) is strictly decreasing for all q.
This makes total revenue Z(q; Pp, ) a strictly concave function of quantity ¢. Since total cost €' (¢; W)
is a convex function, it is easy to see that the profit function is globally concave, and thus a one-price
equilibrium will always exist, and be the only possible equilibrium for this parameter range.

To see that a one-price equilibrium exists and is unique in the other case where a two-price equilibrium
is not found, namely when marginal revenue is non-monotonic, but A € [0, A(e,n)] or A € [A(e,n),1], note
that A lying in these intervals is equivalent to 1 > gqg or 1 < qn respectively.

Taking the first of these cases, the concavity of R(q) on [q,00) (which includes gg), as shown in
Lemma 1, establishes that R(q) < R(1) + R/(1)(q — 1) for all q € [q,00). Lemma 2 shows that R(q) <
R(qs) + R'(qs)(q — qs) for all g > 0. First note that the concavity of R(q) implies R'(qs) > R'(1), which
together with the second of the previous inequalities yields R(q) < R(qs) +R'(1)(q—qs) for all g € [0, q5].
Applying the first inequality at q = qg gives R(qs) < R(1) + R'(1)(qs — 1). By combining these results,
R(q) <R(1)+R'(1)(g—1) for all g > 0 is obtained. Then using [A.1.2] and [A.1.7] to translate this into
a property of the original total revenue function #(q; Pp, £) for all ¢:

#(q; Pp, &) < Z(q1; P, &) + %' (q1; P, E)(qa — q1) - [A.3.18]

When X € [A(e,n), 1] then the other case to consider is 1 < qn. Using an exactly analogous argument
to that given above, it can be deduced that R(q) < R(1) + R'(1)(q — 1) for all ¢ > 0 in this case as well.
Hence [A.3.18] holds in both cases. The convexity of total cost function %'(q; W) together with [A.3.18]
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proves that no pricing strategy can improve on that used in the one-price equilibrium. This completes the
proof.

A.4 Proof of Proposition 3

(i) It is shown in Lemma 3 that g and x can be uniquely determined as functions of € and 1 when
inequality [4.3] is satisfied, as is necessary for a two-price equilibrium. Lemma 3 also gives solutions for
ps and py, and implicitly vg and vy using [A.1.35] and the fact that vg = (pg/P)~ "9 and vy =
(pn/ PB)*("*E). These only depend on ¢, n and A. In conjunction with equation [4.8], knowledge of vg and
vy yield a linear equation for s after dividing both sides by Pg.

(ii) Lemma 3 shows that u, pg, un and yx are independent of A, establishing the first four claims.
Differentiating [A.3.6] yields the fifth claim.

(iii)  Substituting the bounds for A from [A.3.4] into equation [A.3.6] proves the claim.

(iv)  The markup ratio p is characterized implicitly as a root of the function R (y;€,77) = 0 from [A.1.31].
This is a determinant of a matrix containing continuous functions of u, € and 7. Therefore, i is a continuous
function of € and 7.

Obtaining the roots z and z of the quadratic Q(z) = 0 from [A.1.11] of Lemma 1, and taking the limit
as € — 11 yields z — 0 and 7 — (n — 2)/n. Note that q and q from Lemma 1 are related to z and z by the
transformation Z~'(z) from [A.1.15], which is strictly increasing.

Let zg and zy be defined as follows in terms of the relative prices pgs and py:

1-X = 1—-X =
ZSETpSn’ ZNETpNn‘ [A.4.1]

Lemma 2 shows that qy < q < q < qg, and hence by using the monotonicity of the Z ~1(2) transformation,
it follows that zy < z < Z < zg. By using these inequalities and the definitions in [A.4.1], u = pg/pN must
satisfy:

1

w=(2)" <

zs

As e — 1T, u converges to zero. Then note that x is given by equation [A.1.33] with 3(u;€,n) = 2n, and
soxy —ooase— 1T,

The proof of Lemma 1 shows that as n — n*(€), G, (n; €) — 0, which implies the discriminant of quadratic
Q(z) in [A.1.13] tends to zero. Therefore the roots z and z converge to some common point. Given the
continuity of the transformation Z7!(z), it follows that q and q must converge to a common point go.
Thus in the limit, R"”(q) < 0 except at g = qo. At each stage in approaching the limit, R'(qs) = R'(qn)
must hold, and therefore qg¢ — qn, consequently x converges to one. Given the continuity of the demand
function D(p), it follows that pg — py and so p converges to one. This completes the proof.

A.5 Log linearizations
A.5.1 Sales model

The notational convention adopted here is that a bar above a variable denotes its flexible-price steady-state
value, and the corresponding sans serif letter denotes the log deviation of the variable from its steady-state
value (except for the sales fraction s, where it denotes just the deviation).

Consider first the demand function faced by firms. In the following, pg and py denote a particular
firm’s sale price and normal price respectively. Pg and Py denote the common sale and normal prices
chosen by other firms. Equation [4.10] gives the levels of demand gg and gy at sale and normal prices pg
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and ppy, which has the following log-linearized form:

qs = <m> vs —€(ps —P)+Y, [A.5.1a]
aN = <m> vy —€e(py —P)+Y, [A.5.1b]

given in terms of log deviations of the purchase multipliers:

vs=—(m—¢€)(ps —PB), vv=—(n—¢)(py —PpB) . [A.5.2]

Substituting the purchase multipliers into the demand functions:

as — </\e+(( 371—723) ps + (17— €) <m§) Pp+eP+Y [A.5.3a]
qN:_</\e+((1 i))ZQ];N> o + (7 —€) (M) Pg+eP+Y, [A.5.3b]

From equation [4.5], the log-linearized optimal markups at given sale and normal prices are:

A1 =N —€)vg

s = mesvs s W €SS T Ags) e — 1) + (1= N (n — Tog) A
o wvy. and oy = A= N0~ o
o = e S e T e - 1+ (0 = T A

Overall demand @ = sgs + (1 — s)gn can be log-linearized as follows:

qs — qn 5qs (1—-35)qn
Q=< >s—|—< > s+( ) : A5.5
s+ -y ) G0 ¥ s v -aan ) B0
The price level Pp for bargain hunters as given in [4.8] (and its later generalizations) is log-linearized
as follows:

Pg :93P5+(1*03)PN*¢BS, where [A.5.6]

B 5 1 1—pnt
o= () o= ()

where Pg and Py are the average log-deviations of pg and py, and s is the average deviation of the sales
fractions. In the static model, Pg = pg = X and Py = py = 0. These averages are interpreted differently
in the dynamic model.

Similarly, the log-linearized general price level P in [3.3] is:

1—X\ __ __
1) 50505 Vs

P =5+ (1-MNvs)ag Ps+(1—5)A+ (1 - Non)ay Py - (

- C - i) (1 - 8)onay vw - 6% ((A+ (1= N)as)as™ — (A + (1= Nan)ay)'s,

where Pg, Py and s are averages as discussed above, and the log-deviations of the purchase multipliers
are evaluated at the average prices. Then using the expressions for the purchase multipliers and relative
prices in the flexible-price equilibrium together with the log-deviation of vg and vy from [A.5.2], and the
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expression for Pp in [A.5.6], the aggregate price level is given by:

P=0pPs+ (1 — (9p>PN — 1/}]35 ,  where [A57]
= \=l—¢ A e =l—e =X - _ = =l—¢
0p = 5(A+ (1= A)vg)og <, and ¢p = p— (05— on°) + . (vs0g © — naN ) -

The production function [3.7] can be log-linearized to yield

Q=aH, where a= flgf)(?;:’ﬁ.(?’;));(@)) : [A.5.8]
The nominal marginal cost function [3.8] has the following log-linear form:
_ Qe W) ( f‘l(Q)f”(f_l(Q))) ( Q )
X = W h =t =|- = - - . [A5.9
TARW,where Y= ") F(FQ) ForEia)) 4

The final relationship to derive is that between Y and Q. The log-deviation of the ratio Y/Q is 6 = Y—Q.
To find its determinants, substitute [A.5.3] into [A.5.5], and using pg = Pp = X:

QY+ P+( SQQN>5_<(1SC)2<NQN> Py
_|_

(5(7) —€)(1 =) (50505 + (1 — 5)on0ON) — ng%*) X. [A.5.10]

where Py and s are the averages discussed above. Substituting ps = Pp = X into [A.5.6] for Pp and
rearranging yields:

1-6
s = Q(PN —X). [A.5.11]
VB
Using the above equation and making the same substitutions in equation [A.5.7] for P:
VB ) ( (1 —0B)YripyYs )
Py = P— X. A5.12
" ((1 —0p)yp — (1 -0p)Yp (1—0p)p — (1 —0p)pp | |

Substituting equations [A.5.11] and [A.5.12] into [A.5.10] yields the following expression for 6 =Y — Q:

5 ( (@s —an)(1 = 0p) — ¥p(1 — 5)(nan
(1 =0p)yp—(1-0p)Yp)Q
which has been simplified by noting all the constituent equations are homogeneous of degree zero in nominal

variables, so the resulting expression for & must be expressible in terms of real marginal cost. Writing this
as & = J,x, where x = X — P, the coefficient ¢, is given by:

) (X—P), [A.5.13]

(1 —38) (Ae+ (1= Mnon) oy — (1 —08) (A + (1 = N)vg)ag" — (A + (1 — N)oy)ay’)

(1 —0p)Yp — (1 —0p)¢p ’
[A.5.14]

0 =€—90

where the expressions for the flexible-price equilibrium values Cy, gg, gy and @ have been used.

A.5.2 Model with flexible wages

The log-linearized real wage w = W — P adjusts so that the log linearization of equation [6.1] is satisfied:

_— Fu(T)\ L FUY /8 opn(FLV /)
w = %Q +0o.'Y, where 0. = — ((())> , and op = < (Vh/(f)'"hlh((Y/cs)() : ))>
[A.5.15]
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A.5.3 Aggregation in the dynamic sales model

The equivalent of aggregate price level P; in [7.3] for Pp;, the bargain hunters’ price index, is obtained
from the definition [4.8]:

1
) i
Ppy = ((1 —dp) >0 {Se,tpfq}z +(1— Se,t)R}vf—e}> :
£=0

Using the demand function [3.10], the total quantity sold for a vintage-¢ firm is:
Qut = setqset + (1 —se)aner, where gspr = P(pses; P, &), and qyer = P(BNi—o; P, &) -

where gg ¢+ and qn ¢ are the quantities sold at the individual prices. The corresponding purchase multipliers
are vge+ = v(pses; Ppyt) and vy = v(Rn¢—e; Py). Given total quantity produced, the vintage-specific
number of hours Hy; and nominal marginal cost X, ; are:

Hyy = ]_—71(@“) . X =€ (Quis We) .

Proposition 4 shows X, = X¢, Qe = Q¢ and pgey = Pgy. It follows immediately that H,; = Hy,

qs,et = s, and vg g = vgy.

The log linearizations derived in section A.5.1 continue to hold in the dynamic version of the model
if certain variables are reinterpreted as weighted averages over normal-price vintages. These weighted
averages are:

o0 o0 o0
st = (1—¢p) Z d’f)sé,t ,ant = (1—¢p) Z¢£QN,Z,t s = (1—6p) Z¢£VN,£,t )
£=0 =0 =0

and also:

Prve=(1—¢p)> ¢ Ry [A.5.16]
/=0

A.5.4 DSGE log-linearizations
The log linearization of the intertemporal IS equation in [7.14] is:
Yt = Eth+1 + ﬁm (mt — Etmt+1) — O¢ (It — EtT[t+1) s [A517]

where i; = log(1+14;) — log(1 +1) is the log deviation of the gross nominal interest rate, and the elasticities
0. and 19, are given by:

(YooY, m)\ ! 9 MUme(Y, 1)
Oc=—\| —"—""%T =~ s m=""5 v - °
Yve(Y,m)

Money demand from [7.14] is log linearized as follows:
my = 19th - ﬁllt y [A518]

where the income elasticity ¥, and interest semi-elasticity 1J; are given by:

vacp?lfn) . chcgf/lm) IB
19y = m:;n;(y}_/’j;% _ m:j;(iéyfm) , U= (1 B ﬁ) <mvmc(}7,m) mvmm(?,ﬁﬂ)
ve(Y,m) vm (Y, ) ve(Y,m) vm (Y 1)
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Note that after specifying o., ¥, and ¥;, the steady-state ratio of real money balances to income (the
reciprocal of velocity) is restricted as follows:

1—B)0m | o

P Nt LT B [A.5.19]
ﬁo'c'&y _1
(1-B)9%;

Equation [7.15] for the utility-maximizing reset wage is log linearized as follows:

1-5 > _ _ _
Wit = % Z(ﬁqﬁw)éﬂ‘:t [PtJrZ +Soy, "W + O ! (Yige — Omype) + 0y, lHtH] )
(I+s0,7) =5

which has the following recursive form:

1— B¢y _ _ _
Rwy = BouwEiRw, 1 + ((1 n fjl)) (Pe+<0y, "Wy + 0.1 (Y = Oumy) + 03, ' Hy ) [A.5.20]
h

The log-linearized wage index [7.16] is:

Wi = (1= du)dlRwi e,
(=0
which also has a recursive form:
Wi = ¢uWi1 + (1 — ¢u)Rw - [A.5.21]

Putting together the reset wage equation [A.5.20] and wage index equation [A.5.21] yields an expression
for wage inflation 7y = Wy — Wy_q:

Tw, = BT 41 +

«

(1_¢w)(1_/6¢w) 1
Puw 1+¢o;, "

-1
o

h Qt + O'gl (Yt - ﬁmmt) - Wt> s [A522]
where the link between hours H; and quantity Q; in [A.5.8] has been used.

A.6 Proof of Theorem 2

(1) Suppose all firms share the same fixed py consistent with the flexible-price equilibrium. The first-
order condition for the optimal choice of the sales fraction s from the first part of [5.1] is log-linearized as
follows:

(s — qn)X = [isGsps + (fis — 1)gs(ds — qn) »

where the fact that (is—1)gs = (iny—1)gn has been used to simplify the expression. By using log-linearized
demand functions [A.5.3] and recalling that py = 0:

0o~ (ns = s -0 () o
(1—Mvs (1- Ny
T (H(l—A)vs A+ (1= Moy

) (,L_LS — 1)(75PB . [A.G.l]
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Given the expressions for fig in [4.6], the coefficient of pg in the above is zero. Since gs > ¢u, this equation
implies X is independent of ps. By using (fis — 1)gs = (fin — 1)gn again, [A.6.1] implies:

(@s — an)X = (gs — qn)PB — <1 —(n—e) <)\‘(*‘1(Ii);)§”5‘> (fis — 1)) asPs

+ <1 —(n—e) (M) (N — 1)> qnPp . [A6.2]

By substituting the expressions for fig and iy from [4.6], the above equation reduces to
(@s — an)X = (s — qn)Pp + (e = 1) (ks — 1)gs — (kv — 1)an) P ,
and noting that the coefficient on the final term is zero, it is established that X = Pp for all pg.
(i)  The optimal pg is characterized by the second part of [5.1]. In log-linear terms:
ps = s +X.

By substituting the expression for the log-linearized optimal sales markup from [A.5.4] and the sales pur-
chase multiplier from [A.5.2], and rearranging terms:

(1=(n—¢)s)(ps—X) =0,

so ps = X if the coefficient can be shown to be zero. Using the expressions for ¢g from [A.5.4] and fig from
[4.6]:

fis - (e + (1 — N)nis)
Using [A.1.8] and noting that vg = pg " it follows that 1 — (n — €)cg = usD'(ps)R"(D(ps)), where the
functions D(p) and R(q) are defined in [A.1.1] and [A.1.4]. Since D'(ps) < 0 and Lemma 2 shows that
R"(D(ps)) < 0, it is established that pg = X. This completes the proof.

(1—(m—e)es) _ (Me—1)+ (1= N)(n—1)vs) (Ae + (1 = N)nos) — (1 — €)*A(1 — N)s
K :

A.7 Log-linearized solution of the static model
A.7.1 Fixed wages

The model is log linearized around the flexible price and flexible wage equilibrium characterized in section 4.
The system of log-linearized equations is:

P =0pps — ¢¥ps, [A.7.1a]
Pp =0pps — ¥pBs, [A.7.1D]
ps =X, [A.7.1c]
P =X, [A.7.1d]

Y=Q+6X—-P), [A.7.1€]

X=7Q, [A.7.1f]

Y=M-P. [A.7.1g]

Equations [A.7.1a] and [A.7.1b] are [A.5.7] and [A.5.6] with Py = 0. Equations [A.7.1c] and [A.7.1d] are
the results of Theorem 2. Equation [A.7.1¢] is taken from [A.5.13] and [A.5.14] with § =Y — Q. Equation
[A.7.1f] follows from [A.5.9] with W = 0. Finally, equation [A.7.1g] is the log linearization of [2.4]. The
money supply M is exogenous.
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A.7.2 Flexible wages

The system of equations is the same as [A.7.1] except that [A.7.1f] is dropped and replaced by [A.5.9], and
the additional equation for wage W is taken from [A.5.15]:

—1
W=pP+7h Q+ o 'Y, [A.7.2a]
«

A.8 Proof of Proposition 4

(i) Consider a firm with arbitrary deviations pg and py of the sale and normal price from the flexible-
price equilibrium. The log-linearized first-order condition for the sales fraction (the first part of [5.1]) is:

(gs — aN)X = fisgsps — pNgnPN + (s — 1)ds(ds —an) [A.8.1]
where the fact that (is — 1)gs = (in — 1)gn has been used to simplify the expression. By using [A.5.3]:

(gs — an)X = (us ~ (s - 1) (A;_t(& — iggﬁf)) Gsps

- <ﬁN —(An — 1) <)\§i ((i : //\\))ZENN>> qNPN
(1—-XN)ug (1—-XNon
+n=e) <A+(1—A)z‘zs TAF (1= Ny

> (s — 1)gsPp -

Given the expressions for fig and iy in [4.5], the coefficients of both pg and py in the above are zero.
Since gg > @n, this equation implies X is independent of pg and py. By using (is — 1)gs = (an — 1)gn
again, [A.8.1] implies the same expression involving X and Pp as in [A.6.2], which following the same steps
establishes that X = Pp.

(i)  From the log linearization of nominal marginal cost in [A.5.9], since all firms face the same wage
W, and as part (i) shows that all have the same nominal marginal cost X, all must produce the same total
quantity Q.

(iii) If both prices are optimally readjusted then [4.5] implies p& = psX and py, = punyX, which in
log-linear terms becomes:

P =us+X, py=wytX.
By following the same steps as in the proof of part (ii) of Theorem 2, it is shown that p* = X and p} = X.

(iv)  Let ps and py be given prices for a particular firm, and let s be the optimal sales fraction implied
by the first part of [5.1]. Profits [3.12] are denoted by Z:

P = spsqs + (1 — s)pnvgy — € (Q; W),

where €' (Q; W) is the cost function [3.8]. Taking a second-order Taylor expansion of profits around the
flexible-price equilibrium yields:

P = 35psqs (ps + as) + Psdss + (1 — 8)pnagn (Pn + aN) — DNGNS + Psdss (ps + ds)
_ 1 9 1_ _ _ 2
— pNans (py +an) + 5Psdss (ps +as)” + §PN(JN(1 —35) (pv +aqn)

_0xXqQ- %Q)m +9)Q% — OXQW + tip. + 6(3) . [A.8.2]
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The first-order approximation [A.5.3] of the demand functions [4.10] is extended to include second-order
terms:

(n—e)>A(1 = \)vs
2\ + (1 = MN)vg)?

(n—e)2\(1 — /\)Tw(
20+ (1 = N)on)?

qs = —(sps+ds+ (ps — P2+ 0(3), [A.8.3a]

pv —Pg)*+ 0(3), [A.8.3b]

av = —(ypy +dy+

where the expressions for the price elasticities in [4.1] have been used, and the following are defined:

— (1= N7 — (1= N7
gg= == Ntsp oy gy = L Now Ly

A+ (1—-XNog A+ (1= XNoy
Then using the following second-order expansion of total quantity @ = sqs + (1 — s)gn:
= QN N o 5qs 1 —8)qn _ _
Q <Q + 5 | = 8dsas + (1 —38)anan + (gs — an)s + TQ% + (2><ﬁv + gssqs — qnsqn + O(3) ,

the level of profits & from [A.8.2] is broken down into four components:
P =P1+ P2+ Ps+Pa+ tip. + 0(3)
where:

PB1 = 5psqs (ps +as) + (1 = 35)pnan (py +an) + (Psds — DNGN)S
— X(5¢sqs + (1 = 8)anan + (4s — an)s) [A.8.4a]

1 1 - (5q 1—3)q
P2 = 5Psds5 (ps + as)’ + oPNan (1 = 5) (py + an)’ - X <¢215q% + (Q)QNQ?O [A.8.4b]
Ps = psdss (ps + as) — Pnans (Py +an) — X (Gssqs — Gnsqn) [A.8.4c]
X0 _
Py = _¥Q2 ~ XOWQ [A.8.4d]

By using the identities pg = fisX and py = fiyX and simplifying, the expression for P in [A.8.4a]
becomes:

PB1 = 55X (sps + (s — 1)as) + (1 — §)gn X (Ainpy + (En — Dan) + X (gs(fis — 1) — qn(iny — 1))s .

Substituting the second-order expansions of demand from [A.8.3a] and using the expressions for fig and iy
from [4.6], and gs(fis — 1) = gn(fiy — 1) to demonstrate that the first-order terms have zero coefficients:

545X (fis —1)(n — €)*AM(1 = \)7s
- 200+ (1 — \)og)2 (ps —P5)”
n (1 = 5)gnX (i = D(n = €)*A(1 = Noy
20+ (1 = N)on)?

(pn — PB)? + tip. + 0(3) . [A.8.5]

To simplify the expression for 9o, note that [A.8.3a] implies q5 = —(sps + dg + €(2), and so by
substituting this into the following:

_ 2 5.2 > s 2 s _ 9
ps (ps +4s)” — Xq :X<p — 2= psds + sd>
( ) S (fis — 1)2 S fis — 1 Hsdg

- X <(M5)2P% - 2ﬂ:i 1deS +d%> + ﬁ(?’)

s

ws —

_ X

]p%+tML+ﬁ@%
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where figs —1 = 1/(Cs — 1) has been used. A similar expression holds for py and qy. Substituting this
result into [A.8.4b] yields:

X - = .
Po=—7 (8asCsp% + (1 — 5)anCnpy) + tip. + 0(3) . [A.8.6]
Taking out s as a common factor from B3 in [A.8.4c] and noting that ps = jigX and py = iy X:
Ps = X (gs (sps + (s — 1)as) — av (Anpn + (Ax — 1)an))s . [A.8.7]

Equation [A.8.3a] implies qs = —(sps + ds + €(2) and qy = —(ypn + dy + O(2), and by substituting
these into [A.8.7] and noting that fig — 1 =1/((s — 1) and (jis — 1)gs = (iy — 1)qn:

Pz = Xqs(fis — 1)s(ds —dn) + O(3) [A.8.8]

To simplify the expression for 3, note that:

e e =

(- (=1 —=Nvs(s —1) _ (n— )( MON (v — 1)
- (qs A+ (1— Mg TN T (1- Ny . ) Ps
=(gs(1—=(e—=1)(ps — 1)) —qn (1 — (e — 1)(MN —1)))Ps = (s — qn)PB ,

B

using (s — 1)gs = (an — 1)gn repeatedly and the expressions for fig and iy from [4.6]. Substituting the
result into [A.8.8]:

Ps = XPp(gs — qn)s + O(3) = —X(5¢sas + (1 — 5)gvany — QQ)Ps + O(3) ,

where the second equality makes use of the first-order expansion of total quantity @ from [A.5.5].
Appealing to Proposition 4, the log deviations of nominal marginal cost X and total quantity sold Q
are independent of an individual firm’s choice of pg and py. Therefore all the terms in B4 are independent
of pricing policy. Furthermore, in the expression for 3, the product of Q and Pp is also independent.
Therefore:
Ps = —X(5¢sqs + (1 — 5)gvan)Pp + tip. + 0(3), Pa = t.ip. [A.8.9]

By adding B2 and B3 from [A.8.6] and [A.8.9] and substituting the first-order expansion of the demands
gs and qu into the latter, the following is obtained:

[\D‘N|

Po + Ps = — = (5¢s¢sps + (1 — 5)qninpy) + X (525Csps + (1 — 8)an{npn )P + t.ip. + O(3) .

By completing the square and noting that the remainder is independent of pricing policy:

Po + Ps = —%ECYSQTSX (ps — Pp)* — %(1 — 3)gnCnX (pyv — Pp)? + tip. + 0(3) .

Proposition 4 shows that P = X+ ¢'(2), and by combining the above equation with the expression for
P from [A.8.5]:

_ 1o (= e*A1 = Nos(is — 1)
P = —isqu (Cs — O+ (= Nog)? ) (ps — X)?
 (m=e)*X1 = Non(an — 1)) (pn

Ot (= Non)? —X)2+tip. +0(3),

which completes the proof.
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A.9 Proof of Theorem 3

The first step is to log-linearize equation [7.2] for the optimal reset price R; at time t. Since Ry = py =
nnX, it follows that this equation simplifies to:

> (Bdp) B Rt — uneave — Xerrd] =0, [A.9.1]
=0

where py ¢ is the log-deviation of the optimal markup pun e+ = p(Rn¢—¢; Ppt). The optimal markup
function is log-linearized in [A.5.4] and is given in terms of the purchase multiplier, itself log-linearized in
[A.5.2]. Putting together those results, it follows that un¢s+¢ = (1 — €)en (Rnye — PBt4e). Proposition 4
shows that marginal cost is equalized across all price vintages and thus X,; = X;. Furthermore it shows
that X; = Pp . Substituting these findings into [A.9.1]:

o0

(1= (n—e)en) > (Bdp) Ee [Rip — Xipe] = 0.

=0
The proof of part (iii) of Proposition 4 establishes that 1 — (n — €)cxy > 0, hence:

oo
Ry = (1= Bép) Y (86p) EiXipe ,
£=0
which can be expressed in an equivalent recursive form:

Rt = BopEiRip1 + (1 — Bdp)X; [A.9.2]

Using the log-linearizations [A.5.7] and [A.5.6] and the definition of the price index Py in [A.5.16], the
expressions for P; and Pp; are:

P, =0pPs;+ (1 —0p)Pny—tYpse, Ppi=0BPsi+ (1—0B)PNn:—vYBs:, [A.9.3]

where the fact that pgs; = Pg; has been used in accordance with Proposition 4. The recursive form of the
expression for Py, in [A.5.16] is

Pnit=&pPni—1+ (1 —¢dp)Rny . [A.9.4]
Proposition 4 establishes that Pg; = X; and therefore, by substituting this into [A.9.3],
Ypsy =0p(Xy —Py) + (1 —0p)(Pnt — Py) . [A.9.5]
Likewise, by using Pp+ = X; and performing similar substitutions into the second part of [A.9.3],
Ypst = (1 —0p)(Pne — Xi) - [A.9.6]

Equation [A.9.5] can be written as
Yps = 0p(Xe — Py) + (1 = 0p) (Pne — Xe) — (X¢e — Py))

and s; can be eliminated using [A.9.6]. After some rearrangement this leads to:

1
L=9

where 9 is as defined in the theorem and x; = X; — P; is real marginal cost.
By multiplying both sides of [A.9.2] by (1 — ¢;,) and by substituting the recursive equation [A.9.4] for

Xe— PNy = Xt [A.9.7]
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PN,t7
PN,t - ¢pPN,t71 = ﬁ@prt [PN,t+1 - d’pPN,t] + (1 - pr)(l - ﬂ(bp)xt 3

which can be expressed in terms of iy ; =Py — Pn—1:
iyt = BEmin 1 + 6(Xe — Pg) [A.9.8]

where k is as defined in the statement of the theorem.
Taking the first difference of [A.9.6] yields:

(1-05)
Yp

Now take the first part of [A.9.3] making the substitution Pg; = X; as before and then take first differences
and rearrange to obtain:

ASt = — (AXt — TEN,t) . [Agg]

T = Ting + Op (AX; —mtyy) — YpAs; .
Eliminating As; from this equation using [A.9.9]:
= TN + U (AXy — Tivy) -

Substituting the first difference of [A.9.7] into the above yields:

TNt = T — LAXt .

=%
By using this equation and [A.9.7] together with [A.9.8] leads to:

KR

1=4

1=

<7Tt - wAXt> = BE; {Tft—&-l - Xt

1~ Axpyq| +

which can be rearranged to yield the result [7.5].
By recursive forward substitution of the Phillips curve [7.5]:

1 o0
=1 > B Er [kxire + 1 (Axipe — BAX1140)]
e
Notice that all Axs,, terms apart from Ax; cancel out because they occur twice with opposite signs and
thus equation [7.6] is obtained. This completes the proof.

A.10 Log-linearized solution of the DSGE model

The model is log linearized around the flexible price and flexible wage equilibrium characterized in section 4,
with [4.11] replaced by:

v (FL(Y/6))
v(Y, m)F (]:*1(17/5)) ’

i‘:
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where the link between m and Y is given in [A.5.19]. The system of dynamic log-linearized equations is:

nt:/ﬂﬁan—%1:{w(mm—%w(Axﬁ—ﬂEﬂSm+ﬁ), [A.10.1a]
e = PE w41 + (1= ¢w)( = féu) L — (Uh th + a;l (Y¢ — Opmy) — Wt> , [A.10.1D]
buw 1 +¢oy, Q
Awy =y — T, [A.10.1c]
Y= Qi+ dzxt [A.10.1d]
xt =w + Q¢ , [A.10.1€]
Yi = EyYopr + O (my — Eemysr) — o (i — Eetesr) [A.10.1f]
my = Yy Yy — Uiy [A.10.1g]

Equation [A.10.1a] is the Phillips curve derived in Theorem 3. Equation [A.10.1b] is the Phillips curve for
wage inflation from [A.5.22], and [A.10.1c| follows from the definition of the real wage. Equations [A.10.1d]
and [A.10.1¢e] are taken from [A.7.1e| and [A.7.2b], which continue to hold in the dynamic model. The IS
equation [A.10.1f] and money demand [A.10.1g] come from [A.5.17] and [A.5.18].

There are two specifications of monetary policy considered: exogenous money growth [7.17a],

AM; = 0 AM_1 + ¢, [A.10.1h]
and the Taylor rule [7.17Db],
it = SOiit—l + (1 — QOZ') (g07r7Tt + QDth) + €t . [A.lO.li]

The standard model with Dixit-Stiglitz preferences, a one-price equilibrium, and Calvo staggered ad-
justment times leads to the following New Keynesian Phillips curve:

= BB + Kxe

in place of [A.10.1a].'* Equation [A.10.1d] is replaced by Q; = Y;.

A.11 Second-order approximation of profits in standard model

Suppose a given firm charges price p and the general price level is P and output is Y. Standard Dixit-Stiglitz
preferences imply the following demand function:

().

Assume the total cost function is €(q; W). Profits & are then given by

l1—e _
p p\—¢
=Y yv_¢ G) YW ) .
Taking a second-order approximation of total revenue yields
pl—s _ 1 9
P_aY:Y <1+(1—a)p—€P—|—Y—i—2((1—€)p—€P+Y) > +0(3),

and of total cost yields:

e—1

C(GW)=%(Y; W)+ < > Y <—5(p— P)+Y+ %(1 +7)(—e(p —P) —I—Y)2> +0(3),

9

14See Woodford (2003) for a derivation of this equation.
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where v = Y€"(Y; W) /€' (Y; W), and €' (Y;W) = (¢ — 1)/e and q = —¢(p — P) + Y have been used.
Putting these expressions together and rearranging terms leads to the following expression for profits:

2
P = —%5(1 +ev)zPY (p — <P + X>> +tip. +0(3),

14 ey

where x = 7Y is the real marginal cost of all other firms.
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