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An Estimation of Economic Models with Recursive
Preferences

Abstract

This paper presents estimates of key preference parameters of the Epstein and Zin (1989,

1991) and Weil (1989) (EZW) recursive utility model, evaluates the model�s ability to �t

asset return data relative to other asset pricing models, and investigates the implications of

such estimates for the unobservable aggregate wealth return. Our empirical results indicate

that the estimated relative risk aversion parameter is high, ranging from 17-60, with higher

values for aggregate consumption than for stockholder consumption, while the estimated

elasticity of intertemporal substitution is above one. In addition, the estimated model-

implied aggregate wealth return is found to be weakly correlated with the CRSP value-

weighted stock market return, suggesting that the return to human wealth is negatively

correlated with the aggregate stock market return. In quarterly data from 1952 to 2005, we

�nd that an SMD estimated EZW recursive utility model can explain a cross-section of size

and book-market sorted portfolio equity returns better than the standard consumption-based

model based on power utility and better than the Lettau and Ludvigson (2001b) cay-scaled

consumption CAPM model, but not as well as the Fama and French (1993) three-factor

model with �nancial returns as risk factors.
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1 Introduction

A large and growing body of theoretical work in macroeconomics and �nance models the

preferences of economic agents using a recursive utility function of the type explored by

Epstein and Zin (1989, 1991) and Weil (1989).1 One reason for the growing interest in

such preferences is that they provide a potentially important generalization of the standard

power utility model �rst investigated in classic empirical studies by Hansen and Singleton

(1982, 1983). The salient feature of this generalization is a greater degree of �exibility

as regards attitudes towards risk and intertemporal substitution. Speci�cally, under the

recursive representation, the coe¢ cient of relative risk aversion need not equal the inverse

of the elasticity of intertemporal substitution (EIS), as it must in time-separable expected

utility models with constant relative risk aversion. This degree of �exibility is appealing

in many applications because it is unclear why an individual�s willingness to substitute

consumption across random states of nature should be so tightly linked to her willingness to

substitute consumption deterministically over time.

Despite the growing interest in recursive utility models, there has been a relatively small

amount econometric work aimed at estimating the relevant preference parameters and assess-

ing the model�s �t with the data. As a consequence, theoretical models are often calibrated

with little econometric guidance as to the value of key preference parameters, the extent to

which the model explains the data relative to competing speci�cations, or the implications

of the model�s best-�tting speci�cations for other economic variables of interest, such as the

return to the aggregate wealth portfolio or the return to human wealth. The purpose of this

study is to help �ll this gap in the literature by undertaking a formal econometric evaluation

of the Epstein-Zin-Weil (EZW) recursive utility model.

The EZW recursive utility function is a constant elasticity of substitution (CES) aggre-

gator over current consumption and the expected discounted utility of future consumption.

This structure makes estimation of the general model di¢ cult because the intertemporal

marginal rate of substitution is a function of the unobservable continuation value of the fu-

ture consumption plan. One approach to this problem, based on the insight of Epstein and

1See for example Campbell (1993); Campbell (1996); Tallarini (2000); Campbell and Viceira (2001)

Bansal and Yaron (2004); Colacito and Croce (2004); Bansal, Dittmar, and Kiku (2005); Campbell and

Voulteenaho (2005); Gomes and Michaelides (2005); Krueger and Kubler (2005); Hansen, Heaton, and Li

(2005); Kiku (2005); Malloy, Moskowitz, and Vissing-Jorgensen (2005); Campanale, Castro, and Clementi

(2006); Croce (2006); Bansal, Dittmar, and Lundblad (2006); Croce, Lettau, and Ludvigson (2006); Hansen

and Sargent (2006); Piazzesi and Schneider (2006).
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Zin (1989), is to exploit the relation between the continuation value and the return on the

aggregate wealth portfolio. To the extent that the return on the aggregate wealth portfolio

can be measured or proxied, the unobservable continuation value can be substituted out of

the marginal rate of substitution and estimation can proceed using only observable variables

(e.g., Epstein and Zin (1991), Campbell (1996), Vissing-Jorgensen and Attanasio (2003)).2

Unfortunately, the aggregate wealth portfolio represents a claim to future consumption and

is itself unobservable. Moreover, given the potential importance of human capital and other

nontradable assets in aggregate wealth, its return may not be well proxied by observable

asset market returns.

These di¢ culties can be overcome in speci�c cases of the EZW recursive utility model.

For example, if the EIS is restricted to unity and consumption follows a loglinear time-series

process, the continuation value has an analytical solution and is a function of observable

consumption data (e.g., Hansen, Heaton, and Li (2005)). Alternatively, if consumption and

asset returns are assumed to be jointly lognormally distributed and homoskedastic (or if a

second-order linearization is applied to the Euler equation), the risk premium of any asset

can be expressed as a function of covariances of the asset�s return with current consumption

growth and with news about future consumption growth (e.g., Restoy and Weil (1998),

Campbell (2003)). In this case, the model�s cross-sectional asset pricing implications can

be evaluated using observable consumption data and a model for expectations of future

consumption.

While the study of these speci�c cases has yielded a number of important insights, there

are several reasons why it may be desirable to allow for more general representations of the

model, free from tight parametric or distributional assumptions. First, an EIS of unity im-

plies that the consumption-wealth ratio is constant, contradicting statistical evidence that

it varies considerably over time.3 Moreover, even �rst-order expansions of the EZW model

2Epstein and Zin (1991) use an aggregate stock market return to proxy for the aggregate wealth return.

Campbell (1996) assumes that the aggregate wealth return is a portfolio weighted average of a human capital

return and a �nancial return, and obtains an estimable expression for an approximate loglinear formulation

of the model by assuming that expected returns on human wealth are equal to expected returns on �nancial

wealth. Vissing-Jorgensen and Attanasio (2003) follow Campbell�s approach to estimate the model using

household level consumption data.
3Lettau and Ludvigson (2001a) argue that a cointegrating residual for log consumption, log asset wealth,

and log labor income should be correlated with the unobservable log consumption-aggregate wealth ratio,

and �nd evidence that this residual varies considerably over time and forecasts future stock market returns.

See also recent evidence on the consumption-wealth ratio in Hansen, Heaton, Roussanov, and Lee (2006)

and Lustig, Van Nieuwerburgh, and Verdelhan (2007).
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around an EIS of unity may not capture the magnitude of variability of the consumption-

wealth ratio (Hansen, Heaton, Roussanov, and Lee (2006)). Second, although aggregate

consumption growth itself appears to be well described by a lognormal process, empirical

evidence suggests that the joint distribution of consumption and asset returns exhibits sig-

ni�cant departures from lognormality (Lettau and Ludvigson (2005)). Third, Kocherlakota

(1990) points out that joint lognormality is inconsistent with an individual maximizing a

utility function that satis�es the recursive representation used by Epstein and Zin (1989,

1991) and Weil (1989).

To overcome these issues, we employ a semiparametric estimation technique that allows

us to conduct estimation and testing of the EZW recursive utility model without the need to

�nd a proxy for the unobservable aggregate wealth return, without linearizing the model, and

without placing tight parametric restrictions on either the law of motion or joint distribution

of consumption and asset returns, or on the value of key preference parameters such as the

EIS. We present estimates of all the preference parameters of the EZW model, evaluate

the model�s ability to �t asset return data relative to competing asset pricing models, and

investigate the implications of such estimates for the unobservable aggregate wealth return

and human wealth return.

To avoid having to �nd a proxy for the return on the aggregate wealth portfolio, we

explicitly estimate the unobservable continuation value of the future consumption plan. By

assuming that consumption growth falls within a general class of stationary, dynamic models,

we may identify the state variables over which the continuation value is de�ned. However,

without placing tight parametric restrictions on the model, the continuation value is still

an unknown function of the relevant state variables. Thus, we estimate the continuation

value function nonparametrically. The resulting empirical speci�cation for investor utility is

semiparametric in the sense that it contains both the �nite dimensional unknown parameters

that are part of the CES utility function (risk aversion, EIS, and subjective time-discount

factor), as well as the in�nite dimensional unknown continuation value function.

Estimation and testing are conducted by applying a pro�le Sieve Minimum Distance

(SMD) procedure to a set of Euler equations corresponding to the EZW utility model we

study. The SMD method is a distribution-free minimum distance procedure, where the

conditional moments associated with the Euler equations are directly estimated nonpara-

metrically as functions of conditioning variables. The �sieve�part of the SMD procedure

requires that the unknown function embedded in the Euler equations (here the continuation

value function) be approximated by a sequence of �exible parametric functions, with the
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number of parameters expanding as the sample size grows (Grenander (1981)). The un-

known parameters of the marginal rate of substitution, including the sieve parameters of the

continuation value function and the �nite-dimensional parameters that are part of the CES

utility function, may then be estimated using a pro�le two-step minimum distance estima-

tor. In the �rst step, for arbitrarily �xed candidate �nite dimensional parameter values, the

sieve parameters are estimated by minimizing a weighted quadratic distance from zero of the

nonparametrically estimated conditional moments. In the second step, consistent estimates

of the �nite dimensional parameters are obtained by solving a suitable sample minimum

distance problem. Motivated by the arguments of Hansen and Jagannathan (1997), our as-

ymptotic justi�cation allows for possible model misspeci�cation in the sense that the Euler

equation may not hold exactly.

We estimate two versions of the model. The �rst is a representative agent formulation,

in which the utility function is de�ned over per capita aggregate consumption. The second

is a representative stockholder formulation, in which utility is de�ned over per capita con-

sumption of stockholders. The de�nition of stockholder status, the consumption measure,

and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer Expen-

diture Survey (CEX). Since CEX data are limited to the period 1982 to 2002, and since

household-level consumption data are known to contain signi�cant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2005) and generate a longer time-series of

data by constructing consumption mimicking factors for aggregate stockholder consumption

growth.

Once estimates of the continuation value function have been obtained, it is possible to

investigate the model�s implications for the aggregate wealth return. This return is in general

unobservable but can be inferred from the model by equating the estimated marginal rate of

substitution with its theoretical representation based on consumption growth and the return

to aggregate wealth. If, in addition, we follow Campbell (1996) and assume that the return

to aggregate wealth is a portfolio weighted average of the unobservable return to human

wealth and the return to �nancial wealth, the estimated model also delivers implications for

the return to human wealth.

Using quarterly data on consumption growth, assets returns and instruments, our em-

pirical results indicate that the estimated relative risk aversion parameter is high, ranging

from 17-60, with higher values for the representative agent version of the model than the

representative stockholder version. The estimated elasticity of intertemporal substitution is

typically above one, and di¤ers considerably from the inverse of the coe¢ cient of relative
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risk aversion. In addition, the estimated aggregate wealth return is found to be weakly cor-

related with the CRSP value-weighted stock market return and much less volatile, implying

that the return to human capital is negatively correlated with the aggregate stock market

return. This later �nding is consistent with results in Lustig and Van Nieuwerburgh (2006),

discussed further below. In data from 1952 to 2005, we �nd that an SMD estimated EZW

recursive utility model can explain a cross-section of size and book-market sorted portfolio

equity returns better than the time-separable, constant relative risk aversion power utility

model and better than the Lettau and Ludvigson (2001b) cay-scaled consumption CAPM

model, but not as well as purely empirical models based on �nancial factors such as the

Fama and French (1993) three-factor model.

Our study is related to recent work estimating speci�c asset pricing models in which

the EZW recursive utility function is embedded. Bansal, Gallant, and Tauchen (2004) and

Bansal, Kiku, and Yaron (2006) estimate models of long-run consumption risk, where the

data generating processes for consumption and dividend growth are explicitly modeled as

linear functions of a small but very persistent long-run risk component and normally distrib-

uted shocks. These papers focus on the representative agent formulation of the model, in

which utility is de�ned over per capita aggregate consumption. In such long-run risk models,

the continuation value can be expressed as a function of innovations in the explicitly im-

posed driving processes for consumption and dividend growth, and inferred either by direct

simulation or by specifying a vector autoregression to capture the predictable component.

Our work di¤ers from these studies in that our estimation procedure does not restrict the

law of motion for consumption or dividend growth. As such, our estimates apply generally

to the EZW recursive preference representation, not to speci�c asset pricing models of cash

�ow dynamics.

2 The Model

Let fFtg1t=0 denote the sequence of increasing conditioning information sets available to
a representative agent at dates t = 0; 1; :::. Adapted to this sequence are consumption

sequence fCtg1t=0 and a corresponding sequence of continuation values fVtg1t=0. The date
t consumption Ct and continuation value Vt are in the date t information set Ft (but are
typically not in the date t � 1 information set Ft�1). Sometimes we use Et[�] to denote
E[�jFt], the conditional expectation with respect to information set at date t.
The Epstein-Zin-Weil objective function is de�ned recursively by

5



Vt =
�
(1� �)C1��t + �fRt (Vt+1)g1��

� 1
1�� (1)

Rt (Vt+1) =
�
E
�
V 1��
t+1 jFt

�� 1
1�� ; (2)

where Vt+1 is the continuation value of the future consumption plan. The parameter �

governs relative risk aversion and 1=� is the elasticity of intertemporal substitution over

consumption (EIS). When � = �, the utility function can be solved forward to yield the

familiar time-separable, constant relative risk aversion (CRRA) power utility model

Vt = �
C1��t

1� �
: (3)

As in Hansen, Heaton, and Li (2005), the utility function may be rescaled and expressed

as a function of stationary variables:

Vt
Ct

=

"
(1� �) + �

�
Rt

�
Vt+1
Ct+1

Ct+1
Ct

��1��# 1
1��

(4)

=

24(1� �) + �

(
Et

"�
Vt+1
Ct+1

�1�� �
Ct+1
Ct

�1��#) 1��
1��
35

1
1��

:

The intertemporal marginal rate of substitution (MRS) in consumption is given by

Mt+1 = �

�
Ct+1
Ct

���0@ Vt+1
Ct+1

Ct+1
Ct

Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
1A���

: (5)

The MRS is a function of Rt (�), the expected value of the continuation value-consumption
ratio, Vt+1

Ct+1
; referred to hereafter as the continuation value ratio.

Epstein and Zin (1989, 1991) show that the MRS can be expressed in an alternate form

as

Mt+1 =

(
�

�
Ct+1
Ct

���) 1��
1�� �

1

Rw;t+1

� ���
1��

; (6)

where Rw;t+1 is the return to aggregate wealth, which represents a claim to future consump-

tion. This return is in general unobservable, but some researchers have undertaken empirical

work using an aggregate stock market return as a proxy, as in Epstein and Zin (1991). A

di¢ culty with this approach is that Rw;t+1 may not be well proxied by observable asset

market returns, especially if human wealth and other nontradable assets are quantitatively
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important fractions of aggregate wealth. Alternatively, approximate loglinear formulations

of the model can be obtained by making speci�c assumptions regarding the relation between

the return to human wealth and the return to some observable form of asset wealth. For

example, Campbell (1996) assumes that expected returns on human wealth are equal to

expected returns on �nancial wealth. Since the return to human wealth is unobservable,

however, such assumptions are di¢ cult to verify in the data. Consequently, we work with

the formulation of the MRS given in (5), with its explicit dependence on the continuation

value of the future consumption plan.

The �rst-order conditions for optimal consumption choice imply that Et [Mt+1Ri;t+1] = 1,

for any traded asset indexed by i, with a gross return at time t+ 1 of Ri;t+1. Using (5), the

�rst-order conditions take the form

Et

264� �Ct+1
Ct

���0@ Vt+1
Ct+1

Ct+1
Ct

Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
1A���

Ri;t+1 � 1

375 = 0: (7)

Since the expected product of any traded asset return with Mt+1 equals one, the model

implies that Mt+1 is the stochastic discount factor (SDF), or pricing kernel, for valuing any

traded asset return.

Equation (7) is a cross-sectional asset pricing model; it states that the risk premium

on any traded asset return Ri;t+1 is determined in equilibrium by the covariance between

returns and the stochastic discount factorMt+1. Notice that, compared to the CRRA model

where consumption growth is the single risk factor, the EZW model adds a second risk

factor for explaining the cross-section of asset returns, given by the multiplicative term�
Vt+1
Ct+1

Ct+1
Ct
=Rt

�
Vt+1
Ct+1

Ct+1
Ct

�����
.

The moment restrictions (7) are complicated by the fact that the conditional mean is

taken over a highly nonlinear function of the conditionally expected value of discounted

continuation utility, Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
. However, both the rescaled utility function (4) and the

Euler equations (7) depend on Rt. Thus, equation (4) can be solved for Rt, and the solution

plugged into (7). The resulting expression, for any observed sequence of traded asset returns

fRi;t+1gNi=1, takes the form

Et

26664�
�
Ct+1
Ct

���0BBB@
Vt+1
Ct+1

Ct+1
Ct�

1
�

��
Vt
Ct

�1��
� (1� �)

�� 1
1��

1CCCA
���

Ri;t+1 � 1

37775 = 0 i = 1; :::; N: (8)

The moment restrictions (8) form the basis of our empirical investigation.
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2.1 A nonparametric speci�cation of Vt+1
Ct+1

To avoid having to �nd a proxy for the return on the aggregate wealth portfolio, we explicitly

estimate the unobservable continuation value ratio Vt+1
Ct+1

. To do so, we assume that consump-

tion growth falls within a general class of stationary, dynamic models, thereby allowing us

to identify the state variables over which the continuation value ratio is de�ned. Several ex-

amples of this approach are given in Hansen, Heaton, and Li (2005). Here, we assume that

consumption growth is a possibly nonlinear function of a hidden �rst-order Markov process

xt that summarizes information about future consumption growth. Let lower case letters

denote log variables, e.g., ln (Ct+1) � ct+1: As a special case, consumption growth may be a

linear function of a hidden �rst-order Markov process xt

ct+1 � ct = �+Hxt +C�t+1; (9)

xt+1 = �xt +D�t+1; (10)

where �t+1 is a (2� 1) i.i.d. vector with mean zero and identity covariance matrix I and
C and D are (1� 2) vectors. Notice that this allows shocks in the observation equation
(9) to have arbitrary correlation with those in the state equation (10). The speci�cation

(9)-(10) nests a number of stationary univariate representations for consumption growth,

including a �rst-order autoregression, �rst-order moving average representation, a �rst-order

autoregressive-moving average process, or ARMA (1; 1), and i:i:d. The asset pricing lit-

erature on long-run consumption risk restricts to a special case of the above, where the

innovations in (9) and (10) are uncorrelated and � is close to unity (e.g., Bansal and Yaron

(2004)).

More generally, we can allow consumption growth to be a potentially nonlinear function

of a hidden Markov process xt:

ct+1 � ct = h (xt) + �c;t+1 (11)

xt+1 =  (xt) + �x;t+1; (12)

where h (xt) and  (xt) are no longer necessarily linear functions of the state variable xt, and

�c;t+1 and �x;t+1 are i.i.d. random variables that may be correlated with one another.

In either case, given the �rst-order Markov structure, expected future consumption

growth is summarized by the single state variable xt; implying that xt also summarizes

the state space over which the function Vt
Ct
is de�ned. Notice that while we use the �rst-order

Markov assumption as a motivation for specifying the state space over which continuation
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utility is de�ned, as discussed below, the econometric methodology itself leaves the law of

motion of the consumption process unspeci�ed.

There are two remaining complications that must be addressed before estimation can be

undertaken. First, without placing tight parametric restrictions on the model, the continua-

tion value ratio is an unknown function of the relevant state variables. Thus, we estimate Vt
Ct

nonparametrically. Second, the state variable xt that is taken as the input of the unknown

function is itself unobservable and must be inferred from consumption data. In the Appen-

dix, we provide assumptions under which the �rst-order Markov structure in either (9)-(10)

or (11)-(12) implies that the information contained in xt is summarized by the lagged con-

tinuation value ratio Vt�1
Ct�1

and current consumption growth Ct
Ct�1

. It follows that Vt
Ct
may be

modeled as an unknown function F : R2 ! R of the lagged continuation value ratio and

consumption growth:
Vt
Ct
= F

�
Vt�1
Ct�1

;
Ct
Ct�1

�
: (13)

Observe that if the innovations in (9) and (10) are positively correlated, Vt
Ct
may display neg-

ative serial dependence, and we expect F1
�
Vt�1
Ct�1

; Ct
Ct�1

�
< 0, where F1 (�) denotes the partial

derivative of F with respect to its �rst argument. In addition, although the linear speci�-

cation (9)-(10) implies that F is a monotonic function of both arguments, if the stochastic

process is nonlinear in xt, as in (11)-(12), the function F can take on more general functional

forms, potentially displaying nonmonotonicity in both its arguments.

To summarize, the asset pricing model we shall entertain in this paper consists of the

conditional moment restrictions (8), subject to the nonparametric speci�cation of (13). Our

model is semiparametric in the sense that it contains both �nite dimensional and in�nite

dimensional unknown parameters. Let � � (�; �; �)0 denote any vector of �nite dimensional
parameters in D, a compact subset in R3, and F : R2 ! R denote any real-valued Lipschitz
continuous functions in V, a compact subset in the space of square integrable functions (with
respect to some sigma-�nite measure). For each i = 1; :::; N , denote


i(zt+1; �; F ) � �

�
Ct+1
Ct

���0BBB@ F
�
Vt
Ct
; Ct+1
Ct

�
Ct+1
Ct�

1
�

�n
F
�
Vt�1
Ct�1

; Ct
Ct�1

�o1��
� (1� �)

�� 1
1��

1CCCA
���

Ri;t+1 � 1;

where zt+1 is a vector containing all the strictly stationary observations, including consump-

tion growth rate and return data. We de�ne �o � (�o; �o; �o)
0 2 D and Fo � Fo (zt; �o) �
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Fo (�; �o) 2 V as the solutions to

Fo (�; �) = arg inf
F2V

E

"
NX
i=1

(E f
i(zt+1; �; F )jFtg)
2

#
;

�o = argmin
�2D

E

"
NX
i=1

(E f
i(zt+1; �; Fo (�; �))jFtg)
2

#
:

We say that the model (8) and (13) is correctly speci�ed if

E f
i(zt+1; �o; Fo (�; �o))jFtg = 0; i = 1; :::; N: (14)

3 Empirical Implementation

This section presents the details of our empirical procedure. The general methodology is

based on estimation of the conditional moment restrictions (14), except that we allow for

the possibility that the model could be misspeci�ed.

The potential role of model misspeci�cation in the evaluation of empirical asset pricing

models has been previously emphasized by Hansen and Jagannathan (1997). As Hansen and

Jagannathan stress, all models are approximations of reality and therefore potentially mis-

speci�ed. The estimation procedure used here explicitly takes this possibility into account

in its asymptotic justi�cation. In the application of this paper, there are several possible

reasons for misspeci�cation, including possible misspeci�cation of the arguments in the con-

tinuation value-consumption ratio function F , which could in principal include more lags,

and misspeci�cation of the arguments of the CES utility function, which could in principal

include a broader measure of durable consumption or leisure. More generally, when we con-

duct model comparison in Section 5, we follow the advice of Hansen and Jagannathan (1997)

and assume that all models are potentially misspeci�ed.

Let wt be a dw�1 observable measurable function of Ft that does not contain a constant.
Equation (14) implies

E f
i(zt+1; �o; Fo (�; �o))jwtg = 0; i = 1; :::; N: (15)

Denote4

m(wt; �; F ) � Ef
(zt+1; �; F )jwtg; 
(zt+1; �; F ) = (
1(zt+1; �; F ); :::; 
N(zt+1; �; F ))
0 : (16)

4If the model of consumption dynamics speci�ed above were literally true, the state variables Vt�1
Ct�1

and
Ct
Ct�1

(and all measurable transformations of these) are su¢ cient statistics for the agents information set

Ft. However, the fundamental asset pricing relation Et [Mt+1Ri;t+1 � 1] ; which includes individual asset

10



For any candidate value � � (�; �; �)0 2 D, we de�ne F � � F � (zt; �) � F � (�; �) 2 V as the
solution to

F � (�; �) � arg inf
F2V

E [m(wt; �; F )
0m(wt; �; F )] : (17)

It is clear that Fo (zt; �o) = F � (zt; �o) when the model (15) is correctly speci�ed. We say

the model (15) is misspeci�ed if

min
�2D

inf
F2V

E [m(wt; �; F )
0m(wt; �; F )] = min

�2D
E [m(wt; �; F

� (zt; �))
0m(wt; �; F

� (zt; �))] > 0:

We estimate the possibly misspeci�ed model (15) using a pro�le semiparametric mini-

mum distance procedure, which consists of two steps; see e.g., Andrews (1994), Newey and

McFadden (1994), Chen, Linton, and van Keilegom (2003) and Chen (2006). In the �rst

step, for any candidate value � � (�; �; �)0 2 D, the unknown function F � (�; �) is estimated
using the sieve minimum distance (SMD) procedure developed in Newey and Powell (2003)

and Ai and Chen (2003) (for correctly speci�ed model) and Ai and Chen (2007) (for possibly

misspeci�ed model). In the second step, we estimate the �nite dimensional parameters �

by solving a suitable sample GMM problem. We show in the Appendix that, under the as-

sumption of strictly stationary weakly dependent observations, the �rst-step SMD estimator

of F � (�; �) is consistent and converges at a rate T 1=4 under certain metric, uniformly over
� � (�; �; �)0 2 D, where T is the sample size. The second-step GMM estimates of the

�nite-dimensional parameters � � (�; �; �)0 are
p
T consistent and asymptotically normally

distributed. Notice that the estimation procedure itself leaves the law of motion of the data

unspeci�ed.5

returns, is likely to be a highly nonlinear function of the state variables. In addition, one of the these state

variables is the unknown function, Vt�1Ct�1
; and as such it embeds the unknown sieve parameters. These facts

make the estimation procedure computationally intractable if the subset wt, over which the conditional

mean m(wt; �; F ) is taken, includes
Vt�1
Ct�1

. Fortunately, the procedure can be carried out on an observable

measurable function wt of Ft, which need not contain Vt�1
Ct�1

. A consistent estimate of the conditional

mean m(wt; �; F ) can be obtained using known basis functions of observed conditioning variables in wt.

We take this approach here, using Ct
Ct�1

and several other observable conditioning variables as part of the

econometrician�s information wt.
5In the Appendix we provide asymptotic results on nonparametric consistency and parametric

p
T�asymptotic normality for possibly misspeci�ed semiparametric conditional moment models, allowing

for strictly stationary beta-mixing time series observations. Beta-mixing is one popular measure of temporal

dependence for nonlinear time series that is satis�ed by many widely used �nancial time series models includ-

ing nonlinear ARCH, GARCH, stochastic volatility and di¤usion models�see the Appendix for the formal

de�nition. Thus, the estimation procedure requires stationary ergodic observations but does not restrict to

linear time series speci�cations or speci�c parametric laws of motions of the data.
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3.1 First-Step Pro�le SMD Estimation of F � (�; �)

For any candidate value � =(�; �; �)0 2 D, an initial estimate of the unknown function
F � (�; �) is obtained using the sieve minimum distance (SMD) estimator, described below.

In practice, this is achieved by applying the SMD estimator at each point in a 3-dimensional

grid for � 2 D. The idea behind the SMD estimator is to choose a �exible approximation to
the value function F � (�; �) to minimize the sample analog of the minimum distance criterion
function (17). More precisely, this procedure itself has two essential parts. First, although

the functional form of the conditional expectation function m(wt; �; F ) de�ned in (16) is

unknown, we may replace the conditional expectation itself with a consistent nonparametric

estimator (to be speci�ed later). Second, although the value function F � (�; �) is an in�nite-
dimensional unknown function, we can approximate it by a sequence of �nite-dimensional

unknown parameters (sieves) FKT
(�; �), where the approximation error decreases as the

dimension KT increases with the sample size T . For each � 2D, the function FKT
(�; �)

is estimated by minimizing a sample (weighted) quadratic norm of the nonparametrically

estimated conditional expectation functions.

Estimation in the �rst pro�le SMD step is carried out by implementing the following

algorithm. First, the ratio Vt
Ct
is treated as unknown function Vt

Ct
= F �

�
Vt�1
Ct�1

; Ct
Ct�1

; �
�
, with

the initial value for Vt
Ct
at time t = 0; denoted V0

C0
, taken as a unknown scalar parameter to be

estimated: Second, the unknown function F �
�
Vt�1
Ct�1

; Ct
Ct�1

; �
�
is approximated by a bivariate

sieve function

F �
�
Vt�1
Ct�1

;
Ct
Ct�1

; �

�
� FKT

(�; �) = a0(�) +

KTX
j=1

aj(�)Bj

�
Vt�1
Ct�1

;
Ct
Ct�1

�
;

where the sieve coe¢ cients fa0; a1; :::; aKT
g depend on �, but the sieve basis functions

fBj(�; �) : j = 1; :::; KTg have known functional forms that are independent of �; see the
Appendix for examples of the sieve basis functions Bj(�; �). To provide a nonparametric esti-
mate of the true unknown function, KT must grow with the sample size to insure consistency

of the method.6 We are not interested in the sieve parameters (a0; a1; :::; aKT
)0 per se, but

6Asymptotic theory only provides guidance about the rate at which KT must increase with the sample

size T . Thus, in practice, other considerations must be used to judge how best to set this dimensionality. The

bigger is KT , the greater is the number of parameters that must be estimated, therefore the dimensionality

of the sieve is naturally limited by the size of our data set. With KT = 9, the dimension of the parameter

vector, � along with V0
C0
, is 11, estimated using a sample of size T = 213. In practice, we obtained very

similar results setting KT = 10; thus we present the results for the more parsimonious speci�cation using

KT = 9 below.
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rather in the �nite dimensional parameters �, and in the dynamic behavior of the continu-

ation value and the marginal rate of substitution, all of which depend on those parameters.

For the empirical application below, we set KT = 9 (see the Appendix for further discus-

sion), leaving 10 sieve parameters to be estimated in F �, plus the initial value V0
C0
: The total

number of parameters to be estimated, including the three �nite dimensional parameters in

�, is therefore 14.

Given values V0
C0
, fajgKT

j=1, fBj(�)g
KT

j=1 and data on consumption
n

Ct
Ct�1

oT
t=1
, the function

FKT
is used to generate a sequence

n
Vi
Ci

oT
i=1

that can be taken as data to be used in the

estimation of (17).

Implementation of the pro�le SMD estimation requires a consistent estimate of the con-

ditional mean function m(wt; �; F ); which can be consistently estimated via a sieve least

squares procedure. Let fp0j(wt); j = 1; 2; :::; JTg be a sequence of known basis functions (in-
cluding a constant function) that map from Rdw into R. Denote pJT (�) � (p01 (�) ; :::; p0JT (�))

0

and the T � JT matrix P �
�
pJT (w1) ; :::; p

JT (wT )
�0
. Then

bm(w; �; F ) =  TX
t=1


(zt+1; �; F )p
JT (wt)

0(P0P)�1

!
pJT (w) (18)

is a sieve least squares estimator of the conditional mean vectorm(w; �; F ) = Ef
(zt+1; �; F )jwt =
wg: (Note that JT must grow with the sample size to ensure that m(wt; �; F ) is estimated

consistently). We form the �rst-step pro�le SMD estimate bF (�) for F � (�) based on this
estimate of the conditional mean vector and the sample analog of (17):

bF (�; �) = argmin
FKT

1

T

TX
t=1

bm(wt; �; FKT
)0 bm(wt; �; FKT

): (19)

See the Appendix for a detailed description of the pro�le SMD procedure.

As shown in the Appendix, an attractive feature of this estimator is that it can be

implemented as an instance of GMM with a particular weighting matrixW given by

W = IN
 (P0P)�1 :

The procedure is equivalent to regressing each 
i on the set of instruments p
JT (�) and taking

the �tted values from this regression as an estimate of the conditional mean, where the

particular weighting matrix gives greater weight to moments that are more highly correlated

with the instruments pJT (�). The weighting scheme can be understood intuitively by noting
that variation in the conditional mean is what identi�es the unknown function F � (�; �).
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3.2 Second-Step GMM Estimation of �

Once an initial nonparametric estimate bF (�; �) is obtained for F � (�; �), we can estimate the
�nite dimensional parameters �o consistently by solving a suitable sample minimum distance

problem, for example by using a Generalized Method of Moments (GMM, Hansen (1982))

estimator. An advantage of this two-step approach is that the second-stage estimation need

not be based on the sample SMD criterion

min
�2D

1

T

TX
t=1

bm(wt; �; bF (�; �))0 bm(wt; �; bF (�; �));
which gives greater weight to moments that are more highly correlated with the instruments

pJT (�). Such a weighting scheme is required to identify the unknown function F � (�; �), but
is not required for pinning down the �nite dimensional preference parameters �o. We discuss

this further below.

Notice that if the number of test asset returns N � 3, consistent estimation of � =

(�; �; �)0could in principal be based on the unconditional population moments implied by

(15):

E f
i(zt+1; �o; F � (�; �o))g = 0; i = 1; :::; N:

More generally, minimum distance estimation of �o based on the moment conditions (15)

could be conducted using any subset of the conditioning variables that make up the econo-

metrician�s information set wt, as long as the number of moment conditions is at least as

large as the number of �nite dimensional parameters to be estimated. Let the conditioning

variables used in the second-step estimation of �o be denoted xt, where xt is a dx� 1 vector
that could include a constant. We estimate �o by minimizing a GMM objective function:

b� = argminQT (�);
�2D

(20)

QT (�) =
h
gT (�; bFT (�; �) ;yT )i0W h

gT (�; bFT (�; �) ;yT )i ; (21)

where W is a positive, semi-de�nite weighting matrix, yT �
�
z0T+1; :::z

0
2;x

0
T ; :::x

0
1

�0
denotes

the vector containing all observations in the sample of size T and

gT (�; bF (�; �) ;yT ) � 1

T

TX
t=1


(zt+1; �; bF (�; �))
 xt (22)

are the sample moment conditions associated with the Ndx� 1 -vector of population uncon-
ditional moment conditions:

E f
i(zt+1; �o; F � (�; �o))
 xtg = 0; i = 1; :::; N: (23)
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Observe that bF (�; �) is not held �xed in the second step, but instead depends on �:
Consequently, the second-step GMM estimation of � plays an important role in determining

the �nal estimate of Fo(�), denoted bF ��; b�� :
In the empirical implementation, we use two di¤erent weighting matrices W to obtain

the second-step GMM estimates of �. The �rst is the identity weighting matrixW = I; the

second is the inverse of the sample second moment matrix of the N asset returns upon which

the model is evaluated, denoted G�1
T (i.e., the (i; j)th element of GT is 1

T

PT
t=1Ri;tRj;t for

i; j = 1; :::; N:)

To understand the motivation behind usingW = I andW = G�1
T to weight the second-

step GMM criterion function, it is useful to �rst observe that, in principal, all the parameters

of the model (including the �nite dimensional preference parameters), could be estimated in

one step by minimizing the sample SMD criterion:

min
�2D;FKT

1

T

TX
t=1

bm(wt; �; FKT
)0 bm(wt; �; FKT

): (24)

However, the two-step pro�le procedure employed here has several advantages for our em-

pirical application. First, we want estimates of standard preference parameters such as risk

aversion and the EIS to re�ect values required to match unconditional moments commonly

emphasized in the asset pricing literature, those associated with unconditional risk premia.

This is not possible when estimates of � and F () are obtained in one step, since the weight-

ing scheme inherent in the SMD procedure (24) emphasizes conditional moments, placing

greater weight on moments that are more highly correlated with the instruments. Second,

both the weighting scheme inherent in the SMD procedure (24) and the use of instruments

pJT (�) e¤ectively change the set of test assets, implying that key preference parameters are
estimated on linear combinations of the original portfolio returns. Such linear combinations

often bear little relation to the original test asset returns upon which much of the asset

pricing literature has focused. They may also imply implausible long and short positions in

the original test assets and do not necessarily deliver a large spread in unconditional mean

returns. These concerns can be alleviated by estimating the �nite dimensional parameters

in a second step, using the identity weighting matrixW = I along with xt = 1N ; an N � 1
vector of ones..

We also use W = G�1
T along with xt = 1N . Parameter estimates computed in this

way have the advantage that they are obtained by minimizing an objective function that is

invariant to the initial choice of asset returns (Kandel and Stambaugh (1995)). In addition,
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the square root of the minimized GMM objective function has the appealing interpretation

as the maximum pricing error per unit norm of any portfolio of the original test assets, and

serves as a measure of model misspeci�cation (Hansen and Jagannathan (1997)). We use

this below to compare the performance of the estimated EZW model to that of competing

asset pricing models.

3.3 Decision Interval of Household

We model the decision interval of the household at �xed horizons and measure consumption

and returns over the same horizon. In reality, the decision interval of the household may

di¤er from the data sampling interval. If the decision interval of the household is shorter

than the data sampling interval, the consumption data are time aggregated. Heaton (1993)

studies the e¤ects of time aggregation in a consumption based asset pricing model with

habit formation, and concludes, based on a �rst-order linear approximation of the Euler

equation, that time aggregation can bias GMM parameter estimates of the habit coe¢ cient.

The extent to which time aggregation may in�uence parameter estimates in nonlinear Euler

equation estimation is not generally known.

In practice, it is di¢ cult or impossible to assess the extent to which time aggregation

is likely to bias parameter estimates, for several reasons. First, the decision interval of the

household is not directly observable. Time aggregation arises only if the decision interval

of the household is shorter than the data sampling interval. Recently, several researchers

have argued that the decision interval of the household may in fact be longer than the

monthly, quarterly, or annual data sampling intervals typically employed in empirical work

(Gabaix and Laibson (2002), Jagannathan and Wang (2007)). In this case, time aggregation

is absent and has no in�uence on parameter estimates. Second, even if consumption data

are time aggregated, its in�uence on parameter estimates is likely to depend on a number

of factors that are di¢ cult to evaluate in practice, such as the stochastic law of motion for

consumption growth, and the degree to which the interval for household decisions falls short

of the data sampling interval.

If time-aggregation is present, however, it may induce a spurious correlation between

the estimated error terms over which conditional means are taken (
i(zt+1; �o; Fo (�; �o));
above), and the information set at time t (wt). Therefore, as a precaution, we conduct our

empirical estimation using instruments at time t that do not admit the most recent lagged

values of the variables (i.e., using two-period lagged instruments instead of one-period lagged
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instruments). The cost of doing so is that the two-period lagged instruments may not be as

informative as the one-period lagged instruments; this cost is likely to be small, however, if

the instruments are serially correlated, as are a number of those employed here (see the next

section).

4 Data

A detailed description of the data and our sources is provided in the Appendix. Our aggregate

data are quarterly, and span the period from the �rst quarter of 1952 to the �rst quarter of

2005.

The focus of this paper is on testing the model�s theoretical restrictions for a cross-sections

of asset returns. If the theory is correct, the cross-sectional asset pricing model (7) should be

informative about the model�s key preference parameters as well as about the unobservable

continuation value function. Speci�cally, the �rst-order conditions for optimal consumption

choice place tight restrictions both across assets and over time on equilibrium asset returns.

Consequently, we study a cross-section of asset returns known to deliver a large spread in

mean returns, which have been particularly challenging for classic asset pricing models to

explain (Fama and French (1992) and Fama and French (1993)). These assets include the

three-month Treasury bill rate and six value-weighted portfolios of common stock sorted into

two size quantiles and three book value-market value quantiles, for a total of 7 asset returns.

All stock return data are taken from Kenneth French�s Dartmouth web page (URL provided

in the appendix), created from stocks traded on the NYSE, AMEX and NASDAQ.

To estimate the representative agent formulation of the model, we use real, per-capita

expenditures on nondurables and services as a measure of aggregate consumption. Since

consumption is real, our estimation uses real asset returns, which are the nominal returns

described above de�ated by the implicit chain-type price de�ator to measure consumption.

We use quarterly consumption data because it is known to contain less measurement error

than monthly consumption data.

We also construct a stockholder consumption measure to estimate the representative

stockholder version of the model. The de�nition of stockholder status, the consumption

measure, and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer

Expenditure Survey (CEX). Since CEX data are limited to the period 1980 to 2002, and since

household-level consumption data are known to contain signi�cant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2005) and generate a longer time-series of
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data by constructing consumption mimicking factors for aggregate stockholder consumption

growth. The CEX interviews households three months apart and households are asked to

report consumption for the previous three months. Thus, while each household is interviewed

three months apart, the interviews are spread out over the quarter implying that there will

be households interviewed in each month of the sample. This permits the computation

of quarterly consumption growth rates at a monthly frequency. As in Malloy, Moskowitz,

and Vissing-Jorgensen (2005), we construct a time series of average consumption growth for

stockholders from t to t+ 1 as
1

H

HX
h=1

Cht+1
Cht

;

where Cht+1 is the quarterly consumption of household h for quarter t and H is the number

of stockholder households in quarter t. We use this average series to form a mimicking factor

for stockholder consumption growth, by regressing it on aggregate variables (available at

monthly frequency) and taking the �tted values as a measure of the mimicking factor for

stockholder consumption growth.

Mimicking factors for stockholder consumption growth are formed for two reasons. First,

the household level consumption data are known to be measured with considerable error,

mostly driven by survey error. To the extent that measurement error is uncorrelated with

aggregate variables, the mimicking factor will be free of the survey measurement error present

in the household level consumption series. Second, since the CEX sample is short (1982

to 2002), the construction of mimicking factors allows a longer time-series of data to be

constructed. The procedure follows Malloy, Moskowitz, and Vissing-Jorgensen (2005). We

project the average consumption growth of stockholders on a set of instruments (available

over a longer period) and use the estimated coe¢ cients to construct a longer time-series of

stockholder consumption growth, spanning the same sample as the aggregate consumption

data. As instruments, we use two aggregate variables that display signi�cant correlation

with average stockholder consumption growth: the log di¤erence of industrial production

growth, � ln(IPt), and the log di¤erences of real services expenditure growth, � ln (SVt).

The regression is estimated using monthly data from July 1982 to February 2002, using the

average CEX stockholder consumption growth rates. The �tted values from these regressions

provide monthly observations on a mimicking factor for the quarterly consumption growth of

stockholders. The results from this regression, with Newey and West (1987) t-statistics, are

reported in Table 1. Average stockholder consumption growth is positively related to both

the growth in industrial production, and to the growth in expenditures on services. Each
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variable has a statistically signi�cant e¤ect on average stockholder consumption growth,

though the R2 statistics are modest. The modest R2 statistics are not surprising given the

substantial amount of measurement error in household-level consumption data (for example,

comparable R2 values can be found in Malloy, Moskowitz, and Vissing-Jorgensen (2005)).

For the subsequent empirical analysis, we construct a quarterly measure of the stock-

holder consumption growth mimicking factor by matching the �tted values for quarterly

consumption growth over the three consecutive months corresponding to the three months

in a quarter (e.g., we use the observation on �tted consumption growth from March to Jan-

uary in a given year as a measure of �rst quarter consumption growth in that year). We

refer the reader to Vissing-Jorgensen (2002) and Malloy, Moskowitz, and Vissing-Jorgensen

(2005) for further details on the CEX data and the construction of mimicking factors.

The empirical procedure also requires computation of instruments, pJT (wt), which are

known basis functions (including a constant function) of conditioning variables, wt. We

include lagged consumption growth in wt, as well as three variables that have been shown

elsewhere to have signi�cant forecasting power for excess stock returns and consumption

growth in quarterly data.7 Two variables that have been found to display forecasting power

for excess stock returns at a quarterly frequency are the �relative T-bill rate� (which we

measure as the three month Treasury-bill rate minus its 4-quarter moving average), and the

lagged value of the excess return on the Standard & Poor 500 stock market index (S&P

500) over the three-month Treasury bill rate (see Campbell (1991), Hodrick (1992), Lettau

and Ludvigson (2001a)). We denote the relative bill rate RREL and the excess return on

the S&P 500 index, SPEX.8 We also use the proxy for the log consumption-wealth ratio

studied in (Lettau and Ludvigson (2001a)) to forecast returns.9 This proxy is measured as

the cointegrating residual between log consumption, log asset wealth, and log labor income

7The importance of instrument relevance in a GMM setting (i.e., using instruments that are su¢ ciently

correlated with the included endogenous variables) is now well understood. See Stock, Wright, and Yogo

(2002) for a survey of this issue. No formal test of instrument relevance has been developed for estimation

involving an unknown function. Thus we choose variables for wt that are known to be strong predictors of

asset returns and consumption growth in quarterly data.
8We focus on these variables rather than some others because, in samples that include recent data, they

drive out many of the other popular forecasting variables for stock returns, such as an aggregate dividend-

price ratio, earnings-price ratio, term spreads and default spreads (Lettau and Ludvigson (2001a)).
9This variable has strong forecasting power for stock returns over horizons ranging from one quarter to

several years. Lettau and Ludvigson (2001b) report that this variable also forecasts returns on portfolios

sorted by size and book-market ratios.
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and is denoteddcayt.10 Lettau and Ludvigson (2004) �nd that quarterly consumption growth
is predictable by one lag of wealth growth, a variable that is highly correlated with SPEX,

and results (not reported) con�rm that it is also predictable by one lag of SPEX. Thus, we

use wt =
hdcayt; RRELt; SPEXt;

Ct
Ct�1

i0
:We note that consumption growth�often thought to

be nearly unforecastable�displays a fair amount of short-horizon predictability in the sample

used here: a linear regression of consumption growth on the one-period lagged value wt and

a constant produces an F�statistic for the regression in excess of 12.11

Since the error term 
i(zt+1; �o; Fo) is orthogonal to the information set wt, any mea-

surable transformation of wt, pJT (wt), can be used as valid instruments in the �rst-step

estimation of Fo. We use power series as instruments, where the speci�cation includes a

constant, the linear terms, squared terms and pair-wise cross products of each variable in

wt, or 15 instruments in total.

5 Empirical Results

5.1 Parameter Estimates

The shape of our estimated continuation value ratio function Vt
Ct
= F

�
Vt�1
Ct�1

; Ct
Ct�1

�
can be

illustrated by plotting bF ��; b�� as a function of Vt�1
Ct�1

; holding �xed current consumption

growth, Ct
Ct�1

. Figures 1 and 2 plot this relation for each estimation described above, using

aggregate consumption (Figure 1) or the stockholder mimicking factor as a measure of stock-

holder consumption (Figure 2). For these plots, Vt�1
Ct�1

varies along the horizontal axis, with
Ct
Ct�1

alternately held �xed at its median, 25th, and 75th percentile values in our sample.

We draw several conclusions from the �gures. First, the estimated continuation value-

consumption ratio function is nonlinear; this is evident from the curved shape of the functions

and from the �nding that the shape depends on where in the domain space the function is

evaluated. In particular, for the representative agent version of the model (Figure 1), the

serial dependence of bF depends on where in the domain space the function is evaluated. It is
negative for low values of Vt�1

Ct�1
and positive for high values. Such a nonmonotone pattern is

10See Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2004) for further discussion of this variable

and its relation to the log consumption-wealth ratio. Note that standard errors do not need to be corrected for

pre-estimation of the cointegrating parameters indcayt, since cointegrating coe¢ cients are �superconsistent,�
converging at a rate faster than the square root of the sample size.
11As recommended by Cochrane (2001), the conditioning variables in wt are normalized by standardizing

and adding one to each variable, so that they have roughly the same units as unscaled returns.
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possible, for example, under the functionally non-linear state space model (11)-(12). Negative

serial dependence can arise even in the linear state space model, if the innovation in the

observation equation (9) is correlated with the innovation in the state equation (10). Second,

the estimated continuation value ratio is increasing in current consumption growth, in both

the representative agent (Figure 1) and representative stockholder (Figure 2) versions of the

model. The estimated relation is, however, nonlinear in consumption growth, a �nding that

is especially evident in Figure 2. Third, in the representative stockholder version of the

model (Figure 2), the serial dependence of bF is negative over most of the domain space.
The shapes of the estimated continuation value ratio functions imply that the functionally

linear state space representation (9)-(10) commonly employed in asset pricing models may

not provide a good description of these data. For example, as Hansen, Heaton, and Li (2005)

show, if (9)-(10) holds and the EIS=1, log( Vt�1
Ct�1

) is linear in the state xt. Since the log ofbF ��; b�� is clearly nonlinear, the �ndings suggest that a linear state space representation, in
conjunction with an EIS=1, is unlikely to provide an accurate description of the data. In

addition, the nonmonotonicity of bF ��; b�� over its �rst argument is also inconsistent with the
linear state space representation, though nonmonotonicities are possible with a functionally

nonlinear state space representation as in (11)-(12).

Table 2 presents estimates of the model�s preference parameters � = (�; �; �)0. The

subjective time-discount factor, �, is close to one in each estimation, with values between

0.99 and 0.999, depending on the measure of consumption and the weighting matrix employed

in the second step (W = I or W=G�1
T ). The estimated relative risk aversion parameter �

ranges from 17-60, with higher values for the representative agent version of the model than

the representative stockholder version. For example, using aggregate consumption data,

estimated risk aversion is around 60, regardless of which estimation is employed in the

second step (W = I or W=G�1
T ). By contrast, estimated risk aversion is either 20 or 17

when we use the stockholder mimicking factor as a measure of stockholder consumption.

The �nding that estimated risk aversion is higher for the model with aggregate consumption

than for that with stockholder consumption is consistent with results in Malloy, Moskowitz,

and Vissing-Jorgensen (2005), who focus on the special case of the EZW utility model in

which the EIS, 1=�, equals one. In this case, the pricing kernel simpli�es to an expression

that depends only on the expected present value of long horizon consumption growth.

The estimated value of � is less than one, indicating that the EIS is above one and con-

siderably di¤erent from the inverse of the coe¢ cient of relative risk aversion. The results are

similar across estimations. The EIS is estimated to be between 1.667 and 2 in the representa-

21



tive agent version of the model, and between 1.11 and 2.22 in the representative stockholder

version of the model. The estimates for this parameter are in line with those reported in

Bansal, Gallant, and Tauchen (2004) who estimate a model of long-run consumption risk

with EZW utility. In theoretical work, Bansal and Yaron (2004) have emphasized the im-

portance of EZW preferences with an EIS >1, in conjunction with a persistent component

of consumption growth, to explain the dynamics of aggregate stock market returns.

Under standard regularity conditions typically imposed in semiparametric models, the

two-step estimator b� is pT asymptotically normally distributed even when the model (15)
may be misspeci�ed. However, the asymptotic variance-covariance matrix is of complicated

form. We therefore compute block bootstrap estimates of their �nite sample distributions,

as suggested by Chen, Linton, and van Keilegom (2003). The sieve parameters V0
C0
, fajgKT

j=1,

the conditional mean bm(wt; �; F ), and the �nite dimensional parameters � = (�; �; �)0 are

all estimated for each simulated realization.12 Unfortunately, the procedure is highly numer-

ically intensive, and takes several days to run on a workstation computer, thus limiting the

number of bootstrap simulations that can be feasibly performed. We therefore conduct the

two-step SMD estimation on 100 block bootstrap samples. The resulting con�dence regions

are wide, a �nding that may in part be attributable to the imprecision in the bootstrapped

con�dence regions, itself a result of the small number of bootstrap iterations. Even with the

large con�dence regions, however, in the representative agent formulation of the model we

can always reject the hypothesis that � = �. Moreover, the 95% con�dence region for � is

moderate and contains only values below one, or an EIS above one.

5.2 Model Comparison

How well does the EZW recursive utility model explain asset pricing data relative to com-

peting speci�cations? To address this question, we use the methodology provided by Hansen

and Jagannathan (1997), who develop a way to compare asset pricing models when all sto-

chastic discount factor models are treated as misspeci�ed proxies for the true unknown SDF,

and the relevant question is which model contains the least speci�cation error.

Hansen and Jagannathan suggest that we compare the pricing errors of various candidate

SDF Mt(b) models by choosing each model�s parameters, b, to minimize the quadratic form

12The bootstrap sample is obtained by sampling blocks of the raw data randomly with replacement and

laying them end-to-end in the order sampled. To choose the block length, we follow the recommendation

of Hall, Horowitz, and Jing (1995) who show that the asymptotically optimal block length for estimating a

symmetrical distribution function is l _ T 1=5; also see Horowitz (2003).
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gHJT (b) � fgT (b)g0G�1
T gT (b), where gT (b) = (g1T (b); :::; gNT (b))0 is the vector of the sample

average of pricing errors (i.e., giT (b) = 1
T

PT
t=1Mt(b)Ri;t � 1 for i = 1; :::; N), and GT is the

sample second moment matrix of the N asset returns upon which the models are evaluated

(i.e., the (i; j)-the element of GT is 1
T

PT
t=1Ri;tRj;t for i; j = 1; :::; N). The measure of model

misspeci�cation is then the square root of this minimized quadratic form, dT �
q
gHJT (bb),

which gives the maximum pricing error per unit norm on any portfolio of the N assets

studied, and delivers a metric suitable for model comparison. It is also a measure of the

distance between the candidate SDF proxy, and the set of all admissible stochastic discount

factors (Hansen and Jagannathan (1997)). We refer to the square root of this minimized

quadratic form, dT �
q
gHJT (bb), as the Hansen-Jagannathan distance, or HJ distance for

short.

We also compute a conditional version of the distance metric that incorporates con-

ditioning information Zt. In this case, gT (b) = 1
T

PT
t=1 [(Mt+1 (b)Rt+1 � 1N)
 Zt] and

GT � 1
T

PT
t=1 (Rt+1 
 Zt) (Rt+1 
 Zt)

0. Because the number of test assets increases quickly

with the dimension of Zt; we use just a single instrument Zt = cayt: This instrument is

useful because it has been shown elsewhere to contain signi�cant predictive power for re-

turns on the size and book-market sorted portfolios used in this empirical study (Lettau and

Ludvigson (2001b)). We refer to the Hansen-Jagannathan distance metric that incorporates

conditioning information as the conditional HJ distance, and likewise refer to the distance

without conditioning information as the unconditional HJ distance.

An important advantage of this procedure is that the second moment matrix of returns

delivers an objective function that is invariant to the initial choice of asset returns. The iden-

tity and other �xed weighting matrices do not share this property. Kandel and Stambaugh

(1995) have suggested that asset pricing tests using these other �xed weighting matrices can

be highly sensitive to the choice of test assets. Using the second moment matrix helps to

avert this problem.

We compare the speci�cation errors of the estimated EZW recursive utility model to those

of the time-separable, constant relative risk aversion (CRRA) power utility model (3) and to

two alternative asset pricing models that have been studied in the literature: the three-factor,

portfolio-based asset pricing model of Fama and French (1993), and the approximately linear,

conditional, or �scaled�consumption-based capital asset pricing model explored in Lettau

and Ludvigson (2001b). These models are both linear stochastic discount factor models
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taking the form

Mt+1(b) = b0 +
kX
i=1

biFi;t+1; (25)

where Fi;t+1 are variable factors, and the coe¢ cients b0 and bi are treated as free parameters

to be estimated. Fama and French develop an empirical three-factor model (k = 3), with

variable factors related to �rm size (market capitalization), book equity-to-market equity,

and the aggregate stock market. These factors are the �small-minus-big�(SMBt+1) portfo-

lio return, the �high-minus-low�(HMLt+1) portfolio return, and the market return, Rm;t+1,

respectively.13 The Fama-French pricing kernel is an empirical model not motivated from

any speci�c economic model of preferences. It nevertheless serves as a benchmark because it

has displayed unusual success in explaining the cross section of mean equity returns (Fama

and French (1993), Fama and French (1996)). The model explored by Lettau and Ludvig-

son (2001b) can be interpreted as a �scaled� or conditional consumption CAPM (�scaled

CCAPM�hereafter) and also has three variable factors (k = 3),dcayt;dcayt �� logCt+1, and
� logCt+1: Lettau and Ludvigson (2001b) show that such a model can be thought of as a

linear approximation to any consumption-based CAPM (CCAPM) in which risk-premia vary

over time.

To insure that the SDF proxies we explore preclude arbitrage opportunities over all assets

in our sample (including derivative securities), the estimated SDF must always be positive.

The SDF of the time-separable CRRA utility model and of the EZW recursive utility model

is always positive, thus these models are arbitrage free. By contrast, the SDFs of the linear

comparison models may often take on large negative values, and are therefore not arbitrage

free. In order to avoid comparisons between models that are arbitrage free and those that

are not, we restrict the parameters of the linear SDF to those that produce a positive SDF

in every period. Although we cannot guarantee that the linear SDFs will always be positive

out-of-sample, we can at minimum choose parameters so as to insure that they are positive

in sample, and therefore suitable for pricing derivative claims in sample.

In practice, the set of parameters that deliver positive SDFs is not closed, so it is con-

venient to include limit points by choosing among parameters b that deliver nonnegative

13SMB is the di¤erence between the returns on small and big stock portfolios with the same weight-

average book-to-market equity. HML is the di¤erence between returns on high and low book-to-market

equity portfolios with the same weighted-average size. Further details on these variables can be found in

Fama and French (1993). We follow Fama and French and use the CRSP value-weighted return as a proxy

for the market portfolio, Rm. The data are taken from Kenneth French�s Dartmouth web page (see the

Appendix).
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SDFs. To do so, we choose the unknown parameters b = (b0; b1; :::; bk)
0 of the linear mod-

els to minimize the squared HJ distance for that model, subject to the constraint that

the SDF proxy be nonnegative in every period of our sample. In the computation of the

HJ distance metric, this implies that we restrict gT (b)� 1
T

PT
t=1 [fMt+1 (b)g+Rt+1�1N ] or

gT (b)� 1
T

PT
t=1 [(fMt+1 (b)g+Rt+1�1N)
Zt], where fMt+1 (b)g+ = max f0;Mt+1 (b)g :

For the EZW recursive utility model, the SDF is always positive and the restriction is

nonbinding. The HJ distance for the EZW model (15) is computed by using the parameter

estimates obtained from the two-step procedure described in Section 3, for the case in which

W = G�1
T in the second step GMM estimation of the �nite-dimensional parameters � =

(�; �; �)0. Notice that this drastically restricts the number of parameters in the EZW model

that are chosen to minimize the HJ distance. In particular, we choose only the �nite-

dimensional parameters � = (�; �; �)0 of the EZW model to minimize the HJ distance�the

parameters of the nonparametric F () function are chosen to minimize the SMD criterion (19).

Note that this places the EZW model (15) at a disadvantage because the sieve parameters of

the unknown function F () are not chosen to minimize the HJ criterion, which is the measure

of model misspeci�cation. By contrast all of the comparison models�parameters are chosen

to minimize the HJ criterion.14 To rank competing models, we apply an AIC penalty to the

HJ criterion of each model, for the number of free parameters b chosen to minimize the HJ

distance. The HJ distances for all models are reported in Table 3.

Table 3 reports the measure of speci�cation error given by the HJ distance (�HJ Dist�),

dT �
q
gHJT (bb), for all the models discussed above. Several general patterns emerge from the

results. First, for both the representative agent version of the model and the representative

stockholder version of the model, the estimated EZW recursive utility model always displays

smaller speci�cation error than the time-separable CRRA model, but greater speci�cation

error than the Fama-French model. This is true regardless of whether the unconditional or

conditional HJ distance is used to compare models. The unconditional HJ distance for the

EZW recursive speci�cation is 0.449, about 13 percent smaller than that of the time-separable

CRRA model, but about 26 percent larger than the Fama-French model. When models are

compared according to the conditional HJ distance, the distance metric for the recursive

model is only 15 percent larger than that of the Fama-French model. Second, the EZW

model performs better than than the scaled CCAPM: the HJ distance is smaller when models

are compared on the basis of either the unconditional or conditional HJ distance, regardless

14Recall that the SMD minimization gives greater weight to moments that are more highly correlated with

the instruments pJT (wt), while the HJ minimization matches unconditional moments.
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of which measure of consumption is used.15 Third, when the representative stockholder

version of the model is estimated, the recursive utility model performs better than every

model except the Fama-French model according to both the conditional and unconditional

distance metrics. These results are encouraging for the recursive utility framework, because

they suggest that the model�s ability to �t the data is in a comparable range with other

models that have shown particular success in explaining the cross-section of expected stock

returns.

Note that the HJ distances computed so as to insure that the SDF proxies are nonneg-

ative, are in principle distinct from an alternative distance metric suggested by Hansen and

Jagannathan (1997), denoted �HJ+ Dist,�which restricts the set of admissible stochastic

discount factors to be nonnegative. In practice, however, the two distance metrics are quite

similar. Estimates of �HJ+ Dist�are reported in Table 4.

5.3 Fixing the EIS = 1

Several authors have focused on the cross-sectional implications of EZW preferences when the

EIS, ��1, is restricted to unity (e.g., Hansen, Heaton, and Li (2005), Malloy, Moskowitz, and

Vissing-Jorgensen (2005)). Malloy et. al., conjecture that risk-aversion estimates identi�ed

from a cross-section of returns are unlikely to be greatly a¤ected by the value of the EIS. To

investigate this possibility in our setting, we repeated our estimation �xing � = 1.

The results are somewhat sensitive to the weighting matrix used in the second step

estimation. For example, in an estimation of the representative agent version of the model

with � = 1 andW = IN , the relative risk aversion coe¢ cient � is estimated to be 20, much

lower than the value of almost 60 reached when � is freely estimated (Table 2). But when

W=G�1
T , the coe¢ cient of relative risk aversion � is estimated to be 60, precisely the same

value obtained when � is left unrestricted. In addition, the HJ distance is about the same

when � = 1, equal to 0.448 compared to 0.451 when � is unrestricted (the HJ distance is

slightly smaller when � = 1 because, when � is �xed, one fewer parameter is estimated,

reducing the AIC penalty). Thus, the results using W=G�1
T are largely supportive of the

15The estimated HJ distances for the linear scaled CCAPM are larger than reported in previous work

(e.g., Lettau and Ludvigson (2001b)) due to the restriction that the SDF proxy be positive. Although the

scaled CCAPM does a good job of assigning the right prices to size and book-market sorted equity returns,

its linearity implies that it can assign negative prices to some positive derivative payo¤s on those assets.

This is not surprising, since linear models�typically implemented as approximations of nonlinear models for

use in speci�c applications�are not designed to price derivative claims.
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conjecture of Malloy, Moskowitz, and Vissing-Jorgensen (2005). We note, however, that if

the model with � = 1 is misspeci�ed, parameter estimates can be quite sensitive to the

objective function minimized, as we �nd here.

We �nd qualitatively similar results in an estimation of the representative stockholder

version of the model. In this case, when � = 1 and W = IN , the relative risk aversion

coe¢ cient � is estimated to be 20, the same value obtained when � is left unrestricted. This

is not surprising because the unrestricted value of � is already quite close to unity, equal to

0.9. On the other hand, whenW=G�1
T , � is estimated to be 10, considerably smaller than

the value of 17 estimated when � is unrestricted with a point estimate of 0.68. But the HJ

distance is 0.469 when � = 1, only slightly larger than the value of 0.463 found when � is

unrestricted. We conclude that the model�s cross-sectional performance, as measured by the

HJ distance, is not sensitive to �xing the EIS at unity.

5.4 The Return to Aggregate Wealth and Human Wealth

In this section, we investigate the estimated EZW recursive utility model�s implications for

the return to aggregate wealth, Rw;t+1, and the return to human wealth, denoted Ry;t+1

hereafter. The return to aggregate wealth represents a claim to future consumption and is in

general unobservable. However, it can be inferred from our estimates of Vt=Ct by equating the

marginal rate of substitution (5), evaluated at the estimated parameter values
nb�; bF��; b��o,

with its theoretical representation based on consumption growth and the return to aggregate

wealth (6):

�
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If, in addition, we explicitly model human wealth as part of the aggregate wealth portfolio,

the framework also has implications for the return to human wealth, Ry;t. We do so by

following Campbell (1996), who assumes that the return to aggregate wealth is a portfolio

weighted average of the unobservable return to human wealth and the return to �nancial

wealth. Speci�cally, Campbell starts with the relationship

Rw;t+1 = (1� �t)Ra;t+1 + �tRy;t+1; (26)

where �t is the ratio of human wealth to aggregate wealth, and Ra;t+1 is the gross simple

return on nonhuman wealth (a refers to �nancial asset wealth). A di¢ culty with (26) is that
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the wealth shares may in principal vary over time. Campbell deals with this by linearizing

(26) around the means of �t, the log return on nonhuman asset wealth, and the log return

on human wealth, assuming that the means of the latter two are the same. Under these

assumptions, an approximate expression for the log return on aggregate wealth may be

obtained with constant portfolio shares. Unfortunately, this approximation assumes that

the means of human and nonhuman wealth returns are the same. As a start, we instead

adopt the crude assumption that portfolio shares in (26) are constant:

Rw;t+1 = (1� �)Ra;t+1 + �Ry;t+1:

Such an assumption is presumably a reasonable approximation if portfolio shares between

human and nonhuman wealth are relatively stable over quarterly horizons. Given observa-

tions on Rw;t+1 from our estimation of the EZW recursive utility model, and given a value

for �, the return to human wealth, Ry;t+1, may be inferred.

The exercise in this section is similar in spirit to the investigation of Lustig and Van

Nieuwerburgh (2006). These authors, following Campbell (1996), investigate a loglinear

version of the EZW recursive utility model under the assumption that asset returns and

consumption are jointly lognormal and homoskedastic. With these assumptions, the authors

back out the human wealth return from observable aggregate consumption data, and �nd

a strong negative correlation between the return to asset wealth and the return to human

wealth. Our approach generalizes their exercise in that it provides an estimate of the fully

nonlinear EZW model without requiring the assumption that asset returns and consumption

are jointly lognormal and homoskedastic. An important question of this study is whether our

approach leads to signi�cantly di¤erent implications for both the aggregate wealth return

and the human wealth return.

Tables 5 and 6 present summary statistics for our estimated aggregate wealth return,

Rw;t+1 and human wealth return, Ry;t+1: Following Campbell (1996) and Lustig and Van

Nieuwerburgh (2006), we use the CRSP value-weighted stock market return to measure

Ra;t+1. The statistics for Ry;t+1 are presented for two di¤erent values of the share of human

wealth in aggregate wealth: � = 0:333 and � = 0:667. There are two di¤erent sets of

estimates, depending on whether W = I or W = G�1
T in the second-step estimation of

the EZW model. Summary statistics for the W = I case are presented in Table 5, for the

W = G�1
T case in Table 6. For comparison, summary statistics on the CRSP value-weighted

return, RCRSP;t+1 are also presented.

Several conclusions can be drawn from the results in Tables 5 and 6. First, the return
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to aggregate wealth is always considerably less volatile than the aggregate stock market re-

turn. For example, in Table 5, the annualized standard deviation of Rw;t+1 is 0.01 in the

representative agent model and 0.036 in the representative stockholder model. By contrast,

the annualized standard deviation of RCRSP;t+1 is 0.165. Second, in the representative agent

model, the mean of Rw;t+1 is less than the mean of RCRSP;t+1, but is larger in the repre-

sentative stockholder model. Since the mean of Rw;t+1 is a weighted average of the means

of Ry;t+1 and RCRSP;t+1, and given that the mean of RCRSP;t+1 is 0.084, the mean of the

human wealth return can be quite small if, as in the representative agent model, the mean of

aggregate wealth is small. This is especially so when the share of human wealth takes on the

smaller value of 0.333. Indeed, if the mean of aggregate wealth is su¢ ciently small (as it is in

Table 6 where it equals 0.024), the gross return on human wealth can even be less than one,

so that the simple net return is negative. Third, the return to human wealth is a weighted

average (where the weights exceed one in absolute value) of the returns to aggregate wealth

and the return to asset wealth. Thus, unless the correlation between the stock market return

and the aggregate wealth return is su¢ ciently high, the return to human wealth can be quite

volatile, especially when � is small. This occurs in the representative stockholder versions of

the model when � = 0:333.

Finally, the results show that the only way to reconcile a relatively stable aggregate

wealth return with a volatile stock market return, is to have the correlation between the

human wealth return and the stock market return be negative and large in absolute value.

The correlation between Ry;t+1 and RCRSP;t+1 range from -0.764 in Table 6 when � = 0:667,

to -0.996 in Table 5 when � = 0:333: These numbers are strikingly close to those reported in

Lustig and Van Nieuwerburgh (2006) for the cases where the EIS exceeds one. The �nding

reinforces their conclusion that �good news on Wall street is bad news on Main street.�As

Lustig and Van Nieuwerburgh (2006) point out, a negative correlation between human and

�nancial wealth is inconsistent with the production functions typically employed in standard

business cycle models, which imply a near perfect correlation between the two forms of

wealth.

6 Conclusion

In this paper we undertake a formal econometric evaluation of the Epstein-Zin-Weil recur-

sive utility model, a framework upon which a large and growing body of theoretical work

macroeconomics and �nance is based. We conduct estimation of the EZW model without
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employing an observable �nancial market return as a proxy for the unobservable aggregate

wealth return, without linearizing the model, and without placing tight parametric restric-

tions on either the law of motion or joint distribution of consumption and asset returns, or

on the value of key preference parameters such as the elasticity of intertemporal substitu-

tion. We present estimates of all the preference parameters of the EZW model, evaluate

the model�s ability to �t asset return data relative to competing asset pricing models, and

investigate the implications of such estimates for the unobservable aggregate wealth return

and human wealth return.

Using quarterly data on consumption growth, assets returns and instruments, we �nd

evidence that the elasticity of intertemporal substitution in consumption di¤ers considerably

from the inverse of the coe¢ cient of relative risk aversion, and that the EZW recursive utility

model displays less model misspeci�cation than the familiar time-separable CRRA power

utility model. Taken together, these �ndings suggest that the consumption and asset return

data we study are better explained by the recursive generalization of the standard CRRA

model than by the special case of this model in which preferences are time-separable and the

coe¢ cient of relative risk aversion equals the inverse of the EIS.

Our results can be compared to those in the existing the literature. For example, we

�nd that the estimated relative risk aversion parameter ranges from 17-60, with considerably

higher values for the representative agent representation of the model than the representative

stockholder representation. These �ndings echo those in the approximate loglinear version of

the model where the EIS is restricted to unity, studied by Malloy, Moskowitz, and Vissing-

Jorgensen (2005). On the other hand, we �nd that the estimated elasticity of intertemporal

substitution is typically above one, regardless of which consumption measure is employed.

Finally, the empirical estimates imply that the unobservable aggregate wealth return is

weakly correlated with the CRSP value-weighted stock market return and only one-tenth to

one-�fth as volatile. These �ndings suggest that the return to human wealth must be strongly

negatively correlated with the aggregate stock market return, similar to results reported for

an approximate loglinear version of the model studied by Lustig and Van Nieuwerburgh

(2006).

As an asset pricing model, the EZW recursive utility framework includes an additional

risk factor for explaining asset returns, above and beyond the single consumption growth risk

factor found in the time-separable, CRRA power utility framework. The added risk factor

in the EZW recursive utility model is a multiplicative term involving the continuation value

of the future consumption plan relative to its conditional expected value today. This factor
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can in principal add volatility to the marginal rate of substitution in consumption, helping

to explain the behavior of equity return data (Hansen and Jagannathan (1991)). One way

this factor can be volatile is if the conditional mean of consumption growth varies over long

horizons. The estimation procedure employed here allows us to assess the plausibility of

this implication from the consumption and return data alone, without imposing restrictions

on the data generating process for consumption. The results suggest that the additional

risk factor in the EZW model has su¢ cient dynamics so as to provide a better description

of the data than the CRRA power utility model, implying that the conditional mean of

consumption growth is unlikely to be constant over time (Kocherlakota (1990)). At the

same time, the added volatility coming from continuation utility is modest and must be

magni�ed by a relatively high value for risk aversion in order to �t the equity return data.

7 Appendix

This appendices consist of several parts: Appendix 1 describes the data. Appendix 2 dis-

cusses how the unknown continuation value function is approximated, including discussion

of the arguments of Vt
Ct
, and the choice of sieve function to approximate F (�). Appendix 3

provides details of the two-step semiparametric estimation procedure, including the imple-

mentation of the SMD estimator as an instance of GMM. Appendix 4 presents consistency

and convergence rate of the �rst step pro�le SMD estimator of the unknown function F �(�; �)
when the model could be misspeci�ed. Appendix 5 presents root-T asymptotic normality of

the second step GMM estimator of � when the model could be misspeci�ed.

Appendix 1: Data Description

The sources and description of each data series we use are listed below.

AGGREGATE CONSUMPTION

Aggregate consumption is measured as expenditures on nondurables and services, excluding

shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in billions

of chain- weighted 2000 dollars. The components are chain-weighted together, and this

series is scaled up so that the sample mean matches the sample mean of total personal

consumption expenditures. Our source is the U.S. Department of Commerce, Bureau of

Economic Analysis.

STOCKHOLDER CONSUMPTION
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The de�nition of stockholder status, the consumption measure, and the sample selection

follow Vissing-Jorgensen (2002). Consumption is measured as nondurables and services

expenditures. Details on this construction can be found in Appendix A of Malloy, Moskowitz,

and Vissing-Jorgensen (2005). We use their �simple� measure of stockholders, based on

responses to the survey indicating positive holdings of �stocks, bonds, mutual funds and

other such securities.� Nominal consumption values are de�ated by the BLS de�ator for

nondurables for urban households. Our source is the Consumer Expenditure Survey.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Consumption, wealth, labor income, and dividends are in per

capita terms. Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (2000=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

MONTHLY INDUSTRIAL PRODUCTION INDEX

Industrial production is measured as the seasonally adjusted total industrial production

index (2002=100). Our source is the Board of Governors of the Federal Reserve System.

MONTHLY SERVICES EXPENDITURES

Measured as personal consumption expenditures on services, billions of dollars; months sea-

sonally adjusted at annual rates. Nominal consumption is de�ated by the implicit price

de�ator for services expenditures. Our source is the Bureau of Economic Analysis.

ASSET RETURNS

� 3-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis percent; Source: H.15 Release �Federal Reserve Board of Governors.

� 6 size/book-market returns: Six portfolios, monthly returns from July 1926-December
2001. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE
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percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

PROXY FOR LOG CONSUMPTION-WEALTH RATIO,dcay
The proxy for the log consumption-wealth ratio is computed as described in Lettau and

Ludvigson (2001a).

RELATIVE BILL RATE, RREL

The relative bill rate is the 3-month treasury bill yield less its four-quarter moving average.

Our source is the Board of Governors of the Federal Reserve System.

LOG EXCESS RETURNS ON S&P 500 INDEX: SPEX

SPEX is the log di¤erence in the Standard and Poor 500 stock market index, less the log

3-month treasury bill yield. Our source is the Board of Governors of the Federal Reserve

System.

Rm, SMB, HML

The Fama/French benchmark factors, Rm, SMB, and HML, are constructed from six size/book-

to-market benchmark portfolios that do not include hold ranges and do not incur transaction

costs. Rm, the return on the market, is the value-weighted return on all NYSE, AMEX, and

NASDAQ stocks. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Appendix 2: Approximation to Continuation Value Function F ()

The arguments of F (). If the Markov structure is linear, as in (9) and (10), we give

assumptions under which Vt
Ct
= F

�
Vt�1
Ct�1

; Ct
Ct�1

�
: First note that the dynamic system (9) and

(10) converges asymptotically to time-invariant innovations representation taking the form

�ct+1 = �+Hbxt + "t+1 (27)bxt+1 = �bxt +K"t+1; (28)

where the scalar variable "t+1 � �ct+1��bct+1 = H (xt � bxt)+C�t+1, bxt denotes a linear least
squares projection of xt onto �ct;�ct�1; :::�c�1, andK � (DC0 + �PH) (HPH +CC0)

�1
;

where P solves

P = (��KH)2 P + (D�KC) (D�KC)0 :
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(See Hansen and Sargent (2007).) The representation above shows that the state variablebxt replaces xt as the argument of the function over which Vt
Ct
is de�ned. Assume Vt

Ct
is an

invertible function f (bxt). Then, bxt = f�1
�
Vt
Ct

�
:

>From (28) we have

Vt
Ct

= f (bx) = g (bxt�1; "t)
= g

�
f�1

�
Vt�1
Ct�1

�
; "t

�
; (29)

for some function g: By inverting (27), we obtain

"t = h (exp (�ct+1) ; bxt�1)
= h

�
exp

�
ln

�
Ct
Ct�1

��
; f�1

�
Vt�1
Ct�1

��
; (30)

where h
�

Ct
Ct�1

; bxt� = ln h Ct
Ct�1

i
���Hbx. Plugging (30) into (29), we have Vt

Ct
= F

�
Vt�1
Ct�1

; Ct
Ct�1

�
,

for F : R2 ! R: Observe that if the innovations in (9) and (10) are positively correlated,
Vt
Ct
may display negative serial dependence. The linear model implies that F is a monotonic

function of Ct
Ct�1

:

If the stochastic process for consumption growth is a nonlinear function of a hidden

�rst-order Markov process xt, the function F can take on more general functional forms,

potentially displaying nonmonotonicity in both its arguments. For example, consider the

functionally non-linear state space model:

ct+1 � ct = h (xt) + �c;t+1 (31)

xt+1 =  (xt) + �x;t+1; (32)

where E (�c;t+1) = E (�d;t+1) = 0, Var(�j;t+1) = �j; j = c; x, E (�c;t+1�x;t+1) = �cx and

h (xt) and  (xt) are no longer necessarily linear functions of the state variable xt. Harvey

(1989) shows that, under the assumption that the innovations in (31)-(32) are Gaussian, an

approximate innovations representation can be obtained by linearizing the model and then

applying a modi�cation of the usual Kalman �lter to the resulting linearized representation

of (31)-(32). Let b�tjt�1 denote the conditional mean of xt: If the functions h (xt) and  (xt)
are expanded in Taylor series around b�tjt�1, an innovations representation may be obtained
which takes the form:

b�t+1jt =  
�b�tjt�1 + Ptjt�1Ht+1F

�1
t et+1

�
(33)

�ct+1 = h
�b�tjt�1�+ et+1; (34)
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where et+1 = �ct+1�h
�b�tjt�1� and Ptjt�1solves a suitable recursion applied to the linearized

state space representation corresponding to the dynamic system (31)-(32):

Pt+1jt = e�2�Ptjt�1 � nPtjt�1 eH + �cx

o2
F�1t

�
+ �x

Ft = eH2Pt+1jt + 2Ht+1�cx + �c;

where e� and eH are partial derivatives of  and h respectively. See Harvey (1989), Ch., 3.

Given invertibility, from either (27)-(28) or (33)-(34), we again have the implication that
Vt
Ct
= F

�
Vt�1
Ct�1

; Ct
Ct�1

�
, for some F : R2 ! R, but unlike the case for the linear Markov

model, the function F may display nonmonotonicities as well as nonlinearities. The as-

sumptions embedded in this example are meant to be illustrative: more general nonlinear

state space models and distributional assumptions are likely to produce more complicated

dynamic relationships between Vt
Ct
and its own lagged value, as well as consumption growth.

B-spline Approximation of F (�): We use cubic B-splines to approximate the unknown
continuation value-consumption ratio function because unlike other basis functions (e.g.,

polynomials) they are shape-preserving (Chui (1992)). The multivariate sieve function Bj is

implemented as a tensor product cubic B-spline taking the form:

F (z; c) = �0 +

K1TX
i=1

K2TX
j=1

aijBm

�
z � i+

m

2

�
Bm(

c

�2

+ & � j); (35)

where z � Vt
Ct
, c � Ct+1

Ct
, Bm(:) is a B-spline of degree m, and aij are parameters to be

estimated. The term m
2
recenter the function, which insures that the function is shape-

preserving (preserving nonnegativity, monotonicity and convexity of the unknown function

to be approximated). For consumption growth the parameters �2 and & are set to guarantee

that the support of Bm stays within the bounds [0:97; 1:04] since this is the range for which

we observe variation in gross consumption growth data. This insures that as j goes from 1

to K2T , Bm is always evaluated only over the support [0:97; 1:04]. �2 �xes the support of

the spline. By shifting i and j, the spline is moved on the real line.

We use a cardinal B-spline given by

Bm(y) =
1

(m� 1)!

mX
k=0

(�1)k
�
m

k

�
[max (0; y � k)]m�1 ; with

�
m

k

�
� m!

(m� k)!k!
:

The order of the spline, m, for our application is set to 3. For the dimensionality of the B-

spline sieve, we setK1T = K2T = 3. Because asymptotic theory only provides guidance about

the rate at which K1T �K2T + 1 must increase with the sample size T , other considerations
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must be used to judge how best to set this dimensionality. The bigger are K1T and K2T , the

greater is the number of parameters that must be estimated, therefore the dimensionality

of the sieve is naturally limited by the size of our data set. With K1T = K2T = 3, the

dimension of the total unknown parameter vector, (�;F )0 =
�
�; �; �; a0; a11; :::; aK1TK2T

; V0
C0

�0
,

is 14, estimated using a sample of size T = 213. In practice, we obtained very similar results

setting K1T = K2T = 4; thus we present the results for the more parsimonious speci�cation

using K1T = K2T = 3 below.

Appendix 3. Semiparametric Two-Step Estimation Procedure

We use D � [�; �] � [�; �] � [�; �] to denote the compact parameter space for the �nite-
dimensional unknown parameters � = (�; �; �)0, and V denotes the function space for the
in�nite dimensional unknown function F (). In the application we assume that V is a Holder
ball:

V � fg : (0;1)� (0;1)! (0;1) : kgk�s � const: <1g ; for some s > 1; (36)

here the norm kgk�s is de�ned as

jjgjj�s � sup
x;y
jg(x; y)j+ max

a1+a2=[s]
sup

(x;y) 6=(x;y)

j@a1x @a2y g(x; y)� @a1x @
a2
y g(x; y)jp

(x� x)2 + (y � y)2
s�[s] <1;

where [s] denotes the largest non-negative integer such that [s] < s, and (a1; a2) is any pair

of non-negative integers such that a1 + a2 = [s].

For any candidate value � = (�; �; �)02D, we de�ne

F � (�; �) � arg inf
F2V

Efm(wt; �; F )
0m(wt; �; F )g;

wherem(wt; �; F )0 � Ef
(zt+1; �; F )jwtg = (m1(wt; �; F ); :::;mN(wt; �; F )) andmi(wt; �; F ) �
Ef
i(zt+1; �; F )jwtg for i = 1; :::; N . Next we de�ne the pseudo true value �� = (��; ��; ��)02D
as

��W � argmin
�2D

[E f
(zt+1; �; F � (�; �))
 xtg]0W [E f
(zt+1; �; F � (�; �))
 xtg] ;

whereW is some positive de�nite weighting matrix and xt is any chosen measurable function

of wt.

We say the model is correctly speci�ed if

E f
i(zt+1; �o; F � (�; �o))
 xtg = 0; i = 1; :::; N: (37)
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When the model is correctly speci�ed, we have ��W = �o and F � (�; �o) = Fo, and these

true parameter values �o; F � (�; �o) do not depend on the choice of the weighting matrix
W. However, when the model could be misspeci�ed, then the pseudo true values ��W and

F � (�; ��W) typically will depend on the weighting matrixW.

Two-step Semiparametric Estimation Procedure. In Step One, for any candidate value

� = (�; �; �)02D, we estimate F � (�; �) by the sieve minimum distance (SMD) estimatorbFT (�; �): bFT (�; �) = argmin
FT2VT

1

T

TX
t=1

bm(wt; �; FT )0 bm(wt; �; FT ); (38)

where bm(wt; �; F )
0 = (bm1(wt; �; F ); :::; bmN(wt; �; F )) is some nonparametric estimate of

m(wt; �; F ), and VT is a sieve space that approximates V. In the application we let VT be
the the tensor product B-spline (35) sieve space, which becomes dense in V as sample size
T !1.
In Step Two, we estimate ��W by minimizing a sample GMM objective function:

b�W = argmin
�2D

h
gT (�; bFT (�; �) ;yT )i0WT

h
gT ((�; bFT (�; �) ;yT )i ; (39)

where yT =
�
z0T+1; :::z

0
2;x

0
T ; :::x

0
1

�0
denotes the vector containing all observations in the sam-

ple of size T , and WT is a positive, semi-de�nite possibly random weighting matrix that

converges toW, also,

gT (�; bFT (�; �) ;yT ) = 1

T

TX
t=1


(zt+1; �; bFT (�; �))
 xt (40)

are the sample moment conditions.

We have considered two kinds of GMM estimation of ��W in Step Two: (i) GMM esti-

mation of ��W using xt = 1N as the instruments and WT= G
�1
T as the weighting matrix,

where the (i; j)th element of GT is 1
T

PT
t=1Ri;tRj;t for i; j = 1; :::; N . This leads to the GMM

estimate using HJ criterion. (ii) GMM estimation of ��W using xt = 1N as the instruments

andWT= I as the weighting matrix, where I is the N �N identity matrix.

The SMD procedure in Step One has been proposed respectively in Newey and Powell

(2003) for nonparametric IV regression, and in Ai and Chen (2003) for semi/nonparametric

conditional moment restriction models. The SMD procedure needs a nonparametric estima-

tor bm(wt; �; F ) for m(wt; �; F ). There are many nonparametric procedures such as kernel,
local linear regression, nearest neighbor and various sieve methods that can be used to esti-

mate mi(wt; �; F ); i = 1; :::; N . In our application we consider the sieve Least Squares (LS)
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estimator. For each �xed (wt; �; F ), we approximate mi(wt; �; F ) by

mi(wt; �; F ) �
JTX
j=1

aj(�; F )p0j(wt); i = 1; :::; N;

where p0j some known �xed basis functions, and JT ! 1 slowly as T ! 1: We then

estimate the sieve coe¢ cients fajg simply by OLS regression:

min
fajg

1

T

TX
t=1

[
i(zt+1; �; F )�
JTX
j=1

aj(�; F )p0j(wt)]
0[
i(zt+1; �; F )�

JTX
j=1

aj(�; F )p0j(wt)]

and the resulting estimator is denoted as: bmi(w; �; F ) =
PJT

j=1 baj(�; F )p0j(wt). In the

following we denote: pJT (w) = (p01(w); :::; p0JT (w))
0 and P = (pJT (w1); :::; pJT (wT ))0, then:

bmi(w; �; F ) =

TX
t=1


i(zt+1; �; F )p
JT (wt)

0(P0P)�1pJT (w); i = 1; :::; N: (41)

Many known sieve bases could be used as fp0jg. In our application we take the power series
and Fourier series as the pJT (w). The empirical �ndings are not sensitive to the di¤erent

choice of sieve bases, and we only report the results based on power series due to the length

of the paper.

GMM Implementation of SMD Estimation. When the nonparametric estimator bmi(w; �; F )

is the linear sieve estimator (41), the �rst step SMD estimation of F � (�; �) can be alterna-
tively implemented via the following GMM criterion (42):

bFT (�; �) = argmin
FT2VT

�
gT (�;FT ;y

T )
�0 fIN
 (P0P)�1g �gT (�;FT ;yT )� ; (42)

where yT =
�
z0T+1; :::z

0
2;w

0
T ; :::w

0
1

�0
denotes the vector containing all observations in the

sample of size T and

gT (�;FT ;y
T ) =

1

T

TX
t=1


(zt+1; �;FT )
pJT (wt) (43)

are the sample moment conditions associated with the NJT � 1 -vector of population un-
conditional moment conditions: E f
i(zt+1; �; F � (�; �))p0j(wt)g, i = 1; :::; N , j = 1; :::; JT .

Appendix 4: Convergence Rate of First Step SMD Estimator bFT (�; �)
To be completed.

Appendix 5: Root-T Asymptotic Normality of Second Step GMM Estimator b�
To be completed.
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Figure 1 
Estimated Continuation Value-Consumption Ratio, Aggregate Consumption, W=I 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as aggregate consumption, “W=” indicates the weighting matrix used in 
second-step estimation. The sample is 1952:Q1-2005Q1.  



Figure 2 
Estimated Continuation Value-Consumption Ratio, Stockholder Consumption, W=I 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as stockholder consumption, “W=” indicates the weighting matrix used 
in second-step estimation. The sample is 1952:Q1-2005Q1.  



Table 1
First-Stage Estimates of Weights for Stockholder Consumption

Model: �cSHt = 
0 + 
1� ln(IPt) + 
2� ln (SVt) + "t

Est. (t-stat)


0 0.007 (1.447)


1 0.833 (6:780)


2 1.992 (2:204)

R2 0.075

Notes: The table reports the results from regressing stockholder consumption growth on the log di¤erence

of industrial production growth, � ln(IPt), and the log di¤erences of real services expenditure growth,

� ln (SVt). Point estimates are reported, along with Newey and West (1987) corrected t-statistics in

parentheses. The sample period is 1982:M7-2002:M2.



Table 2
Preference Parameter Estimates

2nd Step Estimation � � �

(95% CI) (95% CI) (95% CI)

Aggregate Consumption

W = I 0.990 57.5 0.60

(.985, .996) (27.5, 129) (.24, .99)

W = G�1
T 0.999 60 0.50

(.994, .9999) (42,144) (.20, .75)

Stockholder Consumption

W = I 0.994 20.00 0.90

(.993, .9995) (.25, 40) (.38, 1.24)

W = G�1
T 0.998 17.0 0.68

(.992, .9999) (1, 43.3) (.23, 1.01)

Notes: The table reports second-step estimates of preference parameters, with 95% con�dence intervals

in parenthesis. � is the subjective time discount factor, � is the coe¢ cient of relative risk aversion, and � is

the inverse of the elasticity of intertemporal substitution. Second-step estimates are obtained by minimizing

the GMM criterion with eitherW = I or withW = G�1
T ; where in both cases xt=1N , an N � 1 vector

of ones. The sample is 1952:Q1-2005:Q1.



Table 3
Speci�cation Errors for Alternative Models: HJ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.456 0.625

Stockholder Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.490 0.620

Notes: The table reports the Hansen-Jagannathan distance metric

HJ DistT (b) = min
b

q
gT (b)

0G�1
T gT (b) ;

where b are parameter values associated with the model listed in column 1. In column 2, gT (b) �
1
T

PT
t=1 [fMt (b)g+Rt�1N ] ; and GT� 1

T

PT
t=1RtR

0
t, where Mt (b) is the stochastic discount fac-

tor associated with the model listed in column 1 and fMt (b)g+ = max f0;Mt (b)g. In column 3,

gT (b) � 1
T

PT
t=1 [(fMt+1 (b)g+Rt+1�1N)
Zt] and GT � 1

T

PT
t=1 (Rt+1
Zt+1) (Rt+1
Zt)

0

with Zt= cayt. The sample is 1952:Q1-2005:Q1.



Table 4
Speci�cation Errors for Alternative Models: HJ+ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.341 0.519

Scaled CCAPM 0.464 0.643

Stockholder Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.338 0.506

Scaled CCAPM 0.467 0.661

Notes: For each model in column 1, �HJ+ Dist� is the distance between the model proxy and

the family of admissible nonnegative stochastic discount factors. The sample is 1952:Q1-2005:Q1.



Table 5
Preference Parameter Estimates, EIS=1

2nd Step Estimation � � HJ Dist

Aggregate Consumption

W = I 0.985 20 �

W = G�1
T 0.985 60 0.448

Stockholder Consumption

W = I 0.990 20.00 �

W = G�1
T 0.999 10.0 0.469

Notes: The table reports second-step estimates of preference parameters, when the EIS = ��1 is �xed

at one. � is the subjective time discount factor,and � is the coe¢ cient of relative risk aversion. Second-step

estimates are obtained by minimizing the GMM criterion with eitherW = I or withW = G�1
T ; where in

both cases xt=1N , an N � 1 vector of ones. The sample is 1952:Q1-2005:Q1.



Table 6
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = I

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw;t RCRSP;t Rw;t RCRSP;t

Panel A: Correlation Matrix

Rw;t 1.00 0.171 1.00 -0.049

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.057 0.084 0.109 0.084

Standard deviation 0.010 0.165 0.036 0.165

Autocorrelation 0.234 0.055 -0.08 0.055

Notes: See next page.



Table 6, continued

Model-Implied Human Wealth Return, � = 0:333

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.996 1.00 -0.953

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.003 0.084 0.160 0.084

Standard deviation 0.327 0.165 0.353 0.165

Autocorrelation 0.044 0.055 0.042 0.055

Model-Implied Human Wealth Return, � = 0:667

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.982 1.00 -0.847

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.043 0.084 0.121 0.084

Standard deviation 0.082 0.165 0.101 0.165

Autocorrelation 0.036 0.055 0.016 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw;t, and

the return to human wealth, Ry;t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP;t. The parameter � is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized. Results for the model-implied returns are based

on second-step estimates obtained by minimizing the GMM criterion withW = I and xt=1N , an N � 1
vector of ones. The sample is 1952:Q1-2005:Q1.



Table 7
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = G�1

T

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw;t RCRSP;t Rw;t RCRSP;t

Panel A: Correlation Matrix

Rw;t 1.00 0.18 1.00 0.004

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.023 0.084 0.092 0.084

Standard deviation 0.012 0.165 0.046 0.165

Autocorrelation 0.055 0.055 -0.434 0.055

Notes: See next page.



Table 7, continued

Model-Implied Human Wealth Return, � = 0:333

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.994 1.00 -0.921

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.093 0.084 0.110 0.084

Standard deviation 0.326 0.165 0.359 0.165

Autocorrelation 0.043 0.055 0.013 0.055

Model-Implied Human Wealth Return, � = 0:667

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.975 1.00 -0.764

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.007 0.084 0.097 0.084

Standard deviation 0.081 0.165 0.108 0.165

Autocorrelation 0.032 0.055 -0.103 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw;t, and

the return to human wealth, Ry;t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP;t. The parameter � is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized statistics from quarterly data. Results for the model-

implied returns are based on second-step GMM estimation using theW = G�1
T and xt = 1N . The sample

is 1952:Q1-2005:Q1.
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