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Skewness and Kurtosis Implied by Option Prices:

A Second Comment

1 Introduction

The main goal of this note is to correct a common misuse of the martingale restriction within
the context of the Corrado-Su (1996) model. We also evaluate some approximations made in
the literature in order to obtain tractable pricing and implied risk-neutral density formulae.

To correct the well-documented Black and Scholes (1973) option pricing model biases,
several authors have proposed series expansions of a given probability density in order to
approximate the “true” underlying risk-neutral implied return distribution. Under this ap-
proach, skewness and kurtosis may have significant impact on option prices and correction
terms in the Black-Scholes formula might lead to a plausible explanation of strike price and
time-to-maturity biases.

Following the seminal paper by Jarrow and Rudd (1982) - who appear to be the first
to use a Gram-Charlier series expansion of the lognormal density function - Corrado and
Su (1996) find an approximate implied density function by using a Gram-Charlier type A
series expansion of the (normal) density function of underlying log-returns. The option price
is then an intuitive function of the third and fourth moments of the risk-neutral log-return
distribution. The first two moments of the approximating distribution remain the same as
that of the normal distribution, but third and fourth moments are introduced as higher
order terms of the density expansion. Brown and Robinson (2002) correct two typographic
errors in Corrado and Su (1996) and provide examples of how these errors can have economic
significance.

This note is organized as follows. Section 2 starts with the martingale restriction to be



used in a Multi-moment Approximate Option Pricing Models framework. Section 3 provides
the different expressions of option price sensitivities to departures from Gaussianity. Section
4 evaluates the different expressions of sensitivities of option prices corresponding to the
original, corrected, and modified Corrado-Su (1996) models. The study case parameter
values provided by Corrado and Su (1996) and Brown and Robinson (2002) are presented
and, as an illustration, densities of pricing errors are estimated on the French CAC 40 options

market. Section 5 summarizes and concludes this note.
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Under the no-arbitrage condition, the expected price under the correct probability mea-
sure should be equal to the current asset price compounded at the risk-free rate. Accordingly,

the probability measure to be considered must satisfy the so-called martingale restriction (see

Longstaff, 1995):
EQ [ST] = GTTSt (4)
and then the risk-neutral density f (z) must respect:

ut =r7 —In {/Jm MV (2) dz (5)
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The choice of the density representing the “true” underlying risk-neutral density leads to
different expressions for the mean of the log-return. In particular, when assuming a log-
normal distribution for the terminal price of the asset, as in Black and Scholes (1973), the

“traditional” martingale restriction is (see Baxter and Rennie, 1996, p.85):

1
UT = 1T — 5027 (6)

If instead a statistical series expansion of the density related to the continuously com-
pounded return (as in Corrado and Su, 1996) is used, the martingale restriction implies now

(see for instance!, Kochard, 1999, Jurczenko et al., 2002):

1
ur =17 — §027_ |1+ 713('f) o332 4 724('f) o2 (7)

where f is the “true” density and ~, (.) and v, (.) are the Fisher parameters for skewness

and kurtosis:
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!See also Brenner and Eom (1997) in the context of option pricing with Laguerre polynomial series.
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with p, (.) the corresponding centered moments of order 7, for i = [2, 3, 4].

The difference between the two martingale restrictions - the traditional (6) and the Gram-
Charlier induced one (7) - depends on terms such as v, (.), v (.), 0*7%2 and o*72.

The purpose of this note is to evaluate the impact of these terms on the pricing of
options. Indeed, the implicit martingale restriction used by Corrado-Su (1996) is mispecified.
Nevertheless, as underlined by Brown and Robinson (2002), the magnitude of the differences
in parameters and option prices is mainly an empirical question. The following section

reviews the different versions of Corrado-Su (1996) original model and investigate these

differences.

3 The Dirzerent Versions of the Corrado-Su (1996) For-
mula

From the seminal approach of Jarrow and Rudd (1982), Corrado and Su (1996) propose a
new option pricing formula that is easily implemented. Using a Gram-Charlier type A series
expansion, they begin their option price expression with the Black-Scholes formula, and then
add two terms related to a skewed and leptokurtic risk-neutral density.

As shown by Brown and Robinson (2002), the original Corrado-Su (1996) formula con-
tains an error in the term corresponding to the sensitivity of the option price to the excess
skewness of the implied risk-neutral density. In addition, we provide a correction to the
martingale restriction implicitly assumed by these authors to yield a complete option price
expression. Finally, we note that differences among previous formulae involve terms of a
“high” degree in volatility and time to maturity, which motivates us, following Backus et al.

(1997), to give the option price expression neglecting these terms.



3.1 The Original Corrado-Su (1996) Formula

To allow for moments of higher order in the risk-neutral log-return distribution, Corrado
and Su (1996) find an approximate risk-neutral probability density function using a Gram-
Charlier expansion of the normal density function. The Black and Scholes (1973) model is
then adjusted in an intuitive way by introducing third and fourth moments as higher order
terms of the expansion. For practical reasons, the series is truncated after the fourth term,
noting that the first four moments of the underlying distribution should capture most of the
effect on option prices (see Jarrow and Rudd, 1982).

Using previous notation and following Corrado and Su (1996), the price of the European

call option C¢g can be written as (see Corrado and Su, 1996):

Cos = Cps + 71 (f) Qs+ 72 (f) Qa (8)
with:
Qs = 5 St o\/T [Ps (d) ¢ (d) — o7 D(d)]
Qs = 37 S10/T [Py (d) ¢ (d) + a*7%2 ®(d)]
and:

Py(y) =20y7 -y

Py (y) = y* — 3yo/T+ 301 — 1
where ¢ (.) and ® (.) are respectively the standard normal density and the standard normal
distribution, P;(.) and Py (.) are two polynomial, v, (f) and 7, (f) are the Fisher parame-
ters (defined previously), while Cpg is the Black-Scholes (1973) price evaluated at d - the

“standardized moneyness” - that is:

d= (a\/?)_l [log (S;/Ke™™) + o?1/2]



Using S&P 500 index options traded on the Chicago Board Option Exchange (CBOE),
Corrado and Su (1996) show that expression (8) improves significantly the in-sample option
pricing accuracy of the Black-Scholes (1973) model. Corrado and Su (1997) also demonstrate
improvements using their formula on an out-of-sample basis, from actively traded individual

equity options on the Chicago Board Option Exchange (CBOE).

3.2 The Corrected Corrado-Su (1996) Formula

Noting that the definition of an Hermite Polynomial was incomplete in Corrado-Su (1996)2,
Brown and Robinson (1999 and 2002) correct the previous formula that then becomes (using

previous notation):

Cos = Cps+71 (f) Qs+ (f) Qu 9)

with:

1

Q= 35 0V [Py (@) () + 0*7 B(a)]

The correction to be done is proportional to o373/2 (see below) and should be very small
on real data as underlined by Backus et al. (1997). Nevertheless, some specific option prices
can be truly biased as shown by Brown and Robinson (2002) when calculated using the

original Corrado-Su (1996) formula.

2Hermite Polynomials should read:

instead of:

in the original Corrado-Su (1996) model.



Using SPI index future options traded on the Sydney Futures Exchange (SFE) and the
Black-Scholes (1973) model as a benchmark, Brown and Robinson (1999) show that ex-
pression (9) seems to improve in-sample option pricing accuracy significantly. Moreover,
Brown and Robinson (2002) show the correction to the Corrado and Su (1996) formula is

economically significant for some options.

3.3 The Modi..ed Corrado-Su (1996) Formula

When using the “true” martingale restriction recalled in Section 2, the European Call price
finally is (see for instance Kochard, 1999, Jurczenko et al., 2002 and Appendix 1 at the

referee’s attention):

Cos = Chs+71(f) Q3+ 72 (f) Q4 (10)
with (using previous notation):

Q=B (1+w)] S, oy/TPs (d) o (d)
Qy =4 (1+w)] S,oyTP(d") o (d)

and:

d* = (a/7) " log (S;/Ke ™) + 1o27 —In[1 + w]]

W= 713(!f) o373/2 4 724(!f) ohr2

where Cj¢ is the Black and Scholes (1973) call price evaluated at a “corrected” standardized
moneyness level denoted d*, and w a constant. Note that parameters Q3 and @, no longer
represent the true marginal effects of the non normal log-return skewness and kurtosis on the
option price, since terms depending on kurtosis (skewness) appear in Q; (Q,). Nevertheless,
when realistic values are considered, the modified parameters are close - even if different -

from the corrected Q;’ and ()4 sensitivities.



Using S&P 500 index futures options traded on the Chicago Mercantile Exchange (CME)
and the Black-Scholes (1973) model as a benchmark, Kochard (1999) also obtains a better

fit from formula® (10) on an in- and out-of-sample basis.

3.4 The Simpli..ed Corrado-Su (1996) Formula

Arguing that some terms are numerically small in real markets, Backus et al. (1997) suggest

that they can be dropped from the pricing formula. Simplifying formula (10) by deleting

terms involving ¢7%/2? and o072 leads to the following simplified expression (using previous
notation):
Cos = Crs +71(f) Qs +72(f) Q4 (11)
with:
Q3 =55 o7 P3(d) ¢ (d)
Qs = 38107 Ps (d) ¢ (d)
and:

Ps(y) =y —3yo/7—1

Note that when neglecting these terms in the final price expression, the error of Corrado-
Su (1996) corrected by Brown and Robinson (2002) has no importance at all. Further
simulations done by Backus et al. (1997) show that the simplified Corrado-Su (1997) formula
constitutes a good approximation of the option price when the underlying asset follows a

jump-diffusion process.

3 Adopting a very similar approach, Kochard (1999) indeed obtains an equivalent formula to equation

(10).



4 Corrado-Su (1996) Model Sensitivity Analysis

Extending the Brown and Robinson (2002) static analysis, the next sub-section gives ex-
pressions of sensitivity and option price differences related to the original Corrado-Su (1996)

model, followed by an illustration and an estimation of such biases.

4.1 Skewness and Kurtosis Sensitivities, Related Option Price and
Hedging Dixcerences

The various differences in skewness and kurtosis sensitivities (denoted Q) thus read (using

previous notation):

Q;:|Q3—Q§5 = 2a
Qs = Q3 — Q) = [Siov/T [K Py (d) ¢ (d°) = kPy (d) o (d)] - q
0y =|Q5 — Qi =a (12

Or = Qs — Qu = [SioyT [Py (&) 0 (&) —1Ps (d) o ()] — ]
L Q4 = ‘QZ* _Q4| =|Sioy/T I(1 =30%r)p (d) — 3

with [a, 3] € (IR")” and:

(

o = 5 037%/28, &(d)

B =+ 0728, ®(d)

—a

_ 1 |
k =3 and k = i)

_ 1 * 1
I =g and I = g5

_ mlf) 3.3/2 | 7(f) 4, 2
kw—lg—!aT/~|—24—!07'

Following Brown and Robinson (2002), one can say that variables of interest « and 3 can
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be roughly bounded for short-term options* by:

0<a<.06xa3S,
(13)
OSBS.OlXOASt

If we now evaluate induced differences in option prices (denoted by C’), one can write

that (using previous notation):

(

Ccs = |Cos — Ces| = | (f) 29|
Cos = |Cos — Clog
=|Chs — Cps +7 (f) {Sioy/T [k P (d) ¢ (d*) — kP (d)p (d)] —a}  (14)
v () {Sioy/T I Py (d) @ (d) = 1P, (d) o (d)] — ﬁ}l
| Cos = |Cos = Cos| = () @+ (f) [Staﬁl(l—%zf)so(d) -4

For hedging purposes, one might also highlight differences in delta. Using the previous
formulae to derive the sensitivity of option prices to changes in underlying prices - for,
respectively, the original, corrected, modified and simplified models - leads to (with previous

notation):

(

AGs = (d) + ¢ (d) {1 (N k [P () = %] + 72 (N1 [P (@) + =5=] }
Ay = @ (d) + o (@) {71 () k[P (@) + 52| + 7 (N1 [Fo () + 252 |
AGs =@ (@) + (@) {52 [1 = 7| + 1 (DB Ps (@) + 92 () Pr ()}
Afgee = ®(d) + (d) [1, () KPs (d) + 75 () LPs (d)

(15)

\

with the following polynomials:
Ps (y) = y* — 3yo/T+ 201 — 1
Py (y) = —y* +4y’0/T + 3y (1 — 20°7) + 30°7%/2 — 4o /7

Py (y) = =y + 4y*o/T + 3y (1 — 0°1) — 4do\/T

4Less than 6 month maturity options.
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Absolute differences in delta, denoted by A, then read:

p
e

— C C
AC’S’ - ‘ACS - ACS’

=27, (f) ke (d) GTQtT

. C
Apss = ‘Ags* - Ags'|

— @ (d) - @ (d)
+o@) {2 [1- 5]+ (D EPR @)+ ()P @)} (16)

o (@) {n (1)K [P (d) + 2] 4 (1)1 [P () + =252 }]
Agge = |AGen — ASg

— ‘¢(d) {yl(f)k<2027'—%7> + 72 (f)1 [P9(d)_agg—j/2]}‘

with:

Py(y) ==y’ + 9% (40T —1) +3y(1 + 0/T — 0°7) —do/T — 20°7 + 1

Differences in term of sensitivities to departures from Gaussianity, in terms of pricing
and hedging are clearly an empirical question. We now investigate the magnitude of these

differences.

4.2 The Study Cases of Corrado and Su (1996 and 1997)

In Figure 1, using the same parameter values as Corrado and Su (1996) and Brown and
Robinson (2002), we reproduce the adjustment for skewness plotted in Figure I of Corrado
and Su (1996)°. We compute the various expressions of sensitivities of option price to excess
skewness - related to the original, corrected and our modified Corrado-Su (1996) models -
for Sy = 100, 0 = 15%, 7 = 0.25, r = 4% and with K varying from 65 to 135.

The vertical axis measures the adjustments for options that are - on the horizontal axis -

from 35% in-the-money to 35% out-the-money, where moneyness is defined as M = (Ke ™" —

%See Corrado and Su (1996), p.180 and Brown and Robinson (2002), p.9.
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So)/ (Ke™"7). In-the-money call options therefore have negative moneyness in this figure.
Clearly, differences in parameters are relatively low - as shown on Figure 2, where absolute
differences in option price sensitivity to skewness are reproduced, and magnitudes of the

absolute differences in sensitivity vary with the moneyness of the option.

- Please insert Figures 1 and 2 somewhere here -

For example, when skewness is equal to -.7 (and kurtosis is 3.53)%, the absolute size
of differences for the coefficient of skewness are 3.68 1074, 1.84 10~* and 1.56 10~ when
comparing the corrected, the simplified and the modified Corrado-Su (1996) model to the
original one. Relative differences between the corrected and modified sensitivities are sig-
nificant while those between the simplified and modified skewness parameters are clearly
negligible.

Figure 3 represents differences in option price sensitivity to kurtosis as a function of
moneyness. Results exhibited in this figure show that while the correction of Brown and
Robinson (2002) is irrelevant for these parameters, the correction for martingale restriction
has a very small impact on the option price sensitivity to kurtosis, especially for at-the-money
options. For example, when kurtosis is equal to 3.53 (and skewness is -.7), the absolute size
of differences for the coefficient of kurtosis are 5.29 107% and 5.19 10~* when comparing the

simplified and the modified Corrado-Su (1996) model to the original one.

- Please insert Figures 3 somewhere here -

6These values are realistic in the sense that they correspond to mean parameter values when backing-out
implied moments corresponding to the Jarrow-Rudd (1982) model on the CAC 40 options on the French

market on the period 1997-1999 (see Capelle-Blancard et al., 2001-a and 2001-b, for details).
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When considering, now, both skewness and kurtosis effects on price changes, displayed in
Figure 4, we see that the modification corresponding to the martingale restriction diminishes
the impact of the correction by Brown and Robinson (2002) on option prices and that
simplifications of the modified version cannot be judged as totally pertinent in this context.
When taking the numerical values corresponding to the Corrado-Su (1996) study case -
adding M = —0.25, a skewness equal to —.7 and a kurtosis equal to 3.53, the absolute size
of differences for the related option prices are (USD) 7.17 1077, 3.53 10~7 and 2.93 1077
when comparing the corrected, the simplified and the modified Corrado-Su (1996) model
to the original one. We see here that the correction, modification and simplification have
a very limited effect on option prices in this study case. If now we take the numerical
example by Brown and Robinson (2002) - with Sy = 100, o = 50%, 7 = 0.25, r = 4%
and with M = —0.25, a skewness equal to -.1 and a kurtosis equal to 3 - the absolute size
of differences for the related option price are (USD) 0.44, 0.22 and 0.22 when comparing
the corrected, the simplified and the modified Corrado-Su (1996) model to the original one.
In other words, the correction by Brown and Robinson (2002) overestimates the necessary
correction with the martingale restriction. We also remark that the simplification leads to

results that are very close to those corresponding to the true martingale correction.

- Please insert Figure 4 somewhere here -

In Table 1, using the same parameter values as Corrado and Su (1997), we reproduce
the differences in the number of option contracts needed to delta-hedge a USD 10 million
stock portfolio with beta of one. This illustrates how a hedging strategy based on the
various models may differ. We compute the different expressions of sensitivities of option

price to the excess skewness - related to Black-Scholes (1973) and to the original, corrected,
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simplified and our modified Corrado-Su (1996) models - for” Sy = USD 700, o = 11.62%,
71 (f) = =1.68,7v, (f) = 5.39,7 = 0.25, r = 5%, q = 2% and with K varying from 660 to
750 with increments of 10. Columns 1 and 7 in Table 1 list strike prices from 660 to 750 in
increments of 10. For each of these strike prices, columns 2 to 6 (and 8 to 12) list the number
of S&P 500 index option contracts needed to delta-hedge the assumed USD 10 million stock
portfolio. Columns 2 and 8 report the number of option contracts needed to delta-hedge this
portfolio based on the Black-Scholes model, while columns 3 and 9, 4 and 10, 5 and 11, and 6
and 12 report the number of option contracts needed to delta-hedge this portfolio based on,
respectively, the original, corrected, simplified and our modified Corrado-Su (1996) models.

In all cases, numbers of contracts required are computed as follows:
N=—— (17)

where NN is the number of contracts, P is the portfolio value, s is the contract size and A is
the delta of the option computed from the various option fair price expressions (see Corrado
and Su, 1997).

Table 1 reveals that for in-the money options, a delta-hegded strategy based on Black-
Scholes model specifies a greater number of contracts than a delta-hedge based on other

competitive models®.

- Please insert Table 1 somewhere here -

But, for out-of-the-money options, the opposite is also true since the various Corrado-Su

models require a greater number of contracts. Differences in the number of contracts specified

"We use here the realistic values reported by Corrado and Su (1997).

8Note that the Corrado-Su original model results reported in columns 3 and 9 in Table 1 are very similar

to those of columns 3 and 6 in Exhibit 6 of Corrado and Su (1997) corresponding to the Jarrow-Rudd model.
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by each model are also greatest for out-of-the-money options (1/A has a multiplication effect,
values of delta being closed to zero for out-of-the-money options), while negligible for at-
and in-the-money options (1/A has a division effect, values of delta being close to one for
in-the-money options). Moreover, there is no difference between the original and corrected
versions, and the differences between the modified and its simplified version are very small
(4 contracts is the maximum discrepancy). significant differences however appear between
the original and our modified version in terms of the numbers of hedging contracts for out-
of-the-money options. For deep out-of-money options, approximately double the number
of contracts are needed if we compare our modified model to the Black-Scholes one (1602
versus 802) and approximately 60% more contracts have to be added to the portfolio if the
reference is the original or the corrected model (1602 versus 1008).

Based on simulations, we have seen that differences between model-induced prices are
generally low but can be important in some specific situations. In the following section, we
compare results obtained using the different versions of the Corrado-Su (1996) model with

market data in order to investigate the magnitude of differences in terms of pricing accuracy.

4.3 An Estimation of Induced Approximation Biases

Using French Long Term CAC 40 option prices’ from 01/97 through 12/98, we compute
differences in option pricing relative to the four versions of the original Corrado-Su (1996)
model. Figure 5 represents the absolute pricing error probability densities on the whole
sample (12,705 data point estimations) relative to Black-Scholes (1973) and the modified
Corrado-Su (1996) inspired models, while Figure 6 shows the absolute difference of probabil-
ity associated with the absolute error terms of the three related versions of the Corrado-Su

(1996) model relative to the original model. As indicated in this last figure, the differences

9See Capelle-Blancard et al., 2001, for details on the database, filters, optimization criterion and routines.
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between models are very small in terms of pricing error density (and not significant).

This general conclusion must be interpreted since differences in the skewness and kurtosis
parameters can be important for the sample considered as illustrated on Figures 7 and 8.
Nevertheless, when comparing the original and modified versions, relative differences in
skewness parameters vary from —.86 to .06 with a mean of —.01 and a median equal to .000,
whilst differences in kurtosis parameters range between —.03 to .02 with a mean value of
—.002 and a median of .000. In other words, the modified version of the model yields very
close estimations of sensitivity parameters to those related to the original model, while this

is not the case for the corrected and simplified models as illustrated on Figures 7 and 8.

- Please insert Figures 7 to 8§ somewhere here -

Finally, when comparing option prices obtained using the various models, one can say that
Corrado-Su (1996) prices are relatively closer to the market prices (as illustrated on Figure
9) whatever the model and that model-dependant relative price differences are generally low,

but sometimes economically significant as shown on Figure 10.

- Please insert Figures 9 to 10 somewhere here -

5 Conclusion

Following Brown and Robinson (2002), we focus on the Corrado and Su (1996) model dealing
with excess skewness and kurtosis of the “true” implied risk-neutral density. We first present
the link between multi-moment approximate models and the martingale restriction, and

second provide different versions of the original Corrado-Su (1996) model. We finally give

17



an empirical illustration of these different versions, both with the Corrado-Su study case and
with market data.

As highlighted by Brown and Robinson (2002), the correction of the Corrado-Su (1996)
model can be numerically important for a range of specific option (namely deep in-the-
money and long maturity options when markets are turbulent) even if, on the whole, it can
be judged as minor on our sample.

The martingale restriction highlighted by Kochard (1999) - and directly related to the
Corrado-Su (1996) model hypotheses - yields a modified Corrado-Su (1996) formula, which
is both analytically and numerically significantly different (for some options at least) from
the original lead to by the appropriate martingale restriction. The resulting differences in
option price estimates are sometimes economically significant. Nevertheless, investigations
of the French market of empirical errors induced by the misprint in Corrado-Su (1996) seem
to indicate that the general results concerning the better accuracy of this model - claimed
in particular in Corrado-Su (1996) and (1997) - are out of question.

Finally, the simplifications of the Corrado-Su (1996) formula advocated in some papers
(see Backus et al., 1997, for instance), if they truly yield to more tractable and intuitive
formulae very accurate in general, are not always negligible in-sample; they thus should be
avoided when pricing and hedging options in a skewed and leptokurtic world.

However, from a theoretical point of view, we have to highlight the point that further
restrictions should be imposed when applied to real markets. In particular, for the expanded
distribution to correspond to an economically meaningful density of agents’ expectations,
some constraints should be added to ensure that implied moments backed-out from market
prices correspond to a well-defined return density that is uniformly positive and unimodal
(see for instance Jondeau and Rockinger, 2001). In the same vein, recovered implied moments

should lead to pricing relations that respect the no-arbitrage condition (especially the call-
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put parity'?).

We lastly note that if the correct use of the martingale restriction has a proven impact
on the option pricing formula in the Corrado-Su (1996) model, it might also have more
generally a significant economic effect on estimated implied risk-neutral densities, implicit
smile functions and related Greek parameters induced by multi-moment approximate option
pricing models (see Jurczenko et al., 2002).
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Appendix 1

(at the referee’s attention)

Under the hypotheses of existence of the first non-central moments of the underlying
asset log-return density, the choice of a normal as the approximate density of the continuous
compound return density, and perfection and completeness of financial markets, the modified

Corrado-Su formula European call Cgg can be expressed as:

CEJS = Chs +71(f) Q; + 72 (f) Q; (10)
with:
Q* . St Uﬁ(?aﬁ—d*)ap(d*)
3= 3!(1+113(!ﬁ 0373/2+124(!L) 0472)
. S crﬁ(d*2 —3d"0/7T+30°7—1) p(d")
Q4 - 4!<1+713—(!f) U3T3/2+724(!f) 047'2)
and:

log (S;/Ke™™) + %0’2’7' —In [1 + B 3(!f) o33/2 4 W) 4(!f) or?
d* =
o\ T

Proof. Under a Gram-Charlier Type A series expansion, the risk-neutral price of an

European call written on a stock S; with strike price K is:

—+00

Cos = e [ )5y <St ehTroVIE K) f(2)dz (A.1.1.)
a1

+o0
— e—rt/ (St e,uT—&-a\/Ez _ K)
ln(K/ST)f,uT

v
K (f)

K3 (f)
3! 4!

X [1 + Hs (2) + H, (z)] ¢ (2) dz
where the change of variable z = [In (St/S;) — ut] /o+/T have been performed on Sy and
the Gram-Charlier expansion residual have been dropped.

In order to evaluate expression (A.1.1.), we need to compute the following integral:

+oo
I = / (Seermtov™ — K) H; (2) o (2) d (A1.2)
—d+o+/T
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for j = [3,4].

Using the definition of Hermite polynomials, we get:

oo o dI
I = / (St eﬂT+UﬁZ—K) (—1Y ;0252) dz (A.1.3)
—d+o+/T
oo d N
= —/ (St eV —K) — (=1 —QO(IZ)} dz
_d_l'_o—\/; dZ dzj

+o00 d
_ / (Serm+ V™ - K) = Hy () 0(2) d
—d+o\/T dz

and an integration by parts yields:

+oo
L = — [(st QHTHIVT —K) Hoa() o) (A.1.4.)
+oo
—i—a\/?St/ eHTHVTE L (2) @ (2) dz
—d+o+/T

It is readily verified that the first term in the above expression equals zero. Noting also

that lim ¢ (z) = 0, this then leaves the expression:

+o0
I; = oJTS; / VTR (2) @ (2) dz (A.1.5.)
—d+o/T

Using once again the definition of Hermite polynomials, we have:

+o0 ) dj—l
b= ovis [ e el (A16)
—d+o\/T dz

+oo

d
= —a75, / eHTTVTE _H  (2) ¢ (2) dz
—d+o/T dz

and integrating by parts, we get:

+o0
I, = —o\78, [6ur+a\/?z H; 5(2) go(z)]_d+ - (A.1.7))

+ (U\/F)2 S, /+00 ehTHoVT H;_5(2) ¢(2) dz
—d+o+/T
= oyTK H; (—d + 0\/;) % (d — Uﬁ)

—+00

+ (0\/7_')2 St/ ehT VT2 H; 5 (2) ¢(2) dz
—d+o/T
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Then, by induction, we obtain:

I; = oVTK Hj5(—d+0\7) ¢ (d—o\/T) (A.18.)

_|_a'\/F [U\/FKHj_g (—d+0'\/7_—) @(d_g\/;)

+(ov7)* S, / T e Hj 3(2) ¢(2) dz
'7Id+0\/?
= Kg(d-ovD) Y (v Hyaok (~d+ o)
+(ov7)’ S, / e
L —d+o/T
= Kp(d=ovD) Y (ovA) ik (—d+ov7)

+ (U\/F)j St e,uTJrazT/Zq) (d)
Using the following equality (Stoll and Whaley, 1993, p.245):
Ko(d—oyT) =25 P20 (d) (A.1.9.)

leads to the following expression for I;:

[aary

I;* — S e,u-r+g27/2 [ (U\/F)k ijlfk (—d+0\/7_') @(d) (A.1.10.)

<.

=
I
—

+ (ov7) (d)]

Under the Gram-Charlier series expansion, the martingale restriction also implies that:

pur = r7—In U_:o eHTHEOVT £ (2) dz} (A.1.11.)
= rr—In {/_:O ehTHzoVT [1 + 713—(;” Hs (z) + 724—(!"’0) H, (z)} o (2) dz}

where the remainder term of the series expansion have been neglected.

In order to evaluate expression (A.1.11.), we need to compute the following integral:

+oo
T* :/ e’”Jr"\/Fij (2) ¢ (z) dz (A.1.12.)

[e.o]
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for 7 =[3,4].
Note that when the current underlying asset price is unitary, the exercise price is equal
to zero and the limit of integration are taken between minus and plus infinity, the integral

I7 is equivalent to the integral I;. Thus, integrating expression (A.1.12.) by parts yields for

J=1[3,4]:
. +oo
I} = (oy/7)’ / eIV 5 (2) dz (A.1.13.)
Equation (A.1.13.) then becomes:
+o00
pur = r7—In [/ (e’”“"ﬁz> o (z) dz (A.1.14.)

+oo
FRLAATD (f)037'3/2e”/ (6’””‘/;'2) ¢ (2) dz

3!
_{_'72_(}()047_26—7‘7 /+°° (GHH—U\/;Z) ¢ (2) d'z}

4!
Y2 (f) 0472}

—00

713('f) o3r3/2 4

1
= 7’7’—507 ln{l—i- 1

Substituting this expression into equation (A.1.11.), using Hermite polynomial definitions

such as Hy (2) = 1, Hy (2) = 2, Hy (2) = 2% — 1, the value of an European call becomes:

Cos = 52 (d) — e TK® (d* — o\/T) (A.1.15.)
o8 ) )
<1 + 20 g3rs/2 4 22U 0472>
7 (f) S [(2027' —d* (T\/7_') o (d")
3! (1 + 713—(,]0) o3713/2 724—(!]0) 047'2>
(f) St (d*)

+03732p (d*
( )} 4! (1 + ’Yl(f) o373/2 4 22U )U4T2>

[(3 332 _ 3d 0 r +d* o\/T — O'\/7_'> o (d*) + o'r?® (d*)]
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that yields the final call price proposed expression:

Cog = Si@(d") —e K (d* — o\/T) (A.1.16.)

M) S (=d* o/T +20°T) o (d¥)
3! (1 + 71( )037.3/2 + 72(f) 047.2)

S,
(f) t (d*2 0_\/; B 3d*0'27'
4 (1 + 71( ) o373/2 4 72(f) 047.2)

+30’3T3/2—0'\/;)30( )

with:
log (S;/Ke™™) 4 30T —In [1 + 713—('” o373/2 4 724(!f) o2

d" = o7

Rearranging terms, and posing polynomials P; and P, and a constant w, lead finally to

the desired results (equation 10) (
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Appendix 2

In the figures below (1 to 4), Skewness and Kurtosis have been fixed at -.7 a

d 3.53 for the modified

Corrado-Su (1996) model parameter representations (which are mean parameter values of implied moments

when backed out them from French market data using the Jarrow-Rudd (198
Blancard et al., 2001-a and 2001-b, for details). Other parameters are those of th

2) model - see Capelle-
Corrado-Su (1996) case

study, also reported in Brown and Robinson (2002) - see text.
Figure 1: Option Price Adjustment
for Skewness of the Underlying Return Risk-neutral Density
' * *k
('QS) 'Q3, 'Q3 and 'Q3 )
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‘—03 (original) ===Q3"' (corrected) —=—Q3** (modified) ‘

No difference between the simplified and modified parameters can be highlighted on this Figure.

Figure 2: Absolute Differences in Option Price Skewness “Sensitivities”
Compared to the Original Corrado-Su (1996) Model
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Figure 3: Absolute Differences in Option Price Kurtosis “Sensitivities”
Compared to the Original Corrado-Su (1996) Model
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The correction of Brown and Robinson (2002) do not apply (directly) to the kurtosis parameter.

Figure 4: Absolute Induced Option Price Absolute Differences
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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In the figures below (5 and 6), French CAC 40 Long Term options on the period 01/97 through 12/98 have
been used to estimate the error terms and related density probabilities (see Capelle-Blancard ef al., 2001-a
and 2001-b, for details on the database, filters, optimization ¢riterion and routines). For easy
representations, Figures 7 to 11 illustrate estimations on sub-samples.

Figure 5: Estimated Probability Densities of Relative Pricing Errors
for the Black-Scholes (1973) and the Modified Corrado-Su (1996) Models
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‘ === Black-Scholes —o— Modified Corrado-Su ‘

A non-parametric kernel density estimator was used with the Silverman (1986) rule of thumb.

Figure 6: Estimated Probability Density Differences of Relative Pricing Errors
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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Figure 7: An illustration of Time-variations of Skewness Parameters
for the Corrected, Modified and Simplified Models
Compared to the Original Corrado-Su (1996) Model
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Figure 8: An illustration of Time-variations of Kurtosis Parameters
1 . . .
for the Corrected ™, Simplified and Modified Models
Compared to the Original Corrado-Su (1996) Model
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11 ‘The absolute difference between the corrected and original kurtosis parameter is empitically non null
since the modification of the definition of the skewness parameter in the corrected model has an impact on

the in-sample estimation of the kurtosis parameter.
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Comp:

Figure 9: An illustration of Time-variations of Implied Index Prices”

or the Black-Scholes and the Modified Corrado-Su Models
Compared to the "True'" Index Prices
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Figure 11: An illustration of Time-variations of Implied Index Prices"
for the Corrected, Simplified and Modified Models
Compared to the Original Corrado-Su (1996) Model
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Table 1: Number of Option Contracts Needed to Delta-hedge

a USD 10 Million Stock Portfolio
Number of S&P option contracts needed to delta-hedge a USD 10 million stock portfolio with a beta of one using
contracts of varying strike prices. This example assumes an index level of S,= (USD) 700, an interest rate r = 3%,

a dividend yield q = 2%, a time until option expiration T = .2J. Black-Scholes (BS) model assumes a volatility of O
= 12.88% corresponding to findings of Corvado and Su (1997). The original (CS), the corrected (CS’), the modified

(CS*) and the simplified Corrado-Su (CS™") models assume O = 11.62%, and skewness and kurtosis parameters of
¥, = -1.68 and y,= 3.39 (see Corrado and Su, 1997, Exhibit 6, p.18).

In-the-money Options Out-of-the-money Options
Strike (BS) (CS) (C®) (CS" (CS*™)  Strike (BS) (CS) (C®) (CS" (CS™)
660 167 163 163 157 157 710 303 266 266 257 257
670 179 171 171 160 159 720 370 332 332 343 342
680 197 182 182 167 167 730 465 443 443 502 501
690 221 198 198 182 181 740 601 637 637 825 824
700 256 225 225 209 209 750 802 1008 1008 1602 1598

13 Differences in this figure correspond to in-the-money options with a moneyness higher than 5%.
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