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Abstract 

This paper addresses the question whether interactive knowledge and common knowledge of 
information partitions are additional assumptions in the state-space model of knowledge. 
Robert Aumann and others have already discussed this issue, but in a way that appears unsat-
isfactory. This paper provides a thorough answer to the question in four steps. First, it makes 
clear the methodological nature of the puzzles surrounding interactive and common knowl-
edge of information partitions. Second, it points out two properties – labeled as Substitutivity 
and Immediacy – that knowledge holds in the state-space model, and that have received little 
attention in the literature. Third, based on the previous two steps, the paper demonstrates that 
interactive and common knowledge of information partitions are not additional assumptions 
of the state-space model of knowledge; this is the main contribution of the work. Finally, the 
Appendix of the paper offers a critical examination of Aumann’s discussion of the issue. 
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INTRODUCTION 

Models of economic theory are peopled by agents who take actions on the basis of their 

knowledge and beliefs about the world, and about each other’s knowledge and beliefs. The 

prevailing formal model for knowledge in contemporary mainstream economics was intro-

duced by Robert Aumann in a seminal paper published in 1976. Aumann’s basic idea is that 

an agent knows an event if, in every state of the world the agent considers possible, that event 

occurs. This idea is formalized in a set-theoretic setting where the knowledge of an agent be-

comes an operator K  mapping subsets of the space of the states of the world Ω  into other 

subsets of Ω . Aumann’s model of knowledge and generalizations of his model have been 

variously labeled as the event-based approach, possibility correspondence model, semantic 

formalism, knowledge space, Aumann structures, and state-space model of knowledge. The 

latter name will be adopted here. 

The state-space model makes it possible not only to represent what each agent knows 

about the world, but also what each agent knows about what other agents know about the 

world. This kind of knowledge – knowledge of what others know – is called interactive 

knowledge. There are multiple levels of interactive knowledge. Level one is about what an 

agent, say Ann, knows about what another agent, say Bob, knows. Level two is about what 

Ann knows about what Bob knows about her knowledge of the world. The staircase of levels 

of interactive knowledge escalates in the predictable way. 

A specific kind of interactive knowledge is common knowledge. An event is said to be 

common knowledge among a group of agents if all know it, all know that all know it, and so 

on ad infinitum. According to this definition, common knowledge involves infinite levels of 

interactive knowledge.1 The concept of common knowledge was originally formulated by the 

philosopher David Lewis (1969). In his 1976 paper Aumann formally restated this concept 

within the state-space model of knowledge and introduced it into economics.2 Since then, 

common knowledge has been recognized as a key notion for economic theory and a ubiqui-

tous assumption in game-theoretic models. In games of complete information, the set of play-

ers, the set of strategies, and the payoff functions are assumed to be common knowledge 

among the players. In games of incomplete information, players typically have prior probabil-

ity distributions about the unknown variables, and such distributions are usually taken to be
 
1 To circumvent the infinitely recursive nature of this definition, a number of alternative characterizations of 

common knowledge have been proposed. On them, see Geanakoplos (1992, 1994) as well as Vanderschraaf 
and Sillari (2005). However, these alternative characterizations play no role in the current contribution. 

2 On Lewis’ notion of common knowledge and its differences from Aumann’s formalization, see Cubitt and 
Sugden (2003). 
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common knowledge. Furthermore, some important game-theoretic solution concepts require 

that each player is rational, and that the rationality of the players is common knowledge 

among them.3 Finally, common knowledge of posterior probabilities is essential for the so-

called “agreeing to disagree” results, and common knowledge of willingness to trade for no-

trade theorems.4 

Given the importance of common and hence interactive knowledge, it is fundamental to 

understand clearly whether, by assuming that some element of the model is interactively or 

commonly known, any additional assumption is implicitly made. In particular, consider Ann 

and Bob, and assume that Ann knows that Bob knows a certain event E . The question is: to 

assume this, don’t we need to make the additional assumption that Ann knows how the infor-

mation is imparted to Bob, that is, that Ann knows Bob’s knowledge operator BK ? 

Under certain conditions the way knowledge is imparted to the agents can be modeled 

also through their so-called information partitions c . In this case the state-space model is 

said to be partitional. In partitional state-space models, the above question can be also put as 

follows: to say that Ann knows that Bob knows E , is it necessary to make the additional as-

sumption that Ann knows Bob’s information partition Bc ? More generally: to state that a cer-

tain event E  is interactively known among a group of agents, is interactive knowledge of 

their information partitions required as an additional assumption of the model? This is the first 

question addressed in the present paper. 

If we consider the second level of interactive knowledge, as in the statement that Ann 

knows that Bob knows that she knows E , the question about the interactive knowledge of in-

formation partitions comes out again, at level two: to say that Ann knows that Bob knows that 

she knows E , is it necessary to make the additional assumption that Ann knows that Bob 

knows her information partition Ac ? As we consider higher and higher levels of interactive 

knowledge, the question about the interactive knowledge of information partitions returns at 

higher and higher levels, so that when common knowledge is involved the question becomes: 

to state that a certain event E  is common knowledge among a group of agents, is common 

knowledge of their information partitions required as an additional assumption of the model? 

This is the second question addressed in the paper. 
 
3 More on this in Brandenburger (1992, 2007); Dekel and Gul (1997); Battigalli and Bonanno (1999). 
4 The seminal paper for agreeing to disagree results is, again, Aumann (1976); for no-trade theorems it is Mil-

grom and Stokey (1982). 
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Although these two questions have already been discussed in the literature, in my opin-

ion the answers given to them are rather opaque or unsatisfactory.5 The present paper ad-

dresses these questions about interactive and common knowledge of information partitions 

along original lines, and provides a clear and convincing answer to them. 

To attain this goal, the initial step is a methodological distinction between the intuitive 

and philosophical understanding of knowledge on the one hand, and knowledge as modeled in 

the state-space formalism through the operator K  on the other. The puzzles surrounding in-

teractive and common knowledge of information partitions originate from a confusion be-

tween these two understandings, and more precisely from interpreting the operator K  as a re-

alistic representation of knowledge in the intuitive and philosophical sense, whereas K  is a 

formal object whose properties are defined by the state-space model. 

In effect, K  possesses a number of properties that are at odds with both commonsense 

and the philosophical analysis of knowledge. Some of them, like Necessitation and 

Monotonicity, have been already discussed in the literature. The present work focuses instead 

on two other properties of K , that are also quite unrealistic but have attracted less attention. 

The first one is labeled as Substitutivity, and expresses the extensional nature of the operator 

K . The second one is labeled as Immediacy, and emphasizes that in any state of the world, 

the agent immediately and necessarily knows a number of events in the sense of K . When 

one appreciates the implications of Substitutivity and Immediacy as properties of K , and rec-

ognizes that the knowledge involved in the puzzles concerning interactive and common 

knowledge of information partitions is the knowledge captured by the operator K , rather than 

the knowledge of commonsense or philosophy, then the puzzles vanish.  

When the puzzles fade away, it is rather simple to demonstrate that the answer to the 

two questions addressed in the paper is in the negative: neither interactive knowledge nor 

common knowledge of information partitions is an additional assumption of the state-space 

model of knowledge. 

This conclusion is completely in accord with the view maintained all along by Aumann 

in the discussion about the status of interactive and common knowledge of information parti-

tions.6 However, to support this view Aumann used arguments that appear debatable in a 

number of respects. The Appendix to this paper presents and critiques Aumann’s arguments,
 
5 Among the contributions to the discussion, see Aumann (1976, 1987, 1989, 1999, 2005); Gilboa (1988); 

Brandenburger and Dekel (1993); Margalit and Yaari (1996); Hart, Heifetz and Samet (1996); Dekel and Gul 
(1997); Heifetz and Samet (1998); Heifetz (1999); Fagin, Geanakoplos, Halpern and Vardi (1999); Aumann 
and Heifetz (2002, Appendix); Cubitt and Sugden (2003, Appendix 2). 

6 See in particular Aumann (1976, p. 1237; 1987, p. 9; 1999, pp. 272–3 , 276–8; 2005, pp. 92–4). 
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arguing that the case that common and hence interactive knowledge of information partitions 

“is not an assumption, but a ‘theorem’, a tautology; it is implicit in the model itself” 

(Aumann, 1987, p. 9), is better made by bringing into play Substitutivity and Immediacy. 

Some final specifications on the scope and style of the current contribution are in order. 

First, the discussion refers to information partitions, and hence to partitional state-space mod-

els, only for the sake of simplicity and because this is the usual approach in the literature. 

However, this constitutes no loss of generality since neither Substitutivity nor Immediacy de-

pends on the conditions that make the state-space model partitional. Therefore, the arguments 

made here also hold for non-partitional state-space models. 

Second, in the state-space model of knowledge, agents consider possible certain states 

of the world in Ω  and impossible the remaining ones, but they are not endowed with prob-

ability distributions that represent their beliefs over Ω . If we first add to the model a prob-

ability distribution for each agent, then introduce a belief operator B  that says what is the 

probability assigned by an agent to any given event, and finally redefine knowledge as “belief 

with probability 1”, we obtain a different model that is variously labeled as probabilistic be-

lief space, probabilistic structure or Harsanyi type space. There are a number of analogies be-

tween the state-space model and the probabilistic belief space; moreover the issue about inter-

active and common knowledge of information partitions arising in the former has an analog in 

the latter. However, the answers to the issue diverge in the two formalisms. This is mainly 

due to the circumstance that the belief operator B  in the probabilistic belief space has certain 

continuity properties (that derive from the probability measures defining B ), whereas the 

knowledge operator K  in the state-space model is not continuous. Now, the present paper 

deals only with interactive and common knowledge of information partitions in the state-

space model, and does not examine the analogous issue in the probabilistic belief space.7 

Third, the state-space model of knowledge employs set-theoretic tools that are familiar 

to economists. There is another model of knowledge, mainly elaborated by logicians and phi-

losophers, that employs the language and tools of logics and has been variously called the 

logic-based approach, the syntactic formalism, Kripke structure or simply epistemic logic.8 

The parallels between the state-space model and the logic-based approach have been explored 

by, among others, Michael Bacharach (1985) and Aumann himself (1989, 1999). The logic-
 
7 On the probabilistic belief space, its relationships to the state-space model, and the issues concerning interac-

tive and common beliefs, see Mertens and Zamir (1985); Monderer and Samet (1989); Brandenburger and 
Dekel (1993); Heifetz and Samet (1998, 1999a, 1999b); Fagin, Geanakoplos, Halpern and Vardi (1999); 
Meier (2005); Mariotti, Meier and Piccione (2005). 

8 For a comprehensive presentation of logic-based approach, which can be also extended to deal with probabil-
istic beliefs, see Fagin, Halpern, Moses and Vardi (1995). 
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based formalism proved useful to understand the properties of the knowledge operator K  and 

has other nice features, but its language remains unfamiliar to many economists. Therefore, 

although the logic-based approach is outlined in the Appendix, the focus of the present paper 

is on the state-space model, and the questions about interactive and common knowledge of in-

formation partitions are tackled and answered within this model. 

Finally, the key insights of this study are of a methodological and philosophical nature, 

and the technical results obtained in it are an outcome of these insights. Therefore, the paper 

is addressed not only to specialists working on the epistemic foundations of game theory, but 

to a more general audience of economists and philosophers interested in issues concerning 

knowledge. Since this audience may be not familiar with the state-space model of knowledge, 

the paper starts with a review of it, and spells out the puzzles about interactive and common 

knowledge of information partitions by means of a stylized Ann-Bob example. 

The paper is organized as follows. Section 1 reviews the state-space model of knowl-

edge and calls attention to Substitutivity and Immediacy as properties of the operator K . Sec-

tions 2-6 deal with the question of interactive knowledge of information partitions, while Sec-

tion 7 addresses the question of common knowledge of information partitions. Section 8 sums 

up the paper and presents some suggestions for future research. The Appendix offers a critical 

examination of Aumann’s discussion of interactive and common knowledge of information 

partitions. 

 

1. THE STATE-SPACE MODEL OF KNOWLEDGE 

Consider a set Ω  whose generic element is ω , and a correspondence { }∅→Ω Ω \2:P  that 

associates to each element Ω∈ω  a set )(ωP  of elements of Ω  ( Ω2  is the set of all subsets of 

Ω ). Based on P , define an operator ΩΩ → 22:K  as follows: for every Ω⊆E , 

{ }EPEK ⊆Ω∈= )(:)( ωω .9 

The interpretation of the above set-theoretic structure is the following. Ω  is the set of 

the possible states of the world. A state Ω∈ω  specifies every aspect of the world that is rele-

vant to the situation. Only one state is the true one, but the agent may be uncertain about 

which one. This uncertainty is modeled by the correspondence P , which associates to each 

state ω  the set of states that the agent regards as possible at ω . This is why P  is called a 

possibility correspondence. 
 
9 This review of the state-space model of knowledge is based on Osborne and Rubinstein (1994, Chapter 5); 

Dekel and Gul (1997); Battigalli and Bonanno (1999); Samuleson (2004). The reader may refer to these 
works for demonstrations omitted here. 
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A subset Ω⊆E  is called an event, and can be thought of as the collection of all states 

that share a certain feature. For instance, the event “it rains” collects all states Ω∈ω  charac-

terized by rain. Note that, if EP ⊆)(ω , in all states the agent regards as possible in ω , the 

event E  occurs. 

The operator K  is interpreted as a knowledge operator: if )(EK∈ω , then at ω  the 

agent knows that the event E  occurs, and this is because in every state the agent regards as 

possible in ω  – that is, in )(ωP  – the event E  occurs. Observe that )(EK  is itself an event, 

the event “the agent knows E ”. As such, )(EK  may become the object of further knowledge 

or uncertainty for another agent. 

This set-theoretic formalization makes knowledge easy to handle in economic models, 

and captures certain features of the intuitive and philosophical understanding of knowledge. 

In effect, the idea that we know a fact when this fact takes place in any situation we consider 

possible sounds sensible. On the other hand, the definition of knowledge through the operator 

K  implies some properties of knowledge that appear dubious from the intuitive and philoso-

phical viewpoint. First, it is easy to show that K  satisfies the following property, called Ne-

cessitation: 

 
Necessitation: Ω=Ω)(K . 
 
Necessitation is interpreted as stating that if an event occurs in all states of the world, then the 

agent knows it. So, if we think of logical truths as something ingrained in any state of the 

world, Necessitation says that the agent knows all logical truths. This may seem questionable. 

Moreover, Dekel, Lipman and Rustichini (1998) have shown that Necessitation is incompati-

ble with a feature of actual knowledge that is relevant for economic analysis, namely that an 

agent may be unaware of some possible events. A second property satisfied by K  is Conjunc-

tion: 

 
Conjunction: )()()( FEKFKEK ∩=∩ . 
 
The interpretation of Conjunction is that an agent knows that two events occurred if and only 

if she knows that each of them occurred. Necessitation and Conjunction are the two funda-

mental properties of the operator K . In fact, it can be shown that K  can be derived from a 

possibility correspondence P  if and only if K  satisfies Necessitation and Conjunction. 

With respect to Necessitation, Conjunction may seem quite innocuous, but in fact it has 

a strong implication, called Monotonicity: 

 
Monotonicity: if FE ⊆  then )()( FKEK ⊆ . 



 7

Monotonicity is interpreted as stating that the agent knows the implications of what she 

knows. This means that if the agent knows the axioms of a mathematical system, she also 

knows all the theorems that are valid in the system, and this appears at odds with ordinary in-

tuitions about knowledge. Moreover, Dekel, Lipman and Rustichini (1998) have shown also 

that Monotonicity is incompatible with unawareness, and this independently from Necessita-

tion. Since Necessitation and Monotonicity are properties that the operator K necessarily 

holds in the state-space model, Dekel, Lipman and Rustichini conclude that this model, at 

least in its standard form, preclude unawareness.10 

There are two further properties of K  that have attracted less attention in the economic 

literature and are instead at the core of the present paper. The first one is a special case of 

Monotonicity when FE = , and can be dubbed Substitutivity: 

 
Substitutivity: FE =  then )()( FKEK = . 
 
Substitutivity states that, if two events collect exactly the same states of the world, when the 

agent knows one event she also knows the other. So, for instance, in a Euclidean universe if 

the agent knows that all triangles in front of him are equilateral, he knows also that they are 

all equiangular. Substitutivity is less demanding than Monotonicity, but still in contrast with 

our intuition of knowledge as well as with what logicians and philosophers call the intensional 

character of knowledge. This will be discussed below in Sections 3 and 4.11 The second prop-

erty can be called Immediacy: 

 
Immediacy: for every Ω∈ω  and every Ω⊆E , if )(ωPE ⊇  then )(EK∈ω . 
 
From a formal viewpoint, Immediacy is just a restatement of the very definition of K . But 

this restatement makes clear that at any state ω  there is a number of events that the agent 

knows and cannot avoid knowing, namely the events that are supersets of )(ωP . In a sense, at 

ω  the supersets of )(ωP  make themselves manifest to the agent. By definition of K , the 

events that are supersets of )(ωP  are none other than the events that the agent knows at ω . 

What Immediacy emphasizes is that at ω  not only can the agent know these events, but in 

fact she necessarily and immediately knows them: the operator K  brushes off any difference 

between potential knowledge and actual knowledge, and this explains the suggested label. 
 
10 To accommodate unawareness, some extensions of the standard state-space model have been recently pro-

posed. More on this in Section 8. 
11 In the logic-based approach Substitutivity is usually called the Equivalence Rule. Lismont and Mongin 

(1994, 2003), as well as Ferrante (1996) have introduced logical models of knowledge where, at least to a 
certain extent, Monotonicity is replaced with the weaker Equivalence Rule. 
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In the economic literature, this feature of K  has been noticed (and exploited for a num-

ber of results) with reference to a particular class of events called self-evident events or tru-

isms.12 An event E  is said to be self-evident if, for every E∈ω , EP ⊆)(ω . Therefore, if E  

is a self-evident event and E∈ω , then it is also the case that )(EK∈ω , i.e. )(EKE ⊆ . In 

words, whenever a self-evident event occurs the agent knows and cannot avoid knowing it. 

Immediacy highlights that this epiphanic feature of K  is not restricted to self-evident events, 

since in any state ω  there is a number of events that make themselves manifest to the agent, 

namely the supersets of )(ωP . 

From a philosophical viewpoint it can be argued that certain events related to sensations 

(e.g. “I see this object as white”) or thoughts (e.g. the Cartesian “I am thinking” or the ana-

lytical truth “A is A”) are immediately and necessarily known, and that any knowledge ulti-

mately relies on this kind of event. However, in most circumstances knowledge refers to 

states of affairs that are not immediately and necessarily known, so that Immediacy also ap-

pears an unrealistic property of K . 

Whereas Necessitation, Monotonicity, Substitutivity and Immediacy may seem too de-

manding with respect to the intuitive and philosophical understanding of knowledge, there is 

an almost undisputed property of knowledge that is not captured by the operator K , namely 

that we cannot know the false. This truth-condition is one of the elements that distinguishes 

knowledge from belief – a belief can be false – and is embodied in the traditional philosophi-

cal definition of knowledge as “justified true belief”.13 In order to warrant the truthfulness of 

knowledge we need the following assumption on the possibility correspondence P : 

 
P1: for every Ω∈ω , )(ωω P∈ . 
 
It is easy to see that P1 implies the so-called Truth axiom: 

 
Truth axiom: EEK ⊆)( . 
 
This means that when the agent knows an event E  this event actually occurs, that is, her 

knowledge is true. Another property is usually assumed of P , namely that: 

 
P2: If )(' ωω P∈  then )()'( ωω PP = . 
 
It can be shown that P2 implies the following two properties of the operator K : 
 
12 See e.g. Geanakoplos (1992, 1994) and Binmore and Brandenburger (1989). 
13 For an introduction to the definition of knowledge as justified true belief, and the refinements of this defini-

tion as a consequence of the so-called Gettier problem, see Steup (2006). 
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Positive introspection: ))(()( EKKEK ⊆ ; 

Negative introspection: ))(\()(\ EKKEK Ω⊆Ω . 

 
Positive introspection says that if the agent knows something, then she knows that she knows 

it. Negative introspection says that if the agent does not know something, then she knows that 

she does not know it. Common sense and philosophical considerations suggest that it is unre-

alistic to assume that actual knowledge satisfies these forms of introspection, and especially 

the negative one.  

It can be proved that P1 and P2 are not only sufficient but also necessary for the opera-

tor K  to satisfy the Truth axiom, Positive introspection and Negative introspection. However, 

the arguments made in the current paper do not rely on these latter properties of K , but on 

Substitutivity and Immediacy, which are independent of P1 and P2. Since P1 and P2 do not 

play any role for the results obtained in the paper, they can be assumed here without loss of 

generality. This will make the discussion easier to follow. 

When P  satisfies P1 and P2, P  is called partitional because it induces a unique parti-

tion c  on Ω , whose elements, or cells, are the sets )(ωP .14 c  is called an information 

partition and expresses the agent’s uncertainty about the true state of world as the possibility 

correspondence P  does: when the true state is ω , the agent regards as possible all states that 

are in the cell )(ωP  of c  containing ω . In fact, there is a one-to-one relationship between 

information partitions c  and partitional possibility correspondences P , so that the agent’s 

uncertainty and knowledge can be modeled equivalently in either way. 

As an illustration of the state-space model of knowledge in the partitional case, suppose 

that Ann and Bob are interested in a variable v  that can take values from 1 to 6, like a die. 

Each state of the world is characterized by the value taken in it by v , so that there are six pos-

sible states: { }654321 ,,,,, ωωωωωω=Ω . AP , the possibility correspondence of Ann, is as fol-

lows: { }2121 ,)()( ωωωω == AA PP , { }543543 ,,)()()( ωωωωωω === AAA PPP , { }66 )( ωω =AP . This 

is equivalent to saying that Ann’s information partition Ac  is 

{ } { } { }{ }654321 ,,,,, ωωωωωω=Ac . So if 1=v , Ann considers possible both 1=v  and 2=v ; if 

3=v , Ann is uncertain whether 3=v , 4=v  or 5=v , and so on.  

Let us now consider the event S  “ v  is not greater than 3”. S  occurs at states 1ω , 2ω  

and 3ω : { }321 ,, ωωω=S . In which states of the world does Ann know S ? In 1ω  and 2ω  Ann

 
14 A partition of Ω is a collection of nonempty disjoint subsets of Ω whose union is Ω. 
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knows S  since SPP AA ⊆= )()( 21 ωω . On the contrary, at 3ω  Ann does not know S , since at 

3ω  she thinks that 4=v  or 5=v  could be the case; formally )( 3ωAP Ã S . Also at 4ω  and 5ω  

Ann thinks that v  could be greater than 3, whereas at 6ω  she knows that 6=v . Therefore, not 

even at 4ω , 5ω  or 6ω  does Ann know S . In conclusion, { }21,)( ωω=SK A . Note that )(SK A  

is itself an event: the event that Ann knows that 3≤v . 

All this has an intuitive graphical representation. In Figure 1 below, the circular loops 

stand for the cells of Ann’s information partition, whereas the rectangular loop stands for 

events: 

 

 
 
So, if the true state is 1ω  Ann knows S : )(1 SK A∈ω . Which other events are known and nec-

essarily known to Ann at 1ω ? Immediacy says that Ann necessarily knows all the events that 

are supersets of )( 1ωAP . It is easy to show that, besides )( 1ωAP , S  and Ω , there are 13 such 

supersets in Ω . For instance, two of these supersets are { }4321 ,,, ωωωω=T , which can be in-

terpreted as “ 4≤v ”, and { }6321 ,,, ωωωω=W , which can be interpreted as “ 3≤v  or 6=v ”. 

 

2. INTERACTIVE KNOWLEDGE OF INFORMATION PARTITIONS        

AND PUZZLE 1 

So far the state-space formalism was presented for the single-agent case. Yet, this formalism 

can be easily extended to a multi-agent setting, and used to model what an agent knows about 

what the other agents know about the world, that is, interactive knowledge. 

The simplest setting with two agents – Ann and Bob – will be considered here since this 

makes the discussion simpler without affecting the results of the paper. In this setting, iP , iK  

and ic , with { }BAi ,∈ , are the possibility correspondence, the knowledge operator and the 

information partition of Ann and Bob, respectively. 

Assume now that Bob’s information partition is as follows: 

{ } { } { } { }{ }654321 ,,,,, ωωωωωω=Bc . As seen above, the event T  “ 4≤v ” occurs at states 1ω , 

2ω  6ω  3ω  4ω  5ω  cA 

S 

KA(S)

1ω  

Figure 1 
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2ω , 3ω  and 4ω : { }4321 ,,, ωωωω=T . It is easy to show that the states of the world where Bob 

knows that 4≤v  are 1ω , 2ω  and 3ω : { }321 ,,)( ωωω=TKB . )(TKB  is itself an event, and in 

our example it happens that the event S , “ 3≤v ”, and the event )(TKB , “Bob knows that 

4≤v ”, occur exactly in the same states of the world: STK B =)( . This situation is repre-

sented in Figure 2: 

 

 
 
Hence, if the true state is 1ω  Bob knows T : )(1 TKB∈ω . At this point, interactive knowledge 

enters the scene. We can ask whether at 1ω  Ann knows that Bob knows that 4≤v . Since 

)(TKB  is itself an event, in the state-space formalism the question can be restated as follows: 

does ))((1 TKK BA∈ω ? 

The intuitive answer is: it depends on whether Ann knows Bob’s information partition 

(or, to say it another way, on whether Ann knows Bob’s possibility correspondence). If at 1ω  

Ann knows Bob’s information partition, she can draw the same conclusion that we, the exter-

nal, omniscient model-makers, have drawn: that indeed Bob does know T . On the contrary, if 

Ann does not know Bob’s information partition, she has no clue about what Bob knows. In 

other words, the intuitive answer is that we need to make the additional assumption that Ann 

knows Bob’s information partition to state that Ann knows that Bob knows T . 

However, consider the following objection to this intuitive answer. It was established 

that at 1ω  Ann knows S  (i.e., )(1 SK A∈ω ), and that the set of states where Bob knows T  co-

incide with S  (i.e., STK B =)( ). But if )(1 SK A∈ω  and STK B =)( , by Substitutivity it is 

also the case that ))((1 TKK BA∈ω , that is, in fact at 1ω  Ann knows that Bob knows that 

4≤v . And this is independent of any additional assumption about Ann’s knowledge of Bob’s 

information partition. 

The intuitive reply to this objection is that if Ann does not know Bob’s information par-

tition, she is not aware that STK B =)( , so that she cannot go from )(SK A  to ))(( TKK BA . In 

other words, from Ann’s subjective viewpoint S  and )(TKB  are different events. To say that, 

2ω  6ω  3ω  4ω  5ω  

KB(T) = S

1ω  

Figure 2 

cB 

T
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for Ann, S  is subjectively equivalent to )(TKB , the additional assumption that Ann knows 

Bob’s information partition is indeed necessary. 

Which stance is correct? Let us call Puzzle 1 the question whether Ann’s knowledge of 

Bob’s information partition is necessary for Ann to know that Bob knows 4≤v . To solve 

Puzzle 1 an aside on the philosophical notions of extension and intension turns out to be use-

ful. 

 

3. EXTENSION AND INTENSION 

Arguably since Medieval discussions about the status of universals, philosophers have recog-

nized that there is a difference between what a linguistic expression designates and what it 

means.15 What a linguistic expression designates consists of set of things to which the expres-

sion applies, and has been labeled as denotation by John Stuart Mill (1843), reference by 

Gottlob Frege (1892), and extension by Rudolf Carnap (1947). Carnap’s terminology has be-

come standard in contemporary philosophy and will be adopted here. So, for instance, the ex-

tension of the term “computer” is the set of existing computers. What a linguistic expression 

means is the notion or idea conveyed by the expression, and has been called connotation by 

Mill, sense by Frege, and intension by Carnap. The intension of “computer” is the idea of an 

electronic machine that can store, retrieve, and process data. 

Two expressions can have the same extension but different intensions. Frege proposed 

the example of the morning star, which is the star that can be seen at sunrise and was called 

Phosphorus by Greek astronomers, and the evening star, the star that appears at sunset and 

was called Hesperus. The morning star and the evening star have different intensions but the 

same extension, since both designate the planet Venus. Other expressions with different inten-

sions but equal extension are “51” and “17 × 3”, or “equilateral triangle” and “equiangular tri-

angle”. 

In certain contexts, extensional equality is sufficient to apply the so-called principle of 

substitutivity, according to which equals can be substituted by equals in any statement without 

modifying the truth-value of the statement. Contexts where substitution of equals requires 

only extensional equality are called extensional contexts. Classical logic, mathematics and 

standard set theory are typical instances of extensional contexts. Contexts in which intension 

also matters, and extensional equality alone does not warrant the principle of substitutivity, 

are called intensional contexts. Typical examples of intensional contexts are statements in-

volving verbs of propositional attitude such as “believes”, “wants”, “knows”. For instance, 
 
15 This section is largely based on Bealer (1998); Christmas (1998); Fitting (2007). 
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even if Ann knows that the morning star is Venus, she may not know that the evening star is 

also Venus. Even if Bob knows that the triangle in front of him is equilateral he may not 

know that it is also equiangular. One could think that the failure of the substitutivity principle 

in these two examples is due to the fact that the extensional equality among the expressions 

involved is only accidental, that is, non necessary: equilateral and equiangular triangles coin-

cide in Euclidean geometry but may differ in some non-Euclidean system. Similarly, the eve-

ning star and the morning star are the same in the actual astronomical universe, but may be 

different in another possible universe. In effect, the principle of substitutivity can fail even 

when extensional equality is necessary, that is, holds in every imaginable universe. For in-

stance, even if it is always the case that 17 × 3 = 51, Carl may know that 17 × 3 is not prime 

but not know that 51 is not prime. 

Logical systems developed for intensional contexts are called intensional logics. Even if 

a number of intensional logics have been proposed in the last 60 years, none of them has 

gained general acceptance.16 

 

4. THE EXTENSIONAL NATURE OF THE OPERATOR K  

In the state-space model of knowledge there are not linguistic expressions, but subsets of Ω  

called events. However, we have seen that events are typically interpreted as set-theoretic im-

ages of linguistic expressions like “it rains”, “v  is not greater than 3”, or “Bob knows that v  

is not greater than 4”. According to this interpretation, the extension of an event is the set of 

states of Ω  constituting the event, whereas its intension is identified with the intension of the 

linguistic expression represented by the event, e.g., the intension of “it rains”. 

The circumstance that intension matters with respect to knowledge is lost when knowl-

edge is modeled through the operator K . Basically, this is because K  is constructed with the 

tools of standard set theory which is, as noted above, thoroughly extensional. Formally, the 

extensional nature of K  is expressed by its Substitutivity that states that if FE =  then 

)()( FKEK = . Substitutivity says that extensional equality is sufficient to apply the substitu-

tivity principle, and so implies that in the state-space model the contexts involving knowledge 

are purely extensional. 

This is in contrast with the intuitive and philosophical appreciation of the intensional 

dimension of knowledge, and is at the origin of the puzzle concerning Ann’s knowledge of 

Bob’s information partition. 
 
16 The main systems of intensional logic are those proposed by Carnap (1947); Church (1951); Montague 

(1960, 1970); Gallin (1975); Zalta (1988). 
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5. SOLVING PUZZLE 1 

Let us return to Puzzle 1: at 1ω , does Ann know that Bob knows that 4≤v , i.e., the event 

)(TKB , even if Ann does not know Bob’s information partition? The intuitive answer was 

“No”: even if at 1ω  Ann knows S , and STK B =)( , if Ann does not know Bob’s information 

partition, she is not aware that STK B =)( , so that she cannot go from knowing S  to knowing 

)(TKB . 

This answer turns out to be erroneous, and the error derives from a confusion between 

the formal content of the state-space model of knowledge and its interpretation. As it is quite 

natural, the interpretation of the model is based on the intuitive and philosophical understand-

ing of knowledge, according to which extensional equality alone is not sufficient for applying 

the substitutivity principle. Therefore, even if S  and )(TKB  are extensionally equal, their in-

tensional difference (“ 3≤v ” is intensionally different from “Bob knows that 4≤v ”) does not 

allow Ann to jump from )(SK A  to ))(( TKK BA . 

However, this interpretation ignores that the state-space model of knowledge is a for-

malism, which as such captures some features of actual knowledge and leaves out others. In 

particular, as observed in the previous section, the state-space model obliterates the inten-

sional dimension of knowledge. Therefore, within the state-space model the extensional 

equality of S  and )(TKB  is sufficient to apply the principle of substitutivity and to go from 

)(SK A  to ))(( TKK BA  without any additional assumption. In other words, if Ann knows that 

3≤v  in the sense of the operator K , and if the set of states of the world where 3≤v  coin-

cides with the set of the states where Bob knows that 4≤v  in the sense of K , then Ann can-

not not know, in the sense of K , that Bob knows that 4≤v . This is a consequence of the way 

the operator K  is built. 

The step from )(SK A  to ))(( TKK BA  seems tricky as long as one interprets K  accord-

ing to the ordinary and philosophical understanding of knowledge. If, instead, one thinks of 

K  according to the formal content of the state-space model of knowledge, then Puzzle 1 van-

ishes. 

 

6. PUZZLE 2 

To this line of reasoning one may object that Puzzle 1 and its solution refer to a particular 

case, namely the one where STKB =)(  and Substitutivity applies. But consider a different 

event V  such that SVKB ≠)( . For instance, V  may be the event “ 5≠v ”, so that 

{ }64321 ,,,, ωωωωω=V  and Bob knows that 5≠v  at 1ω , 2ω , 3ω , and 6ω : 
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{ }6321 ,,,)( ωωωω=VKB . Here SVKB ≠)(  (in particular, )(VKB  strictly includes S ) and the 

substitutivity principle does not apply. This situation is represented in Figure 3 below: 

 

 
 
Here if the true state is 1ω  Bob knows that 5≠v . Does Ann also know that Bob knows 

5≠v ? If so, does this require as an additional assumption that Ann knows Bob’s information 

partition? The latter question will be called Puzzle 2. The difference between Puzzle 1 and 

Puzzle 2 is that the latter cannot be solved by means of Substitutivity alone. 

To solve Puzzle 2, note that { }6321 ,,, ωωωω  is an event in the first place, which can be 

interpreted without any reference to Bob or his knowledge. For instance, at the end of Section 

1 we labeled { }6321 ,,, ωωωω  as W  and interpreted it as the event such that “ 3≤v  or 6=v ”. It 

was also observed that W  is one of the 16 events that, by Immediacy, Ann knows and cannot 

avoid knowing at 1ω  since )( 1ωAPW ⊇ . Therefore, )(1 WK A∈ω . This situation is represented 

in Figure 4: 

 

 
 

But the event )(VKB , i.e., “Bob knows that 5≠v ”, and the event W , i.e., “ 3≤v  or 6=v ” 

2ω  6ω  3ω  4ω  5ω  

KB(V) = W

1ω  

V

cA 

Figure 4 

)( 1ωAP  

2ω  6ω  3ω  4ω  5ω  

KB(V)

1ω  

V

cB 

Figure 3 
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are extensionally equal, so that we are back to the setting of Puzzle 1 where Substitutivity ap-

plies: since )(1 WK A∈ω  and WVKB =)( , then ))((1 VKK BA∈ω . To put it verbally: yes, at 1ω  

Ann knows that Bob knows that 5≠v , and this does not require any additional assumption 

about Ann’s knowledge of Bob’s information partition. Substitutivity together with Immedi-

acy are sufficient to do the job. If one does not mix up the formal content of the state-space 

model of knowledge and an interpretation of it relying on the intuitive and philosophical un-

derstanding of knowledge, also Puzzle 2 vanishes. 

Notice that Substitutivity and Immediacy do not imply that, if in a certain state Ann and 

Bob know an event E , it is also the case that each agent knows that the other agent knows E . 

Think of event { }21,ωω=Z . At 1ω  both Ann and Bob know Z , but Ann does not know 

whether Bob knows Z  since { }1)( ω=ZKB  and { }211 ,)( ωωω =AP , which is not a subset of 

)(ZKB . 

Rather, what Substitutivity and Immediacy imply can be summed up as follows. For any 

event E  and agent i , consider the event )(EKi  associated with E  by the operator iK . 

)(EKi  can always be relabeled F , where the intension of F  does not bear any relationship 

with agent i ’s knowledge. If FPj ⊆)(ω , by Immediacy agent j  knows F  at ω . Then, since 

)(EKF i= , by Substitutivity agent j  also knows )(EKi  at ω , that is, agent j  knows that 

agent i  knows that E . Such a result does not require any additional assumption about the in-

teractive knowledge of the agents’ information partitions. This answers the first question of 

the paper. 

 

7. COMMON KNOWLEDGE OF INFORMATION PARTITIONS 

As said in the Introduction, an event is said to be common knowledge among a group of 

agents if all know it, all know that all know it, and so on, ad infinitum. Within the state-space 

model of knowledge, an event E  is said to be common knowledge between Ann and Bob in 

the state of the world ω  – this is written as )(ECK AB∈ω  – if at ω  Ann knows E  in the 

sense of the operator K , Bob knows E  in the sense of K , Ann knows that Bob knows E  in 

the sense of K , and so on. Formally, )(ECK AB∈ω  if ω  belongs to every set of the infinite 

sequence )(EK A , )(EKB , ))(( EKK BA , ))(( EKK AB , )))((( EKKK ABA , )))((( EKKK BAB ,… 

If we look at this definition of common knowledge having in mind the previous discus-

sion, it is natural to ask whether common knowledge of an event requires that the information 

partitions of the agents are themselves common knowledge. In fact, common knowledge in-

volves infinite levels of interactive knowledge. ))(( EKK BA  and ))(( EKK AB  involve the first 

level of interactive knowledge, which is the level investigated so far: does Ann (Bob) know 
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that Bob (Ann) knows E ? )))((( EKKK ABA  and )))((( EKKK BAB  draw in the second level of 

interactive knowledge: does Ann (Bob) know that Bob (Ann) knows that she (he) knows E ? 

))))(((( EKKKK BABA  and ))))(((( EKKKK ABAB  involve the third level of interactive knowl-

edge, and so on. Each further level of interactive knowledge may seem to require a further 

level of interactive knowledge of information partitions. So, with reference to the first level 

one may wonder whether Ann needs to know Bob’s information partition to ascertain whether 

Bob knows E . This question was answered in the negative in the previous section. But one 

may also wonder whether, at the second level of interactive knowledge, Ann needs to know 

that Bob knows her information partition to ascertain whether Bob knows that she knows E . 

At level three, does Ann need to know that Bob knows that she knows his information parti-

tion to ascertain whether Bob knows that she knows that he knows E ? 

Even if things seem to get quickly convoluted here, the basic issue that emerges as we 

climb the infinite staircase of interactive knowledge is fairly simple. If each further level of 

interactive knowledge requires a further level of interactive knowledge of information parti-

tions, does common knowledge of an event require as an additional assumption that the in-

formation partitions of the agents are themselves common knowledge? This is the second 

question addressed in the paper. 

To answer it, observe first that we can always re-label events )(EK A , )(EKB , 

))(( EKK BA , ))(( EKK AB , )))((( EKKK ABA , )))((( EKKK BAB ,… in the following recursive 

way: 

 
1)( FEK A =  
1)( GEKB =  

21)())(( FGKEKK ABA ==  
21)())(( GFKEKK BAB ==  

32 )()))((( FGKEKKK AABA ==  
32 )()))((( GFKEKKK BBAB == ….. 17 

 
This re-labeling emphasizes that the events related to the agents’ interactive knowledge are 

ultimately just subsets of Ω , which can always be associated with intensions bearing no rela-

tionship to the agents’ knowledge. 

Assume now that )(ECK AB∈ω . From a set-theoretic viewpoint, this simply means that 

)(ωAP  and )(ωBP  are included in E  and belong to an infinite sequence of other sets. More 

 
17 If P1 holds, then E ⊇ KA(E) ⊇ KB(KA(E)) ⊇ KA(KB(KA(E))) ⊇… and E ⊇ KB(E) ⊇ KA(KB(E)) ⊇ KB(KA(KB(E))) 

⊇… The present discussion is independent of P1, so that the above relationships of inclusion may not hold. 
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precisely, l
A GP ⊆)(ω  for every 1≥l , and m

B FP ⊆)(ω  for every 1≥m . In terms of Immedi-

acy, at ω  Ann immediately and necessarily knows all the events lG , and Bob immediately 

and necessarily knows all the events mF . 

The first level of interactive knowledge is the one already investigated in Puzzle 1 and 

Puzzle 2. As just noted, by assumption at ω  Ann knows and cannot avoid knowing 1G , and 

Bob knows and cannot avoid knowing 1F . But )(1 EKG B=  and )(1 EKF A= , so that Substi-

tutivity applies and each agent knows that the other agent knows E . This is without addi-

tional assumptions about the interactive knowledge of their information partitions. 

Consider now the second level of interactive knowledge. By assumption, at ω  Ann and 

Bob know and cannot avoid knowing 2G  and 2F , respectively. Since ))((2 EKKG AB=  and 

))((2 EKKF BA= , Substitutivity applies and each agent knows that the other agent knows that 

he/she knows E . Again, this does not require any additional assumption about the interactive 

knowledge of the agents’ information partitions. 

Evidently, the same argument can be used for any higher level of interactive knowledge, 

so that we can conclude that common knowledge of an event does not require as an additional 

assumption that the information partitions of the agents are themselves common knowledge. 

This answers the second question of the paper. 

 

8. CONCLUSION 

This paper has shown that interactive and common knowledge of information partitions (or, 

which is the same for the paper’s purposes, of possibility correspondences) are not additional 

assumptions of the state-space model of knowledge. In fact, they draw from Substitutivity and 

Immediacy, two properties that the knowledge operator K  holds by construction in the state-

space formalism, even if the possibility correspondence P  is not partitional. 

This is not to say that Substitutivity and Immediacy, and hence interactive and common 

knowledge of information partitions, are realistic features of knowledge. Substitutivity clashes 

with the intensional character that both commonsense and philosophy attribute to knowledge. 

Immediacy may hold for specific events related to sensations or thoughts, but it is highly im-

plausible in most circumstances. 

In effect, the original insight of the current contribution is the methodological distinc-

tion between the formal content of the state-space model of knowledge and its interpretations. 

More precisely, the current work has argued that the puzzles surrounding interactive and 

common knowledge of information partitions originate from interpreting the state-space 

model of knowledge according to the intuitive and philosophical understanding of knowledge 

rather then to its actual formal content. When one realizes that the knowledge involved in the 
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puzzles is the knowledge captured by the operator K  (rather than the knowledge of common-

sense or philosophy), the puzzles vanish. 

Substitutivity and Immediacy are not the only unrealistic features of K . Necessitation 

and Monotonicity, two other properties that K  necessarily holds in the state-space model, 

also appear dubious from the intuitive and philosophical viewpoint, not least because they 

preclude unawareness. In order to accommodate unawareness, some extensions of the stan-

dard state-space model have recently been proposed among others by Heifetz, Meier and 

Schipper (2006), Li (2006) and Galanis (2006). Even if these extensions differ, the basic 

strategy to generalize the standard model is the same. Whereas in the standard model the 

state-space Ω  is unique, the extensions distinguish among the complete, objective state-space 

*Ω , whose elements *ω  specify every aspect of the world that is relevant to the situation 

from the modeler’s perspective, and the subjective spaces iΩ , whose elements specify every 

relevant aspect of the world agent i  is aware of. Typically, the subjective spaces iΩ  are 

poorer that the objective space *Ω  (agents are unaware of a number of relevant aspects of the 

world), and they vary among agents (different agents are unaware of different things). 

One may wonder what happens to Substitutivity and Immediacy, and hence to interac-

tive and common knowledge of information partitions, in the extended state-space models. 

For instance, it could be argued that, even if two events coincide in the objective space *Ω , 

they may differ in the subjective space of an agent. In this case Substitutivity may fail and in-

teractive and common knowledge of information partitions may become additional assump-

tions of the model. This will be left to future research. 

 

 

APPENDIX: AUMANN’S DISCUSSION OF INTERACTIVE AND COMMON 

KNOWLEDGE OF INFORMATION PARTITIONS 

As mentioned in the Introduction, Aumann has always maintained the view that common 

knowledge and hence interactive knowledge of information partitions are not additional as-

sumptions of the state-space model, but something built into the model itself. Over time, 

Aumann used two arguments to make his case. This Appendix offers critical discussions of 

both arguments and argues that Aumann’s view is better supported by bringing into play Sub-

stitutivity and Immediacy. 

Initially, Aumann (1976, 1987) put forward an argument by contradiction based on the 

very notion of a state of the world. If the model is well specified, a state of the world is a 

complete description of every aspect of the world that is relevant to the situation. Therefore, a 

state of the world contains also a description of the manner in which the information is dis-
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tributed among the agents, that is, of their information partitions. 

Assume now that at state ω  Ann has a doubt about Bob’s information partition. At ω  

Ann may think: “I don’t know whether Bob’s information partition is '
Bc  or ''

Bc ”. But if this 

is the case, then the model is ill-specified. In the correct model, in fact, the state ω  should be 

split into two states: 'ω  where Bob’s information partition is '
Bc , and ''ω  where Bob’s in-

formation partition is ''
Bc . Accordingly, the state space Ω  should be expanded and Ann’s in-

formation partitions should be such that she cannot distinguish between 'ω  and ''ω . More 

generally, if in a state of the world agent i  is uncertain about the information partition of 

agent j , then that state should be broken into different states and Ω  should be expanded until 

the point where all uncertainty of agent i  about the information partition of j  is eliminated. 

Therefore, in the correct and complete state space Ω , which is also called canonical, each 

agent knows by construction the information partitions of the other agents. 

The problem with this argument is that an arbitrarily large number of state splits may be 

required to construct the canonical Ω, which hence may have an arbitrarily large number of 

elements. In effect, Aumann himself (1989, 1999), and with different setting and tools Hart, 

Heifetz and Samet (1996), Heifetz and Samet (1998), as well as Fagin, Geanakoplos, Halpern 

and Vardi (1999), have shown that even in the simplest scenario involving the interactive 

knowledge of two agents about an external variable that can assume only two values, the ca-

nonical Ω  should have the cardinality of the continuum to exhaust all the uncertainty of the 

agents.18 

For the purposes of the present paper, this means that the fact that interactive knowledge 

and common knowledge of information partitions are implicit in the state-space model of 

knowledge cannot be proved by exploiting the very notion of state of the world. This negative 

result leaves another road open, namely that of exploiting the very properties of the knowl-

edge operator K , and this is the road taken in the current contribution. As shown in the paper, 

the properties of Substitutivity and Immediacy that the knowledge operator K  holds by con-

struction, are sufficient to achieve interactive and common knowledge of information parti-

tions, and this in any Ω , not only in the canonical one. 

Given the inconsistency of the argument based on the notion of a state of the world, 

Aumann (1989, 1999) addresses the question of interactive and common knowledge of infor-

mation partitions from a new perspective. Aumann examines the relationships between the 
 
18 In a probabilistic belief space, the problems with the construction of the canonical Ω can be overcome: see 

Mertens and Zamir (1985) and Brandenburger and Dekel (1993). However, even this positive result is subject 
to limitations: see Fagin, Geanakoplos, Halpern and Vardi (1999), and Heifetz and Samet (1999b). 
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state-space model and the logic-based approach to knowledge, and argues that an answer to 

the question is provided by the latter. To understand Aumann’s argument, a brief presentation 

of the logic-based formalism is necessary.19 

Its building blocks are a set of letters { },...,, rqp=Φ , the logical connectives ∧  (“and”), 

∨  (“or”), →  (“if...then”), ¬  (“not”), and the operators ik  defined for each agent i . Each let-

ter in Φ  is interpreted as a primitive proposition describing some natural aspect, i.e., not re-

lated to the agents’ knowledge, of the world. For instance, predictably, p  may stand for “it 

rains”. The set Φ  is supposed to be rich enough to leave no relevant natural aspect of the 

world undescribed. Letters, i.e. primitive propositions, can be composed by means of logical 

connectives in order to form more complex propositions called formulas. For instance, if q  

means “Ann is happy”, qp ¬∧=ϕ  is a formula that means “it rains and Ann is not happy”. 

Every letter is a formula, so that the set of formulas is a superset of Φ . 

The operator ik  applies to formulas and maps them into other formulas, and is inter-

preted as a knowledge operator. So, for instance, ϕik  reads as “agent i  knows that it rains and 

Ann is not happy”, where ϕik  is also a formula. The logic operator ik  may satisfy certain 

properties that parallel those of the set-theoretic operator iK  in the state-space model. For in-

stance, it is generally assumed that ik  satisfy Necessitation (if φ  is a logical truth, then φik  

for every agent i ) and Conjunction ( )( φϕφϕ ∧→∧ iii kkk  for any couple of formulas ϕ  and 

φ , and every agent i ). 

In the state-space model the states of the world are the primitive elements of the analy-

sis. They are conceived as complete descriptions of every aspect of the world that is relevant 

to the situation, but in fact the state-space formalism lacks a language to describe explicitly 

such aspects. In the logic-based approach, instead, the states of the world are derived from 

formulas. More precisely, a state of the world ω  is just a list of formulas that specify all cir-

cumstances holding at ω  and satisfy certain requirements.20 

In the logic-based framework, what agent i  knows at a given state ω  is written in the 

list that defines ω : agent i  knows all the formulas ϕ  such that ϕik  is in the list. The lists that 

 
19 The following presentation of the logic-based approach is based on Aumann (1999), and Fagin, Halpern, 

Moses and Vardi (1995). 
20 First, the list of formulas defining a state of the world should be closed: if a formula ϕ belongs to the list, all 

formulas implied by ϕ also belong to the list. Second, the list should be consistent (or coherent): if a formula 
ϕ belongs to the list, its negation ¬ϕ does not belong to the list. Third, the list should be complete: if a for-
mula ϕ does not belong to the list, its negation ¬ϕ belongs to the list. 
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define the states also induce the information partitions of the agents. In fact, two states ω  and 

'ω  belong to the same cell of agent i ’s information partition if in both states agent i  knows 

exactly the same formulas, that is, if for any formula ϕ , ωϕ∈ik  implies 'ωϕ∈ik  and vice 

versa. Since the information partitions of the agents are induced by their knowledge operators 

ik , in the logic-based approach the issue about the interactive knowledge of information parti-

tions becomes the issue about the interactive knowledge of the operators ik . 

Now, Aumann (1999) argues that interactive knowledge of the operators ik  and hence 

of the information partitions ic , is not an additional assumption of the model. His argument 

is based on a peculiar interpretation of the meaning of knowledge when the knowledge of the 

operators ik  of the others is involved, that is, when knowledge is interactive. Whereas in a 

string like fki , ik  means as usual “agent i  knows that f ”, in a string like fkk ij , jk  would 

stand for “agent j  knows what it means for agent i  to know f ”. To distinguish knowledge 

as “knowing what it means…” from knowledge as “knowing that”, Aumann uses quotation 

marks when he refers to the former: 

 
For an individual j to “know” ki means that j knows what it means for i to know something. […] 
Suppose, for example, that f stands for “it will snow tomorrow”. For j to know the operator ki 
implies that j knows that kif stands for “i knows that it will snow tomorrow;” it does not imply 
that j knows that i knows that it will snow tomorrow […]. In brief, j’s knowing the operator ki 
means simply that j knows what it means for i to know something, not that j knows anything 
specific about what i knows. (Aumann, 1999, p. 277) 
 

Since “knowing” the knowledge operators of others entails only acquaintance with the dic-

tionary of the model, assuming that each agent “knows” the operators ik  of others constitutes 

no loss of generality: 

 
The operator ki operates on formulas; it takes each formula f to another formula. Which other 
formula? […] Well, it is simply the formula kif. “Knowing” the operator ki just means knowing 
this definition. […] Thus the assertion that each individual “knows” the knowledge operators ki 
of all individuals has no real substance; it is part of the framework. If j did not “know” the 
knowledge operators ki he would be unable to consider formulas in the language. (Aumann, 
1999, p. 277) 
 

In a footnote, Aumann acknowledges that his interpretation of interactive knowledge is quite 

peculiar, and that it is not clear how to deal with the operator “knowing” in the logic-based 

formalism: 

 
It should be recognized that “knowledge” […] has a meaning that is somewhat different from 
that embodied in the [operator] ki […]; that is why we have been using quotation marks when 
talking about “knowing” an operator or a partition. That an individual i knows […] a formula f 
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can be embodied in formal statements […] that are well defined within the formal system we 
have constructed […]. This is not the case for “knowing” an operator or a partition. (Aumann, 
1999, p. 277, footnote 17) 
 

Now, Aumann’s entire argument appears debatable. From a formal viewpoint, and as 

Aumann himself notices, the lack of an exact definition of the operator “knowing” makes it 

difficult to talk rigorously about it. From a more substantial viewpoint, jk  in the string fkk ij  

should not be interpreted as “agent j  knows what it means for agent i  to know f ”. The 

standard interpretation of that string, i.e., “agent j  knows that agent i  knows f ”, is the cor-

rect one and this for a very good reason: if interactive knowledge were interpreted as Aumann 

suggests in the passages quoted above, it would be of little consequence in strategic environ-

ments. For instance, we can well imagine that if j  knows that i  knows that it will snow to-

morrow, j  rules out the possibility that i  takes action ia , and hence j  decides to take action 

ja . If, instead, j  only knows what it means for i  to know that it will snow tomorrow, but j  

is uncertain whether i  knows that it will snow tomorrow, j  cannot exclude action ia  by i  

and maybe j  will not take action ja . In other words, the implications for strategic behavior 

of “knowing what it means…” are generally weak, and this renders such a notion of interac-

tive knowledge almost useless for game theory and economic applications. 

The point made in the present paper is that, in order to show that interactive and com-

mon knowledge of information partitions are indeed, as Aumann has always claimed, implicit 

in the model itself, there is no need to introduce a “knowing what it means…” operator, nor to 

replace the state-space model of knowledge with the logic-based formalism. Interactive 

knowledge and common knowledge of information partitions draw from Substitutivity and 

Immediacy, two properties that the knowledge operator K  holds by construction in the state-

space model of knowledge. 
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