Strategic Financial Innovation
in Segmented Markets*

by

Rohit Rahif

Department of Accounting and Finance,
Department of Economics,
and Financial Markets Group,
London School of Economics,
Houghton Street, London WC2A 2AF

and

Jean-Pierre Zigrand
Department of Accounting and Finance
and Financial Markets Group,

London School of Economics,
Houghton Street, London WC2A 2AE

October 23, 2004.

*This paper has benefited from comments by Pete Kyle and Joel Peress. We also thank
seminar participants at UC Berkeley, Cambridge, London Business School, Maastricht,
Oxford, Stockholm School of Economics, the European Finance Association Meetings,
and the NBER/NSF General Equilibrium conference at UC Davis.

tCorresponding author, r.rahi@lse.ac.uk



Abstract

We study an equilibrium model with restricted investor participation
in which strategic arbitrageurs reap profits by exploiting mispricings
across different trading locations. We endogenize the asset structure as
the outcome of a security design game played by the arbitrageurs. The
equilibrium asset structure depends realistically upon considerations
such as depth, liquidity and gains from trade. It is not socially optimal
in general; the degree of inefficiency depends upon the heterogeneity of
investors. Finally, we use this framework to formally analyze Shiller’s
conjecture of the optimality of “macro markets.”

Journal of Economic Literature classification numbers: G18, G20,
D81. Keywords: Security design, arbitrage, restricted participation.



1 Introduction

The optimal design of securities has been the subject of a growing body of
research. But in analyzing whether it is in the interest of economic agents
to provide trading in such securities, the literature has typically abstracted
from a number of market facts.

First, a common assumption has been that innovations are carried out by
agents who do not themselves trade the securities they design, such as options
or futures exchanges, or entrepreneurs who sell equity stakes in their firms. In
reality, agents involved in financial innovation are often profit-seeking institu-
tions that actively make markets and trade the new securities across markets,
for arbitrage or hedging purposes. A large chunk of their profits comes from
proprietary trading, and not simply from transaction costs received from in-
vestors (such as brokerage fees). The innovating agents often have stakes
in more than one exchange or market. Their profits arise from endogenous
bid-ask spreads within an exchange, as well as from price differentials across
exchanges, say between derivatives exchanges and the underlying markets.
Moreover, financial innovators are typically not price-takers but large strate-
gic institutions who know how their actions affect prices. In this paper we
propose a model that captures these features.

Second, the literature has focused on frictionless environments in which
there is no incentive to introduce redundant assets. In actual fact, the ma-
jority of financial innovations are redundant, in the sense that they can be
replicated via a self-financing portfolio of assets. This raises the question why
investors who buy such an innovation, say a barrier option sold at a markup
by an investment bank, do not replicate the derivative themselves. There
are many reasons that come to mind—limited knowledge regarding the right
hedging strategy, high transaction costs, high setup costs involved in buying
a seat on an exchange or obtaining access to real-time data and trading as
required by delta-hedging, etc. In this paper, such impediments to perfect
and costless replication are captured in the assumption that various investor
clienteles have restricted access to capital markets.

More precisely, there are several trading locations or “exchanges.” With
each exchange is associated a group of investors. Investors may only trade the
assets available on their “local” exchange. In addition, there are agents who
are “global” players—they are able to trade on all exchanges simultaneously.
These agents profit by arbitraging away price differentials across exchanges;
they have zero initial wealth. We refer to them as “arbitrageurs.” Any



transfer of resources across exchanges is intermediated by the arbitrageurs.
Moreover, they determine the asset structure, i.e. the assets available for
trade on each exchange. The arbitrageurs can thus be viewed as intermedi-
aries who can target their clients according to their needs and supply them
with securities that were hitherto unavailable to them but may be globally
redundant. The financial innovations together with the inter-market traders
can be viewed as a means of integrating the various markets. We are inter-
ested in characterizing the asset structure that is optimal for arbitrageurs. In
particular, we would like to know how the equilibrium structure that arises at
a Nash equilibrium of the innovation game relates to the liquidity, depth and
gains from trade of the various market segments. A natural further question
is to ask if the equilibrium asset structure is socially optimal.

We study a two-period model with asset trading at date zero and uncer-
tainty resolved at date one. Investors conform to a version of the CAPM in
that they have quadratic preferences and random endowments of the single
consumption good (the latter need not be spanned by the local assets). They
behave competitively. For the moment let us fix the asset structure; we will
shortly describe how it is determined endogenously by arbitrageurs. This
asset structure may be completely arbitrary, with the assets trading on one
exchange bearing no specific relationship to those trading on another. In
the absence of arbitrageur activity, each exchange is essentially a standard
incomplete markets economy (complete markets being a special case).

Having fixed the asset structure, we can describe the ensuing equilibrium
roughly as follows. For any vector of asset supplies by arbitrageurs to the
exchanges, there is a corresponding Walrasian equilibrium on each exchange.
Equilibrium supplies are then determined in a Cournot game played by the
arbitrageurs. The result is a Cournot-Walras equilibrium associated with
each asset structure.

The asset structure itself is the outcome of a security design game among
the arbitrageurs before any trade takes place. We show that there is a unique
equilibrium of the security design game in which there is a single asset on
each exchange. In the case in which there are only two exchanges, this asset
is the difference between the autarky (absent arbitrageur activity) state-
price deflators of these exchanges. In the case of multiple exchanges, the
equilibrium asset on an exchange is the difference between its state-price
deflator and a weighted sum of the state-price deflators of all exchanges. This
weighted sum is in fact the complete-markets Walrasian state-price deflator
of the entire integrated economy.



We show that this equilibrium is optimal for arbitrageurs in the sense
that no other asset structure yields higher arbitrageur profits. Furthermore,
if investors on each exchange are identical, but possibly heterogeneous across
exchanges, the equilibrium asset structure is actually Pareto optimal (though
the equilibrium allocation is not, since arbitrageurs are imperfectly compet-
itive). Relative to an arbitrary asset structure, however, optimal innovation
by arbitrageurs may hurt some agents. We characterize who wins and who
loses, and provide sufficient conditions for all investors to gain. Finally, we
note that if there are heterogeneous agents within exchanges, the equilibrium
security design fails to be Pareto optimal, since arbitrageurs profit only from
trade between exchanges and not from trade within exchanges.

One contribution of our paper is to endogenously derive an asset structure
which is incomplete, without imposing a bound on the number of assets that
may be introduced. Moreover, the assets that arbitrageurs innovate in our
model may be redundant from the economy-wide perspective, an aspect of
actual financial innovation that has often been remarked on in the literature.

Related literature: This paper lies at the intersection of two distinct
literatures—the literature on security design and that on segmented markets.
The security design literature has addressed the incentives for the design of
financial instruments by different kinds of agents such as futures and options
exchanges, investment banks and corporations, motivated by considerations
such as risk sharing, taxes, transaction costs, or the need to raise capital.
Our focus in the present paper is on the design of assets that serve a risk
sharing role. Prior research that has addressed this aspect of security de-
sign is surveyed in Allen and Gale (1994) and Duffie and Rahi (1995). The
segmented market framework that we employ in this paper is adapted from
Zigrand (2003) where the asset structure is taken to be exogenous. Other
papers in this line of research are Polemarchakis and Siconolfi (1997), Basak
and Croitoru (2000), Cass et al. (2001) and Gromb and Vayanos (2002) on
the theory side, and Luttmer (1999), Brav et al. (2002), Vissing-Jorgensen
(2002) and Chen et al. (2003) on the empirical side. A recent paper also
in this intersection of security design and restricted participation, with an
emphasis on endogenous entry, is Calvet et al. (2002).



2 The Setup

We consider a two-period economy with uncertainty parametrized by the
state space S := {1,...,S}. Assets are traded in several locations or “ex-
changes.” They are in zero net supply. We do not impose complete markets
or the existence of a riskless asset.

Investor ¢ € I¥ := {1,...,I*} on exchange k € K := {0,...,K} has
endowments (wi’, w*’) € R x RS, and preferences which allow a quasilinear
quadratic representation,

(ol ) = 4 S ok SRt
SES

where 2t € R is consumption at date 0, z¥% € RS is consumption at date 1,
and 7 is the probability (common across agents) of state s. The coefficient
BF% is positive. Investors are price-taking and can trade only on their own
exchange.

In addition there is a set of arbitrageurs N := {1,..., N} who possess the
trading technology which allows them to also trade across exchanges. For
simplicity, we assume that arbitrageurs only care about time zero consump-
tion. Arbitrageurs are imperfectly competitive.

Asset payoffs on exchange k are given by a full column rank payoff matrix
RF of dimension S x J*. The asset span on exchange k is the column space
of R*, which we denote by (RF). We assume that all assets are arbitraged.!

3 Cournot-Walras Equilibria

We begin by solving for equilibrium for exogenously given asset payoffs. Let
y®" be the supply of assets on exchange k by arbitrageur n, and y* :=
D onen y®" the aggregate arbitrageur supply on exchange k.

Definition 1 Given an asset structure {R*}rcx, a Cournot-Walras equi-
librium (CWE) of the economy is an array of asset price functions, asset

!This is an innocuous assumption. It is straightforward to extend our analysis to the
case where, on a given exchange, some assets are not arbitraged, i.e. traded only by
investors on the exchange, while other assets are arbitraged, i.e. traded by both investors
and arbitrageurs. It turns out, however, that equilibrium prices of arbitraged assets are not
affected by the payoffs of non-arbitraged assets. Thus the characteristics of non-arbitraged
assets have no bearing on arbitrage trades or on security design by arbitrageurs.



demand functions, and arbitrageur supplies, {q* : R — RJk,Hk’i R —
RJk ) yk’n € RJk }kEK,iEIk,HENi such that

1. Investor optimization: For given ¢*, Ok’i(qk) solves

k Ty
Inax, zp +E 7Ts[ i P (:Us”)
2
gkicR e

ki ki k ki
s.t. xy =wy —¢q° -0

l‘k’Z — wk,z + Rkek,z'

2. Arbitrageur optimization: For given {g*(y*), {v*™ Y sn }rex, ¥*" solves

max Z yk nT (yk,n + Z yk,n’>

y* nERJk "n
s.1. Z Rkyk’” <0.
keK
3. Market clearing: {qk(yk)}keK solves

D W) =", VEe K.

icIk

Note that investors take asset prices as given, while arbitrageurs compete
Cournot-style. Arbitrageurs maximize time zero consumption, i.e. profits
from their arbitrage trades, but subject to the restriction that they are not
allowed to default in any state at date 1. Equivalently, arbitrageurs need to
be completely collateralized.

Let IT := diag (7y,...,7ms) and 1 := (1...1)". Investor (k,%)’s utility can
be written as
&(wk,i+Rk9k,i)TH(wk,i+Rk9k,i)

5 .

(1)

The first order condition for the investor’s optimization problem gives us his
asset demand function:

Uk,'i — w(/;:,i _qk -Hk’i—i— lTH(wk’i+Rk9k’i) .

04 (¢4) = e (RETTIRE) R TTIp — gt (2)

Bkz



where p*t = (1 — gFiwk?) is agent (k,i)’s no-trade state-price deflator or
pricing kernel. We can now use the market clearing condition to deduce
the inverse demand mapping, i.e. the price vector on exchange k that sets
aggregate demand, 6F := ", 0%, equal to aggregate arbitrage supply, y*:

¢*(y*) = R* TI[p* — B*R*y", (3)

where 8% := [>°.(85) 717!, w* =Y, wM and pF = (1 — BFwF) is exchange
k’s autarky state-price deflator. The parameter 1/3* represents the “depth”
of exchange k, i.e. the price impact of a unit of arbitrageur trading. For
instance, ceteris paribus, the market impact of a trade is smaller on exchanges
with a larger population; it can be absorbed by more investors. Notice that
we can interpret equilibrium prices as risk-neutral prices RF'TI1 from which
a risk-aversion discount ,B’“R’“Tl_l(cu’c + RFyF) is subtracted.

Our assumptions on preferences, in conjunction with the absence of non-
negativity constraints on consumption, guarantee that the equilibrium pric-
ing function on an exchange does not depend on the initial distribution of
endowments, but merely on the aggregate endowment of the local investors.
The autarky state-price deflator p* also does not depend on R¥, even though
investors on exchange k do trade among themselves consumptions in the span
of R*.

We now solve the Cournot game among arbitrageurs, given the asset
price function (3). It turns out that there is a unique CWE, and that this
equilibrium is symmetric, i.e. y*™ is the same for all n. Let

P* .= RF(R*'TIR¥) 'Rt 1L

Since P is idempotent, it is a projection from R onto the asset span (RF).
Indeed, it is an orthogonal projection in L?(II).> It is convenient to state
arbitrageur supplies in terms of the supply of state-contingent consumption:

Lemma 1 (Equilibrium supplies) Equilibrium arbitrageur supplies are unique
and symmetric. For asset structure {R*},ck, they are given by

n 1
R = g P =), ke K @

2For state-contingent consumption 2 € RY, the L?(II)-norm of z is defined as follows:
||z := (T Tz)=.



where p* > 0 is a state-price deflator for the arbitrageurs, satisfying
> PRt —pt) <0 (5)

and

P, [Z P — pA)] =0, Vs (6)

Note that p4 can be chosen not to depend on N. We can clearly see
(pretend P* = I, all k, for the moment) from equation (4) that arbitrageurs
supply consumption in state s to an exchange k& when the price that agents
on exchange k are willing to pay for a unit of state s consumption exceeds
the arbitrageurs’ shadow willingness to pay, p2. This statement should be
qualified, since while these are the “optimal” supplies in some sense (to be
confirmed subsequently), they may not be in the span of the existing assets.
Therefore, arbitrageurs will supply consumption if the excess willingness to
pay, when projected onto the span of the permissible assets, is positive.?
The factor of proportionality in (4) is determined by two considerations.
First, the deeper is exchange k (i.e. the lower is 4¥), the more arbitrageur n
trades on this exchange, since he can afford to augment his supply without
affecting margins as much. And second, the supply vector is scaled to zero
as competition intensifies, because the whole pie shrinks and there are more
players to share the smaller pie with (see also Lemma 3 below).

Lemma 1 gives us the equilibrium supply %™ of arbitrageur n. The total
equilibrium supply is then * = Ny*". Substituting into the pricing equation
(3) determines the equilibrium prices. Let p* be an equilibrium pricing kernel
for exchange k, i.e. ¢* = RkTHﬁk.

Lemma 2 (Equilibrium prices) The following is an equilibrium state-price
deflator for exchange k:

" 1

N A
P=11N

k
. 7
Ay (™)

30f course, the projected state-price deflator p* := P*p* is also a state-price deflator
(RFTTI(P*pk) = R*'TIp* = ¢*), and in fact it is the unique state-price deflator that is
also marketed, i.e. in (R*). We could therefore replace p* and P*p* by p* throughout this
paper and simplify some expressions. But since we shall determine spans endogenously in
the sequel, we resist that temptation.



In particular, as N goes to infinity, the equilibrium valuation on each ez-
change converges to the arbitrageurs’ valuation: limy_ o ¢* = RkTHpA.

Note that, with incomplete markets on exchange k, there is a multiplicity
of state-price deflators for a given R*. However, the equilibrium valuation
functional on RS, R¥TIp*, is unique, and when p* is viewed as a function of
RF, it is a valid state-price deflator for each R*. From (2) and (7), we see
that

) 1 . .
Rk@k,z — _.Pk(pk,z . pk)

ﬁk,z
1 | N
= g b —p )+m(p -pM|. (8)

Thus investor (k,7)’s net trade of state-contingent consumption is the sum
of two components—an intra-exchange trade proportional to P*(p*t — p*),
and an inter-exchange trade proportional to P*(p* — p?).

Finally, we calculate the equilibrium profits of arbitrageur n (which do
not depend on n since the CWE is symmetric), ® := Y, ¢* - y*m.

Lemma 3 (Equilibrium profits) The equilibrium profits of an arbitrageur,
for given asset structure {R’“}, are

o({R"}) = Z 1P (" — p)I5- (9)

As N goes to infinity, individual arbitrageur trades vanish, as do total arbi-
trageur profits N®.

The following section provides an interpretation of the arbitrageurs’ shadow
values in terms of certain Walrasian pricing kernels.

4 A Walrasian Benchmark

It turns out that the equilibrium of the arbitraged economy that we have just
computed bears a close relationship to an appropriately defined competitive
equilibrium, with no arbitrageurs.

Definition 2 Given an asset structure {R*}rcx, a Walrasian equilibrium
with restricted consumption is a state-price deflator p®¢, and portfolios
{0k, ka’i’e}k,ﬁel(,ielk; such that

10



1. Investor optimization: For given ¢* = R¥ 'TIpRC k€ K, {0%% {oF4Y e}

solves
kyi ki B kv
max Ty + E T [acs” — —(x{") ]
PricRI* ki LRI =y 2
ki kyi ' Z ;
s.1. ',L'Oﬂ — (“)071 _ qk . Hk,z _ ql . (pk,z,é

leK
xk,z — wk,z + Rkek,z

0 S ZRESDIC,’L',Z'

LeEK

2. Market clearing:

Z ngk’i + Z Rewk,i,e =0.

ic€l* ke K i€l* ke K,lcK

In a Walrasian equilibrium with restricted consumption agents can trade
any asset on a centralized exchange, facing a common state-price deflator
pfC but agents on exchange k can consume claims in (R¥) only. For agent
(k,1), the portfolio that leads to future consumption is #%¢. He can choose,
in addition, an auxiliary portfolio {¢**},ck, provided the payoff is nonneg-
ative.

Given asset payoffs { R*}, we say that asset prices {¢*} are globally weakly
arbitrage-free if an agent with access to all the asset markets in the economy
is unable to construct a weak arbitrage, i.e. a portfolio {zF},cx such that
Dok REZE >0 = ok ¢*-2¥ > 0. By the fundamental theorem of asset pricing,
this is the case if and only if there exists 1) > 0 such that ¢* = R’“THw, for
all k. Clearly, due to the auxiliary portfolio, there cannot be a global weak
arbitrage at a restricted-consumption Walrasian equilibrium; hence we can
always choose pfi® > 0. This notion of equilibrium is of interest due to the
following result:

Lemma 4 (Restricted-consumption Walrasian equilibrium) There is
a unique® Walrasian equilibrium with restricted consumption, with pricing

4By uniqueness we mean that the equilibrium allocation and pricing functional are
unique. There may, of course, be multiple pricing kernels that induce the equilibrium
pricing functional.

11



kernel pf¢ > 0 satisfying R’“TH(pRC — p?) = 0. Equilibrium net trades of
state-contingent consumption are

) 1 ;
RAOM = = PR —pf©),  ie It ke K. (10)

Thus arbitrageur valuations of assets at the CWE are the same as asset
valuations at the restricted-consumption Walrasian equilibrium. Moreover,
from Lemma 2, asset prices in the arbitraged economy converge to asset
prices in the restricted-consumption Walrasian equilibrium, as the number
of arbitrageurs goes to infinity. Comparing (8) and (10), we also see that the
equilibrium allocation (for investors) in the arbitraged economy converges
to the restricted-consumption Walrasian equilibrium allocation. It is in this
sense that arbitrageurs serve to integrate markets.

A more natural notion of Walrasian equilibrium when markets are seg-
mented, and one that has been widely studied in the general equilibrium
literature, is Walrasian equilibrium with restricted participation. In this
equilibrium agents trade on a centralized exchange, facing a common state-
price deflator pff', but agents on exchange k can trade claims in (R*) only.

Definition 3 Given an asset structure {R*}rcx, a Walrasian equilibrium
with restricted participation is a state-price deflator p®f, and portfolios
{65} ek icre, such that

1. Investor optimization: For given ¢* = RF TIpRP | 6% solves

ki
ki + ki 6 ( k,i)Q
max -z s | — =5 (@
S
ghicR pyere
ki _ ki k pkyi
st xy =wy —¢q" -0

l‘k’Z — wk,z + Rkek,z'

2. Market clearing:

> RfM =0,

i€l* keK

One might think that a Walrasian equilibrium with restricted participa-
tion is no different from a Walrasian equilibrium with restricted consumption.
This is not necessarily the case, however. The following example illustrates:

12



Example 1 Consider an economy consisting of two exchanges, 1 and 2, with
a single agent on each exchange. The payoff matrices are

vl [l

The two exchanges are equally deep, with 8* and 52 both equal to 3, which
satisfies

_ m

0<ﬁ<1+m. (11)
Date one endowments are as follows: w' = 1 and w? = (1/5 — 1)1. Autarky
state-price deflators are, therefore, p' = (1 — )1 and p? = j31, respectively.
Exchange 1 values time one consumption more than exchange 2. In autarky,
¢' = (1 — B)my, and ¢®> = B. The restriction (11) implies that ¢* > ¢, i.e.
there exist profit opportunities for arbitrageurs, buying on exchange 2 and
delivering to exchange 1.

Now consider the Walrasian equilibrium of this economy with restricted
participation: agents face a common state-price deflator p®F, but can only
trade assets on their own exchange. However, since (R') N (R?) = {0}, the
two agents cannot trade with each other. Equilibrium asset prices are the
same as in autarky. Since these prices allow for an arbitrage, albeit for a
hypothetical agent with access to all markets, at least one of the state prices
must be negative. The pricing kernel p¥ (which is unique since markets are

complete in the integrated economy) solves ¢* = R¥ ' TIphY k = 1,2:

RP _ 1-5
Po= | @/ma)l(1 + m)B = mi]

It follows from (11) that pff < 0. Equilibrium consumption at date one
(which is just the initial endowment for both agents) is below the bliss point
1/5.

In the restricted-participation Walrasian equilibrium, agents are unable to
exploit the arbitrage opportunity, because doing so would take them outside
their local asset span. Indeed, they would end up with excess consumption
in state 2. In a restricted-consumption Walrasian equilibrium, on the other
hand, agents can arbitrage away the mispricing. They simply dispose of
some of the state 2 consumption good. Consequently pE° = 0 (implying
that ¢ = ¢?). The desired net trade of state-contingent consumption is

13



RFOk = /J,L,CP’“(p’c — pRY), k = 1,2. The projections P' and P? are:

P'= [(1) 8] , P’= [”1 ”2} . (12)

T T2

Therefore, noting that p&¢ = 0,

Rlelzl_ 1—5_17{?'0 R202:l_ @—Wlp{w )
B 0 ’ B |8 — mpfc
Market clearing for state 1 gives us pf“ = ﬁ It follows from (11) that the
net trade of the agent on exchange 2 is negative in both states. Equilibrium

consumptions at date one are respectively,

1
w'+ R'O" = [ﬂ ' igﬁ] ., W+ R =

both of which are below the bliss point 1/4. I

The key difference between the two concepts of Walrasian equilibrium lies
in the market clearing condition: at a restricted-consumption equilibrium,
>, RF9*F < 0, while at a restricted-participation equilibrium, Y-, R*6* = 0.
The pricing kernel p®¢ need not be strictly positive. This is due to the fact
that investors are by construction behaving as if they are satiated in those
directions of the consumption space that lie outside the imposed span. At
equilibrium it can occur that investors collectively dispose of consumption in
some states. These states are also the states in which, at a CWE, arbitrageurs
dispose of consumption due to their inability to bring consumption back to
time zero without disturbing their arbitrage portfolio. Arbitrageurs play
a useful allocational role over and above allowing investors to trade their
own claims abroad. They allow investors to trade any claim available in the
economy. Investors can thereby exploit good deals in the global markets,
which relaxes their time zero budget constraint. They are better off as a
result, even if they have to discard consumption in some states at time one
(via the arbitrageurs) to remain within their local asset span.®

5 Arbitrageurs effectively dispose of consumption on behalf of investors, for whom dis-
posal is not free in the arbitraged economy. This is reflected in the fact that state prices
in the arbitraged economy are nonnegative in the limit, just as they are in the restricted-
consumption economy where investors can dispose of excess consumption freely.

14



The two notions of Walrasian equilibrium coincide if and only if pR¥ >
0, i.e. if and only if there is no global weak arbitrage at the restricted-
participation Walrasian equilibrium. Then we have p®¢ = pfif = p4. We
consider some special cases in which we can explicitly solve for pf, and
provide conditions under which the solution is nonnegative. Defining

1
Bk

__ B

K 1
Zj:o Bi
we can write the market clearing condition for the restricted-participation
Walrasian equilibrium as follows:

Z e Pk (pF — pfFY = 0. (13)

keK

AR =

An explicit solution for p¥ can be obtained if there is an exchange (which we
take to be exchange 0 without loss of generality) that satisfies the following
maximal asset span condition:

(S1) (R°) contains (R*), for all k € K.

We will also need a nonsatiation condition:

(N1) 1-5-30cx Q@ w* >0,

where 8 := [3,(6F) ] !, and Q* is defined as follows:
- 1 -1

Q"= |XT+> \pPE|

L k#£0 i
- 1 -1

QF = [ NI+ NePF| PE ke{l,... K}
L k£0 i

Condition N1 says that the representative agent with aggregate preference
parameter (3 is nonsatiated at the aggregated projected endowment QFuwk.

Lemma 5 Under S1,
phi=) NQM (14)
keK

is a restricted-participation Walrasian pricing kernel. Furthermore, p > 0
if and only if N1 holds so that, under S1 and N1, we can choose p* = pt.

15



Moreover, under S1, p®F > 0 if and only if there is no weak arbitrage on
exchange 0. Therefore, condition N1 is equivalent to assuming that there
is an agent on exchange 0 who is nonsatiated at the restricted-participation
Walrasian equilibrium. Note that p” is the (unique) restricted-participation
Walrasian pricing kernel in the economy in which asset payoffs are the same
as in the original economy except that R® = I.

A further specialization of condition S1 arises when all exchanges have
the same payoff matrix R. Then from (13), we can choose p®¥ to be equal

to
p = z Mepk,
kEK

The vector p* is the investors’ economy-wide average willingness to pay, with
the willingness to pay on each exchange weighted by its relative depth. It
is apparent from (13) that p* is the pricing kernel for the complete-markets
Walrasian equilibrium (with unrestricted participation).® The following reg-
ularity condition, a slight variation on N1, is equivalent to p* > 0:

(N2) 1— fBw >0,

where w := Y, w®. It says that the representative investor with aggregate
preference parameter  is weakly nonsatiated at the aggregate endowment
w.

There is another case in which pf = p* solves (13): if p* — p* € (RF),
all k, for then P*(p* — p*) = p* — p*. Accordingly, we will often need to refer
to the following spanning condition:

(S2) Either (a) RF=R, k € K, or (b) p* —p* € (RF), k € K.

Lemma 6 Under S2, the complete-markets Walrasian pricing kernel p* is
a restricted-participation Walrasian pricing kernel. Furthermore, p* > 0 if
and only if N2 holds so that, under S2 and N2, we can choose p* = p*.

In light of the foregoing discussion (Lemmas 2, 4, 5, and 6), we have:

In the complete-markets case, p* is the unique state-price deflator. If markets are
incomplete, so that the common payoff matrix R does not span RY, p* is still a state-price
deflator, but it is not the only one.

16



Lemma 7 (Convergence to Walrasian equilibrium)

1. As the number of arbitrageurs N goes to infinity, the equilibrium valua-
tion on exchange k in the arbitraged economy converges to the restricted-
consumption Walrasian equilibrium valuation, i.e. limy .o ¢* = R* ' TIpFC.
Under S1 and N1, this is also the restricted-participation Walrasian
equilibrium valuation, RkTHpA. Under S2 and N2, it coincides with
the complete-markets Walrasian equilibrium valuation, RkTHp)‘.

2. As the number of arbitrageurs N goes to infinity, the equilibrium alloca-
tion in the arbitraged economy converges to the restricted-consumption
Walrasian equilibrium allocation. Under S1 and N1, this is also the
restricted-participation Walrasian equilibrium allocation. Under S2(b)
and N2, it coincides with the complete-markets Walrasian equilibrium
allocation.

We conclude this section by giving another interpretation of arbitrageur
supplies for the case in which all exchanges have the same payoff matrix R,
with corresponding projection matrix P. Assuming that N2 holds, due to
Lemma 6 we can rewrite equation (4) as follows:

1 , .
R = S NPGF — ).
D>

The difference p*¥ — p’ reflects the overpricing of assets on exchange k com-
pared to j. The net trade of k£ with all other exchanges can be arrived at by
summing the trade of k with each particular exchange j, P(p*—p’), weighted
by its relative depth Y. When do arbitrageurs supply consumption to & in
state s? The condition p¥ — p¥ > 0, for some &', is clearly not sufficient,
since there could be a third exchange j whose p! is large enough to warrant
that arbitrageurs take consumption away from both £ and &' in order to
transfer it to j. It must be the case that p* — p} > 0, i.e. agents on k value
consumption in state s more than the average depth-weighted valuation of
all exchanges.

The nonsatiation condition N2 will be a standing assumption in the re-
mainder of the paper.
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5 Optimal Security Design by Arbitrageurs

We have seen that there is a unique CWE associated with any asset structure
{R*}1ck- In this section we endogenize the security payoffs. Arbitrageurs
play a security design game the outcome of which is an equilibrium asset
structure. The payoffs of arbitrageurs are the profits they earn in the CWE
associated with this asset structure. The asset structure {RF} is a Nash
equilibrium of the security design game if no arbitrageur stands to gain by
introducing additional assets that he may trade monopolistically (clearly this
is also a Nash equilibrium of the associated game in which all arbitrageurs
trade the additional securities). An asset structure is optimal for an arbi-
trageur if it yields the highest profits for the arbitrageur in the associated
CWE, among all possible asset structures.

Proposition 1 The following statements are equivalent:
1. p* —p* € (RF), for allk € K;
2. the asset structure { RF} e is optimal for arbitrageurs;

3. the asset structure { R*}rck is a Nash equilibrium of the security design
game.

Thus the complete asset structure R¥ = Ig, g, for all k, is optimal for ar-
bitrageurs, and a Nash equilibrium. Moreover, all optimal /equilibrium asset
structures are payoff-equivalent for arbitrageurs. Among these, a minimal
asset structure is one with the smallest number of assets. Such an asset
structure would be the one chosen if each security issued bore a fixed cost
¢, no matter how small. In fact, such fixed costs are significant; see Tufano
(1989) for an empirical assessment. The following result is immediate from
Proposition 1 (when we say “unique”, we mean “unique up to scaling”).

Proposition 2 (Security design) The asset structure
RF = p* — p*, ke K
18
1. the unique minimal optimal asset structure for arbitrageurs; and

2. the unique minimal Nash equilibrium of the security design game.
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The optimal asset structure for arbitrageurs spans the net trades between
exchanges in the complete-markets Walrasian equilibrium (from (10), these
net trades are given by RF0¥ = (1/8%)(p*—p?), k € K). The minimal optimal
security on exchange k is a swap, exchanging the autarky state-price deflator
of exchange k for the complete-markets Walrasian state-price deflator of the
entire integrated economy. If there are only two exchanges, say 0 and 1, then
the optimal securities p° — p* and p' — p* are both collinear with p! — p°, the
difference of the autarky state-price deflators of the two exchanges.

A reading of the optimal arbitrage supply (4) indeed suggests that the op-
timal security design for arbitrageurs should be as given in the proposition.
Since the arbitrageurs’ supply of state-contingent consumption is propor-
tional to p* — p4, projected down onto the span of R*, i.e. they choose the
supply closest to p¥ — p4, it is clear that the optimal span should be exactly
the one provided by p* —p#. Then P*(p*—p?) = p¥—p*, so that p* = p* from
(13). It should be remarked that a single security on each exchange suffices
for the arbitrageur to maximize his profits, and our result therefore generates
incomplete markets endogenously, without any constraint on the number of
securities. The reason is that, within any exchange k, asset prices are deter-
mined by an auction and arbitrageurs do not profit from those intra-exchange
trades. Intuitively, an arbitrageur only profits from mispricings between the
market price of the innovation and the replicating portfolio. He is therefore
only concerned with the one-dimensional net trade he mediates between k
and the rest of the economy, which can be accomplished via a single security
collinear with the desired net trade. Relatedly, if p* = p*, we claim that
arbitrageurs do not find it profitable to introduce any assets on exchange
k. But isn’t it true that, with heterogeneous investors on exchange k, there
must be some agent willing to pay or receive an amount different from the
one on some other exchange, and therefore provide an incentive to innovate?
The answer is no, since if such an asset is sold to investor (k,7), all other
agents can trade that same asset as well, by nonexclusivity. The resulting
price established on exchange k is such that no arbitrage opportunities arise
across exchanges: p* = p*.

Finally, it is interesting to realize that although net trades, and there-
fore equilibrium allocations, depend on the degree of competition N, the
equilibrium asset structure does not depend on N. This is a feature of the
linear-quadratic model in which demand functions are linear, and depth is a
constant independent of trading volume. We discuss this further in the next
section.
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Our analysis readily extends to the more realistic case where arbitrageurs
can innovate on all exchanges, but cannot affect the payoffs of the existing
assets {RF}. In other words, security design really represents incremental
“innovation.” For instance, if R¥ = Ig.g, for some k, one can interpret
the result as the optimal design of redundant derivative securities on various
exchanges. The following result is immediate from Proposition 1.

Proposition 3 (Innovation) For given {RF},ck, the asset structure

R (" —pN] if P —p ¢ (RY),
R* if p*—p*e(RY,

18
1. a munimal optimal asset structure for arbitrageurs; and

2. a minimal Nash equilibrium of the security design game.

Since for a given { R*} arbitrageurs find it optimal to supply state-contingent
consumption proportional to p* — p* if allowed, they innovate on exchange
k if and only if p¥ — p* & (RF), in which case they “further complete” the
market by adding p* —p*. Equivalently, they could add a security that makes
p® — p* tradable in conjunction with R*. For this reason, we can no longer
say that [R* (p* — p*)] is the unique minimal asset structure.

6 Security Design and Social Welfare

Associated with an asset structure {R*}, there is a unique CWE with the
corresponding equilibrium payoffs for each arbitrageur and investor. Equi-
librium arbitrageur profits are given by (9). We now turn to the equilibrium
utilities of investors. Using investor (k, 7)’s first order condition, we can write
his utility (1) as:

/Bk’i

ki — kot + 1Tk — _wk,iTHwk,i + &”ngk,i |2
- 0 2 2 2

Note that U** depends on the asset structure only through the term W## :=
BF4|| RFGR||2. We will find it convenient to refer to W*¢ as the equilibrium
utility of agent (k,7). Using (8), we have:
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Lemma 8 (Equilibrium utilities) The equilibrium utility of investor (k, 1),
for given asset structure {RF}, is

1 2

519,1'

Analogous to the optimality notion for arbitrageurs that we have consid-
ered before, an asset structure is optimal for an investor if it results in the
highest equilibrium utility for the investor among all possible asset struc-
tures. An asset structure is Pareto optimal for a group of agents if there
is no alternative asset structure that Pareto dominates it in equilibrium for
this group. An asset structure is socially optimal if it is Pareto optimal for
the set of all agents, arbitrageurs and investors.

We say that investors on exchange k£ are homogeneous if they have the
same no-trade valuations, i.e. p** = p*, for all i € I*. We refer to an economy
in which investors are homogeneous within each exchange as a clientele econ-
omy. From the point of view of arbitrageurs, each clientele £ € K consists
of agents with identical characteristics.

We will focus now on a clientele economy, returning to the general hetero-
geneous agent case at the end of the section. Lemma 8 gives us the following
welfare index for clientele £:

=2 i (oy) IP0F =B o)

Comparing this to (9), we see that >, W¥ is proportional to arbitrageur
profits ®. Hence an asset structure that maximizes arbitrageur profits also
maximizes the egalitarian social welfare function:

N

Wk,i:
1+N

p* [(p’“’i -p*)+

(r* — pA)}

2

Proposition 4 (Optimality: clientéle economy) In a clientéle economy,
an optimal asset structure for arbitrageurs (which is also a Nash equilibrium
of the security design game) is socially optimal.

This is not surprising given that the optimal arbitrageur-chosen securities
span the net trades between exchanges in the complete-markets Walrasian
equilibrium of the integrated economy. However, while the equilibrium secu-
rities correspond to socially desirable ones, the allocation that results is not
Pareto optimal. Arbitrageurs are strategic and restrict their asset supplies
in order to benefit from the markup. This implies that not all gains from
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trade are exhausted. It is only when the number of arbitrageurs N tends to
infinity that equilibrium allocations converge to Walrasian allocations, and
therefore to a Pareto optimum.

We can think of W, as given by (15) for an arbitrary asset structure { RF},
as the inter-exchange gains from trade reaped by exchange k£ in moving from
autarky to the arbitraged equilibrium. Using (4), W* = (1/8%)||R*y*||3, so
that the gains from trade are proportional to the magnitude of the state-
contingent consumption trading volume. As N goes to infinity, the CWE
converges to the Walrasian equilibrium with restricted consumption, and
investors achieve the maximal gains from trade, given the asset structure
{R*}. At the optimal security design, the maximal gains from trade for
exchange k are given by (1/8%)||p* — p*||3. This is the welfare gain that
exchange k£ can obtain by trading with other exchanges in a complete-markets
Walrasian equilibrium.

Consider the minimal socially optimal security design {p* — p*}. From
Lemma 2, p* —p? is collinear with p¥ —p*, where p* := ZjeK N p7. In general,
it is well-known (see Magill and Quinzii (1996)) that the state-price deflator
evaluated at an equilibrium is locally the most valued security for an agent.
In our case, this is p* for clientele k (if we take markets to be complete, this
is the unique state-price deflator). The optimal security for clientele & allows
agents in this group to obtain the payoffs of their most valued security p*,
while shorting the payoffs of the most valued securities of other clienteles
{p’}; 2k In equilibrium, agents are induced to hold the swap by prices and
by the underlying motivation to diversify. Indeed, by buying p* they get rid
of their idiosyncratic risk and by shorting p* they acquire a position in the
global market portfolio (p¥ — p* is collinear with p¥ — p*, which is equal to
Bw — BFwk). Tt is a consequence of our linear-quadratic formulation that the
optimal asset structure at the arbitraged equilibrium, namely {pF — p*}, is
the same as the optimal asset structure at the autarky equilibrium, {p*—p*}.
Thus the optimal security design in the arbitraged economy depends only on
the autarky equilibrium and not on the amount supplied by arbitrageurs.

A socially optimal asset structure is not necessarily optimal for each
clientele. For example, starting from an initial asset structure { R¥}, if mar-
kets are completed for each clientele, the resulting security design is socially
optimal. However, some clienteles may be worse off since prices are typically
affected by the introduction of new securities and lead to redistributions.
This possibility has been discussed by Elul (1999), for instance. The follow-
ing proposition addresses the important question as to who gains and who
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loses as a result of an optimal financial innovation, and what the drivers are.

Proposition 5 (Welfare gains and losses) In a clientéle economy with
asset structure { RF}, clientéle k is worse off at a socially optimal asset struc-
ture if and only if

¥ = P2 < [|IPF(* — p™)|l2-

This follows directly from (15). Clientele k is worse off if and only if the total
marketable gains from trade are smaller after the innovation than before.

Example 2 Consider the economy in Example 1, with an additional ex-
change 0. There is a single agent on this exchange, and it has complete
markets: R’ = I. Choose p® = 1. It is easy to check that p° = p*.

Under the optimal security design RF = p*—p?, or equivalently RF = I, all
k, the arbitrageurs’ shadow valuation is p*, which coincides with exchange 0’s
valuation. There is no trade on 0. Arbitrageurs simply buy on 2 and deliver
to 1. On the other hand, under the given asset structure, the arbitrageurs’
shadow valuation is p*. Using (14) and (12), we have

P —ph = (Z )\kpk> Z)\kpk(po — b

kEK k#£0
— -1
_1/2-p IR [0]
== —P
) Ol

which is nonzero. Hence there is trade on exchange 0, and welfare is higher
on this exchange than under the optimal security design. I

The example shows that not every exchange may benefit when all ex-
changes are completed because the completion of markets may erode the
advantages an exchange may have had before the completion. Exchange 0
plays a valuable role in the arbitrage process at the initial asset structure,
facilitating trade between the other two exchanges. At a socially optimal
asset structure, however, it becomes entirely redundant. This is reminiscent
of what was also found in Willen (2003). We can similarly show that when
no clientele initially enjoys a trading advantage, then all clienteles benefit
from optimal security design.

Proposition 6 (Pareto-improving security design) Consider a clientéle
economy, with an initial asset structure that satisfies S2. Then no clientéle
can be worse off at a socially optimal asset structure.
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Condition S2(b) means that the initial asset structure is already socially op-
timal. In the case of common payoff matrices, condition S2(a), no exchange
is at a trading advantage at the initial equilibrium as trades that can be ex-
ecuted on one exchange can equally be carried out on some other exchange.
Note that, in going from an initial asset structure to a socially optimal one,
we allow for the possibility of removing some of the initial assets. When we
restrict attention to innovation (not necessarily optimal) of additional assets,
Proposition 6 extends to the general case where agents may be heterogeneous
within exchanges.

Proposition 7 (Pareto-improving innovation) Suppose arbitrageurs in-
troduce new assets, and S2 is satisfied at both the initial and the post-
innovation asset structure. Then no investor can be worse off after the in-
novation.

In particular, starting from a common asset structure R* = R, if arbitrageurs
(incrementally) innovate optimally, all agents are better off. Even though
arbitrageurs are solely interested in their own profits, in this case maximal
profit extraction means providing each investor with his favorite assets. The
intuition is clearest in the limiting equilibrium as NV goes to infinity. We know
from Lemma 7 that the complete-markets Walrasian pricing kernel applies in
this equilibrium. With quadratic preferences, adding assets leaves the pricing
kernel unchanged. Innovation cannot hurt investors as it does not affect the
prices of the initial assets. It should be noted, however, that we do require
that both the pre- and post-innovation asset structures satisfy S2. This is
the case, for example, when agents have access to the same asset markets
before and after the innovation. In Example 2, S2 was not satisfied at the
initial equilibrium, and we saw that completing markets on all exchanges
moved prices unfavorably for some agents.

Proposition 4 does not extend to the heterogeneous agent case. The mini-
mal equilibrium security design {p* —p*} will in general be Pareto dominated
by complete markets on every exchange. In a clientele economy both these
asset structures are socially optimal, and indeed payoff-equivalent for every
investor and arbitrageur. This is not so with heterogeneous agents. If there
is sufficient heterogeneity, with I* > S distinct investors on each exchange
k, there will typically be S linearly independent optimal net trades on every
exchange, so that the only socially optimal asset structure is the the one with
complete markets on all exchanges.
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The reason why the security design {p* — p*} fails to be socially optimal
is the fact that arbitrageurs only care about the aggregate valuations on the
various exchanges. They do not consider the effects of their security choice
on the intra-exchange reallocation of resources that occur when investors on
a given exchange trade the security among themselves. Such intra-exchange
trades are absent in a clientéle economy (p¥* = pF, all k), which is why
profit-maximization by arbitrageurs is socially efficient in that case.

7 Macro Markets

Robert Shiller (see Shiller (1993)) has argued that one of the most important
categories of missing markets are markets for country GDP. Stock markets
for instance allow investors to trade only the small component of national
income that corresponds to corporate profits.

Since each trade needs a counterparty, macro markets can only be suc-
cessful if there is both a demand and a supply for a claim on each country’s
GDP stream, not least because otherwise innovators would not choose to
launch such products. Demand and supply must naturally be international.
In that spirit, we proceed to study Shiller’s conjecture within our formal
model, reinterpreting exchanges as countries.

Assume initially that there are two countries, £ = 0, 1. We have seen that
arbitrageurs would find it optimal to introduce one single (further) asset in
country k, p* —p*, which in this simple example means a payoff collinear with
(B%°—Brw!). Since w* amounts in fact to GDP in country &, the equilibrium
security corresponds to the depth-weighted difference of the GDPs in the two
countries.

An asset structure R® = R' = [w® w'] would also be an equilibrium of the
design game, albeit not a minimal one. What does come out of this, though,
is that introducing country k’s GDP as a tradable asset in country £ only
is optimal neither for arbitrageurs nor for investors. Investors in country &
want to be able to simultaneously sell a portion of their GDP and diversify
their portfolios by buying a fraction of world GDP.

With K arbitrary, arbitrageurs could therefore introduce claims to the
GDP of each and every country in all countries. But it is more reasonable
and cheaper to introduce only the ideal security in country k, which is the
difference of the GDP outcomes of country k£ with the rest of the world,
properly weighted by depth.
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With this caveat, Shiller’s conjecture as to the importance of GDP mar-
kets is mirrored in our model: those are indeed the equilibrium assets de-
signed and traded by profit-maximizing innovative institutions. Nevertheless,
while macro GDP markets are optimal for arbitrageurs, Proposition 5 should
caution us as to their social welfare properties. Shiller has not specified any
particular social welfare function, and therefore claims must be evaluated
carefully. Even with homogeneous investors within each country, some coun-
tries may lose out from the introduction of macro markets, especially those
that provide substitute insurance. Realistically, these countries may also be
the ones with the greatest political influence to prevent macro markets.

Finally, while Shiller’s conjecture does yield a social optimum with ho-
mogeneous investors within each country, this is no longer true when they
are heterogeneous. Even though macro markets are the ones that innovators
will in fact establish, they are not socially efficient in general.

8 Conclusion

In this paper we analyze what happens if securities are designed not by a
benevolent social planner, or a derivatives exchange, or by companies issuing
financial assets based on the underlying hitherto nontraded cash-flows of
closely-held real assets, but by large traders such as investment banks and
hedge funds. We believe this corresponds closely to what happens in actual
markets, with asset innovations completing markets for certain groups of
investors (“exchanges”) rather than for the economy as a whole. For instance,
capital-protected investment vehicles have recently stood in the spotlight
again, despite the fact that such assets are largely redundant. Price-fixing
retail banks sell them at a markup to their clients, and investment banks sell
them at a markup to the retail banks. Investment banks in turn have the
ability to hedge them in the underlying markets.

We answer the question as to which assets we should expect to see in an
economy with a variety of exchanges. Interestingly, we are able to provide an
explicit and minimal answer: an exchange is offered to trade the difference
between its own state-price deflator and the depth-weighted economy-wide
state-price deflator. Only one asset is introduced per exchange.

Depth, or “liquidity,” plays a major role in this paper. If introducing
a new security was costly in our model, we would see that everything else
equal, the only exchanges on which innovation occurs are the deep exchanges.
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Shallow exchanges would be innovated upon if the gains from trade are large
enough to compensate for their shallowness. One consequence is the adage,
well-known to practitioners, that derivative securities can only be successful
if there is sufficient demand for them from some clientele, i.e. from the end-
users. This is evident in our model: no matter how many intermediaries trade
on an exchange, if the depth of the end-users tends to zero (for instance if
the number of investors tends to zero), trading on the exchange vanishes as
well.

We were not interested in just the equilibrium asset structure. The gen-
eral equilibrium nature of our setup also allows us to study welfare properties.
It is far from obvious if the securities introduced by arbitrageurs in order to
extract the largest profits from wedges in investors’ marginal willingness to
pay lead to a socially optimal outcome. Arbitrageurs are driven by mispric-
ings and depth considerations, not by socially beneficial gains from trade.
Still, we can show that if investors within an exchange have identical valu-
ations, so they form a homogeneous clientele, then an equilibrium structure
is socially optimal and independent of the degree of competition between ar-
bitrageurs. However, equilibrium allocations are not socially optimal and do
depend on the degree of competition. We also provide a necessary and suffi-
cient criterion that characterizes those investors who gain and those who lose
from said innovations. If investors within an exchange are heterogeneous, the
equilibrium security design is no longer socially optimal. The reason is that
arbitrageurs ignore the gains from trade within exchanges since they only
profit from inter-exchange reallocations of resources. The equilibrium asset
structure is therefore geared toward extracting the maximum inter-exchange
gains from trade, at the expense of intra-exchange gains from trade.

Our paper provides a rich framework for studying a number of issues,
some of which we have only barely touched on here. One is a more gen-
eral concept of liquidity. Arbitrageurs provide liquidity by mediating trades,
much in the same way as market-makers do. This suggests a measure of
liquidity that ties together the seemingly disparate notions of depth, bid-ask
spreads, trading volume, and gains from trade. We pursue this idea in Rahi
and Zigrand (2004b). Second, the arbitraging scenario we have studied in this
paper, wherein all arbitrageurs are simultaneously active on all exchanges, is
but one possible description of intermediation in a segmented economy. In
Rahi and Zigrand (2004a) we look at the case where arbitrageurs choose a
subset of exchanges on which to trade, and analyze the resulting distribution
of arbitrageur activity. We are able to derive simple rules as to the optimal
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exchanges on which to innovate. Quite intuitively, arbitrageurs gravitate to
those exchanges which, other things being equal, are deeper and stand to
gain most from trading with other exchanges.

A Appendix

Proof of Lemma 1 Using (3), we can write the Lagrangian for arbitrageur
n as follows:

n n n nl n
L= Z[pk . ﬁkRkyk’ . BkRkyk,\ ]THRkyk, . pA, II Z Rkyk, ,
k k

where 3/%\" is the aggregate supply of assets on exchange k of all arbitrageurs

but n. p?™ is the Lagrange multiplier vector attached to the no-default
constraints, and can be interpreted as a (shadow) state-price deflator of the
arbitrageur. The first order conditions are:

kTH[plc . ﬁlecyk,\n o QﬁkRkyk,n o pA,n] -0, Ee K (16)

together with complementary slackness:

p*" >0, ZR'“ Bn<0, and pm- =0, Vs. (17)

Rkylc,n
L)

The existence of the multipliers follows as usual from the linearity of the
inequalities, as shown in Arrow et al. (1961) for instance.

We first demonstrate that a CWE is symmetric, i.e. 4*™ does not depend
on n, and we can choose pA™ = p4 for all n. The reaction correspondence
of arbitrageur n, for given supply of the remaining arbitrageurs {yk’\”}, is
single-valued due to the strict concavity of the program. From the first order
conditions (16) and (17),

n 1 T _ T n
i — @(Rk IRM™RF Mfp* —p*" - ¥, keK (18)
and 1
pt =0, Y ﬁpk(ﬁ?k —p*") =D Ry <0 (19)
k k
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with complementary slackness state-by-state. In other words, there is some
pA™ > 0 satisfying the no-default and complementary slackness conditions so
that the unique y*" chosen if all others choose y*\" is given by (18). Many
feasible pA™ may exist, but any pA" and p4" that represent the reaction
function must satisfy R* IIpA™ = RE'TI5A", otherwise single-valuedness is
violated.

It follows that y*™ cannot depend on n at an equilibrium. Indeed, assume
to the contrary that an equilibrium {y*"} is such that y*" # y** for some k
and some pair (n,7n'). Then (18) implies that p™ # pA™'. The inequalities
(19) for arbitrageurs n and n' depend only on the aggregate quantities y*,
for all k. So given {y*"}, pA™ is also a valid shadow price for arbitrageur n.
But then RkTHpA’" = RkTHpA’"', implying that y*m = y5n'

Having established symmetry, we can easily solve (18) for y*" and verify
that (4) holds. This is in fact the unique solution. Given (4), (5) and (6)
follow from (17). ]

Proof of Lemma 2 Using (3) and (4),
T [ N
qk: — Rk II pk _ 7Pk:(pk: _ pA):|

.
=R T |p* — —= (0" —pA)]

= RF'II

Proof of Lemma 3 Using Lemma 1, Lemma 2 and (6), some straight-
forward algebra gives us the equilibrium profits of arbitrageur n, for asset

29



structure { R*}:

SR} =Y -y
1

I 4T k(. k A
= ——— ) o TP (p" —p?)
(14 N)? ;ﬂk

= ﬁ . ; % (p* _pA)THPk (pk —pA)

1 1
= s 2 1P =i
(1+N)? zk: Bk 2

Proof of Lemma 4 The Lagrangian for agent (k,4)’s optimization problem
is:

L= w(l)c,z' - qk Pk Zqz . gpk,z',l + 1TH(wk,i + ngk,z')

eK
_ %(wk,z + Rkek,Z)TH(wk,z + Rlcelc,z) + wk’ZTHZRKQOk’Z’e-
leK
The first order conditions give us
. 1 - I Z_
0 = (RIS R TTIM —p) 20)
RZTHWW' =q¢' = RéTHpRC, Vie K 1)
wk‘,i 2 O, ZRZQOM’Z 2 0 (22)
leK
'([)f,i . (z Re@k’i’£> = 0’ Vs e S (23)
teK .

Equation (20) gives us (10). Equations (21) and (22) are the usual no-
arbitrage conditions. In particular, R* ' TIy*4 is independent of (k,4). Indeed,
we can choose 1% to be the same for all (k, ), and p®° equal to this common
value. Thus pf¢ > 0.

We now show that p* = pf¢ satisfies (5) and (6). From (20), we see that
; 1
ZRkOk’ — Z @Pk(pk _pRC).
i k
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From market clearing,

ZRka,z - _ ZRngk,i,Z (24)
ki

kit

which is less than or equal to zero, by (22). Therefore, (5) is satisfied.
Next we need to establish that (6) holds with p# replaced by pf“. As-
sume that pf¢ > 0, some s. Then ¥%¢ > 0, all (k,4). By (23) we know

(S0 RAGH), = 0, all (k,0). By (24), (3, R*0") =0, ie.

=0

8§

[Z %Pk(pk _ pRC)

as desired.
On the other hand, assume now that (Z,” R’“Qk’i) < 0, some s. By

S

(24), (Zk,u Rzgok”"e) > 0, which itself implies that for at least some (k,7),

S

(D2¢ Rf™™) > 0. By (23), 95 is zero, and hence so is pf©.

We now prove uniqueness of restricted-consumption Walrasian equilibria.
It suffices to show that if z, y € RS are equilibrium pricing kernels, then they
induce the same pricing functional, i.e. P*¥(z —y) = 0, for all k € K. The
equilibrium allocation is then uniquely determined by (10). In order to save
on notation, we use the following shorthand:

1 k
A::Z@HP,
k
1 k_k
b::Z@HPp.
k

Then x and y satisfy the following system of inequalities:

Az —b>0, z'(Az—10)=0, (25)
Ay—b>0, y'(Ay—b)=0. (26)

We know that the system above does have a solution, for instance z = y = p*.
Since A is positive semidefinite, we have (z — y)TA(z —y) > 0, i.e.

1
y' Az < §(acTAx +y ' Ay). (27)
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Furthermore, since y > 0, from (25) and (26) we have y' Az > y'b =y Ay,
and similarly y " Az > 27b = 27 Az. Therefore, (27) must hold with equality,
ie. (x—y) Ax—y) =0, 0r 3, ge(z —y) 'IIP*(zx —y) = 0. Now since [1P*
is positive semidefinite for each k, this implies that (z — y) "TIP*(z — y)= 0,
or ||[P*(z — y)||2 = 0, for all k. Hence P*(z —y) = 0 for all k. n

Proof of Lemma 5 From (14),

ph = 2"+ NPy
#0

\OT + Z \k pk
k#£0

Premultiplying both sides by P°, and noting that S1 implies that P°P* = P*:

AOPY 4 Z Ak pk
k£0

ph = X0P%" + > N PIp,
J#0

ie,

D MEPEpR —pt) = 0.
k

Therefore, p®¥ = p* solves (13). Tt is easy to verify that p* =1 — 8- 3, QFw*,
so that p® > 0 if and only if N1 holds. Note that the inverse in the definition
of Q¥ exists since the matrix

NIt + ST ARRE(RETIIRF) IR
k#£0
is positive definite, hence invertible. n

In order to prove Proposition 1, we need to establish the following result.

Fact 1 ||P*v|y < ||v]le, for all v € RS. Moreover, |[P*v||s = ||v||2 if and
only if Pkv =v.

Proof :

| P*v||2 = v TTIRF (R 'TIRF) ' R* v
— (HI/QU)THI/ZRk (RkTHRk)—leTHI/Z(H1/2U)
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Defining z := 1'%y and y := II'/2P*y = Hl/ZRk(RkTHRk)_leTHI/Qx, we
see that ||P*v||2 = x -y = ||z]|||y|| cos(#), where 8 is the angle between z and
y, and where ||z|| :== /z-2. Nowy-y=2-y > 0. If z -y = 0, the result
follows. Otherwise we get ||P*v||3 = = - y = ||z||\/z -y cos(f) which we can
solve for z-y = ||z||? cos?(6). We therefore find that ||P*v||2 = ||z]|? cos?(8) <
2> = v v = ||v]|3.

Now suppose that ||P*v||y = ||v||2. We want to show that Pfvy = v. If
-y =0, then -y = ||P*v|2 = ||v||? = 0, so that P*v = v = 0. If, on the
other hand z -y > 0, then ||P*v||; = ||v||2 implies that cos?(d) = 1, i.e.  and
y are collinear. But z-y =1y -y # 0. Hence x = vy, or P¥y = v. [

Proof of Proposition 1  Proof of 1 = 2: Suppose that condition S2(b)
holds, i.e. p* — p* € (RF), k € K. Then, from Lemma 6, we can choose
p? = p*. Using Lemma 3, and noting that P*(p* —p*) = p* —p*, equilibrium
arbitrageur profits are given by

1 1
= ——n ) I =Y (28)
(1+N)2 Zk:ﬁk ’

In order to establish that the proposed asset structure is optimal for every
arbitrageur, we need to show that

D ONE = pME > D NP - M) 5. (29)
k k
Fact 1 implies that

DN =M = ) A IPRRE - )]s (30)
k k

Furthermore, noting that " Az —y" Ay = (x — y) " A(x + ), for any vectors
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x,1y, and any square matrix A, we have

ZA'“IIP'“ Pz = Z/\kIIP’“ p* =Yl

—Z/\k THP'“(p —p*) = (" = p") TP (" — p?)]
_Z)\’“ pY) 'TIIP*(2p* — p* — p?)
_ Z/\k P TIPE (" — ) +2(p* — pY) T Y NFPE(pF — pt)

:ZAk||Pkp )2 -2 I NPEGE —pt)  (using (6))
k k
>0

where the last inequality follows from (5) and the fact that p* > 0. In con-
junction with (30), this implies (29).

Proof of 2 = 1: If S2(b) is violated, (30) holds with strict inequality due
to Fact 1, implying that profits are strictly lower than (28).

Proof of 1 = 3: We show that { R¥} is a Nash equilibrium of the security
design game, provided S2(b) holds. Suppose arbitrageur n deviates by intro-
ducing additional assets with payoff matrix D* on exchange k, k € K. Let
y%n be arbitrageur n’s supply of the additional assets on exchange k. Note
that we allow the deviating arbitrageur to have monopolistic access to these
assets, so that he is the sole supplier. Using (3), we can write the Lagrangian
for the optimization problem of arbitrageur n as

= Z[ ﬂk Rkyk+Dk kn)i| I [Rkyk,n+Dkylzj,n
— p Y (RFy®" + DEyR™),
k

where p is the Lagrange multiplier vector on the no-default constraints. The
first order conditions with respect to y*" and ykD’" are RF'ITY = 0, and
D*'TIY = 0, respectively, where

Y::pk—ﬁkRkyk’\”—2ﬁkRkyk” Qﬁka kn—,U,.

It is easy to verify that a solution to the problem is p = p*, yD’" =0, and y*"
equal to arbitrageur n’s supply on exchange k given the initial asset structure
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{R*}, namely RFyF" = W(p’c —p*), k € K. The no-default constraints
hold with equality. Complementary slackness is satisfied since p* > 0. This
solution is in fact unique since the program is globally concave. Thus the
deviating arbitrageur has nothing to gain by deviating.

Proof of 3 = 1: An asset structure {R*} that does not satisfy S2(b) is
not a Nash equilibrium since introducing the asset p* — p* on each exchange
k where it is not already available, (strictly) increases the profits of all ar-
bitrageurs, provided they all trade the additional assets. Introducing these
assets must therefore increase the payoff of an individual arbitrageur who
has monopolistic access to them. [

Proof of Proposition 6 Suppose the initial asset structure { R*} satisfies
S2. Then, from Lemma 6, we can choose p* = p*. Therefore, || P*(p* — p?)||2
= ||P*(p* — pY)|l2 < ||p* — p*|l2, using Fact 1. The result now follows from
Proposition 5. |

Proof of Proposition 7 Let the pre- and post-innovation asset structures
be, respectively, {R*} and {RF}, with projection matrices {P*} and {P*}.
Since (R*) C (RF), we have P¥P* = P*. Moreover, both asset structures
satisfy S2, so that we can choose p?* = p* in both cases, from Lemma 6. Let

N
1+ N

¢H= (P = ") + (" —p").

We have ||PECk||, = || PFPFCF||y < ||P¥¢%)o, using Fact 1. The result now
follows from Lemma 8. [
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