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This paper estimates the implied stochastic process of the volatility of the Swiss market index
(SMI) from the prices of options written on it. A GARCH(1,1) model is shown to be a good
parameterization of the process. Then, using the GARCH option pricing model of Duan (1991),
the implied volatility process is estimated by a simulation minimization method from option price
data. We find the persistence of volatility shocks implied by options on the SMI to be very close to
that estimated from historical data on the index itself. Comparing the performances of the implied
GARCH option pricing model to that of the Black and Scholes model it appears that the overall
pricing performance of the former is superior. However the large sample standard deviations of the
out-of-sample pricing errors suggest that this result should be taken with caution.
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A central hypothesis in the derivation of the Black and Scholes (1973) option pricing model is that
the returns on the underlying asset are lognormally distributed with a mean and volatility that are
constant through time. However, it has been widely recognized since Mandelbrot (1963, 1967) and
Fama (1965) that asset returns possess both fat-tailed distributions and that squared returns appear
to cluster. These characteristics are interpreted as evidence of the stochastic volatility of financial
assets. The assumption of constant volatility has since been relaxed by numerous authors. For
example, Merton (1976) examines the case of a financial asset whose price follows a mixed jump-
diffusion process. Hull and White (1987) propose a more general stochastic volatility model in which
the price of the underlying asset and its variance follow independent diffusion processes. Rubinstein’s
(1983) model postulates a positive relation between the price of the asset and its variance. Conversely,
the CEV model (Constant Elasticity of Variance) of Cox and Ross (1976) assumes that the variance of
the stock is negatively related to the evolution of its price. Finally, over the last fifteen years ARCH
(Autoregressive Conditional Heteroskedasticity) models have been widely applied in the financial
literature and specifically in the option literature. We owe the ARCH model to Engle (1982) and its
generalized version called GARCH to Bollerslev (1986). These models assume conditionally normally
distributed returns with a time-varying conditional variance, and appear to reconcile the stylized facts
of financial time series better than more “classic” time series models (such as ARMA models). The
initial success of ARCH models in capturing these nonlinearities in the financial series has led to
many extensions of the original model.! At the same time we witness a rewriting of the economic

models, such as option pricing models, to incorporate this progress. The GARCH option pricing

See the excellent reviews by Bollerslev, Chou and Kroner (1992) and Pagan (1993) for further discussion.



model by Duan (1991), that we use in this paper, is an example of this.

Volatility and its measurement are thus of great importance in finance and in option pricing in
particular. In option pricing, two methods are now commonly used to obtain a good ex-ante measure
of the volatility of returns. The first method is known as the direct method. On the basis of market
returns a statistic such as the standard deviation is calculated and is then used as a forecast for the
future volatility. The indirect method consists in using the prices of the contingent assets to extract
a measure of the volatility. Latane and Rendleman (1976) were the first to propose this approach
based on the Black and Scholes option pricing formula. The idea is to solve the pricing formula for
the implied volatility given by the market price of the contingent asset.

In this paper, we examine a series of daily returns on the Swiss Market Index (SMI), which is a
continuously computed stock market index that is market value weighted and contains the 23 stocks
with the largest market values, and a series of call and put options on this index which were traded
on the SOFFEX (Swiss Options and Financial Futures Exchange). The Swiss financial markets differ
in various ways from the US markets on which most of the studies in applied finance are conducted.
Aside from the obvious difference in size, the Swiss stock market is highly concentrated and its degree
of trading activity is severely segmented by firm size as well as by ownership structure.? The Swiss
stock market is also relatively young, for example, the SMI was not computed prior to July 1988.
The Swiss options market is also very recent. The SOFFEX started trading American call and put
options on 11 individual blue chip stocks on May 19, 1988. Contrary to the US experience, options
on the index [which are considered as more complex instruments than index futures - especially if
they are American] were launched first on December 7, 1988, followed by SMI futures on November

9, 1990. A thin initial trading activity and irrational early exercise policies led the SOFFEX to

?Bruand and Gibson (1995) report that in July 1995, for example, the 10 largest companies accounted for more
than 60% of its total capitalization. They also stress the fact that for large, genuinely public, companies, bid and ask
spreads represent less than 0.5% of the stock’s bid price while they reach 3 to 4% of the bid price in small corporations,

and that it is not uncommon, for some small firms’ stocks, to observe only one transaction per week.



convert the options on the SMI to the European variety during the second half of 1990. We show
that a GARCH(1,1) model is a good representation for the daily return series. In regard to results
obtained on other markets, notably the US stock market, our estimations of the volatility by the
direct method reflect a low persistence of shocks on the variance of returns on the SMI. We also apply
the indirect method, in the framework of Duan’s (1991) GARCH option pricing model, to options
written on the SMI. The implied volatility model that results can then be used to test the validity of
a GARCH specification and to evaluate European options. Duan’s GARCH option pricing formula
does not allow for an analytical solution; therefore, we use simulated option prices to obtain an
estimate of the parameters of the implied volatility process. The implied GARCH model is the one
whose parameters minimize a loss function that measures the distance between the simulated prices
and the observed market prices. The implied volatility process we obtain suggests a persistence in
variance similar to that obtained by the direct method. Finally, comparing the out-of-sample pricing
errors of the implied GARCH model to those of the Black and Scholes model, it appears that the
former is superior in evaluating options on the SMI. However, the large sample standard deviations
of the out-of-sample pricing errors suggest that this result should be taken with some caution.

The study we conduct in this paper is similar to that by Engle and Mustafa (1992) on the S&P500
index. Their results show that a GARCH specification is not superior in general to that of the Black
and Scholes model. However, they advocate that for long-lived options their model provides better
pricing. Concerning the Swiss market, Chesney, Gibson and Loubergé (1993, 1994) show that the
Black and Scholes, CEV and stochastic volatility models are inadequate for a satisfactory pricing
of European options on the SMI. Adjaoute (1993) obtains similar results for options on individual
Swiss stocks.

The rest of this paper begins in Section 2 with a brief presentation of ARCH models. We define
the concept of persistence in variance and consider the estimation of these models. We present the

GARCH option pricing model of Duan in Section 3. Section 4 contains the empirical application of



this model to options on the SMI and Section 5 some concluding comments.

5 DUFK Prghov

We suppose that our dependent variable +,; is generated by
+, = %,0 + 0, | = 1cééécAc (1)

where %; is a & x 1 vector of lagged endogenous variables and exogenous variables, and 0 is an & x 1
vector of parameters. The ARCH model characterizes the distribution of the stochastic error term
0; conditionally on a set of lagged variables W; 1 = {+;_10%;_1C+;_2C%;_ oCé€é}. In his original model,

Engle (1982) assumes a conditional normal distribution of the error term,
Ot ’\Ijtfl ~ N(OC Ot) C (2)

where

Oy = Ko + K107 + Ko07 5 + - 4+ K,07_ ¢ (3)

with Ko = 0 and k; > 0 for & = 1céééc”, in order to ensure a positive conditional variance. Here, *
is the order of the ARCH process.

The appeal of model (1)-(3) is that the conditional variance O, depends on the past ¥, ; and
is a positive function of the size of past errors in absolute terms. Thus a large positive or negative

error tends to be followed by a large (in absolute terms) error, and similarly a small error tends



unconditional moments, which allows the model to be consistent with Mandelbrot (1963) who found
evidence that the distribution of financial asset returns may well have infinite variance.

It rapidly became apparent in applied work that the specification of the conditional variance as
an ARCH(q) called for a large number of lags and therefore the estimation of numerous parameters
subject to inequality constraints. In consequence, Bollerslev (1986) proposed a generalization of the
ARCH model - which he termed GARCH - that allows for a parsimonious representation of a high-
order ARCH model. The conditional variance function of a GARCH(p,q) model has the following
form

O, = Ko + K02 | + -+ quffq +0,0;1 +€e6+q,0;, (4)

with

ko - 0
k: > 0 for& = 1céééc”

q, > 0 for & = lcéééeRe (5)

where the constraints (5) ensure a positive conditional variance.?

Engle and Bollerslev (1986) introduced the integrated GARCH process (IGARCH). This model
is a GARCH process in which 23:1 k; +> 7 ,q, = 1. In this case, a contemporaneous shock
persists indefinitely in future conditional variances. For agents in the options market, the degree of
persistence of the shocks on the variance is an essential element.* In effect, they will be prepared to
pay a higher price for long-lived options if they perceive that the shocks are large and sufficiently

permanent relative to the life of the options.

3Nelson and Cao (1992) show that Bollerslev’s original constraints (5) can be violated without, however, the
conditional variance function ever being negative. They proposed less restrictive constraints that do not impose the

positivity of each parameter of (4).
4Engle and Mustafa (1992) show that in the case of a GARCH(1,1) the degree of persistence depends essentially

on the value of a; + 3.



The finding of a very high degree of persistence for financial data is not universal. Although
Engle and Mustafa (1992) obtain a very high degree of persistence for several individual stocks of
large firms on the US stock market and for the S&P500 index, the results of Engle and Gonzalez-
Riviera (1991) suggest that the degree of persistence depends on the size of the firm, smaller firms
exhibiting a lower degree of persistence than larger ones. Furthermore, according to Lamoureux and
Lastrapes (1990), the high degree of persistence that is observed could be due to a misspecification of
the conditional variance. They suggest that structural changes in the unconditional variance of the
process produce volatility clusters that result in a high degree of persistence. Allowing the constant
in the conditional variance function to vary on different sub-periods of their sample, they obtain a
lower degree of persistence as compared to that of a model without structural changes.

Estimation and testing of ARCH-type models can be performed using standard maximum like-
lihood methods. Assuming conditional normality as above in (2), the single period log likelihood

function - leaving out the constant terms - is given by

1 102
B) = —=logl; — ==+
it (B) QOgUt 20,

c (6)

where B = (Kot kjcéééck,cq,cééécq,)’ is the vector of unknown parameters. In the GARCH(p,q)
model the first max(Rt”) observations are used as starting values. Therefore the log likelihood
function we maximize is (6) summed over the A — max(Rt”) remaining observations. The excluded
observations enter indirectly through 0;.

We use the BHHH algorithm to compute our estimates. Let B® be the parameter estimates given

by the 8" iteration, then

1
. | Y., Y %
gli+1) _ g(®) . ot Tt ot

+b: _veve ) 2 vg" (7)

where Y,,*YB is evaluated at B?”) and b is a variable step-length.” The last iteration of BHHH yields a

SMcCurdy and Morgan (1988) give the expressions of the partial derivatives of a more general model of type

GARCH-M.



consistent estimate of the asymptotic variance-covariance matrix, given by A= 3, (Y,+*YB) (Y,*YB')] -

6 Wkh JDUFK rswirqg sulflgqj prgho

To apply the indirect method to get a measure of the volatility of returns we need first to define an
option pricing model. This model will provide us with a theoretical option pricing formula; that is, a
functional relationship between the price of a contingent asset and the underlying asset’s volatility.
We can then solve this function for the implied volatility resulting from the market price of the
option. The theoretical option pricing formula we use in this paper is that which follows from the
GARCH(p,q) option pricing model proposed by Duan (1991).

Let ¥, in a discrete time economy, be the price of the financial asset at time |. Its return rate is

assumed to be conditionally lognormally distributed, i.e.,

log T,
f

— >t + Otc (8)
t—1

where 0; has mean zero and conditional variance 0;. We assume that 0; is a GARCH(p,q) process,

ie.,
Ot ’\I/t—l ~ N(OC ﬂt) (9)
with
q p
Gt = k[) + Z ij?_j + Z qkatfké (10)
j=1 k=1

Now suppose one would like to determine the price & of a call option written on ¥é Duan (1991)
shows that if the representative agent of this economy maximizes expected utility and that his utility
function is time separable, then under any of the following three conditions, the “risk-neutral pricing”

approach [see below] is valid:

(i) the utility function exhibits constant relative risk aversion and the variations of the

logarithm of aggregate consumption follow a GARCH(p,q) process;
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(i) the utility function exhibits constant absolute risk aversion and the variations of

aggregate consumption follow a GARCH(p,q) process;

(iii) the utility function is linear.

When any of (i)-(iii) hold, we can get an option pricing formula that does not depend on individual
preferences.’

The risk-neutral pricing approach, which is central to modern option pricing theory, is applied in
the context of two very different classes of models. The first assumes continuous time transactions
and imposes no other constraint on the agent’s preferences other than non-satiation. The second
class of models, of which Duan’s is part, assumes discrete time transactions and imposes stronger
restrictions on the agent’s preferences. In continuous time models, risk-neutral pricing relation-
ships follow directly from the assumptions of non-satiation and the absence of arbitrage. In effect,
when transactions take place continuously, the dynamics of the price of the underlying asset can be
described by an Itd process, and the no-arbitrage condition implies a partial differential equation
whose solution does not depend on the agent’s preferences. Cox and Ross (1976) show that, when
it is possible to construct a portfolio composed of the contingent asset and the underlying asset in
such proportions that its instantaneous return is non-stochastic, then the pricing relationship that
results is risk-neutral.

In discrete time models, it is, in general, not possible to construct such a portfolio. That is why
stronger restrictions than non-satiation are required to obtain a risk-neutral pricing relationship.
Rubinstein (1976) and Brennan (1979) establish different sets of conditions on preferences and dis-
tributions of the underlying asset under which the risk-neutral pricing principal is valid. Conditions

(i)-(ili) above are a generalization of their results to the case where the returns follow a GARCH

process.

Notice that expression (8) is not necessarily independent of individual preferences because the expected return i,

which depends on the agent’s degree of risk aversion, is present.
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Under certain conditions, then, the risk-neutral pricing principal is valid. Duan shows that, in a

risk-neutral world, the model (8)-(10) above becomes

T, 1.
1 =0.— =07 +1 11
Og ftfl 2 t + t ( )
with
1 [Wey ~ N (0cT) (12)
and
q p
0 =ko+ Y K17+ 0,07 (13)
j=1 k=1

where 0, is the instantaneous risk-free rate. The direct consequence of a passage to a risk-neutral
world is that the return rate of the financial asset no longer depends on >,.” From (11) we have that
the price of the underlying asset at maturity A is
1 T y T ,
Fr=TFrexp | (A —[)o. - 53;1 0; + s;ls e (14)

It follows that the price of a European call, at time |, under a GARCH(p,q) specification is
a¢ =e T _*max (Fy — gc0) |¥,]¢ (15)

where g 1is the strike-price, A is the time of maturity, and .* the expectation in the risk neutral
world.®

Duan’s specification of the instantaneous return rate as conditionally lognormal is very important
since it allows for the Black and Scholes model to be a particular case of the GARCH(p,q) option
pricing model. To see this, set p and q equal to zero; the model then is simply the Black and Scholes

model, with constant mean >, = > and constant variance U; = Ky. Another interesting property of

"Notice that the GARCH(p,q) parameters are invariant to the change of probability measure.

8The price of a European put, with otherwise the same characteristics as the call, can be derived through the

put-call parity relationship.
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this model is that the instantaneous expected rate of return of the underlying asset behaves itself as

a GARCH(p,q)-M process 0. — 505, which is negatively correlated with the conditional variance 0;.

1
2
Finally, there exists no analytical solution for (15); that is why in Section 4.3. we appeal to

simulated option prices to estimate the parameters of the implied volatility process.

7 Hwlpdwlrqg ri wkh lpsolhg yrodwlolw] sdudphwhuv

This section is concerned with the estimation of the parameters of the implied volatility process of
the Swiss market index. First, we discuss our data set in Section 4.1. Then we show, in Section 4.2,
that a GARCH(1,1) model is a good representation of the SMI daily returns. Finally, on the basis of
this specification, in Section 4.3 we estimate the volatility process of the returns on the SMI, implied

by simulated option prices.

714 Wkh gdwd

Our data set covers a four-year period, running from January 1, 1992, through December 31, 1996.
Over the entire period we have the daily closing values of the SMI which we use in our estimation
of the volatility process by the direct method. The indirect estimation using option prices will be
done on a two year sub-period of the data set, running from September 30, 1992, through September
29, 1994. Over this sub-period we have the following additional series: the daily closing prices of all
options on the SMI, their respective maturities and strike prices, the daily trading volumes of each

option and the Euro-Swiss-Franc interest rates for all relevant maturities.

715 Hwlpdwlrqg ri wkh yrodwlolw] surfhw

A prerequisite to applying the GARCH option pricing model is that the underlying asset’s returns

behave like a GARCH process. We therefore test for the presence of ARCH in the daily returns

12



on the SMI. A simple way to test for ARCH, proposed by Bollerslev (1986), is to use the standard
Box-Jenkins method, usually applied for the identification of the order of AR or ARMA processes,
but here applied to the squared series or squared residuals rather than to the series itself. For an

ARCH(q) model, the partial autocorrelation function €, is of the form

€., # 0O & <A

This is identical to the partial autocorrelation function of an AR(q) process for 02. Furthermore,
a GARCH(p,q) process is an ARMA[max(p,q),p] for 02. Tt follows that the partial autocorrelation
function of a GARCH process, as for an ARMA process, is in general non-zero but progressively
decreasing.’

Let F; be the closing value of the SMI on day |. We are interested in the daily return rate,
0; = log (F,*F,_), for which we have 1304 observations.!’ Figure 4.1 summarizes the evolution of
the daily returns on the SMI from January 1, 1992, to December 31, 1996. Notice that the mean
of the series appears to be constant whereas the variance clearly changes over time. Also, some
volatility clustering is present in the data.

As suggested above we first estimate an OLS model, i.e., we assume, as in the Black and Scholes
model, that the volatility is time invariant and regress the daily return on a constant. Tables 4.1
and 4.2 present the results of these estimations on the historical data for the entire period covered

by our data set and the sub-period respectively.

*** FIGURES 1 AND 2 HERE ***

**AXTABLES 4.1 AND 4.2 HERE ***

9The autocorrelation function of GARCH processes is also related to the autocorrelation function of ARMA models.

The results with the autocorrelation function were essentially the same and are not reported.
10The sub-period, from September 30, 1992, to September 29, 1994, contains 522 observations.
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In these tables, for each model, we give the estimates of the relevant parameters with the correspond-

ing t-statistics in parentheses and the values of the maximized log likelihood denoted by log,.

**¥*XTABLE 4.3 HERE***

The OLS estimates of the constant, which are of minor interest to us, are fairly similar in both
samples with the exception that in the full period the parameter estimate is significantly different
from zero at the 5% level, whereas it is not in the sub-period. In Tables 4.3 and 4.4 we present, for
each of the models we estimate, the partial autocorrelations of the squared standardized residuals up

to the fifth lag and the skewness and kurtosis coefficients of the standardized residuals #, = 0,*(; 2,

**¥XTABLE 4.4 HERE***

In both samples, for the OLS specification, only the partial autocorrelations at the two first lags
are larger than twice their asymptotic standard error. The skewness coefficients are significantly
non-zero, thus the unconditional empirical distributions are asymmetric. The kurtosis coefficients
are clearly larger than 3, which indicates a fat-tailed empirical distribution of the returns over both
the entire period under consideration and the sub-period.!’? These properties suggest the presence
of ARCH in the data. The fact that only the two first partial autocorrelations are significantly
different from zero suggests that an ARCH(2) model is an adequate representation of the errors. The
estimation of both an ARCH(1) and ARCH(2) specification confirms these indications.

In the case of an ARCH(1) model, the estimated ARCH parameter, K;, is highly significant in
both samples. It is somewhat larger for the sub-period than for the entire sample, whereas the
constant in the conditional variance function, Kg, is similar in both. The statistics on the squared

standardized residuals, # = Of*ﬁt, given in Tables 4.3 and 4.4, indicate that, in both samples, the

1A Jarque-Bera normality test, based on the skewness and kurtosis coefficients, rejects, at any reasonable level, the

null hypothesis of normally distributed residuals in both samples. See Jarque and Bera (1980).
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partial autocorrelations at the first lag are no longer significant at any reasonable level. However,
both tables show that the partial autocorrelations corresponding to the second lag remain larger
than twice their asymptotic standard errors. Both the skewness and kurtosis coefficients are lower in
magnitude as compared to those of the OLS residuals but they still betray a non-normal unconditional
distribution of the residuals.'? This suggests that an ARCH(1) specification does not entirely capture
the nonlinearities present in the data.

We now turn to the estimates of the ARCH(2) specification. In both the samples covering the
entire period and the sub-period, the estimates of Ky and k; have varied only slightly from those
obtained in the ARCH(1) model. The results indicate that these parameters remain significantly
different from zero in each sample. The estimates of the second ARCH parameter, Ko, are quite
similar in size in both samples, that of the entire period being significantly different from zero at the
5% level, whereas that corresponding to the sub-period is only significant at a slightly higher level.
For both periods under consideration, a likelihood ratio test rejects comfortably the null hypothesis
of a model with homoskedastic, independent and normally distributed errors against the ARCH(2)
alternative. Also the same test rejects easily, in both samples, the null of an ARCH(1) model
against an ARCH(2) alternative. The statistics on the squared standardized residuals indicate that
no partial autocorrelations are larger than twice their asymptotic standard error in either sample.
Surprisingly, for both periods under consideration the skewness and kurtosis coefficients have either
remained unchanged or increased in magnitude, although not significantly. However we argue that
this specification captures satisfactorily the presence of ARCH in the daily returns on the SMI.!3

The GARCH(1,1) model we estimate does even better. Tables 4.1 and 4.2 indicate that all the

12 Again a Jarque-Bera normality test leads to the rejection of the null at any reasonable level.

13Tt is well documented in the applied finance literature that ARCH-type specifications assuming conditionally
normally distributed errors often do not capture entirely the excess kurtosis in the data. In consequence, several
authors have suggested that the assumption of ¢-distributed errors together with a GARCH model should be preferred.

See, for example, Baillie and DeGennaro (1990).
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parameters of this model are highly significant. The constants in the mean equations of both periods
remain similar to those estimated in the previous specifications. The constants in the conditional
variance equations are much smaller than in the OLS or ARCH specifications, and are equal in both
samples. Finally, both the ARCH parameter, k;, and the GARCH parameter, q,, are similar across
samples. In consequence, the degrees of persistence, in each period under consideration, are very
similar and indicate a fair amount of persistence of volatility shocks on the daily returns of the
SMI. However, the persistence remains lower than that observed on the US stock market.'* The
statistics on the standardized residuals resulting from the estimated GARCH(1,1) model confirm
that it is a good representation of the volatility process of the daily returns on the SMI. None of the
partial autocorrelations are significantly different from zero at any reasonable level, in either sample.
The skewness and kurtosis coefficients still point to a non-normal unconditional distribution of the
residuals on both the entire period and the sub-period and again this is confirmed by a Jarque-Bera
normality test. However, for the sub-period, the kurtosis is now significantly reduced in comparison
to the three alternative models we estimate and, taking into account the value of the corresponding
asymptotic standard error, is relatively close to 3, the kurtosis coefficient of a normal distribution.
This suggests that a GARCH(1,1) specification captures the nonlinearities in the data better than the
ARCH(2) model. Finally, Tables 4.1 and 4.2 indicate that the values of the maximized GARCH(1,1)
log likelihoods are substantially greater than those of the ARCH(2) log likelihoods, therefore, since
both models demand the estimation of the same number of parameters, any model selection criteria
would select the GARCH(1,1) specification over the ARCH(2) specification. Thus, on the basis of
this representation of the daily returns on the SMI, we will in Section 4.3 use Duan’s GARCH option
pricing formula to estimate the parameters of the implied volatility process.

To conclude this section on the representation of the historical data, it is interesting to compare

the evolution of the estimated conditional variances of the GARCH(1,1) model in Figure 4.2 to that

1 Engle and Mustafa (1992) obtain, for the S&P500 index, a; + 31 = 0.998.

16



of the daily returns presented in Figure 4.1.

716  Hwlpdwlrq ri wkh sdudphwhuv ri wkh lpsolhg yrodwlolw] surfhvy

We established in the previous Section that a GARCH(1,1) model is a good representation of the daily
returns on the SMI. Thus, following Duan (1991) we can apply a GARCH(1,1) pricing model of the
options on the SMI. This “risk-neutral” model is given by equations (11-15) above. Now let *; be the
observed market price of an option at time | and let =& (Fpcgew), where w = (Kot kicq,)’ € © C R3,
be the theoretical price for this same option, i.e., (15) for a call option. Consider the nonlinear least

squares estimator Wy that minimizes the objective function

urp(™cFow) = chgcw)} : (17)

IIM’%

Unfortunately, in our model there exists no analytical solution for =& (¢ gcw)c so that (17) cannot
be computed. Therefore, we are going to approximate the theoretical options prices numerically
using Monte Carlo sampling. This type of estimation procedure using simulation methods has been
widely discussed in the econometrics literature [see for example, McFadden (1989), Pakes and Pollard
(1989), Gourieroux and Monfort (1991, 1993), Laroque and Salani¢ (1989), Laffont, Ossard and
Vuong (1995)]. Since ™ (Frcgew) is not readily available, we replace it with an unbiased simulator
*G(Fr,0Q0W), ie., a simulator for which . |*S(Fr,cgow)| = “F(Fregew). We construct the
simulators for the GARCH(1,1) option prices as follows: using the current Euro-Swiss-Franc interest
rate for 0, and the estimate of O, from the historical fit of the GARCH(1,1) model, we simulate
the value of the underlying asset at maturity for each option under consideration using equations

(11)-(15), by taking random draws of the variable 1,.1> This procedure is repeated ? times to obtain

Invoking the theoretical invariance of the parameters of the GARCH(1,1) process when applying the risk-neutral
valuation principal, we assume that the series of estimated conditional variances hy provide us with good starting

values for the simulation of the underlying asset.
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the simulated theoretical price of the option using

. 1 n
af (Fracgow) = se~ 97y “max (Fr; — ge0) (18)
’ i=1
for the calls, and
1 n
&7 (Frocgew) = 56"y “max (g — Fr00) (19)
’ i=1

for the puts, where ? is the number of simulations, chosen very large. Clearly, as ? goes to infinity
the simulators &F (Fr,,cgow) and &F (Fp,,cgew) converge to &F and &, the theoretical prices of
a call and put option respectively.

Replacing = ¢ (Frcgew) in (17) by these simulators we construct an approximate objective func-
tion

T
1 : 2,
up("cFew) = N > {'t — 'f(fT,ncgcw)} : (20)
t=1

The simulated nonlinear least squares estimator W, is the value of w that minimizes (20). Note
that we use different drawings 1,,, § = 1céééc?, for different observations |. However, in the esti-
mation procedure, when W changes the same drawings 1,,, d = 1céééc?, and | = 1céfécA are used

for the computation of (20). As the number of simulations ?



sequence of approximate estimators W,
VA (W —Wo) = N(Ocag 'Ugag ) (21)

as first ? — oo and then A — oot and

o Yu, - Yu, -
U = -O{YW( ¢ Fewp) Yw’< cfcwo)}
Yiu; .
a = -0{_YWYW'( cfcwo)}c

where U; is defined by (17) for A = 1, and Wy denotes the true value of the parameter.

Notice that minimizing the objective function (20) with respect to W produces an inconsistent
estimator for any fixed number of simulations. However we argue that with the number of simulations
we use our results are robust to the simulation error.'

For the estimation of the parameters of the implied volatility process we use a set of put and call

European options on the SMI, of different maturities and strike prices. The value at maturity of the

underlying asset is simulated ? = 500 times for each option. In order to reduce computation time,

L aroque and Salanié (1989) use n = 50 and n = 100 respectively for their Fix-Price model with and without the
introduction of micro markets.

Several authors have proposed estimators that are consistent under a fixed number of simulations. Gourieroux
and Monfort (1991, 1993) propose an estimator based on simulating the first-order conditions, using an additional
independent set of random draws &5, i = 1,...,n to simulate the partial derivatives Q% (Xr, K,0)/00. However,
they assume that their simulator is twice continuously differentiable with respect to 6. Another drawback of this
method is its computational burden. First, simulating the partial derivatives using a different set of random draws
increases computation time. Second, the estimator is the value of 6 that sets this set of simulated first-order conditions
to zero. Finding the root of a set of simulated equations is not an easy task especially when the derivative of these
equations has to be evaluated numerically. Laffont, Ossard and Vuong (1995) propose a different estimator that is
consistent under a fixed number of simulations. Their estimator is the value of # that minimizes a simulated nonlinear
least squares objective function adjusted by the sample variance of the simulator. However they also assume that the

simulator is twice continuously differentiable and use importance sampling to achieve this required property.
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we kept only 1006 options in our sample; these are all near the money.!”
The objective function (20) is minimized using a BHHH algorithm with numerically computed
first derivatives. The estimated parameter values are given below with the corresponding estimated

asymptotic t-statistics in parentheses:

ko =06000009 , k; =08087068 , g, =08804530 &
(3.43) (2.43) (18.67)

Table 4.5 gives the estimated asymptotic correlation matrix of the parameters. The estimated
parameters of the implied GARCH(1,1) volatility process are very similar to those obtained by the
direct estimation on historical data. Both the constant, Ky, and the GARCH parameter, q,, are
slightly larger whereas the ARCH parameter, K;, is smaller. Also, the asymptotic standard errors
we obtain are similar to those obtained above and the parameters are clearly significantly different
from zero at a 5% level. This result indicates that the persistence of volatility shocks on the daily
SMI returns implied by option prices is very close to that obtained from historical data on the index

itself.

**¥* TABLE 4.5 HERE ***

To get an idea of performance of the implied GARCH(1,1) option pricing model we turn now to

the resulting average relative valuation errors given in Table 4.6.'® In general, our model overvalues

1"The observations we include in our sample are randomly drawn out of a subset of over 44’000 observations. Two
observations, a put and a call, were drawn for each trading day between 9/30/92 and 9/29/94. The subset included
only options actually traded on the day in question, that differed by 10% or less from par and with a period to maturity

of at least 15 days. Thus we are assured of only considering observations with sufficient relevant information content.

I8Relative valuation error = (theoretical price - market price) / market price. A referee has pointed out that use of
relative valuation error may lead to a serious misrepresentation of the valuation error for deep in-the-money options.
Nevertheless, this is the standard approach used by Engle and Mustafa (1992), for example.

We define near maturity options as those with a month or less to maturity, mid maturity as those with between one

and three months to maturity, the remainder being considered as long maturity options.
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call options and underestimates the prices of put options. Overall it appears to have more difficulty

with calls. Engle and Mustafa (1992) obtain a similar result.

**¥* TABLE 4.6 HERE ***

For calls the smallest biases are for the near maturity options whereas for puts longer maturity
options are better priced. The sample standard deviation of the average relative valuation errors of

the GARCH(1,1) model are given in Table 4.7.

**¥* TABLE 4.7 HERE ***

At this stage, a further analysis of our model necessitates the consideration of another model
as reference. The Black and Scholes model is a natural candidate. To measure the performance
of our model, we calculated the average relative valuation errors of both our implied GARCH(1,1)
model and the Black and Scholes model on a sample of 10,728 options that were not included in the
estimation sample.!® To price an option at time |, the volatility used in the pricing formula is the
estimate of O; from the historical fit of the GARCH(1,1) model. These errors and the corresponding
sample standard deviations are given respectively in Tables 4.8 and 4.9 for the implied GARCH(1,1)

model and Tables 4.10 and 4.11 for the Black and Scholes model.?°

*** TABLE 4.8 AND 4.9 HERE ***

Overall our implied GARCH(1,1) model undervalues both classes of options. Contrary to the

results in the estimation sample, the GARCH(1,1) model does better overall for call options in the

9The observations included in this out-of-sample test were also chosen such that the option had a maturity of at

least 15 days and was actually traded on the day in question.

20We define near the money options as those within 10% of par, the remainder being either in or out of the money.

21



out-of-sample test. The undervaluation of put options appears to be a more robust result than that
of calls. All long-lived calls and those of mid maturity that are out of the money appear to be

overvalued, whereas only short-lived in the money puts are slightly overpriced by our model.

***% TABLE 4.10 AND 4.11 HERE ***

The Black and Scholes model overprices the bulk of call options and underprices puts, whereas
our implied GARCH(1,1) model undervalues both classes of options. Overall, the Black and Scholes
model does better with call options than puts. Here again the undervaluation of puts seems a more
robust result than the overpricing of call options. Comparing the average relative pricing errors of
the two models, our results suggest that overall the GARCH(1,1) model performs better than the
Black and Scholes model. The latter typically prices call options higher and puts lower than our
implied GARCH(1,1) model, except for in the money options in both classes. One would expect that
the valuation errors due to stochastic volatility would be more pronounced for long-lived options.
Our results for call options tend to confirm this belief, although both models have more difficulty
with the put variety. However, these results should be taken with caution due to the relatively large

corresponding sample standard deviations, especially for out of the money calls.

8 Frqfoxvlrg

We showed that the daily returns on the SMI admit a GARCH(1,1) representation. The estimated
parameter values we obtain directly from the historical SMI series imply a substantially higher degree
of persistence than those obtained by Griinbichler and Schwartz (1993) for the daily returns on the
SMI for the period from January 1989 through October 1991. They show that the best model for
these returns is a GARCH(1,1) with k; = 0817352 and q, = 0854805 and, therefore, conclude in a

low persistence of volatility. The degrees of persistence implied by our results from the full period
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from January 1, 1992, through December 31, 1996, and the sub-period are essentially identical, but
are lower than that observed by Engle and Mustafa (1992) on the S&P500 index.

Using a simulation minimization method we estimated an implied GARCH(1,1) option pricing
model from the prices of options written on the SMI. The estimated model indicates that the persis-
tence of shocks on the conditional variance function of the index is reflected in the prices of options
written on it. The valuation errors resulting from the estimation indicate that the model tends to
overvalue call options and underprice put options in the estimation sample.

The out-of-sample test we conduct suggests that the overall performance of our implied GARCH(1,1)
option pricing model is superior to that of the Black and Scholes model in evaluating European op-
tions written on the SMI. In the test sample the implied GARCH(1,1) model undervalues both
classes of options whereas the Black and Scholes model typically prices call options higher and puts
lower and thus, overprices call options and undervalues puts. However, the large sample standard
deviations of the average relative valuation errors in the out-of-sample test suggest that these results

should be taken with caution.
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FIGURES AND TABLES

Fi1c. 1. Evolution of the daily returns of the SMI
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Fic. 2. Fwvolution of the conditional variance of the daily returns on the SMI
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Model Coefficients log ,
constant Ko K, K, q,
OLS 06000659 443763
(2.95)
ARCH(1) 086000744 06000055 06166698 445161
(3.28) (25.91) (5.23)
ARCH(2) 08000876 06000050 06128877 08107255 446161
(3.89) (22.98) (4.40) (3.32)
GARCH(1,1) 08000804 08000007 (08091542 08800903 447164
(3.52) (4.15) (4.79) (21.14)

Table 4.1: Estimation results for the period from 1/1/92 to 12/31/96
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Coefficients log ,
constant Ko K, K, q,
OLS 06000590 1723¢8
(1.51)
ARCH(1) 06000912 0000060 06262118 1729¢8
(2.32) (12.57) (5.23)
ARCH(2) 06000966 08000053 06213308 08122377 173867
(2.42) (11.52) (3.82) (1.89)
GARCH(1,1) 08000970 08000007 08103326 06796601 174766
(2.49) (3.10) (3.72) (17.88)

Table 4.2: Estimation results for the period from 9/30/92 to 9/29/94
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Model Lags Skewness Kurtosis

1 2 3 4 5
OLS 06091 08110 06032 08044 08014 —0621 5662
ARCH(1) —0625 06093 06029 08045 08026 —0816 5649
ARCH(2) —08015 —0005 06016 (06040 06026 —0816 5¢69
GARCH(1,1) —08002 06004 —0€018 08004 —0E006 —0819 5669

Table 4.3: Partial autocorrelations and skewness and kurtosis coefficients of the residuals for the
period from 1/1/92 to 12/31/96. The asymptotic standard errors of the partial autocorrelations and

the skewness and kurtosis coefficients are respectively 0.028, 0.068 and 0.136.
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Model Lags Skewness Kurtosis

1 2 3 4 5
OLS 06144 06164 06016 08081 (06002 —0855 4845
ARCH(1) —08038 06128 06039 (€072 08032 —0850 4802
ARCH(2) —08021 —06007 06004 06059 0017 —0859 4831
GARCH(1,1) 08004 08025 —0€009 06016 —08019 —0850 3653

Table 4.4: Partial autocorrelations and skewness and kurtosis coefficients of the residuals for the
period from 9/30/92 to 9/29/94. For the sub-period, the asymptotic standard errors of the partial

autocorrelations and the skewness and kurtosis coefficients are respectively 0.044, 0.107 and 0.214.
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Ko Ky a
Ko 1 —08007 —08661
k; —08007 1 —08742

~

q, -—08661 —06742 1

Table 4.5: Estimated Asymptotic Correlation Matrix
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Total Near maturity Mid maturity Long maturity

Calls 0.134 0.072 0.155 0.154

Puts -0.109 -0.211 -0.097 -0.036

Table 4.6: Average relative valuation errors of the GARCH(1,1) model
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Total Near maturity Mid maturity Long maturity

Calls 0.421 0.578 0.380 0.245

Puts 0.226 0.248 0.217 0.187

Table 4.7: Sample standard deviation of the average relative valuation errors of the GARCH(1,1)

model

36



Total

Near maturity Mid maturity Long maturity

Calls -0.028
Out of the money  0.079
Near the money  -0.033

In the money -0.007

Puts -0.231
Out of the money -0.720

Near the money  -0.194

In the money -0.032

-0.058
-0.442
-0.055

-0.010

-0.302
-0.960
-0.245

0.007

-0.029
0.268
-0.037

-0.007

-0.220
-0.710
-0.191

-0.033

0.023
0.068
0.017

0.002

-0.168
-0.475
-0.136

-0.054

Table 4.8: Out-of-sample average relative valuation errors of the GARCH(1,1) model
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Total Near maturity Mid maturity Long maturity

Calls 0.234 0.255 0.239 0.166
Out of the money 0.669 0.921 0.964 0.264

Near the money 0.202 0.237 0.195 0.149

In the money 0.033 0.016 0.032 0.063

Puts 0.242 0.310 0.217 0.177
Out of the money 0.257 0.071 0.225 0.189

Near the money  0.194 0.247 0.175 0.139

In the money 0.062 0.021 0.059 0.072

Table 4.9: Sample standard deviation of the out-of-sample average relative valuation errors of the

GARCH(1,1) model

38



Total Near maturity Mid maturity Long maturity

Calls 0.038 -0.020 0.045 0.107
Out of the money  0.512 -0.093 1.061 0.322

Near the money 0.021 -0.020 0.024 0.082

In the money -0.008 -0.010 -0.007 -0.005

Puts -0.258 -0.330 -0.236 -0.223
Out of the money -0.776 -0.979 -0.725 -0.633

Near the money  -0.219 -0.274 -0.207 -0.182

In the money -0.018 0.008 -0.027 -0.023

Table 4.10: Out-of-sample average relative valuation errors of the Black and Scholes model
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Total Near maturity Mid maturity Long maturity

Calls 0.578 0.321 0.719 0.389
Out of the money 2.461 0.803 4.239 0.704

Near the money 0.340 0.318 0.354 0.321

In the money 0.033 0.015 0.030 0.066

Puts 0.306 0.352 0.286 0.279
Out of the money 0.300 0.053 0.335 0.283

Near the money 0.267 0.304 0.253 0.240

In the money 0.074 0.021 0.064 0.099

Table 4.11: Sample standard deviation of the out-of-sample average relative valuation errors of

the Black and Scholes model
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