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Abstract

This paper studies how the introduction of social learning with costs to delay affects
coordination games with incomplete information. We present a tractable noisy dynamic
coordination game with social learning and costs to delay. We show that this game has
a unique monotone equilibrium. A comparison of the equilibrium of the dynamic game
with the equilibria of analogous static coordination games explicates the role of social
learning. The analysis is carried out for both endogenous and exogenous order of moves
in the dynamic game.

In the limit as noise vanishes, social welfare is strictly ranked in these games, with the
highest welfare achieved in the dynamic game with endogenous ordering. We demonstrate
that exogenous asynchronicity is not a substitute for endogenous asynchronicity. We also
show that under endogenous ordering, as noise vanishes, the efficiency of coordination is
maximized at intermediate costs to delay. The robustness of these results is illustrated
numerically away from the complete information limit, when closed forms are not avail-
able. Our results have implications for the initial public offerings of debt, as well as for
the adoption of new technology under incomplete information.
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1 Introduction

In many applied problems in economics an agent’s payoff from taking an action depends
on some underlying (unknown) state of the world and increases in the mass of other agents
taking similar actions. Many such settings are also inherently dynamic, encompassing several
time periods. Thus agents are presented with several occasions to act, and may be able to
(noisily) observe the actions of others who make choices before them. In the presence of
private information, such observation may help agents improve their knowledge of payoffs.
However, there may be a cost to delay in making choices. We begin by providing a leading
example of such a problem.

Consider a group of investors deciding whether to invest their resources in a safe domestic
venture or in a risky emerging market project. The risky project requires the participation of
a critical mass of speculators to succeed. Potential investors have private information (from
a combination of publicly available information and personal research) about the underlying
exogenous value of the project. Since investors operate in a common market, those who
choose to wait before investing can at least noisily observe the actions of others who made
their choices earlier. This can provide them with better information. But delay comes at a
cost of remaining vested in the project for a shorter period of time, and therefore enjoying
less of its benefits.1 Similar examples include the adoption of new technologies with network
externalities2, currency crises3, and bank runs4.

At the heart of the example we have just described lies a coordination problem. An indi-
vidual wishing to invest in the risky project must be convinced that enough fellow investors
will also participate. Thus, we might expect equilibrium underinvestment relative to the so-
cial optimum. However, the standard coordination problem is complicated here by dynamics
and social learning. Individuals have multiple periods to act. There may be an incentive to
wait and collect more information. This may delay, or even discourage, investment. On the
other hand, observing investment by some investors may encourage others to join in, and
thus lead to greater investment. Finally, the additional information produced by observa-
tional learning may help agents make better choices. Given these complications, it is natural

1Chari and Kehoe (2000) study this problem. However, they do not take into account strategic complemen-

tarities. In their model, the success of the project depends only on an exogenous state variable. Two related

models that analyze settings with endogenous timing and private information in the absence of strategic

complementarities are Caplin and Leahy (1993) and Chamley and Gale (1994).
2This problem is analyzed by Choi (1997). We discuss this paper further in Section 6.5.
3This problem is analyzed by Morris and Shin (1998), in a static model, ignoring learning. They extend

the equilibrium selection techniques of Carlsson and van Damme (1993) to analyze the problem in a unique-

equilibrium setting.
4Analyzed by Goldstein and Pauzner (2000), also ignoring learning, and also in the tradition of Carlsson

and van Damme (1993).
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to ask: How might the presence of dynamics and social learning affect the level of equilibrium
investment relative to benchmark cases?

In order to address this question we model the stylized features outlined above using
a noisy dynamic coordination game with Bayesian social learning and costs to delay. To
establish a benchmark for comparison we also analyze the same coordination problem in the
absence of dynamic elements and learning, i.e., using static coordination games. To avoid the
usual difficulties created by multiple equilibria in static coordination games we rely on the
work of Carlsson and van Damme (1993) and Morris and Shin (1998, 2000). These authors
demonstrate that in the presence of private information, a unique equilibrium is selected in
a large class of static coordination games, commonly referred to as global games. The static
global games analysis provides a tractable benchmark for our results. Comparing our results
to these earlier analyses would address the question raised above. Formally stated: How
does the introduction of social learning with delay costs affect the probability of coordinated
risk-taking in noisy supermodular games? 5 Does learning make a difference? If so, how? In
order to complete the comparison, however, we must first overcome a theoretical hurdle.

Dynamic coordination games, like their static counterparts, have multiple equilibria when
payoffs are common knowledge.6 Many such games can have multiple equilibria even in
the absence of complete information, e.g. Chamley (2001), Angeletos, Hellwig, and Pavan
(2002), and Dasgupta (1999). This makes it difficult to compare these games with their static
counterparts, and therefore obscures the role of dynamics and learning.

The theory of equilibrium selection in dynamic supermodular games has received recent
scholarly attention. In an important set of papers, Burdzy, Frankel, and Pauzner (2001),
Frankel and Pauzner (2000), and Frankel (2000) have established that when payoffs are
affected by a stochastic parameter with sufficient stationarity and frequent innovations, a
unique equilibrium is selected in a class of dynamic coordination games where agents are
offered random opportunities to switch between actions.7 However, agents in these models
cannot use the observed actions of others to Bayes update their beliefs about the state of the
world. The evolving state variable is observed publicly, and the current value incorporates all
available information about future values. Their results are, therefore, not directly applicable
to the class of problems of interest to us.

To facilitate a precise comparison with static benchmarks, we propose a simple model in
5Marx and Matthews (2000) study a related question in a complete information public goods model, with

dynamics but without learning. They find that dynamics can, under certain conditions, increase contributions

to a public project relative to static benchmarks.
6For an analysis of dynamic coordination games with complete information, see Gale (1995), who demon-

strates multiplicity. In particular, for a continuum player version of Gale’s model, which shares features with

the model we present below, he demonstrates that there is a continuum of possible equilibria.
7In recent work, Levin (2000) extends their analysis to study overlapping generations games.
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which some of the Carlsson-van Damme/Morris-Shin equilibrium selection arguments can be
extended to incorporate social learning.8 In our model, a mass of agents choose whether to
invest in a safe project or in a risky project of uncertain underlying value. The underlying
state of the world is indexed by a variable θ, which becomes known at the end of the game,
when consumption occurs. Investors have two opportunities to invest before the end of the
game, at times t1 and t2. The receipts of an agent who invests in the risky project depend
on whether the project is successful. When the project succeeds, it generates a high payoff
which is continuously compounded between the time of investment and the end of the game.
Thus, there is a cost associated with investing later in the game. When the project fails,
it pays nothing. The project succeeds at θ if a critical mass of agents participate, and this
required mass is inversely related to the value of θ. Agents do not know θ for sure, but receive
informative private signals about it. Agents who act in the later period, observe a noisy signal
of an aggregate statistic based on the proportion of investors in the earlier period. While this
statistic provides them with further information on the underlying state, as we have noted
already, there is a cost associated with delayed investment.

We first establish the benchmark static analysis for this model. The static models, which
enforce simultaneous moves, are, by definition, devoid of social learning. We define two
natural static games, based upon the time (t1 or t2) at which they are played. Following
these static models we examine dynamic extensions, which allow us to incorporate learning.
There are two natural ways to do this. We may allow for asynchronicity while prespecifying
exogenously the order in which the different agents must act. Alternatively we may consider
a model where agents are allowed to choose both their actions and the time at which they
act We consider each of these four models in turn.

1.1 Summary of Results

To explore the implications of our dynamic analysis, we first establish some characterization
results. We show that as long as noise is small enough there is a unique monotone equilibrium
in each of the dynamic games we consider. This is true regardless of whether the order of
actions is specified exogenously (Proposition 3), or chosen endogenously (Proposition 4).
In the limit as noise vanishes, we can solve for these equilibria in closed form. We show
that these dynamic equilibria are “well behaved”: As we vary model parameters to bring
the dynamic games “close” to the limiting static games, the dynamic equilibria converge

8It is worth emphasizing here that the purpose of this exercise is not to show that incorporating social

learning into canonical global games perserves the standard equilibrium selection results. This is not true in

general. The purpose is, rather, to set up a tractable model in which transparent closed form comparisons

can be made to study the role of dynamics and learning.
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smoothly to their static counterparts. These convergence results are shown in Corollaries 1
and 2 and discussed below in Sections 4 and 5.

The comparison of the equilbria of the static and dynamic games of exogenous and endoge-
nous order provides insights into the role of dynamics and learning. Our results address two
related but distinct issues. The first pertains to the equilibrium probability of coordinated
investment. The second pertains to social welfare. We deal with these in turn.

As noise vanishes, we show that there exists a strict ranking of the probability of coordi-
nated investment across the different games. The endogenous order dynamic game maximizes
the probability of investment. This is followed by the first period static game, which in turn
is followed by the exogenous order dynamic game. The lowest probability of investment is
achieved in the second period static game. This is summarized in Corollary 3 and discussed
below in Sections 5 and 6.

In a related finding, we show that exogenous ordering cannot substitute for endogenous
ordering. As noise vanishes, for almost all parameter values, there exists no ex ante exoge-
nous ordering of agents that can replicate the probability of coordinated achieved by the
endogenous order dynamic game. This is because the endogenous coordination game utilizes
the revealed preference of a group of agents to invest early, while the exogenous order game
does not. We illustrate that this result is robust to the presence of significant amounts of
private information in the games. This is discussed further in Section 6.2.

We demonstrate that as noise vanishes, the probability of coordinated investment in the
endogenous order dynamic game is maximized for intermediate cost to delay. An intuition
for this follows from the observation that the efficiency of coordination depends on the total
mass of agents who can be persuaded to invest during the course of the game. The cost
of delay has opposite effects on the masses of agents who invest early or late. A large cost
to delay persuades more agents to invest early. But at the same time it dissuades agents
who did not invest early from doing so later based on their updated information. We call
this non-monotone relationship the coordination effect of introducing a costly delay option.
We illustrate numerically that it is robust to the presence of significant amounts of private
information. This is discussed further in Sections 6.3 and 6.4.

We show that the effect of introducing learning with exogenous ordering can be given a
particularly clean characterization. The relationship between the equilibria of the exogenous
order dynamic game and the two benchmark static games is essentially determined by the
exogenous parameter specifying the division of players between the two periods. However,
we show that later players in the dynamic game are able to use the additional information
obtained by observing their predecessors to make more accurate choices.

We now turn to the question of social welfare. In the limit as noise vanishes, social welfare
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is a monotone increasing function of the equilibrium probability of coordinated investment.
Thus, in the noise-free limit, social welfare is ranked as above: highest in the endogenous
order game, followed by the first period static game, followed by the exogenous order game,
and finally the second period static game. However, away from the limit, in addition to the
coordination effect, the introduction of the costly option to delay has two other effects. When
the option to delay is exercised, it leads to better information and higher welfare (the learning
effect), but since the option is costly, leads to lower payoffs and therefore lower welfare (the
direct payoff effect). The total welfare effect of introducing a costly delay/learning option
into a coordination game results from the interaction of these three effects.

We illustrate that for low levels of private information, the coordination effect dominates
the learning effect and social welfare is maximized at intermediate levels of delay costs.
However, for high levels of private information, the learning effect dominates the coordination
effect, and thus, for sufficiently noisy endogenous order dynamic coordination games, social
welfare is maximized at minimal cost of delay. The interaction of the coordination, learning,
and direct payoff effects is summarized in Section 6.4.

1.2 Applications

Our model has implications for at least two classes of applied problems. We outline them
here. A more detailed discussion is provided in Section 6.5. First, consider a government
financing an uncertain project by offering a debt contract, in a setting in which secondary
markets for the debt contract may be missing or illiquid. Under these circumstances, our
model suggests that it may be beneficial to “stagger” the initial offering to allow investors
multiple opportunities to invest, and sort themselves over time. Then, under the results
outlined above, the coordination effect will ensure that the project will succeed with higher
probability than if the entire debt package was offered simultaneously.

Second, our results provide a fresh perspective on the question of whether it is beneficial
or harmful to allow firms who are switching between technologies to have the option to delay
or not. The so called “penguin effect”9 can lead to socially suboptimal delay in this context.
Choi (1997) suggests that in settings with incomplete information and network externalities,
it may be socially optimal for agents to forfeit their option to wait and learn and to make
choices simultaneously. In direct contrast with Choi, we find that introducing a costly option
to delay and learn can enable agents to sort themselves efficiently over time, and lead to strict
gains in the efficiency of coordination. Thus, the penguin effect, while present in our model,

9The tendency for agents in strategic settings to wait to act second, in order to gain more information, avoid

intermediate or final miscoordination costs from temporary or permanent “stranding” in a ex post suboptimal

technology. See Farrell and Saloner (1986)
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enhances rather than diminishes social welfare.
The rest of the paper is organized as follows. In the next section we describe the invest-

ment problem. In section 3 we analyze the problem using the static approach of Morris and
Shin. Sections 4 and 5 extend the analysis to include dynamic elements. In section 4 the
problem is analyzed using a dynamic coordination game with exogenously specified order of
actions. Section 5 relaxes the exogeneity of order. Sections 6 and 7 discuss and conclude.

2 The Investment Project

The economy is populated by a continuum of risk neutral agents, indexed by [0, 1], each of
whom has one unit of resources to invest. They must choose between investing in a safe
project, which gives a gross payoff of 1, and a risky project of uncertain value. Uncertainty
is summarized by a state variable θ which is distributed N(0, 1) and is revealed at time T ,
when consumption occurs. There are two periods in which an agent might be able to invest
in the risky project: t ∈ {t1, t2}. We require that T > t2 > t1, i.e. at the times when agents
have opportunities to invest, the value of the project is unknown.

Proceeds from investing in the risky project depend on whether the project succeeds or
not. The success of the project, in turn, depends on the actions of the agents and the realized
value of θ. In particular, if p denotes the total mass of agents who invest at the times when
opportunities are available, then investment succeeds if p ≥ 1 − θ. Payoffs from the risky
project can be summarized as follows:

• When the project fails, it pays 0.

• When the project succeeds, it pays an instantaneous rate of return R > 0, which is
continuously compounded over the length of time that an agent has held the investment.
Thus, for an agent who invests at time ti, returns are eR(T−ti), conditional on the success
of the project.

Our payoffs are motivated by, and very similar to, those of Chari and Kehoe (2000). The
major difference is that we incorporate strategic complementarities, i.e., we allow the success
or failure of the project to depend not only on the exogenous state, but also on the endogenous
number of agents who choose to invest.10

We now perform some useful normalizations. We recast the game in terms of payoffs
to switching from the safe project to the risky one, and divide through by eR(T−t1). Let

10A second, minor, difference between our models is that Chari and Kehoe (2000) allow agents T1 ≥ 2

occasions to invest, where T1 < T , while we set T1 = 2. The generalization of our model to include more

than two periods presents no conceptual difficulties, but comes at great algebraic cost, given the strategic

complementarities. We conjecture that the results will be very similar.
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c = 1
eR(T−t1) , and let k = 1− eR(t1−t2). We label the act of switching at t = t1 by I1, and at

t = t2 by I2. The act of never switching is denoted N . Thus, we may now represent agent’s
utilities by the following schedule:

u(I1, p, θ) =

{
1− c if p ≥ 1− θ

−c otherwise
(1)

u(I2, p, θ) =

{
(1− k)− c if p ≥ 1− θ

−c otherwise
(2)

u(N, p, θ) = 0 (3)

Note that k ∈ (0, 1 − c), because t2 ∈ (t1, T ). Thus, k represents a cost to delay, the payoff
forfieted by an agent due to her delay in switching.

At the beginning of t = t1 agents observe the state of fundamentals with idiosyncratic
noise. In particular, each agent i receives the following signal at the beginning of the game:

xi = θ + σεi (4)

where ε is distributed Standard Normal in the population and independent of θ.
We now present a sequence of (progressively more complex) games that can be used to

study this investment problem. We begin with the benchmark static case analyzed by Morris
and Shin, and then extend by introducing dynamic elements.

3 The Benchmark Static Game

To analyze this investment problem within the framework of static global games in the style
of Morris and Shin requires that we place an ad hoc restriction on the actions of players:
they must all either move at t = t1, or they must all move at t = t2. This defines two natural
static global games, which are mutually exclusive.

The first such game is one in which all players act at t = t1 and payoffs are given by (1)
and (3). We label this game Γst,1. We label the other game, in which players all move at
t = t2 and payoffs are given by (2) and (3), by Γst,2. We analyze Γst,1 and extend our results
by symmetry to Γst,2.

It is useful to begin with a preliminary definition. Note that in these games, agents’
strategies map from their private information into their action spaces.

Definition 1 An agent i is said to follow a monotone strategy if her chosen actions are
increasing in her private information, i.e., if her strategy takes the form:

σi(xi) =

{
I when xi ≥ x∗

N otherwise

8



We shall call equilibria in monotone strategies monotone equilibria. Monotone equilibria can
be given a natural economic interpretation: when an agent chooses to invest, she correctly
believes (in equilibrium) that all agents who have more optimistic beliefs than her also choose
to do so.

If a continuum of players follow monotone strategies, a threshold level emerges naturally
in the underlying state variable of the game. Therefore, we look for monotone equilibria which
take the form (x∗st,1, θ

∗
st,1) where agent i invests iff xi ≥ x∗st,1 and investment is successful iff

θ ≥ θ∗st,1. Now we may state:

Proposition 1 (Morris and Shin) 11 If σ <
√

2π, there is a unique monotone equilibrium
in Γst,1. As σ → 0, it is given by the pair:

x∗st,1 = c, θ∗st,1 = c

Proof: The following are necessary for the equilibrium:
The marginal agent, who receives signal x∗st,1 must be indifferent between investing or

not, i.e.
Pr(θ ≥ θ∗st,1|x∗st,1) = c

Since θ|x ∼ N( x
1+σ2 , σ2

1+σ2 ), the indifference condition can be written as:

1− Pr(θ < θ∗st,1|x∗st,1) = 1− Φ(
θ∗st,1 −

x∗st,1

1+σ2

σ√
1+σ2

) = c

Thus,
x∗st,1 = (1 + σ2)θ∗st,1 + σ

√
1 + σ2Φ−1(c) (5)

The critical mass condition requires that:

Pr(x ≥ x∗st,1|θ∗st,1) = 1− θ∗st,1

Substituting the indiffirence condition into the critical mass condition we get

Φ(σθ∗st,1 +
√

1 + σ2Φ−1(c)) = θ∗st,1 (6)

Consider the function

F (θ∗st,1) = Φ(σθ∗st,1 +
√

1 + σ2Φ−1(c))− θ∗st,1

11This result is a special case of Morris and Shin (2000): Proposition 3.1. It can be obtained by setting the

precision of the public signal to 1.
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Clearly as θ∗st,1 → 1, F (·) < 0, and as θ∗st,1 → 0, F (·) > 0. Differentiating yields

F ′(θ∗st,1) = σφ(·)− 1

If σ <
√

2π, then F ′(θ∗st,1) < 0 for all θ∗st,1, which establishes the first part of the result.
Letting σ → 0 in (5) establishes the second part. �

The corresponding result for Γst,2 follows immediately:

Proposition 2 (Morris and Shin) If σ <
√

2π, there is a unique monotone equilibrium
in Γst,2. As σ → 0 it is given by the pair:

x∗st,2 =
c

1− k
, θ∗st,2 =

c

1− k

We now extend our analysis to introduce dynamic elements. The simplest way to achieve
this is to require that some exogenous proportion of agents have to choose their actions at
t = t1, and the rest must do so at t = t2. Even in this simplest of dynamic frameworks, we
are able to incorporate Bayesian social learning, as we show below.

4 The Dynamic Game with Exogenous Order of Actions

We now modify the game to last the length of the investment project: t ∈ {t1, t2}. The
continuum of agents is divided up (exogenously) into two (possibly unequal) groups. Agents
i ∈ [0, λ] must choose their actions at t = t1. Agents i ∈ (λ, 1] must choose their actions at
t = t2. The payoffs to this game are given by (1 - 3).

We can now incorporate Bayes social learning. Agents who act in period 2 are able to
observe a statistic based on the proportion of time 1 agents who chose to invest, which we
denote by p1. Hence, they effectively observe a “market share”. However, agents observe
such a market share statistic with some idiosyncratic noise, which may be small. We shall be
particularly interested in the case where the observation becomes essentially public, i.e. in
the limit as such idiosyncratic noise vanishes. Thus, agents (λ, 1] receive an additional signal:

yi = Φ−1(p1) + τηi (7)

where η is Standard Normal in the population, and independent of ε. The specific transforma-
tion of p1 by the inverse standard normal CDF is an algebraic simplification only (to obtain
closed forms), and serves no other purpose in the arguments that follow. As is apparent, the
standard case of perfect observation of the past (as is common in the literature on herds and
cascades, see Bikhchandani, Hirshleifer, and Welch 1992 for example) is obtained in the limit
as τ → 0. We label this game Γex and look for Bayes Nash equilibria of this game.

10



Players (λ, 1] observe two noisy signals, x and y. Let s(x, y) denote a sufficient statistic
for (x, y). We look for monotone equilibria which take the form (x∗ex, s∗ex, θ∗ex), such that:12

1. Players [0, λ] invest iff xi ≥ x∗ex

2. Players (λ, 1] invest iff si ≥ s∗ex

3. Investment is successful iff θ ≥ θ∗ex

Necessary conditions for such an equilibrium are as follows. Conditional upon receiving signal
x∗ex, player i for i ∈ [0, λ] must be indifferent between investing and not investing:

Pr(θ ≥ θ∗ex|x∗ex) = c (8)

Conditional upon receiving signals that lead to sufficient statistic s∗ex, player i for i ∈ (λ, 1]
must be indifferent to investing and not investing:

Pr(θ ≥ θ∗ex|s∗ex) =
c

1− k
(9)

Finally, at state θ∗ex just the correct proportion of agents must choose to invest for invest-
ment to be successful:

λPr(x ≥ x∗ex|θ∗ex) + (1− λ)Pr(s ≥ s∗ex|θ∗ex) = 1− θ∗ex (10)

Note that θ|x is distributed N( x
1+σ2 , σ2

1+σ2 ). The mass of people who invest in period 1 at
state θ is

p1 = Φ(
θ − x∗ex

σ
)

Substituting into the definition of the second period signal, y, we get:

yi =
θ − x∗ex

σ
+ τηi

Defining zi = σyi + x∗ex we get
zi = θ + (στ)ηi

and thus zi|θ is distributed N(θ, σ2τ2). Then, using Bayes’s Rule we know that

θ|xi, zi ∼ N

[
1+σ2

σ2
xi

1+σ2 + 1
σ2τ2 zi

1+σ2

σ2 + 1
σ2τ2

,
1

1+σ2

σ2 + 1
σ2τ2

]
12When a sufficient statistic exists, as it does in our problem, restricting attention to monotone equilibria

where second period agents condition upon their sufficient statistics is without loss of generality.
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Substituting for zi,

θ|xi, yi ∼ N

[
xi + σ

τ2 yi + 1
τ2 x∗ex

1 + σ2 + 1
τ2

,
σ2

1 + σ2 + 1
τ2

]

Thus if we define:

si =
xi + σ

τ2 yi + 1
τ2 x∗ex

1 + σ2 + 1
τ2

(11)

then

θ|x, y ≡ θ|s ∼ N

[
s,

σ2

1 + σ2 + 1
τ2

]
(12)

Since si is a linear function of two conditionally Normal variables x and y, it is easy to see
that:

si|θ ∼ N

[
1 + τ2

1 + τ2 + σ2τ2
θ,

σ2τ2(1 + τ2)
(1 + τ2 + σ2τ2)2

]
(13)

Now we can rewrite the necessary conditions for the equilibrium as follows.
Equation (8) can be re-written as:

x∗ex = (1 + σ2)θ∗ex + σ
√

1 + σ2Φ−1(c) (14)

Using (12), equation (9) can be rewritten as:

s∗ex = θ∗ex +
σ√

1 + σ2 + 1
τ2

Φ−1(
c

1− k
) (15)

Finally, substituting from (14) and (15) into equation (10) we get:

λ(1−Φ(σθ∗ex+
√

1 + σ2Φ−1(c)))+(1−λ)(1−Φ(
στ√

1 + τ2
θ∗ex+

στ√
1+τ2+σ2τ2

Φ−1( c
1−k )

στ
√

1+τ2

1+τ2+σ2τ2

)) = 1−θ∗ex

Rearranging, we get:

λΦ(σθ∗ex+
√

1 + σ2Φ−1(c)))+(1−λ)Φ(
στ√

1 + τ2
θ∗ex+

√
1 + τ2 + σ2τ2

√
1 + τ2

Φ−1(
c

1− k
)) = θ∗ex (16)

Equations (8), (9), and (16) are the dynamic counterparts of equations (5) and (6) in the
proof of Proposition 1. Thus, taking the derivative, and re-utilizing methods used above, we
note that if

λσ + (1− λ)
σ√

1 + 1
τ2

<
√

2π

then there is a unique solution to this equation. Letting σ → 0 enables us to obtain closed
forms, and we can state:
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Proposition 3 If σ <
√

2π
λ+(1−λ) τ√

1+τ2

there is a unique monotone equilibrium in Γex. In the

limit as σ → 0, it is given by the triple:

x∗ex = λc + (1− λ)
c

1− k
s∗ex = λc + (1− λ)

c

1− k
θ∗ex = λc + (1− λ)

c

1− k

We note in passing that as we let τ → ∞, and thus eliminate learning in this game, the
condition for uniqueness converges to the usual static condition for uniqueness: σ <

√
2π.

Now that we have demonstrated the existence and uniqueness of monotone equilibria in
Γex, we can compare the selected equilibrium to those of Γst,1 and Γst,2. A clean comparison
can be obtained by comparing the selected threshold levels in the fundamentals in the different
games. The findings are summarized in:

Corollary 1 As σ → 0:

• θ∗st,1 < θ∗ex < θ∗st,2

• As λ → 1, θ∗ex → θ∗st,1

• As λ → 0, θ∗ex → θ∗st,2

Thus, the outcome in the dynamic game with Bayes learning when the order is specified
exogenously is not fundamentally different from the outcomes in the individual static games.
The differences are driven solely by the parameter determining the exogenous ordering. As
all agents are forced to act in the first or second periods the selected equilibrium converges
smoothly to the selected equilibria of the corresponding static games.

Intuitively, by making players act according to the exogenous division parameterized by
λ, we are effectively forcing them to play two static coordination games, but with different
payoffs. The outcome is simply a convex combination of the outcomes in the two static
games, weighted by the mass of agents that play each of them.

However, period 2 players in Γex have access to more precise information than players
in Γst,2. Thus, we would expect them to do better on average than players in Γst,2. It
turns out that they do. The relevant question is: When the project succeeds (fails) what
proportion of later players choose to invest (not invest) in Γex versus players in Γst,2? To
answer this, we note that the proportion of players who choose a particular action in an
arbitrary game Γ at any level of fundamentals θ is determined by the difference between
θ and θ∗Γ. In Γex, the proportion of period 2 agents who choose to invest at state θ is
given by Pr(s ≥ s∗ex|θ). Using the definitions and results above, this can be rewritten to

be Φ

 θ−θ∗ex
σ√

1+ 1
τ2

− στ√
1+τ2

θ∗ex −
√

1+τ2+σ2τ2√
1+τ2

Φ−1( c
1−k )

. The proportion of agents who choose
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to invest in Γst,2 at state θ is given by Pr(x ≥ x∗st,2|θ). This can similarly be rewritten as

Φ
(

θ−θ∗st,2

σ − σθ∗st,2 −
√

1 + σ2Φ−1( c
1−k )

)
. Label δΓ = θ−θ∗Γ. It is easy to see that there exists

τ̄ > 0 such that for all τ ≤ τ̄ , if δΓst,2 = δΓex > 0, then

Φ

 δΓex

σ√
1+ 1

τ2

− στ√
1 + τ2

θ∗ex −
√

1 + τ2 + σ2τ2

√
1 + τ2

Φ−1(
c

1− k
)

 >

Φ
(

δΓst,2

σ
− σθ∗st,2 −

√
1 + σ2Φ−1(

c

1− k
)
)

In words, when investment is successful, and learning is accurate enough, a larger proportion
of period 2 agents choose to invest (thus, choose the right action) in Γex than in Γst,2. If
δΓst,2 = δΓex < 0, then the inequality is reversed. Thus, when investment fails, a larger
proportion of period 2 agents choose not to invest in Γex than in Γst,2. In other words, on
average later agents may be able to improve their welfare in the dynamic game. We shall
return to a more detailed discussion of welfare in Section 6.13

5 The Dynamic Game with Endogenous Order of Actions

We now further augment the original game to allow agents to endogenize the order of actions.
The payoffs of the game are still given by (1-3) and the information structure is summarized
as in the previous section by (4) and (7). However, now agents may also choose when to
invest, if at all. In particular, in period 1, agents have the choice to invest or not. If they
invest, then their choice is final. If they choose not to invest, however, they get another
opportunity in period 2 to make the same choice, based on the additional information they
receive at that time. As we have noted earlier, the payoffs to the investment project given in
(1-3) induce an endogenous cost to delay in investing. Now that they may choose both their
actions and the timing of their actions, agents will rationally trade off the possible excess
gains to acting early against the option value of waiting and collecting more information in
period 2. Note that even in the presence of this tradeoff, there is no information externality

13Readers familiar with the literature on global games will have noticed that the uniqueness results proved

thus far are restricted to monotone strategy equilibria. For static global games Carlsson and van Damme

(1993, later generalized by Frankel, Morris, and Pauzner 2000) prove a stronger result: the unique monotone

equilibrium is also the unique strategy profile surviving the iterated deletion of dominated strategies. Existing

arguments for this stronger result do not generalize to our dynamic game due to Bayesian learning. The

existence of non-monotone equilibria, which are complex objects in this setting, remains an open question.

However, even in the potential presence of such equilibria, the results presented here show that dynamics and

learning lead to possible outcomes that pareto-dominate anything that can be achieved in analogous static

settings (see below, Section 6).

14



in our model. In our continuum player game, the precision of posterior information about
the state does not depend on the proportion of agents who choose to invest early. Thus,
the social value of information does not depend on the mass of early investors. There is no
free-rider problem in the production of information.14 We call this game Γen and look for
Bayes Nash equilibria.

As in the game with exogenous ordering, we look for equilibria in which agents choose
monotone strategies with thresholds (x∗en, s∗en), such that:

1. Invest at t = t1 iff xi ≥ x∗en. Otherwise choose to wait.

2. Conditional on reaching t = t2 with the option to invest, invest iff si ≥ s∗en

In Γst,i and Γex it was apparent that when agents followed monotone strategies there were
corresponding equilibrium thresholds in the fundamentals above which investment would be
successful, and below which it would fail. This characterization is not immediate in the
current game (since the decisions to invest or not in the two periods are not independent)
and requires closer examination.

When agents follow monotone strategies as outlined above, at any θ, a mass Pr(x ≥
x∗en|θ) + Pr(x < x∗en, s ≥ s∗en|θ) will choose to invest. Thus, investment is successful at θ if
and only if:

Pr(x ≥ x∗en|θ) + Pr(x < x∗en, s ≥ s∗en|θ) ≥ 1− θ

Is there a critical θ∗ above which investment is successful and below which it is not? The
answer is in the affirmative, as we show below:

Lemma 1 Fix any (x∗, s∗). Let

G(θ) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ s∗|θ)− 1 + θ

There is a unique solution to
G(θ) = 0

The proof is in the appendix.
Given Lemma 1, we can now look for monotone equilibria of the form (x∗en, s∗en, θ∗en) where

x∗en and s∗en are defined as above, and investment is successful if and only if θ ≥ θ∗en.
Necessary conditions for such equilibria are as follows:
The indifference equation for those players who arrive at period 2 with the option to

invest:
Pr(θ ≥ θ∗en|s∗en) =

c

1− k
(17)

14Bolton and Harris (1999) study such a free-rider problem in the absence of payoff externalities.
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The critical mass condition is:

Pr(x ≥ x∗en|θ∗en) + Pr(x < x∗en, s ≥ s∗en|θ∗en) = 1− θ∗en (18)

We can rewrite equation (17) as

s∗en = θ∗en +
σ√

1 + σ2 + 1
τ2

Φ−1(
c

1− k
) (19)

Substituting this into equation (18) gives us:

Pr(x ≥ x∗|θ∗en) + Pr(x < x∗, s ≥ θ∗en + M |θ∗en) = 1− θ∗en

where M = σ√
1+σ2+ 1

τ2

Φ−1( c
1−k ). Now we note:

Lemma 2 Fix any x∗. Let θ̂ be defined by G(θ̂, x∗) = 0 where

G(θ, x∗) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ θ + M |θ)− 1 + θ

If σ <
√

2π
1+ τ√

1+τ2

,

1. For each x∗, there is a unique θ̂.

2. dθ̂
dx∗ ∈ (0, 1

1+σ2 ).

The proof is in the appendix. Now consider the third equation characterizing the monotone
equilibrium, the indifference condition of players in period 1. In period 1, agents trade off the
expected benefit of investing in period 1 against the expected benefit of retaining the option
value to wait. Thus the marginal period 1 investor who receives signal x∗en must satisfy:

Pr(θ ≥ θ∗en|x∗en)− c = Pr(θ ≥ θ∗en, s ≥ s∗en|x∗en)[(1− k)− c] + Pr(θ < θ∗en, s ≥ s∗en|x∗en)(−c)
(20)

Lemma 2 implies that we can write θ∗en = θ∗en(x∗en) where 0 < dθ∗en(x∗en)
dx∗en

< 1
1+σ2 . Using

this, and substituting from equation (19) into equation (20), we can express the period 1
indifference condition purely in terms of x∗en, as L(x∗en) = R(x∗en), where

L(x∗en) = Pr(θ ≥ θ∗en(x∗en)|x∗en)− c

R(x∗en) = (1−k−c)Pr(θ ≥ θ∗en(x∗en), s ≥ θ∗en(x∗en)+M |x∗en)−cPr(θ < θ∗en(x∗en), s ≥ θ∗en(x∗en)+M |x∗en)

Given the posterior distribution of θ given x, and Lemma 2, we know that L(·) is monotone
increasing in x∗en. Since s is positively but imperfectly correlated with θ conditional on
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x, intuitively the first term in R(·) also increases in x∗en but at a slower rate than L(·).15

In addition, the rate of increase of this term is “dampened” because it is multiplied by
1− k − c < 1. The second term the R(·) has an ambiguous rate of change with x∗en, since it
represents the intersection of two events, one of which becomes more likely as x∗en increases,
while the other becomes less likely under the same circumstances. Heuristically, therefore,
the rate of change of the second term of R(·) due to x∗en is small. Thus, based on this informal
argument, we would expect that L(x∗en) increases faster in x∗en than R(x∗en), which implies
that there is a unique x∗en which solves L(·) = R(·). A more formal argument, given in the
appendix, establishes that this is true, and we can state:

Proposition 4 If σ <
√

2π
1+ τ√

1+τ2

, there exists a unique monotone equilibrium in Γen.

The proof is in the appendix.16

While we cannot give closed form to the equilibrium thresholds in general, a clean char-
acterization emerges as we let noise become small. Observe that as we let τ → 0, equation
(18) reduces to:

x∗en = θ∗en + σΦ−1(
1− k

c
θ∗en) (21)

At the same time, equation (20) becomes:

Φ

(
x∗en

1+σ2 − θ∗en
σ√

1+σ2

)
=

c

c + k

Combining these two, we get:

Φ

 θ∗en+σΦ−1( 1−k
c

θ∗en)

1+σ2 − θ∗en
σ√

1+σ2

 =
c

c + k

Which simplifies to:

Φ

(
Φ−1

(
1−k

c θ∗en
)

√
1 + σ2

− σθ∗en√
1 + σ2

)
=

c

c + k

Clearly, as σ → 0, the unique solution to this is given by

θ∗en =
c2

(c + k)(1− k)

Thus we can now summarize:
15As we let τ → 0, s → θ, M → 0, and thus the first term in R(·) becomes identical to the first term in L(·)

while the second term vanishes.
16This condition reduces to the familiar condition σ <

√
2π as τ → 0.
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Proposition 5 In the limit as τ → 0, σ → 0, the unique equilibrium thresholds of Γen can
be written as:

x∗en →
c2

(c + k)(1− k)
, s∗en →

c2

(c + k)(1− k)
, θ∗en →

c2

(c + k)(1− k)

Two important sets of properties about these limiting thresholds are immediate. First, as the
cost to delay gets arbitrarily large or small (i.e. as k tends to the boundaries of its feasible
range), the thresholds converge smoothly to the unique thresholds of the corresponding static
games.17

Corollary 2 Convergence to static games:

• As τ → 0, k → 0, σ → 0, x∗en →∞, s∗en → c, θ∗en → c.

• As τ → 0, k → 1− c, σ → 0, x∗en → c, s∗en →∞, θ∗en → c

Thus, as the cost of delay becomes small, nobody invests in the first period, and the entire
mass of agents play the static game (with vanishing noise) in the second period. Similarly,
as the cost of delay becomes large, nobody who waits till the second period ever invests, and
the entire mass of agents play a static coordination game in the first period.

A more interesting conclusion emerges upon comparison of the thresholds of the endoge-
nous order dynamic game with those of the static games and exogenous order dynamic game
as noise vanishes. In particular, a clean and economically important result is apparent when
comparing the threshold levels of the fundamentals in the unique monotone equilibria of these
games.

Corollary 3 As noise vanishes, for all c ∈ (0, 1
2), k ∈ (0, 1− c), λ ∈ (0, 1):

θ∗en < min[θ∗st,1, θ
∗
st,2] < θ∗ex

Thus, when θ is in [0, 1] coordinated investment becomes more probable when we let agents
choose both how to act and when to act. The endogenous sorting of agents acts as an implicit
coordination device which makes it more likely that they shall coordinate efficiently for any
given level of the fundamentals. We shall return to discuss this in further detail later in the
paper.

Note that θ∗en has a non-monotonic relationship with k. It is minimized at k = 1−c
2 .

We shall return to discuss this property further in Section 6.3. Figure 1 plots the limiting
thresholds in the different games for c = 0.3, λ = 0.5, over different values of k.

17To understand the behavior of x∗en and s∗en as it pertains to Corollary 2, it is easiest to use equations (21)

and (17) respectively.
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Figure 1: Limiting Thresholds: c = 0.3, λ = 0.5

Finally, we consider whether there is “excess delay” in this equilibrium. In the unique
monotone equilibrium of Γen, a proportion of agents choose to postpone their investment
decision until period t2. Such waiting can be socially costly, since there is a cost to delay.
Loosely adopting Bolton and Harris’s (1999) terminology, we may be tempted to ask whether
there is “too little experimentation” in our model: whether “too few” agents choose to invest
early in equilibrium.18 While Corollary 3 ensures that there is no decentralized solution that
leads to a higher probability of investment than in Γen, it remains of interest to examine
whether a informationally constrained social planner may be able to do better.19 Is there a
rule of behavior that could be implemented by an informationally constrained planner that
increases the level of experimentation and also the probability of coordinated investment?

The answer turns out to be in the affirmative, as we show below:

18As we have discussed above, there are important differences between the role of experimentation in Bolton

and Harris (1999) and in our model. In their model, agents are discrete, and therefore individual experimen-

tation leads to better social information. This creates a free-rider problem in the production of information.

This informational externality is missing in our model with a continuum of agents.
19For our purposes, an informationally constrained planner is a planner who has no information herself, but

may specify the strategies of agents as a function of their own information.
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Proposition 6 There exist monotone decision rules parameterized by the threshold pair (x̂, ŝ)
such that ∀(σ, τ, c, k), the induced state-variable threshold θ̂(x̂, ŝ) satisfies: θ̂ ≤ θ∗en.

When (σ, τ) is sufficiently small, this decision rule improves on social welfare relative to Γen.
The result follows immediately upon the construction of a variant of Γen by eliminating the
payoff externality. The proof is presented in the appendix.

6 Discussion

We have presented a sequence of models to study a multi-period investment problem char-
acterized by incomplete information, strategic complementarities, social learning, and costs
to delayed decision-making. It is useful to compare the results obtained from these different
analyses. We begin by comparing welfare across the different models.

6.1 Welfare

We are particularly interested in welfare comparisons in the limit as social learning becomes
public and accurate. It is useful to explicitly write down expressions corresponding to ex ante
social welfare in the different games.

In the limit as τ → 0, we denote ex-ante social welfare in the first-period static coordina-
tion game Γst,1 by Wst,1(c, σ). It is given by:

Pr(θ ≥ θ∗st,1, x ≥ x∗st,1)(1− c) + Pr(θ < θ∗st,1, x ≥ x∗st,1)(−c)

Similarly, for Γst,2, welfare Wst,2(c, k, σ) is given by:

Pr(θ ≥ θ∗st,2, x ≥ x∗st,2)([1− k]− c) + Pr(θ < θ∗st,2, x ≥ x∗st,2)(−c)

For the exogenous order dynamic game, Γex, welfare Wex(c, k, λ, σ) is defined as:

λ[Pr(θ ≥ θ∗ex, x ≥ x∗ex)(1− c) + Pr(θ < θ∗ex, x ≥ x∗ex)(−c)] + (1− λ)Pr(θ > θ∗ex)([1− k]− c)

Finally, for the endogenous order dynamic game, Γen, ex-ante social welfare Wen(c, k, σ) is
given by:

Pr(θ ≥ θ∗en, x ≥ x∗en)(1− c) + Pr(θ < θ∗en, x ≥ x∗en)(−c) + Pr(θ > θ∗en, x < x∗en)([1− k]− c)

Note that as we let noise vanish in the games, i.e., as σ → 0, the product probability
terms simplify and we get the following clean welfare ranking:

Remark 1 As noise vanishes, for all c ∈ (0, 1
2), k ∈ (0, 1− c), λ ∈ (0, 1):

Wen(c, k) > Wst,1(c) > Wex(c, k, λ) > Wst,2(c, k)
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As σ → 0, ex-ante welfare in each game becomes a monotone decreasing function of its
unique equilibrium fundamental threshold. The lower the threshold, the higher is ex-ante
social welfare. Thus, Remark 1 follows immediately upon inspection of Corollary 3.

It is also interesting to perform a welfare comparison away from the limit, i.e., for strictly
positive σ. Figures 2 through 5 demonstrate this comparison for a representative set of
parameter values. In each case, we set c = 0.3, and vary k over its permissible range. For the
exogenous order dynamic game, we set λ = 0.5. We then plot social welfare for small (Figures
2 and 3) and large (Figures 4 and 5) levels of private information. We omit plotting Wst,2

as it is of little interest. As is apparent upon inspection of the figures, over wide ranges of
parameter values, the welfare rankings summarized in Remark 1 are robust to the presence of
private information. In particular, welfare in Γen is always higher than in Γst,1 and Γex. For
low values of k, and for high levels of noise, however, welfare under Γex can occasionally be
greater than welfare under Γst,1. The intuition for this is straightforward. Since we let τ → 0,
learning becomes complete in period 2. Thus, when the cost of delay is sufficiently small,
enforcing a large number of agents to act in period 2 provides them with greater information.
Since agents make mistakes for large σ in period 1, welfare can be higher in Γex than in Γst,1.
For further discussion of related issues see Section 6.4.

We now consider two properties that emerge from Remark 1 and upon inspection of figures
2 to 5. The first of these is the marked difference between the welfare properties of the games
with endogenous and exogenous ordering of agents.

6.2 Exogenous vs. Endogenous Ordering

The dynamic games with exogenous and endogenous order are apparently quite similar. In
both games subsets of agents move in each period, and late movers learn from the actions of
early movers by paying a delay cost. It may seem, therefore, that there may be some way to
parametrize the game with exogenous order of moves to match the equilibrium outcomes of
the game with endogenous order. Remarkably, the answer turns out to be no.

Remark 2 Exogenous asynchronicity is not a substitute for endogenous asynchronicity. As
noise vanishes, there exists no λ ∈ (0, 1) such that Wex(c, k, λ) ≥ Wen(c, k).

The intuition behind this apparently surprising conclusion is as follows. The exogenous order
game is parametrized by λ: each value of λ corresponds to a specific ex ante ordering of agents.
However, any ex ante sorting of agents involves selecting a homogenous subsample of agents to
make early choices. By definition, only some of these agents will choose to invest. The others
wont invest in period one, and due to exogenous sorting, lose their investment option forever.
However, these same agents who did not invest early in Γex may have invested ex post in
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Figure 2: Welfare Comparisons: σ = 0.001 Figure 3: Welfare Comparisons: σ = 0.1

Figure 4: Welfare Comparisons: σ = 0.5 Figure 5: Welfare Comparisons: σ = 1.0

Γen, where they would have have another chance to do so. Thus, for any given mass of early
investors, there is always a larger pool of second period investors under endogenous ordering
than under exogenous ordering. In other words, endogenous ordering is more efficient, since
it exploits the revealed preference of a subgroup of agents to make early decisions.
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6.3 Efficiency Gains At Intermediate Costs of Delay

From inspection of Figures 2 and 3 it is apparent that when noise is small in Γen, the welfare
of agents is maximized for intermediate costs of delay. In the limiting case as noise vanishes,
the formal result is implied by Proposition 5:

Remark 3 As noise vanishes, welfare in the endogenous order game is maximized for inter-
mediate costs to delay. In particular, there exists k∗ ∈ (0, 1−c) such that k∗ = argmaxkWen(c, k).

This conclusion too may seem surprising, but it is simple to explain. When θ is in [0, 1], ex
ante social welfare increases in the total proportion of agents who invest in the game (adding
up the proportions in periods 1 and 2). A high cost of delay makes it unattractive for agents
to wait. Thus, increasing the cost of delay persuades more agents to invest early. However,
ex post in period two, a high cost of delay makes it unattractive for the remainder of agents
to invest. Thus, increasing the cost of delay has opposite influences on the mass of agents
who choose to invest in periods one and two. As a result, to maximize the total mass of
agents who invest, it is natural that an intermediate cost of delay would be optimal.

Let us explore this intuition further. At state θ∗en, the proportion of agents investing is
(by definition) equal to 1− θ∗en. Therefore, using the characterization given in Proposition 5
we can heuristically write the limiting critical mass condition as follows:

p(θ∗en) = 1− θ∗en = 1− c2

(c + k)(1− k)

It is useful to decompose 1− c2

(c+k)(1−k) in the following manner:

1− c2

(c + k)(1− k)
= (1− c

c + k
) +

c

c + k
(1− c

1− k
) (22)

The right hand side of equation (22) consists of two terms. The first term represents the
proportion of agents investing early in the limit, at the critical threshold state. The second
represents the proportion of agents investing late.

The first term on the RHS of (22) always increases in k: raising the cost of delay encour-
ages more agents to invest early. The second term always decreases in k: raising the cost of
delay discourages agents from investing late. An interior extremum arises because the first
term increases very fast for small values of k but increases very slowly for larger values of k.

Why is this so? In our model the value of social learning is independent of the proportion
of early investors. The benefit from learning is thus fixed, and independent of k. Thus, the
higher is k, the lower the incentive to wait. In addition, what determines the change in
behavior as we vary k, is the percentage increase in k. At low values of k, a given increase

23



∆k leads to a much larger percentage increase in the cost of delay. For a fixed benefit of
learning, this persuades a large proportion of agents to give up the delay option and invest
early. Hence, starting at (essentially) zero cost of delay (when almost everybody waits), small
increases in k lead to large increases in the proportion of early investors. While the proportion
of late investors decreases, this decrease is swamped by the increase in early investors. Hence,
the probability of coordination increases in k.

This effect disappears at higher values of k. Now, a given ∆k implies a smaller percentage
increase in the cost of delay. Thus, the decrease in the mass of late investors is not compen-
sated for by the increase in early investors for higher k. Thus, increasing k past a certain
point leads to less investment, and decreases the efficiency of coordination.

It is important to note here that the essential ingredients of this argument do not depend
on the size of the noise. The formal result is shown only for the case where noise vanishes,
as we can obtain closed forms only in this case. However, there is no reason to suspect that
the phenomenon of improved coordination at intermediate costs of delay is affected by the
size of σ or τ . We shall illustrate this point numerically in Section 6.4.

Another puzzle remains. Careful readers may have noticed that while welfare in the
endogenous order game is maximized at intermediate ranges of k for small noise (figures 2
and 3), at higher levels of noise (figures 4 and 5), welfare is maximized for low costs of delay.
To understand this dichotomy, we must understand precisely how the costly option to wait
makes a difference in our dynamic coordination games.

6.4 The Costs and Benefits of the Option to Wait

The introduction of a costly option to wait into a dynamic coordination game has three
effects. First, when the option is exercised, it leads to better information, and therefore higher
welfare. We call this the learning effect. However, since the option is costly, its use leads to
lower payoffs, and therefore lowers welfare. Let us call this the direct payoff effect. Finally,
the option to wait and the resultant endogenous asynchronicity improves coordination, by
lowering (for intermediate values of k) the threshold above which investment is successful
(and therefore the ex ante probability of successful coordinated risk taking). We call this
the coordination effect. The total welfare gains for different levels of k in Γen result from the
interaction of these three effects.

Note that the learning effect is independent of the size of k, since the informativeness
of observational learning is independent of the measure of agents who choose to invest early
(as long as the measure is strictly positive). The direct payoff effect is clearly increasing in
the size of k. Thus, for low levels of k, the positive learning effect dominates the negative
direct payoff effect. However, the coordination effect has a non-monotonic relationship with
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Figure 6: Effects: σ = 0.001 Figure 7: Effects: σ = 0.1

Figure 8: Effects: σ = 0.5 Figure 9: Effects: σ = 1.0

k. As noise vanishes, this relationship is clearly demonstrated by Figure 1. We plot the effect
of k on the coordination threshold (along with welfare plots) in figures 6 through 9. As we
have noted above in Section 6.3, and as is apparent upon inspection of figures 6 through 9,
the coordination effect is noise-independent. We can now explain the shape of the welfare
functions in the endogenous order game by appealing to the intuition that we have just built
up.
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With endogenous ordering, the proportions of early and late investors are sensitive to
k. As Corollary 2 indicates, the outcomes of the endogenous order dynamic coordination
game converge smoothly to those of the two limiting static games as k tends to the limits
of its permissible range. As k gets very small, most investors choose to wait and the game
resembles very closely the the second period static coordination game. As k becomes very
large, essentially all agents choose to act early or not at all, so that the game resembles the
first period static coordination game. For intermediate levels of k agents sort themselves over
time.

When social learning becomes public and perfect, agents who choose to wait do not
make errors in period 2. With positive noise, agents who decide to act in period 1 may still
make mistakes. When noise is small, the chances that agents investing in period one will
make mistakes is small. Thus, what matters for social welfare is how well agents are able to
coordinate, i.e., the coordination effect dominates the learning effect. Thus, welfare in Γen

tends to track the coordination threshold as a function of k. Welfare follows a bell-shaped
curve as a function of k. This is best seen in figure 6. However, when noise gets large, the
value of the learning effect becomes much larger. For small values of k, most agents choose
to wait, get the benefit of the learning effect, and welfare is high. But for somewhat larger
values of k, a significant proportion of agents choose to invest early. These agents tend to
make many mistakes, since σ is large. Thus, welfare can be significantly reduced, even though
the positive contribution of the coordination effect is maximized at intermediate values of k.
Thus, when noise is large, welfare in Γen can be a monotonic decreasing function of k.

6.5 Applications

The sequence of models outlined in this paper contain the stylized features observed in at
least two large classes of applied problems. The first of these is the financing of risky projects
where there are increasing returns to scale from participation. The second is the adoption
of new technologies in the presence of uncertainty and network externalities. The welfare
results presented above have implications for both of these problems. We consider them in
turn.

6.5.1 Staggered Debt Offerings

Consider an emerging market government that wants to float a bond to finance a long-term
investment project using foreign investment. In addition, suppose that for reasons that we
do not model, a secondary market in such bonds is likely to be absent or highly illiquid,
with high transaction costs. Our results imply that when uncertainty about the state of the
emerging economy is not overly large, it may be better for the government to float the bond
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in two pieces over time, and to provide information about initial rates of participation. In a
nutshell, it may be optimal to “stagger” the initial offering of debt.

Let θ represent the underlying value of the emerging economy. It is natural to assume
that if the underlying fundamentals of the economy are realized to be very good (θ > 1)
then domestic government can be wealthy enough to unilaterally finance the project, and
the project succeeds even without foreign participation. On the other hand, if the economy
ends up in a very bad state (θ < 0) the project may fail even if all available foreign investors
participated. Under these circumstances, we have demonstrated that in all our models, there
is some threshold, θ∗, above which the project succeeds endogenously and below which it
fails. Assuming that the emerging market government cares only about the success or failure
of the project, its goal must be to make θ∗ as low as possible. Then, Corollary 3 implies
that it is best to offer investors at least two opportunities to invest, and let them choose
endogenously between the two.

6.5.2 The Penguin Effect

Now consider a group of firms choosing whether to switch between a safe current technology
and a risky unknown technology characterized by network externalities. In this context,
it is unclear whether offering firms the option to delay switching is beneficial. While the
option to delay can lead to the provision of more information, it can also lead to “too much”
waiting, which can be socially suboptimal. There may be a tendency for players to delay
making choices because doing so lets them make more informed choices, avoid interim payoff
losses, and avoid being “stranded” in a suboptimal technology by later adopters who do not
conform. Farrell and Saloner (1986) term this general phenomenon the “penguin effect”,
by analogy to penguins who often delay entering the water, hoping that others might do so
first to test for the presence of predators. In a complete information model with multiple
equilibria, they identify parameter ranges in which the option to wait can be harmful, because
it leads to socially suboptimal delay. In a more recent paper, Choi (1997) provides a model
of technology adoption under incomplete information, in which the penguin effect reappears.
In his model, the use of technology by one user reveals its value to other users. Thus, the fear
of being stranded in an ex post inferior technology may lead people to always want to choose
second, which can produce socially suboptimal delay. Under certain ranges of parameters,
Choi (1997) shows that forfeiting the option to wait and learn may be socially optimal.

Our results provide a different perspective on the penguin effect. We show that when a
large number of firms are allowed the option to delay switching to obtain more information
at some cost, they will sort themselves over time efficiently. In particular, for intermediate
costs of delay, such endogenous sorting can improve efficiency, and lead to strict welfare
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improvements. This is true no matter how small the level of private information and therefore
how small the benefit from waiting and learning. Thus, even though the penguin effect is
present in our model for the same reasons as in Choi (1997)20, its presence leads to improved,
not diminished social welfare.

7 Concluding Remarks

In this paper we have explored the role of learning and delay in coordination problems under
incomplete information. We conclude with some remarks on the generality of these results.
We begin with theoretical considerations.

For tractability and closed forms, we have made two main simplifying assumptions in this
model. The first is the assumption of Gaussian noise. This assumption, taken together with
our choice of market statistic function, Φ−1(·), allows us to construct a simple one-dimensional
sufficient statistic. We conjecture that the results shall not change substantively by relaxing
these assumptions. As τ → 0, it makes no difference what market statistic function we
choose, as long as it is monotone increasing. We conjecture that the ordinal properties of our
results will hold true for models with noise generated from any one-dimensional exponential
family and for any choice of monotone increasing market statistic function.

From the perspective of applications, a natural extension would allow agents to choose
the cost of delay, rather than pre-specify it in the model. It would also be desirable to let
the cost of delay depend on the actions of agents in the early period. We believe that these
modifications hold promise for further interesting results.

20Note that as τ → 0, the use of one technology by a positive measure subset of agents fully reveals the

value of the technology to agents who wait, just as in Choi (1997).
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8 Appendix

8.1 Proofs

Lemma 1 Fix any (x∗, s∗). Let

G(θ) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ s∗|θ)− 1 + θ

There is a unique solution to
G(θ) = 0

Proof: Since s = τ2x+σy+x∗

1+τ2+σ2τ2 , writing x = θ + σε, y = θ−x∗

σ + τη, and substituting, we
get s = 1+τ2

1+τ2+σ2τ2 θ + στ
1+τ2+σ2τ2 (τε + η). Then s ≥ s∗ ≡ γ ≥ 1+τ2+σ2τ2

στ s∗ − 1+τ2

στ θ, where
γ = τε + η. Thus, we can rewrite:

G(θ) = 1− Φ(A(θ)) +
∫ A(θ)

−∞

∫ ∞

B(θ)
f(ε, γ)dγdε− 1 + θ

where A(θ) = x∗−θ
σ and B(θ) = 1+τ2+σ2τ2

στ s∗ − 1+τ2

στ θ. Differentiating under the double
integral:

G′(θ) = −A′(θ)φ(A(θ)) + A′(θ)
∫ ∞

B(θ)
f(A(θ, γ)dγ −B′(θ)

∫ A(θ)

−∞
f(ε, B(θ)dε + 1

Writing the joint densities as products of conditionals and marginals:

f(ε = A(θ), γ) = φ(A(θ))f(γ|ε = A(θ))

f(ε, γ = B(θ)) = φ̂(B(θ))f(ε|γ = B(θ))

writing φ(·) to denote the standard normal PDF of ε, and φ̂(·) to denote the (non-standard)
Normal PDF for γ. Finally,

A′(θ) = − 1
σ

,B′(θ) = −1 + τ2

στ

Now we can rewrite G′(θ) as:

1
σ

φ(A(θ))

[
1−

∫ ∞

B(θ)
f(γ|ε = A(θ)dγ

]
+

1 + τ2

στ
φ̂(B(θ))

∫ A(θ)

−∞
f(ε|γ = B(θ)dε + 1

i.e. G′(θ) > 0. Note that limθ→∞G(θ) = ∞, and limθ→−∞G(θ) = −∞. Thus there exists a
unique solution to G(θ) = 0. �
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Lemma 2 Fix any x∗ Let θ̂ be defined by G(θ̂, x∗) = 0 where

G(θ, x∗) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ θ + M |θ)− 1 + θ

If σ <
√

2π
1+ τ√

1+τ2

,

1. For each x∗, there is a unique θ̂

2. dθ̂
dx∗ ∈ (0, 1

1+σ2 )

Proof: As above, we know that s = 1+τ2

1+τ2+σ2τ2 θ̂ + στ
1+τ2+σ2τ2 (τε + η). Since s∗ = θ̂ + M ,

s ≥ s∗ ≡ γ ≥ στ θ̂ + 1+τ2+σ2τ2

στ M . Let

B(θ̂) = στ θ̂ +
1 + τ2 + σ2τ2

στ
M

Note that B′(θ̂) = στ , and so, using the proof of Lemma 1,

∂G(θ̂, x∗)

∂θ̂
=

1
σ

φ(A(θ̂, x∗))

[
1−

∫ ∞

B(θ̂)
f(γ|ε = A(θ̂, x∗)dγ

]
−στφ̂(B(θ̂))

∫ A(θ̂,x∗)

−∞
f(ε|γ = B(θ̂)dε+1

where φ̂(·) denotes the non-standard Normal pdf of γ. Let

P1 =
∫ ∞

B(θ̂)
f(γ|ε = A(θ̂, x∗)dγ

P2 =
∫ A(θ̂,x∗)

−∞
f(ε|γ = B(θ̂)dε

Since the variance of γ is 1 + τ2, φ̂(·) < 1√
2π
√

1+τ2
, and P2 ≤ 1, clearly if σ <

√
2π
τ√

1+τ2

,

∂G(θ̂,x∗)

∂θ̂
> 0. Similarly,

∂G(θ̂, x∗)
∂x∗

= − 1
σ

φ(A(θ̂, x∗)) [1− P1] < 0

By the implicit function theorem

dθ̂(x∗)
dx∗

= −
∂G(θ̂,x∗)

∂x∗

∂G(θ̂,x∗)

∂θ̂

Let Q = −∂G(θ̂,x∗)
∂x∗ , where Q > 0. Then,

dθ̂(x∗)
dx∗

=
Q

Q− στφ̂(·)P2 + 1

30



It is easy to check, that when σ <
√

2π
1+ τ√

1+τ2

1
1 + σ2

− dθ̂(x∗)
dx∗

> 0

Since σ <
√

2π
1+ τ√

1+τ2

implies that σ <
√

2π
τ√

1+τ2

, we are done. �

Proposition 4 I f σ <
√

2π
1+ τ√

1+τ2

, there exists a unique monotone equilibrium in Γen.

Proof: Initially, agents trade off the expected benefit of investing in period 1 against the
expected benefit of retaining the option value to wait. Thus the marginal period 1 investor
who receives signal x∗en must satisfy:

Pr(θ ≥ θ∗en|x∗en)− c = Pr(θ ≥ θ∗en, s ≥ s∗en|x∗en)[(1− k)− c] + Pr(θ < θ∗en, s ≥ s∗en|x∗en)(−c)
(23)

Since θ∗en = g(x∗en), we can rewrite equation (19) as:

s∗en = g(x∗en) + M (24)

Write x for x∗en and let

G(x) = Pr(θ ≥ θ∗en|x)− c− (1− k − c)Pr(θ ≥ θ∗en, s ≥ s∗en|x) + cPr(θ < θ∗en, s ≥ s∗en|x)

Note that

Pr(θ ≥ θ∗en|x) = 1− Φ(
θ∗en − x

1+σ2

σ√
1+σ2

)

Let A(x) =
θ∗en− x

1+σ2
σ√

1+σ2

. Given x,

s =
τ2x + θ + στη

1 + τ2 + σ2τ2

Rearranging terms, we can write this as

s =
x

1 + σ2
+

σ

1 + τ2 + σ2τ2

[
z√

1 + σ2
+ τη

]

where z =
θ− x

1+σ2
σ√

1+σ2

. is distributed N(0, 1) conditional on x. Let γ = z√
1+σ2

+ τη. Then,

s ≥ s∗ is equivalent to

γ ≥ 1 + τ2 + σ2τ2

√
1 + σ2

A(x) + τ
√

1 + τ2 + σ2τ2Φ−1(
c

1− k
)
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Let

B(x) =
1 + τ2 + σ2τ2

√
1 + σ2

A(x) + τ
√

1 + τ2 + σ2τ2Φ−1(
c

1− k
)

Now, we may rewrite:

G(x) = 1− Φ(A(x))− (1− k − c)Pr(z ≥ A(x), γ ≥ B(x)) + cPr(z < A(x), γ ≥ B(x))

Differentiating under the double integral and rearranging we get:

G′(x) = −φ(A(x))A′(x) [1− (1− k)P1] + B′(x)φ̂(B(x)) [(1− k)P2 − c]

where by φ̂(·) we denote the non-standard normal density of γ, and P1 and P2 are defined as
follows:

P1 =
∫ ∞

B(x)
f(γ|z = A(x))dγ

P2 =
∫ ∞

A(x)
f(z|γ = B(x))dz

Using standard formulae for computing conditional distributions of Normal random variables
(see, for example, Greene 1996), we know that:

z|γ = B(x) ∼ N(A(x) +
τ
√

1 + σ2

√
1 + τ2 + σ2τ2

Φ−1(
c

1− k
),

τ2(1 + σ2)
1 + τ2 + σ2τ2

)

Thus,

P2 =
∫ ∞

A(x)
f(z|γ = B(x))dz =

c

1− k

and therefore
G′(x) = −φ(A(x))A′(x)[1− (1− k)P1]

Under the conditions of the theorem A′(x) < 0 and therefore the proof is complete. �

Lemma 3 Fix any θ̂ ∈ [0, 1]. Let x̂ be defined by H(x̂, θ̂) = 0, where

H(θ̂, x) = Pr(θ ≥ θ̂|x)− c− Pr(s ≥ θ̂ + M, θ ≥ θ̂|x)(1− k − c) + Pr(s ≥ θ̂ + M, θ < θ̂|x)(c)

Then
dx̂(θ̂)

dθ̂
> 0
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Proof: Using the proof of Proposition 4 above, we can write

H(θ̂, x) = 1−Φ(A(x, θ̂))−(1−k−c)Pr(z ≥ A(x, θ̂), γ ≥ B(x, θ̂))+cPr(z < A(x, θ̂), γ ≥ B(x, θ̂))

where

A(x, θ̂) =
θ̂ − x

1+σ2

σ√
1+σ2

B(x, θ̂) =
1 + τ2 + σ2τ2

√
1 + σ2

A(x, θ̂) + τ
√

1 + τ2 + σ2τ2Φ−1(
c

1− k
)

Note that
∂A

∂x
< 0,

∂A

∂θ̂
> 0

Then, using the same analysis as above, we have:

∂H

∂x
= −φ(A(x))

∂A

∂x
[1− (1− k)P1]

where P1 =
∫∞
B(x,�(, γwhere

1 λA(x, θ̂;ozwhere (1 ≥H))1



Using methods similar to those given above, we can rewrite this to be:

0 = H(x̂, θ̂) = 1−Φ(A(x̂, θ̂))−(1−k−c)Pr(z ≥ A(x̂, θ̂), γ ≥ B(x̂, θ̂))+cPr(z < A(x̂, θ̂), γ ≥ B(x̂, θ̂))

where z, γ, A(·), and B(·) are defined as in the proof of Proposition 4 and θ̂ = 0. Now,
appealing to Lemma 3, and because θ∗en ≥ 0 = θ̂, we conclude that x̂ ≤ x∗en. In addition, it
is clear that ŝ ≤ s∗en.

Now, returning to Γen, let a social planner force agents to play according to (x̂, ŝ). Let θ̂

be the level of θ above which p(θ) ≥ 1− θ under (x̂, ŝ). Since x̂ ≤ x∗en and ŝ ≤ s∗en, it follows
that θ̂ ≤ θ∗en. �
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